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     This paper has appeared in the January 1981 edition  of  the

SIGSOFT  Software  Engineering Notes, and will soon appear in the

SIGCOMM Computer Communications Review.  It is  being  circulated

as  an  RFC because it is thought that it may be of interest to a

wider audience, particularly to the internet community.  It is  a

case  study  of  a  particular  kind of problem that can arise in

large distributed systems,  and  of  the  approach  used  in  the

ARPANET to deal with one such problem.

     On  October 27, 1980, there was an unusual occurrence on the

ARPANET.  For a period of several hours, the network appeared  to

be  unusable,  due to what was later diagnosed as a high priority

software  process   running   out   of   control.    Network-wide

disturbances  are  extremely  unusual  in  the  ARPANET (none has

occurred in several years), and as a  result,  many  people  have

expressed  interest  in  learning more about the etiology of this

particular incident.  The purpose of this note is to explain what

the symptoms of the problem  were,  what  the  underlying  causes

were,  and  what  lessons  can  be  drawn.   As we shall see, the

immediate cause of the problem was  a  rather  freakish  hardware

malfunction  (which is not likely to recur) which caused a faulty

sequence of network control packets to be generated.  This faulty

sequence of control packets in turn affected the apportionment of

software resources in the IMPs, causing one of the IMP  processes

to  use  an  excessive  amount  of resources, to the detriment of

other  IMP  processes.   Restoring  the  network  to  operational
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condition  was  a  relatively straightforward task.  There was no

damage other than the outage itself,  and  no  residual  problems

once  the  network  was  restored.   Nevertheless,  it  is  quite

interesting to see the way  in  which  unusual  (indeed,  unique)

circumstances  can  bring  out vulnerabilities in network control

protocols, and that shall be the focus of this paper.

     The problem began suddenly when  we  discovered  that,  with

very few exceptions, no IMP was able to communicate reliably with

any other IMP.  Attempts to go from a TIP to a host on some other

IMP   only   brought  forth  the  "net  trouble"  error  message,

indicating that no physical path  existed  between  the  pair  of

IMPs.   Connections  which already existed were summarily broken.

A flood of phone calls to the Network Control Center  (NCC)  from

all  around  the  country  indicated  that  the  problem  was not

localized, but rather seemed to be affecting virtually every IMP.

     As a first step towards trying to find out what the state of

the network actually was, we dialed up a number  of  TIPs  around

the  country.  What we generally found was that the TIPs were up,

but  that  their  lines  were  down.   That  is,  the  TIPs  were

communicating  properly  with the user over the dial-up line, but

no connections to other IMPs were possible.

     We tried manually restarting a number of IMPs which  are  in

our own building (after taking dumps, of course).  This procedure

initializes  all  of  the IMPs’ dynamic data structures, and will
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often clear up problems which arise when, as sometimes happens in

most complex software systems, the IMPs’  software  gets  into  a

"funny"  state.   The IMPs which were restarted worked well until

they were connected to the rest of  the  net,  after  which  they

exhibited  the same complex of symptoms as the IMPs which had not

been restarted.

     From the facts so far presented, we  were  able  to  draw  a

number  of  conclusions.   Any  problem  which  affects  all IMPs

throughout the network is usually a routing problem.   Restarting

an  IMP  re-initializes  the routing data structures, so the fact

that restarting an IMP did not alleviate the problem in that  IMP

suggested  that  the problem was due to one or more "bad" routing

updates circulating in the network.  IMPs  which  were  restarted

would  just receive the bad updates from those of their neighbors

which were not restarted.  The fact that IMPs  seemed  unable  to

keep  their lines up was also a significant clue as to the nature

of the problem.  Each  pair  of  neighboring  IMPs  runs  a  line

up/down protocol to determine whether the line connecting them is

of  sufficient  quality  to be put into operation.  This protocol

involves the sending of HELLO and I-HEARD-YOU messages.  We  have

noted  in  the  past that under conditions of extremely heavy CPU

utilization, so many buffers can pile up waiting to be served  by

the  bottleneck  CPU process, that the IMPs are unable to acquire

the  buffers  needed  for  receiving  the  HELLO  or  I-HEARD-YOU

messages.  If a condition like this lasts for any length of time,
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the  IMPs  may  not be able to run the line up/down protocol, and

