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Summary* 

The original routing algorithm of the ARPANET, in 
service for over a decade, has recently been removed 
from the ARPANET and replaced with a new and 
different algorithm. Although the new algorithm, like 
the old, is a distributed, adaptive routing algorithm, it is 
not similar to the old in any other important respect. In 
the new algorithm, each node maintains a data base 
describing the delay on each network line. A shortest- 
path computation is run in each node which explicitly 
computes the minimum-delay paths (based on the delay 
entries in the data base) from that node to all other 
nodes in the network. The average delay on each 
network line is measured periodically by the nodes 
attached to the lines. These measured delays are 
broadcast to all network nodes, so that all nodes use the 
same data base for performing their shortest-path 
computations. The new routing algorithm was 
extensively tested on the ARPANET before being 
released. This paper describes the algorithm and 
summarizes the results of these tests. 

Introduction 

The last decade has seen the design, implementation, 
and operation of several routing algorithms for 
distributed networks of computers. The first such 
algorithm, the original routing algorithm for the 
ARPANET, has served remarkably well considering 
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how long ago (in the history of packet switching) it was 
conceived. This paper describes the new routing 
algorithm we installed recently in the ARPANET. 
Readers not familiar with our earlier activities may 
consult [1] for a survey of the ARPANET design 
decisions, including the previous routing algorithm, 
readers interested in a survey of routing algorithms for 
other computer networks and current research in the 
area may consult [2]. 

A distributed, adaptive routing scheme typically has a 
number of separate components, including (1) a 
measurement process for determining pertinent network 
characteristics, (2) a protocol for disseminating 
information about these characteristics, and (3) a 
calculation to determine how traffic should be routed. A 
routing "algorithm" or "procedure" is not specified until 
all these components are defined. In the present paper 
we discuss these components of the new ARPANET 
algorithm. We begin with a brief outline of the 
shortcomings of the original algorithm and then provide 
a description of the new procedure. The algorithm has 
undergone extensive testing in the ARPANET under 
operational conditions; the final section gives a 
summary of the test results. The present paper is a 
summary of our conclusions only; for more complete 
descriptions of our research findings, see our internal 
reports on this project [3, 4, 5]. 

Problems with the Original Algorithm 

The original ARPANET routing algorithm and the new 
version both attempt to route packets along paths of 
least delay. The total path is not determined in advance; 
rather, each node decides which line to use in 
forwarding the packet to the next node. In the original 
approach, each node maintained a table of estimated 
delay to each other node, and sent its table to all 
adjacent nodes every 128 as. When node I received the 
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table from an adjacent node J. it would first measure the 
delay from itself to J. (We will shortly discuss the 
procedure used for measuring the delay.) Then it would 
compute its delay via J to all other nodes by adding to 
each entry in J's table its own delay to J. Once a table 
was received from all adjacent nodes, node I could 
easily determine which adjacent node would result in 
the shortest delay to each destination node in the 
network. 

In recent years we began to observe a number of 
problems with the original ARPANET routing 
algorithm [6] and have come to the conclusion that a 
complete redesign was the only way to solve some of 
them. In particular, we decided that a new algorithm 
was necessary to solve the following problems: 

- Although the exchange of routing tables consumed 
only a small fraction of line bandwidth, the 
packets containing the tables were long, and the 
periodic transmission and processing of such long, 
high-priority packets can adversely affect the flow 
of network traffic [7]. Moreover, since the updates 
contain an entry for each network node, the 
routing packets would become corresponding 
larger (or more frequent) as the ARPANET grows 
to 100 or more nodes, thereby exacerbating the 
problem. 

- The route calculation is performed in a distributed 
manner, with each node basing its calculation on 
local information together with calculations made 
previously at every other node. With such a 
scheme, it is difficult to ensure that routes used by 
different nodes are consistent, 

- The rate of exchange of routing tables and the 
distributed nature of the calculations causes a 
dilemma: the network is too slow in adapting to 
congestion and to important topology changes, yet 
it can respond too quickly (and perhaps 
inaccurately) to minor changes. 

The delay measurement Procedure of the old 
ARPANET routing algorithm is quite simple. 
Periodically, an IMP counts the number of packets 
queued for transmission on its lines and adds a constant 
to these counts; the resulting number is the "length" of 
the line for purposes of routing. This delay 
measurement procedure has three serious defects: 

1) If two lines have different speeds, or different 
propagation delays, then the fact that the same 
number of packets is queued for each line does not 
imply that packets can expect equal delays over 
the two lines. Even if two Lines nave the same 
speed and propagation delay, difference in the 

sizes of the packets which are queued for each line 
may cause different delays on the two lines. 

