
AN OVERVIEW OF THE NEW ROUTING ALGORITHM
FOR THE ARPANET

John M. McQuillan
Ira Richer

Eric C. Rosen
Bolt Beranek and Newman Inc.

Cambridge, MA

(Originally published in: Proc. Sixth Data Communications Symposium, November, 1979)

Summary*

The original routing algorithm of the ARPANET, in
service for over a decade, has recently been removed
from the ARPANET and replaced with a new and
different algorithm. Although the new algorithm, like
the old, is a distributed, adaptive routing algorithm, it is
not similar to the old in any other important respect. In
the new algorithm, each node maintains a data base
describing the delay on each network line. A shortest-
path computation is run in each node which explicitly
computes the minimum-delay paths (based on the delay
entries in the data base) from that node to all other
nodes in the network. The average delay on each
network line is measured periodically by the nodes
attached to the lines. These measured delays are
broadcast to all network nodes, so that all nodes use the
same data base for performing their shortest-path
computations. The new routing algorithm was
extensively tested on the ARPANET before being
released. This paper describes the algorithm and
summarizes the results of these tests.

Introduction

The last decade has seen the design, implementation,
and operation of several routing algorithms for
distributed networks of computers. The first such
algorithm, the original routing algorithm for the
ARPANET, has served remarkably well considering

* This research was sponsored by the Defense Advanced Research
Projects Agency under ARPA Order No. 3941, and by the Defense
Communications Agency (OoD), Contract No. MDA903-78-C-
0129, monitored by DSSW. The views and conclusions contained
in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either
express or implied, of the Defense Advanced Research Projects
Agency, the Defense Communications Agency, or the United
States Government

how long ago (in the history of packet switching) it was
conceived. This paper describes the new routing
algorithm we installed recently in the ARPANET.
Readers not familiar with our earlier activities may
consult [1] for a survey of the ARPANET design
decisions, including the previous routing algorithm,
readers interested in a survey of routing algorithms for
other computer networks and current research in the
area may consult [2].

A distributed, adaptive routing scheme typically has a
number of separate components, including (1) a
measurement process for determining pertinent network
characteristics, (2) a protocol for disseminating
information about these characteristics, and (3) a
calculation to determine how traffic should be routed. A
routing "algorithm" or "procedure" is not specified until
all these components are defined. In the present paper
we discuss these components of the new ARPANET
algorithm. We begin with a brief outline of the
shortcomings of the original algorithm and then provide
a description of the new procedure. The algorithm has
undergone extensive testing in the ARPANET under
operational conditions; the final section gives a
summary of the test results. The present paper is a
summary of our conclusions only; for more complete
descriptions of our research findings, see our internal
reports on this project [3, 4, 5].

Problems with the Original Algorithm

The original ARPANET routing algorithm and the new
version both attempt to route packets along paths of
least delay. The total path is not determined in advance;
rather, each node decides which line to use in
forwarding the packet to the next node. In the original
approach, each node maintained a table of estimated
delay to each other node, and sent its table to all
adjacent nodes every 128 as. When node I received the

ACM SIGCOMM -54- Computer Communication Review

table from an adjacent node J. it would first measure the
delay from itself to J. (We will shortly discuss the
procedure used for measuring the delay.) Then it would
compute its delay via J to all other nodes by adding to
each entry in J's table its own delay to J. Once a table
was received from all adjacent nodes, node I could
easily determine which adjacent node would result in
the shortest delay to each destination node in the
network.

In recent years we began to observe a number of
problems with the original ARPANET routing
algorithm [6] and have come to the conclusion that a
complete redesign was the only way to solve some of
them. In particular, we decided that a new algorithm
was necessary to solve the following problems:

- Although the exchange of routing tables consumed
only a small fraction of line bandwidth, the
packets containing the tables were long, and the
periodic transmission and processing of such long,
high-priority packets can adversely affect the flow
of network traffic [7]. Moreover, since the updates
contain an entry for each network node, the
routing packets would become corresponding
larger (or more frequent) as the ARPANET grows
to 100 or more nodes, thereby exacerbating the
problem.

- The route calculation is performed in a distributed
manner, with each node basing its calculation on
local information together with calculations made
previously at every other node. With such a
scheme, it is difficult to ensure that routes used by
different nodes are consistent,

- The rate of exchange of routing tables and the
distributed nature of the calculations causes a
dilemma: the network is too slow in adapting to
congestion and to important topology changes, yet
it can respond too quickly (and perhaps
inaccurately) to minor changes.