lines will be declared down by the IMPs’ software.  On the  basis

of  all  these  facts,  our  tentative  conclusion  was that some

malformed update was causing the routing process in the  IMPs  to

use  an excessive amount of CPU time, possibly even to be running

in an infinite loop.  (This would be  quite  a  surprise  though,

since  we  tried very hard to protect ourselves against malformed

updates when we designed the routing process.)  As we shall  see,

this  tentative  conclusion, although on the right track, was not

quite correct, and the actual situation turned  out  to  be  much

more complex.

     When we examined core dumps from several IMPs, we noted that

most,  in  some cases all, of the IMPs’ buffers contained routing

updates  waiting  to  be  processed.   Before   describing   this

situation further, it is necessary to explain some of the details

of  the  routing  algorithm’s  updating  scheme.   (The following

explanation will of course be very brief and incomplete.  Readers

with a greater  level  of  interest  are  urged  to  consult  the

references.)  Every so often, each IMP generates a routing update

indicating  which  other  IMPs  are  its immediate neighbors over

operational  lines,  and  the  average   per-packet   delay   (in

milliseconds)  over that line.  Every IMP is required to generate

such an update at least once per minute, and no IMP is  permitted

to  generate  more than a dozen such updates over the course of a

minute.  Each  update  has  a  6-bit  sequence  number  which  is
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advanced by 1 (modulo 64) for each successive update generated by

a  particular IMP.  If two updates generated by the same IMP have

sequence numbers n and m, update n  is  considered  to  be  LATER

(i.e.,  more recently generated) than update m if and only if one

of the following two conditions hold:

         (a) n > m, and n - m <= 32

         (b) n < m, and m - n > 32

(where the comparisons and subtractions treat n and m as unsigned

6-bit numbers, with  no  modulus).   When  an  IMP  generates  an

update,  it sends a copy of the update to each neighbor.  When an

IMP A receives an update u1 which was generated  by  a  different

IMP  B,  it  first  compares  the  sequence number of u1 with the

sequence number of the last update, u2, that it accepted from  B.

If  this  comparison  indicates  that  u2 is LATER than u1, u1 is

simply discarded.  If, on the other hand, u1 appears  to  be  the

LATER  update, IMP A will send u1 to all its neighbors (including

the one from which it was received).  The sequence number  of  u1

will be retained in A’s tables as the LATEST received update from

B.   Of  course,  u1 is always accepted if A has seen no previous

update from B.  Note that this procedure is  designed  to  ensure

that  an  update  generated  by  a  particular  IMP  is received,

unchanged, by all other  IMPs  in  the  network,  IN  THE  PROPER

SEQUENCE.    Each routing update is broadcast (or flooded) to all

IMPs, not just to immediate neighbors of the IMP which  generated
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the update (as in some other routing algorithms).  The purpose of

the  sequence numbers is to ensure that all IMPs will agree as to

which update from a given IMP  is  the  most  recently  generated

update from that IMP.

     For  reliability,  there  is  a  protocol for retransmitting

updates over individual links.  Let X and Y be neighboring  IMPs,

and let A be a third IMP.  Suppose X receives an update which was

generated by A, and transmits it to Y.  Now if in the next 100 ms

or  so, X does not receive from Y an update which originated at A

and whose sequence number is at least as recent as  that  of  the

update  X  sent  to  Y,  X concludes that its transmission of the

update did not get through to Y, and  that  a  retransmission  is

required.   (This  conclusion is warranted, since an update which

is  received  and  adjudged  to  be  the  most  recent  from  its

originating  IMP is sent to all neighbors, including the one from

which it was received.)  The IMPs do not keep the original update

packets  buffered  pending  retransmission.   Rather,   all   the

information  in  the  update  packet  is  kept in tables, and the

packet  is  re-created  from  the  tables  if  necessary  for   a

retransmission.