2) In the ARPANET, where the queues are con- 
strained to have a (short) maximum length, queue 
length is a boor indicator of delay. The constraints 
on queue Length are imposed by the software in 
order to fairly resolve contention for a limited 
amount of resources. There are a number of such 
resources which must be obtained before a packet 
can even be queued for an output line. If  a packet 
must wait a significant amount of time to get these 
resources, it may experience a long delay, even 
though the queue for its output line is quite short. 

3) An instantaneous measurement of queue length 
does not accurately predict average delay because 
there is a significant real-time fluctuation in queue 
lengths at any traffic level. Our measurements 
show that under a high constant offered load the 
average delay is high, but many individual packets 
show low delays, and the queue length often falls 
to zero! This variation may be due to variation in 
the utilization of the CPU, or to other bottlenecks, 
the presence of which is not accurately reflected 
by measuring queue lengths. 

These three defects are all reflections of a single point, 
namely that the length of an output queue is only one of 
many factors that affect a packet's delay. A 
measurement procedure that takes into account only one 
such factor cannot give accurate results. 

The new routing algorithm is an improvement over the 
old one in that it uses fewer network resources, operates 
on more realistic estimates of network conditions, reacts 
faster to important network changes, and does not suffer 
from long-term loops or oscillations. 

The New Routing Procedure 

The routing procedure we have developed contains 
several basic components. Each node an the network 
maintains a data base describing the network topology 
and the line delays. Using this data base, each node 
independently calculates the best paths to all other 
nodes, routihg outgoing packets accordingly. Because 
the traffic in the network can be quite variable, each 
node periodically measures the delays along its 
outgoing lines and forwards this information (as a 
"routing update") to all other nodes. A routing update 
generated by a particular node contains information 
only about the delays on the lines emanating from that 
node. Hence an update packet is quite small, and its size 
is independent of the number of nodes in the network. 
An update generated by a particular node travels 
unchanged to all nodes in the network (not just to the 
immediate neighbors of the originating node, as an 
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many other routing algorithms.) Since the updates need 
not be processed before being forwarded, and since they 
are small, they propagate very quickly through the 
network, so that all nodes can update their data bases 
rapidly and continue to route traffic in a consistent and 
efficient manner. 

Many algorithms have been devised for finding the 
shortest path through a network. Several of these are 
based on the concept of computing the entire tree of 
shortest paths from a given node, the root of the tree. A 
recent article [8] discusses some of these algorithms and 
references several survey articles. The algorithm we 
have implemented is based on an algorithm attributed to 
Dijkstra [9]; because of its search rule, we call it the 
shortest-path-first (SPF) algorithm. 

The basic SPF algorithm uses a data base describing the 
network to generate a tree representing the minimum 
delay paths, from a given root node to every other 
network node. Figure 1 shows a simplified flow chart of 
the algorithm. The tree initially consists of just the root 
node. 

The tree is then augmented to contain the node that is 
closest (in delay) to the root and that is adjacent to a 
node already on the tree. The process continues by 
repetition of this last step. LIST denotes a data structure 
containing nodes that have not yet been placed on the 
tree but are neighbors of nodes that are on the tree. The 
tree is built up shortest-paths-first - -  hence the name of 
the algorithm. Eventually the furthest node from the 
root is added to the tree, and the algorithm terminates. 
We have made important additions to this basic 
algorithm so that changes in network topology or 
characteristics require only an incremental calculation 
rather than a complete re- calculation of all shortest 
paths. 

DECLARE ALL NODES ] 

'" NOT ON LIST " 

PUT ROOT (SELF) 

ON LIST 

____~ REMOVE NODE CLOSEST] NONE 
TO ROOT FROM LIST; I 
PUT NODE ON TREE [ 

I 

FOR EACH NEIGHBOR OF THE 
NODE JUST REMOVED FROM LIST: 

IF ON TREE, DO NOTHING 
IF ON LIST, UPDATE 

DISTANCE FROM ROOT 
ELSE PUT ON LIST 

1 

DONE 

Figure 2 shows a seven-node network and the 
corresponding shortest path tree for node 1. The figure 
also shows the routing directory which is produced by 
the algorithm and which would be used by node 1 to 
dispatch traffic. For example, traffic for node 4 is 
routed via node 2. Only the routing directory is used in 
forwarding packets; the tree is used only in creating the 
directory. 

The two other important components of the routing 
procedure are the mechanism for measuring delay and 
the scheme for propagating information. The routing 
algorithm must have some way of measuring the delay 
of a packet at each hop. This aspect of the routing 
algorithm is quite crucial; an algorithm with poor delay 
measurement facilities will perform poorly, no matter 
how sophisticated its other features are. 

