
ADVANCED RESEARCH PROJECTS AGENCY

Washington 25, D.C. April 23, 1963

MEMORANDUM FOR: Members and Affiliates of the Intergalactic 
Computer Network

FROM: J. C. R. Licklider

SUBJECT: Topics for Discussion at the Forthcoming Meeting

First, I apologize humbly for having to postpone the 
meeting scheduled for 3 May 1963 in Palo Alto. The ARPA 
Command & Control Research office has just been assigned a 
new task that must be activated immediately, and I must 
devote the whole of the coming week to it. The priority is 
externally enforced. I am extremely sorry to inconvenience 
those of you who have made plans for May 3rd. Inasmuch as I 
shall be in Cambridge the rest of this week, I am asking my 
colleagues here to re-schedule the meeting, with May 10th, 
Palo Alto, as target time and place.

The need for the meeting and the purpose of the meeting are 
things that I feel intuitively, not things that I perceive 
in clear structure. I am afraid that that fact will be too 
evident in the following paragraphs. Nevertheless, I shall 
try to set forth some background material and some thoughts 
about possible interactions among the various activities in 
the overall enterprise for which, as you may have detected 
in the above subject, I am at a loss for a name.

In the first place, it is evident that we have among us a 
collection of individual (personal and/or organizational) 
aspirations, efforts, activities, and projects. These have 
in common, I think, the characteristics that they are in 
some way connected with advancement of the art or 
technology of information processing, the advancement of 
intellectual capability (man, man-machine, or machine), and 
the approach to a theory of science. The individual parts 
are, at least to some extent, mutually interdependent. To 
make progress, each of the active research needs a software 
base and a hardware facility more complex and more 
extensive than he, himself, can create in reasonable time.

In pursuing the individual objectives, various members of 
the group will be preparing executive the monitoring 



routines, languages amd [sic.] compilers, debugging systems 
and documentation schemes, and substantive computer 
programs of more or less general usefulness. One of the 
purposes of the meeting–perhaps the main purpose–is to 
explore the possibilities for mutual advantage in these 
activities–to determine who is dependent upon whom for what 
and who may achieve a bonus benefit from which activities 
of what other members of the group. It will be necessary to 
take into account the costs as well as the values, of 
course. Nevertheless, it seems to me that it is much more 
likely to be advantageous than disadvantageous for each to 
see the others’ tentative plans before the plans are 
entirely crystallized. I do not mean to argue that everyone 
should abide by some rigid system of rules and constraints 
that might maximize, for example, program 
interchangeability.

But, I do think that we should see the main parts of the 
several projected efforts, all on one blackboard, so that 
it will be more evident than it would otherwise be, where 
network-wide conventions would be helpful and where 
individual concessions to group advantage would be most 
important.

It is difficult to determine, of course, what constitutes 
“group advantage.” Even at the risk of confusing my own 
individual objectives (or ARPA’s) with those of the 
“group,” however, let me try to set forth some of the 
things that might be, in some sense, group or system or 
network desiderata.

There will be programming languages, debugging languages, 
time-sharing system control languages, computer-network 
languages, data-base (or file-storage-and-retrieval 
languages), and perhaps other languages as well. It may or 
may not be a good idea to oppose or to constrain lightly 
the proliferation of such. However, there seems to me to be 
little question that it is desirable to foster “transfer of 
training” among these languages. One way in which transfer 
can be facilitated is to follow group consensus in the 
making of the arbitrary and nearly-arbitrary decisions that 
arise in the design and implementation of languages. There 
would be little point, for example, in having a diversity 
of symbols, one for each individual or one for each center, 
to designate “contents of” or “type the contents of.” It 
seems to me desirable to have as much homogeneity as can 



reasonably be achieved in the set of sub-languages of a 
given language system–the system, for example, of 
programming, debugging, and time-sharing–control languages 
related to JOVIAL on the Q-32, or the system related to 
Algol (if such were developed and turned out to be 
different from the JOVIAL set) for the Q-32 computer, or 
the set related to FORTRAN for a 7090 or a 7094.