     This  transmission  protocol  ("flooding")  distributes  the

routing updates  in a  very  rapid  and  reliable  manner.   Once

generated by an IMP, an update will almost always reach all other

IMPs  in  a time period on the order of 100 ms.  Since an IMP can

generate no more than a dozen updates per minute, and  there  are
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64  possible sequence numbers, sequence number wrap-around is not

a problem.  There is only one exception  to  this.   Suppose  two

IMPs  A  and  B  are  out  of  communication for a period of time

because there is no physical path between them.  (This may be due

either to a network partition, or to a more  mundane  occurrence,

such  as  one  of  the  IMPs  being down.)  When communication is

re-established, A and B have no way of knowing how long they have

been out of communication, or how many times the other’s sequence

numbers may have wrapped around.  Comparing the  sequence  number

of  a newly received update with the sequence number of an update

received before the outage may give an incorrect result.  To deal

with this problem, the following scheme is adopted.   Let  t0  be

the time at which IMP A receives update number n generated by IMP

B.   Let  t1 be t0 plus 1 minute.  If by t1, A receives no update

generated by B with a LATER sequence number than n, A will accept

any update from B as being more recent than n.  So  if  two  IMPs

are  out  of  communication  for  a  period of time which is long

enough for the sequence numbers  to  have  wrapped  around,  this

procedure  ensures  that  proper  resynchronization  of  sequence

numbers is effected when communication is re-established.

     There is just one more facet of the updating  process  which

needs  to  be  discussed.   Because  of  the way the line up/down

protocol works, a line cannot be  brought  up  until  60  seconds

after  its performance becomes good enough to warrant operational

use.  (Roughly speaking, this is the time it takes  to  determine
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that  the  line’s  performance  is  good  enough.)   During  this

60-second period, no data is sent  over  the  line,  but  routing

updates are transmitted.  Remember that every node is required to

generate  a  routing update at least once per minute.  Therefore,

this procedure ensures that if two IMPs are out of  communication

because  of  the  failure  of some line, each has the most recent

update  from   the   other   by   the   time   communication   is

re-established.

     This  very  short  introduction  to  the routing algorithm’s

updating protocol should provide enough background to enable  the

reader  to  understand  the  particular problem under discussion;

further justification and detail can be found in the  references.

     Let  us  return now to the discussion of the network outage.

I have already mentioned that the core dumps  showed  almost  all

buffers   holding  routing  updates  which  were  waiting  to  be

processed.  Close inspection showed that  all  the  updates  were

from  a  single  IMP, IMP 50.  By a strange "coincidence," IMP 50

had been  malfunctioning  just  before  the  network-wide  outage

occurred,  and  was  off the net during the period of the outage.

Hence it was not generating any updates during the period of  the

outage.   In  addition,  IMP 29, an immediate neighbor of IMP 50,

was also suffering hardware malfunctions (in particular, dropping

bits), but was up (though somewhat flakey) while the network  was

in  bad  shape.  Furthermore, the malfunction in IMP 50 had to do

with its ability to communicate properly with the neighboring IMP
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29.  Although we did not yet understand how it was  possible  for

so  many updates from one IMP to be extant simultaneously, we did

understand enough to be able to get the network to recover.   All

that was necessary was to patch the IMPs to disregard any updates

from  IMP  50, which after all was down anyway.  When the network

is operating normally, broadcasting a patch to all  IMPs  can  be

done  in  a  matter of minutes.  With the network operating as it

was during the period of the outage, this can take as much  as  3

or  4 hours.  (Remember that the IMPs are generally unmanned, and

that the only way of controlling them from the  NCC  is  via  the

network  itself.   This  is perfectly satisfactory when an outage

affects only a small group of IMPs, but  is  an  obvious  problem

when  the  outage  has network-wide effects.)  This procedure was

fully successful in bringing the network back up.