The delay measurement Procedure of the old
ARPANET routing algorithm is quite simple.
Periodically, an IMP counts the number of packets
queued for transmission on its lines and adds a constant
to these counts; the resulting number is the "length" of
the line for purposes of routing. This delay
measurement procedure has three serious defects:

1) If two lines have different speeds, or different
propagation delays, then the fact that the same
number of packets is queued for each line does not
imply that packets can expect equal delays over
the two lines. Even if two Lines nave the same
speed and propagation delay, difference in the

sizes of the packets which are queued for each line
may cause different delays on the two lines.

2) In the ARPANET, where the queues are con-
strained to have a (short) maximum length, queue
length is a boor indicator of delay. The constraints
on queue Length are imposed by the software in
order to fairly resolve contention for a limited
amount of resources. There are a number of such
resources which must be obtained before a packet
can even be queued for an output line. If a packet
must wait a significant amount of time to get these
resources, it may experience a long delay, even
though the queue for its output line is quite short.

3) An instantaneous measurement of queue length
does not accurately predict average delay because
there is a significant real-time fluctuation in queue
lengths at any traffic level. Our measurements
show that under a high constant offered load the
average delay is high, but many individual packets
show low delays, and the queue length often falls
to zero! This variation may be due to variation in
the utilization of the CPU, or to other bottlenecks,
the presence of which is not accurately reflected
by measuring queue lengths.

These three defects are all reflections of a single point,
namely that the length of an output queue is only one of
many factors that affect a packet's delay. A
measurement procedure that takes into account only one
such factor cannot give accurate results.

The new routing algorithm is an improvement over the
old one in that it uses fewer network resources, operates
on more realistic estimates of network conditions, reacts
faster to important network changes, and does not suffer
from long-term loops or oscillations.

The New Routing Procedure

The routing procedure we have developed contains
several basic components. Each node an the network
maintains a data base describing the network topology
and the line delays. Using this data base, each node
independently calculates the best paths to all other
nodes, routihg outgoing packets accordingly. Because
the traffic in the network can be quite variable, each
node periodically measures the delays along its
outgoing lines and forwards this information (as a
"routing update") to all other nodes. A routing update
generated by a particular node contains information
only about the delays on the lines emanating from that
node. Hence an update packet is quite small, and its size
is independent of the number of nodes in the network.
An update generated by a particular node travels
unchanged to all nodes in the network (not just to the
immediate neighbors of the originating node, as an

ACM SIGCOMM -55- Computer Communication Review

many other routing algorithms.) Since the updates need
not be processed before being forwarded, and since they
are small, they propagate very quickly through the
network, so that all nodes can update their data bases
rapidly and continue to route traffic in a consistent and
efficient manner.

Many algorithms have been devised for finding the
shortest path through a network. Several of these are
based on the concept of computing the entire tree of
shortest paths from a given node, the root of the tree. A
recent article [8] discusses some of these algorithms and
references several survey articles. The algorithm we
have implemented is based on an algorithm attributed to
Dijkstra [9]; because of its search rule, we call it the
shortest-path-first (SPF) algorithm.

The basic SPF algorithm uses a data base describing the
network to generate a tree representing the minimum
delay paths, from a given root node to every other
network node. Figure 1 shows a simplified flow chart of
the algorithm. The tree initially consists of just the root
node.

The tree is then augmented to contain the node that is
closest (in delay) to the root and that is adjacent to a
node already on the tree. The process continues by
repetition of this last step. LIST denotes a data structure
containing nodes that have not yet been placed on the
tree but are neighbors of nodes that are on the tree. The
tree is built up shortest-paths-first - - hence the name of
the algorithm. Eventually the furthest node from the
root is added to the tree, and the algorithm terminates.
We have made important additions to this basic
algorithm so that changes in network topology or
characteristics require only an incremental calculation
rather than a complete re- calculation of all shortest
paths.

DECLARE ALL NODES]

'" NOT ON LIST "

PUT ROOT (SELF)

ON LIST

____~ REMOVE NODE CLOSEST] NONE
TO ROOT FROM LIST; I
PUT NODE ON TREE [

I

FOR EACH NEIGHBOR OF THE
NODE JUST REMOVED FROM LIST:

IF ON TREE, DO NOTHING
IF ON LIST, UPDATE

DISTANCE FROM ROOT
ELSE PUT ON LIST

1

DONE

Figure 2 shows a seven-node network and the
corresponding shortest path tree for node 1. The figure
also shows the routing directory which is produced by
the algorithm and which would be used by node 1 to
dispatch traffic. For example, traffic for node 4 is
routed via node 2. Only the routing directory is used in
forwarding packets; the tree is used only in creating the
directory.