Dictating the foregoing paragraph led me to see more 
clearly than I had seen it before that the problem of 
achieving homogeneity within a set of correlated languages 
is made difficult by the fact that there will be, at a 
given time, only one time-sharing system in operation on a 
given computer, whereas more than one programming language 
with its associated debugging language may be 
simultaneously in use. The time-sharing control language 
can be highly correlated only with one programming and 
debugging language pair. Insofar as syntax is concerned, 
therefore, it seems that it may be necessary to have a 
“preferred” language for each computer facility or system, 
and to have the time-sharing control language be consistent 
with the preferred. Insofar as semantics is concerned–or, 
at least, insofar as the association of particular symbols 
with particular control functions is concerned–I see that 
it would be possible, thought perhaps inconvenient, to 
provide for the use, by several different operators, of 
several different specific vocabularies. Anyway, there 
seems to me to be a problem, or a set of problems, in this 
area.

There is an analogous problem, and probably a more 
difficult one, in the matter of language for the control of 
a network of computers. Consider the situation in which 
several different centers are netted together, each center 
being highly individualistic and having its own special 
language and its own special way of doing things. Is it not 
desirable, or even necessary for all the centers to agree 
upon some language or, at least, upon some conventions for 
asking such questions as “What language do you speak?” At 
this extreme, the problem is essentially the one discussed 
by science fiction writers: “how do you get communications 
started among totally uncorrelated “sapient” beings?” But, 
I should not like to make an extreme assumption about the 
uncorrelatedness. (I am willing to make an extreme 
assumption about the sapience.) The more practical set of 
questions is: Is the network control language the same 



thing as the time-sharing control language? (If so, the 
implication is that there is a common time-sharing control 
language.) Is the network control language different from 
the time-sharing control language, and is the network-
control language common to the several netted facilities? 
Is there no such thing as a network-control language? (Does 
one, for example, simply control his own computer in such a 
way as to connect it into whatever part of the already-
operating net he likes, and then shift over to an 
appropriate mode?)

In the foregoing paragraphs, I seem to have leapt into the 
middle of complexity. Let me approach from a different 
starting point. Evidently, one or another member of this 
enterprise will be preparing a compiler, or compilers, for 
modifying existing programs that compile FORTAN [sic.], 
JOVIAL, ALGOL, LISP and IPL-V (or V-l, or V-ll). If there 
is more than one of any one of the foregoing, or of any one 
of others that I do not foresee, then it seems worthwhile 
to examine the projected efforts for compatibility. 
Moreover, to me, at least, it seems desirable to examine 
the projected efforts to see what their particular features 
are, and to see whether there is any point in defining a 
collection of desirable features and trying to get them all 
into one language and one system of compilers. I am 
impressed by the argument that list-structure features are 
important as potential elements of ALGOL or JOVIAL, that we 
should think in terms of incorporating list-structure 
features into existing languages quite as much as in terms 
of constructing languages around list-structures.

It will possibly turn out, I realize, that only on rare 
occasions do most or all of the computers in the overall 
system operate together in an integrated network. It seems 
to me to be interesting and important, nevertheless, to 
develop a capability for integrated network operation. If 
such a network as I envisage nebulously could be brought 
into operation, we would have at least four large 
computers, perhaps six or eight small computers, and a 
great assortment of disc files and magnetic tape units–not 
to mention the remote consoles and teletype stations–all 
churning away. It seems easiest to approach this matter 
from the individual user’s point of view–to see what he 
would like to have, what he might like to do, and then to 
try to figure out how to make a system within which his 



requirements can be met. Among the things I see that a user 
might want to have, or to do, are the following:

(Let me suppose that I am sitting at a console that 
includes a cathode-ray-tube display, light-pen, and a 
typewriter.) I want to retrieve a set of experimental data 
that is on a tape called Listening Test. The data are 
called “experiment 3.” These data are basically percent- 
ages for various signal-to-noise ratios. There are many 
such empirical functions. The experiment had a matrix 
design, with several listeners, several modes of 
presentation, several signal frequencies, and several 
durations. I want, first, to fit some “theoretical” curves 
to the measured data. I want to do this in a preliminary 
way to find out what basic function I want to choose for 
the theoretical relation between precentage [sic.] and 
signal-to-noise ratio. On another tape, called “Curve 
Fitting,” I have some routines that fit straight lines, 
power functions, and cumulative normal curves. But, I want 
to try some others, also. Let me try, at the beginning, the 
functions for which I have programs. The trouble is, I do 
not have a good grid-plotting program. I want to borrow 
one. Simple, rectangular coordinates will do, but I would 
like to specify how many divisions of each scale there 
should be and what the labels should be. I want to put that 
information in through my typewriter . Is there a suitable 
grid-plotting program anywhere in the system? Using 
prevailing network doctrine, I interrogate first the local 
facility, and then other centers. Let us suppose that I am 
working at SDC, and that I find a program that looks 
suitable on a disc file in Berkeley. My programs were 
written in JOVIAL.

The programs I have located through the system were written 
in FORTRAN. I would like to bring them in as relocatable 
binary programs and, using them as subroutines, from my 
curve-fitting programs, either at “bring-in time” or at 
“run-time.”

Supposing that I am able to accomplish the steps just 
described, let us proceed. I find that straight lines, 
cubics, quintics, etc., do not provide good fits to the 
data. The best fits look bad when I view them on the 
oscilloscope.



The fits of the measured data to the cumulative normal 
curve are not prohibitively bad. I am more interested in 
finding a basic function that I can control appropriately 
with a few perimeters than I am in making contact with any 
particular theory about the detection process, so I want to 
find out merely whether anyone in the system has any curve- 
fitting programs that will accept functions supplied by the 
user or that happen to have built-in functions roughly like 
the cumulative normal curve, but assymmetrical. Let us 
suppose that I interrogate the various files, or perhaps 
interrogate a master-integrated, network file, and find out 
that no such programs exist. I decide, therefore, to go 
along with the normal curve.

At this point, I have to do some programming. I want to 
hold on to my data, to the programs for normal curve 
fitting, and to display programs that I borrowed. What I 
want to do is to fit cumulative normal curves to my various 
sub-sets of data constraining the mean and the variance to 
change slowly as I proceed along any of the ordinal or 
ratio- scale dimensions of my experiment, and permitting 
slightly different sets of perimeters for the various 
subjects. So, what I want to do next is to create a kind of 
master program to set perimeter values for the curve-
fitting routines, and to display both the graphical fits 
and the numerical measures of goodness to fit as, with 
light-pen and graphics of perimeters versus independent 
variables on the oscilloscope screen, I set up and try out 
various (to me) reasonable configurations. Let us say that 
I try to program repeatedly on my actual data, with the 
subordinate programs already mentioned, until I get the 
thing to work.

Let us suppose that I finally do succeed, that I get some 
reasonable results, photograph the graphs showing both the 
empirical data and the “theoretical” curves, and retain for 
future use the new programs. I want to make a system of the 
whole set of programs and store it away under the name 
“Constrained-perimeter Normal-curve-fitting System.”

But, then suppose that my intuitively natural way of naming 
the system is at odds with the general guidelines of the 
network for naming programs. I would like to have this 
variance from convention called to my attention, for I am a 
conscientious “organization man” when it comes to matters 
of program libraries and public files of useful data.



In the foregoing, I must have exercised several network 
features. I engaged in information retrieval through some 
kind of system that looked for programs to meet certain 
requirements I had in mind. Presumably, this was a system 
based upon descriptors, or reasonable facsimiles thereof, 
and not in the near future, upon computer appreciation of 
natural language. However, it would be pleasant to use some 
of the capabilities of avant-garde linguistics. In using 
the borrowed programs, I effected some linkages between my 
programs and the borrowed ones. Hopefully, I did this 
without much effort–hopefully, the linkages were set up–or 
the basis for making them was set up–when the programs were 
brought into the part of the stytem [sic.] that I was 
using. I did not borrow any data, but that was only because 
I was working on experimental data of my own. If I had been 
trying to test some kind of a theory, I would have wanted 
to borrow data as well as programs.