     When we looked closely at the dumps, we saw  that  not  only

were  all  the updates on the queue from IMP 50, but they all had

one of three sequence numbers (either 8, 40,  or  44),  and  were

ordered        in        the        queue       as       follows:

8, 40, 44, 8, 40, 44, 8, 40, 44, ...  Note that by the definition

of LATER, 44 is LATER than 40 (44 > 40 and 44 - 40 <= 32), 40  is

LATER  than  8  (40 > 8 and 40 - 8 <= 32), and 8 is LATER than 44

(8 < 44 and 44 - 8 > 32).  Given the presence  of  three  updates

from the same IMP with these three sequence numbers, this is what

would  be  expected.   Since each update is LATER than one of the

others, a cycle is formed which keeps the three updates  floating
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around  the  network  indefinitely.   Thus the IMPs spend most of

their CPU time and buffer space in processing these updates.  The

problem was to figure out how these three updates could  possibly

have  existed at the same time.  After all, getting from update 8

to update 40  should  require  2  or  3  full  minutes,  plus  31

intervening  sequence  numbers.   So  how could 8 still be around

when  40  was  generated,  especially  since  no   updates   with

intervening sequence numbers were present?

     Our  first thought was that maybe the real-time clock in IMP

50 was running one or two orders of magnitude faster than normal,

invalidating our assumptions about the maximum number of  updates

which  could  be  generated  in  a  given  time.   An alternative

hypothesis suggested itself however when we looked at the  binary

representations of the three sequence numbers:

          8 - 001000

         40 - 101000

         44 - 101100

Note  that  44  has only one more bit than 40, which has only one

more bit than 8.  Furthermore, the three different  updates  were

completely  identical,  except  for their sequence numbers.  This

suggests that  there  was  really  only  one  update,  44,  whose

sequence number was twice corrupted by dropped bits.  (Of course,

it’s  also  possible  that  the  "real"  update  was  8,  and was

corrupted by added bits.  However, bit-dropping has proven itself
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to be a much  more  common  sort  of  hardware  malfunction  than

bit-adding,  although  spontaneously  dropped  bits may sometimes

come back on spontaneously.)

     Surely, the reader will object,  there  must  be  protection

against  dropped  bits.   Yes there is protection, but apparently

not enough.  The update packets themselves are checksummed, so  a

dropped  bit  in  an update packet is readily detected.  Remember

though that if  an  update  needs  to  be  retransmitted,  it  is

recreated  from tabled information.  For maximal reliability, the

tables must  be  checksummed  also,  and  the  checksum  must  be

recomputed every time the table is accessed.  However, this would

require  either  a  large  number  of  CPU  cycles  (for frequent

checksumming of a large area of memory)  or  a  large  amount  of

memory  (to store the checksums for a lot of small areas).  Since

CPU cycles and memory are both potentially scarce resources, this

did not seem to us to  be  a  cost-effective  way  to  deal  with

problems  that  arise, say, once per year (this is the first such

problem encountered in a year and a half of running this  routing

algorithm).   Time  and  space  can  be  saved by recomputing the

checksum at  a  somewhat  slower  frequency,  but  this  is  less

reliable,  in  that it allows a certain number of dropped bits to

"fall between the cracks."  It seems likely then that one of  the

malfunctioning  IMPs  had to retransmit update 44 at least twice,

(recreating it each time from tabled information), retransmitting

it at least once with the corrupted sequence number  40,  and  at
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least  once  with  the  corrupted  sequence number 8.  This would

cause those three sequence numbers to be extant  in  the  network

simultaneously,  even  though protocol is supposed to ensure that

this is impossible.