The two other important components of the routing
procedure are the mechanism for measuring delay and
the scheme for propagating information. The routing
algorithm must have some way of measuring the delay
of a packet at each hop. This aspect of the routing
algorithm is quite crucial; an algorithm with poor delay
measurement facilities will perform poorly, no matter
how sophisticated its other features are.

Each node measures the actual delay of each packet
flowing over each of its outgoing lines, and calculates
the average delay every 10 seconds. If this delay is
significantly different from the previous delay, it is
reported to all other nodes. The choice of 10 seconds as
the measurement period represents a significant
departure from the old routing algorithm. Since it takes
10 seconds to produce a measurement, the delay
estimate for a given line cannot change more often than
once every 10 seconds. The old routing algorithm, on
the other hand, would allow the delay estimate to
change as often as once every 128 msec. We now
believe, however, that there is no point to changing the
estimate so often, since it is not possible to obtain an
accurate estimate of delay in the ARPANET in less than
several seconds. Figure 3 shows some actual delays; an
artificially induced traffic load was applied between
minutes 5 and 17. The procedure of directly measuring
the packet delays cannot fail to yield a more accurate
result than any procedure which attempts to infer the
delays by measuring something else which is merely
expected to correlate with the delays (such as queue
lengths.)

Figure 1

ACM SIGCOMM -56- Computer Communication Review

The updating procedure for propagating delay
information is of critical importance because it must
ensure that each update is actually received at all nodes,
so that identical data bases of routing information are
maintained at all nodes. When an update is generated, it
is assigned a sequence number. Each update is
transmitted to all nodes by the simple but reliable
method of transmitting it on all lines. When a node
receives an update, it first checks to see whether it has
processed that update (or an update which originated
from the same node, but which had a later sequence
number) before. If so, it is discarded. If not, it is
immediately forwarded to all adjacent nodes. In this
way the update quickly flows to all other nodes. The
fact that an update flows once in each direction over
each network line is the basis for a reliable transmission
procedure for the updates. Because the updates are short
and are generated infrequently, this procedure uses very
little line or node bandwidth. We have augmented this
basic procedure with a mechanism to ensure that data
bases at nodes are correctly updated when a new node

or line is installed, or when a whole set of previously
disconnected nodes joins the network. The updating
protocol is discussed in detail in [10].

Since all nodes perform the same calculation on an
identical data base, there are no long-lasting routing
loops. Of course transient loops may occasionally form
for a few packets when a change is being processed, but
that is quite acceptable, since it has no significant
impact on the average delay in the network.

Performance

We next describe some analytical and empirical results
on the performance of the new routing algorithm. One
important measure of the efficiency of the SPF
algorithm is the average time required to process
changes in the delays along network lines, since such
changes comprise the bulk of the processing
requirements. When a given node receives an update
message indicating that the delay along some line has
increased, the running time of the SPF algorithm is

A) EXAMPLE NETWORK {LINE LENGTHS ARE INDICATED BY

THE NUMBERS BESIDE THE ARROW HEADS)

B) SHORTEST PATH TREE

D E S T I N A T I O N
2 3 4 5 6

NODE

ROUTE T R A F F I C
2 3 2 2 2

V I A NODE

C) ROUTING DIRECTORY

Figure 2

ACM SIGCOMM -57- Computer Communication Review

roughly proportional to the number of nodes in that
line's subtree; that is, it is roughly proportional to the
number of nodes to which the delay has become worse.
When a given node receives an update message
indicating that the delay along some line has decreased,
the amount of time it takes to run the incremental SPF
algorithm is roughly proportional to the number of
nodes in that line's subtree after the algorithm is run;
that is, it is roughly proportional to the number of nodes
to which the delay got better. Thus, in either case, the
SPF running time is directly related to the subtree size.