When the computer operated the programs for me, I suppose 
that the activity took place in the computer at SDC, which 
is where we have been assuming I was. However, I would just 
as soon leave that on the level of inference. With a 
sophisticated network-control system, I would not decide 
whether to send the data and have them worked on by 
programs somewhere else, or bring in programs and have them 
work on my data. I have no great objection to making that 
decision, for a while at any rate, but, in principle, it 
seems better for the computer, or the network, somehow, to 
do that. At the end of my work, I filed some things away, 
and tried to do it in such a way that they would be useful 
to others. That called into play, presumably, some kind of 
a convention-monitoring system that, in its early stages, 
must almost surely involve a human criterion as well as 
maching [sic.] processing.

The foregoing (unfortunately long) example is intended to 
be a kind of example of example. I would like to collect, 
or see someone collect, a considerable number of such 
examples, and to see what kind of software and hardware 
facilities they imply. I have it well in mind that one of 
the implications of a considerable number of such examples 
would be a very large random-access memory.

Now, to take still another approach to this whole matter, 
let me string-together a series of thoughts that are coming 



to mind. (I was interrupted at this point, and the 
discussion almost has to take a turn.) First, there is the 
question of “pure procedure.” I understand that the new 
version of JOVIAL is going to compile programs in “pure-
procedure” style.

Will the other compilers at the other centers do likewise? 
Second, there is the question of the interpretation, at one 
center, of requests directed to it from another center. I 
visualize vaguely some kind of an interpretive system that 
would serve to translate the incoming language into 
commands or questions of the form in terms of which the 
interrogated center operates. Alternatively, of course, the 
translation could be done at the sending end. Still 
alternatively, the coordination could be so good that 
everybody spoke a common language and used a common set of 
formats. Third, there is the problem of protecting and 
updating public files. I do not want to use material from a 
file that is in the process of being changed by someone 
else. There may be, in our mutual activities, something 
approximately analogous to military security 
classification. If so, how will we handle it?

Next, there is the problem of incremental compiling. Am I 
correct in thinking that Perlis, with his “threaded lists,” 
has that problem, and the related problem of com- pile-
test-recompile, essentially solved?

Over on the hardware side, I am worried that the boundary- 
registered problem, or more generally the memory-protection 
problem, may be expensive to solve on the Q-32 and both 
difficult and expensive to solve on other machines, and I 
am worried that the problem of swapping or transferring 
information between core and secondary memory will be 
difficult and expensive on 7090s and 7094s–and I worry that 
time-sharing will not be much good without fast swaps or 
transfers. What are the best thoughts on these questions? 
In what state are our several or collective plans?

Implicit in the long example was the question of linking 
subroutines at run time. It is easy to do the calling, 
itself, through a simple directory, but it seems not to be 
so simple to handle system variables. Maybe it is simple in 
principle and perhaps I should say that it seems possibly 
infeasible to handle the linking of the system variables at 
run time through tables or simple addressing schemes.



It is necessary to bring this opus to a close because I 
have to go catch an airplane. I had intended to review 
ARPA’s Command-and-Control interests in improved man-
computer interaction, in time-sharing and in computer 
networks. I think, however, that you all understnad [sic.] 
the reasons for ARPA’s basic interest in these matters, and 
I can, if need be, review them briefly at the meeting. The 
fact is, as I see it, that the military greatly needs 
solutions to many or most of the problems that will arise 
if we tried to make good use of the facilities that are 
coming into existence.

I am hoping that there will be, in our individual efforts, 
enough evident advantage in cooperative programming and 
operation to lead us to solve these problems and, thus, to 
bring into being the technology that the military needs. 
When problems arise clearly in the military context and 
seem not to appear in the research context, then ARPA can 
take steps to handle them on an ad hoc basis. As I say, 
however, hopefully, many of the problems will be 
essentially as important, in the research context as in the 
military context.

In conclusion, then, let me say again that I have the 
feeling we should discuss together at some length questions 
and problems in the set to which I have tried to point in 
the foregoing discussion. Perhaps I have not pointed to all 
the problems. Hopefully, the discussion may be a little 
less rambling than this effort that I am now completing.