     Actually, the detection of dropped bits is most  properly  a

hardware function.  The next generation of IMP hardware (the "C30

IMP")  will  be able to detect and correct all single-bit errors,

and will detect all other bit errors.  Uncorrectable  bit  errors

will  cause  the  IMP to go into its "loader/dumper."  (An IMP in

its loader/dumper is not usable for  transferring  data,  and  is

officially   in  the  "down"  state.   However,  an  IMP  in  its

loader/dumper is easily controllable from the  NCC,  and  can  be

restarted  or  reloaded  without  on-site intervention.)  Current

hardware does have parity checking (which  should  detect  single

dropped  bits),  but  this feature has had to be turned off since

(a) there are too many spurious parity "errors,"  i.e.,  most  of

the  time when the machines complain of parity errors there don’t

really seem to be any, and (b) parity errors cause  the  machines

to  simply  halt, rather than go into their loader/dumpers, which

means that on-site intervention is required to restart them.

     Pending the introduction of improved hardware, what  can  be

done  to prevent problems like this from recurring in the future?

It is easy to think of many  ways  of  avoiding  this  particular

problem,  especially  if  one does not consider the problems that

may arise from the "fixes."  For example, we  might  be  able  to
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avoid  this  sort of problem by spending a lot more CPU cycles on

checksumming, but this may be too expensive because of  the  side

effects  it  would  introduce.   (Also,  it is not clear that any

memory checksumming strategy can be totally free of "cracks.")  A

very  simple  and  conservative  fix  to  prevent this particular

problem from recurring is to modify clause (a) of the  definition

of  LATER  so  that  the  "<="  is replaced by "<" (strictly less

than).  We will implement this fix, but it cannot  be  guaranteed

that no related problems will ever arise.

     What  is  really  needed  is  not some particular fix to the

routing algorithm, but a more general fix.  In  some  sense,  the

problem  we  saw  was  not really a routing problem.  The routing

code was working correctly, and the routes  that  were  generated

were correct and consistent.  The real problem is that a freakish

hardware  malfunction caused a high priority process to run wild,

devouring resources needed by other processes, thereby making the

network unusable.  The fact that the wild process was the routing

process is incidental.  In  designing  the  routing  process,  we

carefully  considered the amount of resource utilization it would

require.  By strictly controlling and limiting the rate at  which

updates  can  be  generated, we tried to prevent any situation in

which the routing process would make  excessive  demands  on  the

system.   As  we  have  seen  though, even our carefully designed

mechanisms were unable to protect against every possible sort  of

hardware  failure.  We need a better means of detecting that some
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high priority process in the IMP, despite all the  safeguards  we

have  built in, is still consuming too many resources.  Once this

is  detected,  the  IMP  can  be  automatically  placed  in   its

loader/dumper.  In the case under discussion, we would have liked

to  have  all  the  IMPs  go  into  their loader/dumpers when the

problem arose.  This would have enabled us to  re-initialize  and

restart  all  the  IMPs  much more quickly.  (Although restarting

individual  IMPs  did  little  good,  restarting  all  the   IMPs

simultaneously would have cleared up the problem instantly, since

all  routing  tables  in  all  IMPs  would  have been initialized

simultaneously.)  It took us no more than an hour to  figure  out

how  to  restore  the  network;  several  additional  hours  were

required because it took so long for us to gain  control  of  the

misbehaving  IMPs  and  get  them  back  to  normal.   A built-in

software alarm system (assuming,  of  course,  that  it  was  not

subject  to  false  alarms)  might have enabled us to restore the

network more quickly, significantly reducing the duration of  the

outage.   This  is  not  to  say  that a better alarm and control

system could ever be a replacement for careful study  and  design

which   attempts   to  properly  distribute  the  utilization  of

important resources, but only that it is a necessary adjunct,  to

handle  the cases that will inevitably fall between the cracks of

even the most careful design.
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