Each node measures the actual delay of each packet 
flowing over each of its outgoing lines, and calculates 
the average delay every 10 seconds. If this delay is 
significantly different from the previous delay, it is 
reported to all other nodes. The choice of 10 seconds as 
the measurement period represents a significant 
departure from the old routing algorithm. Since it takes 
10 seconds to produce a measurement, the delay 
estimate for a given line cannot change more often than 
once every 10 seconds. The old routing algorithm, on 
the other hand, would allow the delay estimate to 
change as often as once every 128 msec. We now 
believe, however, that there is no point to changing the 
estimate so often, since it is not possible to obtain an 
accurate estimate of delay in the ARPANET in less than 
several seconds. Figure 3 shows some actual delays; an 
artificially induced traffic load was applied between 
minutes 5 and 17. The procedure of directly measuring 
the packet delays cannot fail to yield a more accurate 
result than any procedure which attempts to infer the 
delays by measuring something else which is merely 
expected to correlate with the delays (such as queue 
lengths.) 

Figure 1 
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The updating procedure for propagating delay 
information is of critical importance because it must 
ensure that each update is actually received at all nodes, 
so that identical data bases of routing information are 
maintained at all nodes. When an update is generated, it 
is assigned a sequence number. Each update is 
transmitted to all nodes by the simple but reliable 
method of transmitting it on all lines. When a node 
receives an update, it first checks to see whether it has 
processed that update (or an update which originated 
from the same node, but which had a later sequence 
number) before. If  so, it is discarded. If not, it is 
immediately forwarded to all adjacent nodes. In this 
way the update quickly flows to all other nodes. The 
fact that an update flows once in each direction over 
each network line is the basis for a reliable transmission 
procedure for the updates. Because the updates are short 
and are generated infrequently, this procedure uses very 
little line or node bandwidth. We have augmented this 
basic procedure with a mechanism to ensure that data 
bases at nodes are correctly updated when a new node 

or line is installed, or when a whole set of previously 
disconnected nodes joins the network. The updating 
protocol is discussed in detail in [10]. 

Since all nodes perform the same calculation on an 
identical data base, there are no long-lasting routing 
loops. Of course transient loops may occasionally form 
for a few packets when a change is being processed, but 
that is quite acceptable, since it has no significant 
impact on the average delay in the network. 

Performance 

We next describe some analytical and empirical results 
on the performance of the new routing algorithm. One 
important measure of the efficiency of the SPF 
algorithm is the average time required to process 
changes in the delays along network lines, since such 
changes comprise the bulk of the processing 
requirements. When a given node receives an update 
message indicating that the delay along some line has 
increased, the running time of the SPF algorithm is 

A) EXAMPLE NETWORK {LINE LENGTHS ARE INDICATED BY 

THE NUMBERS BESIDE THE ARROW HEADS) 

B) SHORTEST PATH TREE 

D E S T I N A T I O N  
2 3 4 5 6 

NODE 

ROUTE T R A F F I C  
2 3 2 2 2 

V I A  NODE 

C) ROUTING DIRECTORY 

Figure 2 
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roughly proportional to the number of  nodes in that 
line's subtree; that is, it is roughly proportional to the 
number of  nodes to which the delay has become worse. 
When a given node receives an update message 
indicating that the delay along some line has decreased, 
the amount of  time it takes to run the incremental SPF 
algorithm is roughly proportional to the number of  
nodes in that line's subtree after the algorithm is run; 
that is, it is roughly proportional to the number of  nodes 
to which the delay got better. Thus, in either case, the 
SPF running time is directly related to the subtree size. 

Since the average subtree size provides a measure of  
SPF performance, it is useful to understand how this 
quantity varies with the size of  the network. Let N 
denote the number of  network nodes, and let h. 
represent the number of  hops on the path from the 
source node, i = 1, to node i; in other words, if the 
length of  each line is 1, then h i is the length of  the path 
to node i. Clearly, node i appears in i's subtree and in 
the subtrees of  all the nodes along the path to i. Thus hi 
is equal to the number of  subtrees in which node E is 
present, so that 
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total number of all subtree nodes = ~ h ,  
i = 2  

and since there are N-1 subtrees (the complete tree from 
the source node is not considered to be a "subtree"), the 
average subtree size is given by 

1 N 
- E hi average subtree size - N 1 i=2 

But this expression is identical to the average hop 
length of all paths, and thus we have the remarkable 
result that in any tree, the average subtree size is equal 
to the average hop length from the root to all nodes. 
This result is significant because the average hop length 
generally increases quite slowly as the number of  nodes 
increases. (For a network with uniform connectivity 
c>2, the average hop length increases roughly as log 
N/log(c- 1).) 