Since the average subtree size provides a measure of
SPF performance, it is useful to understand how this
quantity varies with the size of the network. Let N
denote the number of network nodes, and let h.
represent the number of hops on the path from the
source node, i = 1, to node i; in other words, if the
length of each line is 1, then h i is the length of the path
to node i. Clearly, node i appears in i's subtree and in
the subtrees of all the nodes along the path to i. Thus hi
is equal to the number of subtrees in which node E is
present, so that

LINE 24 -25 3 / 8 / 7 9

u~

z

>-

__I
LL~

180

150

913 _

6~ _

30

0
0

• : ; " ' r ' " ~" " ; " "

~, .~ . . . - . . . ~ :
• ~ - ~ . . s . ; " ~ . , ; . - ,

" , .¢ . , : ; , . " . . ~ P :
- - ~.,,.,.. ,.. " . , & . , e a.

..,.;.~, ";...~: ~..:: ~,a v

; - . " ~ , ~ ' ; . . . "

' " ' " ~ " " " " ,t
., :'.'..:~.:: ~'.:..t,,3. ~.:, ,,'.',
"'":'3".: i > ~; " d," : " ~- '~:"¢ "t's .~ • .
".',-'.!.':.:: e"-:,'..".'"
...." * . = . . - , * ~ . . ~ , ;

• - f . • I r a . * : ~ , ~ . ~ . . ; ~. , - ; y ~

: - • , , ~,
• . . : - -.,~..... - . . . : . . - . :

. - ~ . . ~ . " . ,~ . .~ • . L ' ~ , : . t .
" • • ~ 3 ' ° o . . ~" " t
• . , . . ' . ~ . . , . . , •

- - . . . , . .~?- . ,.:.- • : : ; , ~..
• o • t . • • • .o "

• . • . -% • . . . " ~ - . . ,

• "" - , C ' . " ~ " A . ' , '~ , ' , . .: .~ ;-* ;~:~" :.~-:~

I-" ~ ' ~ : " " ~ ' ; ~ . - " " " " * "

-" i : I
5 10 15 20

N

total number of all subtree nodes = ~ h ,
i = 2

and since there are N-1 subtrees (the complete tree from
the source node is not considered to be a "subtree"), the
average subtree size is given by

1 N
- E hi average subtree size - N 1 i=2

But this expression is identical to the average hop
length of all paths, and thus we have the remarkable
result that in any tree, the average subtree size is equal
to the average hop length from the root to all nodes.
This result is significant because the average hop length
generally increases quite slowly as the number of nodes
increases. (For a network with uniform connectivity
c>2, the average hop length increases roughly as log
N/log(c- 1).)

To establish some estimate of the running time of the
algorithm, we programmed a stand-alone version for the
ARPANET nodes. We randomly assigned each line in
the ARPANET a length between 1 and 20. We ran the
SPF algorithm to initialize the data structure in each
node. Then we picked 50 lines at random and
successively gave each a new random length. Every
time we changed the length of a line, we changed it by
at least 15%. Also, some lines were brought down by
being assigned a length which represented infinity. Each
time we did this, we ran the SPF algorithm with each
node as the source node. We obtained the following

The average time per node to run the
incremental SPF algorithm was about 2.2
msec.

- The average time per subtree node to run the
incremental SPF algorithm was about 1.1
msec.

Since we calculated that the average subtree size
multiplied by the probability that a line is in the tree is
about 2, these two results are in agreement. Note that
these are average times; actual times varied from under
1 msec. to 40 msec.

The figures given above are for the shortest path
calculation only. Processing an update invokes a routine

results:

I I I I I I I I
25 30 35 40 45 50 55 80

TIME (MINS)

Figure 3

ACM SIGCOMM -58- Computer Communicat ion Review

to maintain the topology data base (including the ability
to dynamically add or delete lines and nodes), and a
routine to determine which nodes can be reached from
the root node. These modules increase the running time
by about a factor of two; and the total storage
requirement, including these modules, the topology data
base, and the measurement and updating packages, is
about 2000 16-bit words.

We designed and programmed the new routing
procedure over a period of about six months. We then
began an extensive series of tests on the ARPANET, at
off-peak hours but under actual network conditions [5].
Our tests involved a great deal more than simply turning
the new routing algorithm on to see whether it would
run. The tests were specifically designed to stress the
algorithm, by inducing those situations which would be
most difficult for it to handle well. To stress its ability
to react properly to topological changes, we induced
line and node failures in as many different ways as we
could think of, including multiple simultaneous failures.
We also generated large amounts of test traffic in order
to see how the algorithm performs under heavy load. (In
this respect, it should be noted that the periods during
which we were testing were "off-peak" only with
respect to the amount of ordinary user traffic in the
network. The amount of test traffic we generated far
exceeds the amount of traffic generated by users, even
during peak hours.) We experimented with many
different traffic patterns, in order to test the algorithm
under a wide variety of heavily loaded conditions. In
particular, we tried to induce those situations which
would be most likely to result in loops or in wild
oscillations. We also designed and implemented a
sophisticated set of measurement and instrumentation
tools, so that we could evaluate the routing algorithm's
performance. Some of these tools enabled us to monitor
the utilization of resources used by the algorithm.
Others enabled us to monitor changes in delay (as
measured by the routing algorithm), as well as changes
in the routing trees themselves at particular network
nodes. One of our most important tools was the "tagged
packet". A tagged packet is a packet which, as it travels
through the network, receives an imprint from each
node through which it travels. When such a packet
reaches its destination, it contains a list of all the nodes
it has traversed, as well as the delay it experienced at
each node. These packets provided us with a very
straightforward indication of the routing algorithm's
performance. Of course, since the network was also in
use by ordinary users during our tests, we cannot claim
to have performed "controlled" experiments, in the
strict scientific sense. However, all our experiments
were repeated many times before being used to draw
conclusions. Some of our main results are:

1) Utilization of resources (line and processor
bandwidth) by the new routing algorithm is as
expected, and compares quite favorably with the
old algorithm. Line overhead and CPU overhead
are both less than two percent.

2) The new algorithm responds quickly and
correctly to topological changes; most nodes
learn of an update within 100 msec.

3) The new algorithm is capable of detecting
congestion, and will route packets around a
congested area.

4) The new algorithm tends to route traffic on
minimum hop paths, unless there are special
circumstances which make other paths more
attractive.

5) The new algorithm does not show evidence of
serious instability or oscillations due to feedback
effects.

6) Routing loops occur only as transients, affecting
only packets that are already in transit at the time
when there is a routing change. The few packets
that we have observed looping have not traversed
any node more than twice. However, the loop can
be many hops long.

7) Under heavy load, 'he new algorithm will seek
out paths where there is excess bandwidth, in
order to try to delivery as much traffic as
possible to the destination.

Of course, the new routing algorithm does not generate
optimal routing - - no single-path algorithm with
statistical input data could do that. It has performed
well, and is successful in eliminating many of the
problems associated with the old routing scheme. After
several months of careful testing during which both old
and new routing algorithms were resident in the network
and used for experiments [5], we began to operate the
ARPANET with the new routing scheme in May 1979,
and removed the old routing program. Since that time
we have continued to monitor the performance of the
algorithm, the results obtained during our test periods
have continued to hold, even during peak hours, and no
new or unforeseen problems have yet arisen.

References

1. "The ARPANET Design Decisions," J.M.
McQuillan and D.C. Walden, Computer Networks,
Vol.1, No.5, August 1977.

2. "Routing Algorithms for Computer Networks -- A
Survey", J.M. McQuillan, 1977 National
Telecommunications Conference, December 1977.

ACM SIGCOMM -59- Computer Communication Review

3. "ARPANET Routing Algorithm Improvements --
First Semiannual Technical Report," J.M.
McQuillan, I. Richer, E.C. Rosen, BBN Report No.
3803, April 1978.

4. "ARPANET Routing Algorithm Improvements - -
Second Semiannual Technical Report, J.M.
McQuillen, I. Richer, E.C. Rosen, and D.P.
Bertsekas, BBN Report No. 3940, October 1978.

5. "ARPANET Routing Algorithm Improvements - -
Third Semiannual Technical Report," E.C. Rosen,
J. Herman, I. Richer, and J.M. McQuillan, BBN
Report No. 4088, April 1979.

6. "ARPANET Routing Study - - Final Report," J.M.
McQuillan, I. Richer, and E. Rosen, BBN Report
No. 3641, September 1977.

7. "On the Effects of Periodic Routing Updates in
Packet Switched Networks," W. E. Naylor and L.
Kleinrock, Conference Record, National Telecom-
munications Conference, Dallas, Texas, November,
1976, pp. 16.2.1 - 16.2.7.

8. "Efficient Algorithms for Shortest Paths in Sparse
Network," D.B. Johnson, J. ACM, Vol 24, pp 1-13,
January 1977.

9. "A Note on Two Problems in Connection with
Graphs", E. Dijkstra, Numer. Math., Vol. 1, pp
269-271, 1959.

10. "The Update Protocol of the New ARPANET
Routing Algorithm", E.C. Rosen, submitted to
Fourth Berkeley Conference on Distributed Data
Management and Computer Networks.

ACM SIGCOMM -60- Computer Communication Review