To establish some estimate of  the running time of  the 
algorithm, we programmed a stand-alone version for the 
ARPANET nodes. We randomly assigned each line in 
the ARPANET a length between 1 and 20. We ran the 
SPF algorithm to initialize the data structure in each 
node. Then we picked 50 lines at random and 
successively gave each a new random length. Every 
time we changed the length of a line, we changed it by 
at least 15%. Also, some lines were brought down by 
being assigned a length which represented infinity. Each 
time we did this, we ran the SPF algorithm with each 
node as the source node. We obtained the following 

The average time per node to run the 
incremental SPF algorithm was about 2.2 
msec. 

- The average time per subtree node to run the 
incremental SPF algorithm was about 1.1 
msec. 

Since we calculated that the average subtree size 
multiplied by the probability that a line is in the tree is 
about 2, these two results are in agreement. Note that 
these are average times; actual times varied from under 
1 msec. to 40 msec. 

The figures given above are for the shortest path 
calculation only. Processing an update invokes a routine 

results: 

I I I I I I I I 
25 30 35 40 45 50 55 80 

TIME (MINS) 

Figure 3 
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to maintain the topology data base (including the ability 
to dynamically add or delete lines and nodes), and a 
routine to determine which nodes can be reached from 
the root node. These modules increase the running time 
by about a factor of two; and the total storage 
requirement, including these modules, the topology data 
base, and the measurement and updating packages, is 
about 2000 16-bit words. 

We designed and programmed the new routing 
procedure over a period of about six months. We then 
began an extensive series of tests on the ARPANET, at 
off-peak hours but under actual network conditions [5]. 
Our tests involved a great deal more than simply turning 
the new routing algorithm on to see whether it would 
run. The tests were specifically designed to stress the 
algorithm, by inducing those situations which would be 
most difficult for it to handle well. To stress its ability 
to react properly to topological changes, we induced 
line and node failures in as many different ways as we 
could think of, including multiple simultaneous failures. 
We also generated large amounts of test traffic in order 
to see how the algorithm performs under heavy load. (In 
this respect, it should be noted that the periods during 
which we were testing were "off-peak" only with 
respect to the amount of ordinary user traffic in the 
network. The amount of test traffic we generated far 
exceeds the amount of traffic generated by users, even 
during peak hours.) We experimented with many 
different traffic patterns, in order to test the algorithm 
under a wide variety of heavily loaded conditions. In 
particular, we tried to induce those situations which 
would be most likely to result in loops or in wild 
oscillations. We also designed and implemented a 
sophisticated set of measurement and instrumentation 
tools, so that we could evaluate the routing algorithm's 
performance. Some of these tools enabled us to monitor 
the utilization of resources used by the algorithm. 
Others enabled us to monitor changes in delay (as 
measured by the routing algorithm), as well as changes 
in the routing trees themselves at particular network 
nodes. One of our most important tools was the "tagged 
packet". A tagged packet is a packet which, as it travels 
through the network, receives an imprint from each 
node through which it travels. When such a packet 
reaches its destination, it contains a list of all the nodes 
it has traversed, as well as the delay it experienced at 
each node. These packets provided us with a very 
straightforward indication of the routing algorithm's 
performance. Of course, since the network was also in 
use by ordinary users during our tests, we cannot claim 
to have performed "controlled" experiments, in the 
strict scientific sense. However, all our experiments 
were repeated many times before being used to draw 
conclusions. Some of our main results are: 

1) Utilization of resources (line and processor 
bandwidth) by the new routing algorithm is as 
expected, and compares quite favorably with the 
old algorithm. Line overhead and CPU overhead 
are both less than two percent. 

2) The new algorithm responds quickly and 
correctly to topological changes; most nodes 
learn of an update within 100 msec. 

3) The new algorithm is capable of detecting 
congestion, and will route packets around a 
congested area. 

4) The new algorithm tends to route traffic on 
minimum hop paths, unless there are special 
circumstances which make other paths more 
attractive. 

5) The new algorithm does not show evidence of 
serious instability or oscillations due to feedback 
effects. 

6) Routing loops occur only as transients, affecting 
only packets that are already in transit at the time 
when there is a routing change. The few packets 
that we have observed looping have not traversed 
any node more than twice. However, the loop can 
be many hops long. 

7) Under heavy load, 'he new algorithm will seek 
out paths where there is excess bandwidth, in 
order to try to delivery as much traffic as 
possible to the destination. 

Of course, the new routing algorithm does not generate 
optimal routing - -  no single-path algorithm with 
statistical input data could do that. It has performed 
well, and is successful in eliminating many of the 
problems associated with the old routing scheme. After 
several months of careful testing during which both old 
and new routing algorithms were resident in the network 
and used for experiments [5], we began to operate the 
ARPANET with the new routing scheme in May 1979, 
and removed the old routing program. Since that time 
we have continued to monitor the performance of the 
algorithm, the results obtained during our test periods 
have continued to hold, even during peak hours, and no 
new or unforeseen problems have yet arisen. 
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