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Absrracr-The new ARPANET routing  algorithm is an  improvement 
over  the old  procedure in that it uses fewer  network  resources,  operates  on 
more  realistic  estimates  of  network  conditions,  reacts  faster  to  important 
network  changes,  and  does  not  suffer  from  long-term  loops or oscillations. 
In the new  procedure,  each  node in the  network  maintains  a  database 
describing  the  complete  network  topology  and  the  delays  on  all  lines,  and 
uses the  database describing  the  network  to  generate  a  tree  representing  the 
minimum  delay  paths from  a  given  root  node  to  every  other  network  node. 
Because  the  traffic in the  network  can  be  quite  variable,  each  node 
periodically  measures  the  delays  along  its  outgoing  lines  and  forwards  this 
information  to  all  other  nodes.  The  delay  information  propagates  quickly 
through  the  network so that  all  nodes  can  update  their  databases  and 
continue  to  route  traffic  in  a  consistent  and  efficient  manner. 

An  extensive  series of tests  were  conducted  on  the  ARPANET,  showing 
that  line  overhead  and CPU overhead  are  60th less than  two  percent,  most 
nodes  learn of  an update  within 100 ms, and  the  algorithm  detects 
congestion  and  routes  packets  around  congested  areas. 

I. INTRODUCTION 

T HE last  decade  has  seen the design, kfdementation,  and 
operation  of several routing algorithms for  distributed  net- 

works  of  computers.  The first  such algorithm,  the original 
routing algorithm for  the ARPANET, has served remarkably 
well considering how  long ago (in the  history of packet switch- 
ing) it was conceived. This paper  describes the new routing 
algorithm  we  installed recently  in  the ARPANET. Readers not 
familiar with  our earlier activities may  consult [ I ]  for a  survey 
of  the ARPANET design decisions,. induding the previous 
routing  algorithm; readers interested  in a  survey of  routing al- 
gorithms  for  other  computer  networks  and  current research in 
the area  may consult [ 2 ] .  

A distributed, adaptive routing scheme  typically has a 
number  of separate components, including: 1) a measurement 
process for  determining  pertinent  network characteristics, 
2 )  a protocol for disseminating information  about these 
characteristics, and 3) a calculation to  determine  how  traffic 
should  be  routed. A routing “algorithm” or “procedure” is 
not specified until all these components are defined.  In  the 
present  paper, we discuss these components  of  the new 
ARPANET  algorithm. We begin with a  brief outline  of  the 
shortcomings of the original algorithm;  then, following an over- 
view of the new procedure, we provide some greater detail  on 
the individual components.  The new algorithm has undergone 
extensive  testing in the A*ANET under  operational condi- 
tions,  and  the final section  of  the paper gives a summary  of  the 
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test results. This paper is a summary  of  our conclusions only; 
for  more  complete descriptions  of our research  findings, see 
our  internai  reports on this  project  [3]  -[5]. 

11. PROBLEMS WITH THE  ORIGINAL ALGORITHM 

m e  original ARPANET routing algorithm and  the  new ver- 
sion both  attempt  to  route packets  along paths  of least  delay. 
The  total  path is not  determined in  advance; rather,  each  node 
decides  which  line to use in  forwarding the  packet to  the  next 
node.  In  the original approach, each node maintained  a table 
of estimated delay to  each  other  node,  and  sent  its table to all 
adjacent  nodes every 128 ms. When node I received the table 
from  adjacent  node J ,  it  would first measure the delay from  it- 
self t o  J .  (we will shortly discuss the  procedure used for meas- 
uring the delay.) Then  it would compute  its delay via J to all 
other  nodes  by adding to  each entry i n S s  table  its  own delay 
to  J .  Once  a table was received from all adjacent  nodes,  node I 
could easily determine which adjacent  node would  result in 
the  shortest delay to each destination  node  in  the  network. 

In recent  years, we began to observe a number  of problems 
with  the original ARPANET routing algorithm [7]  and came 
to  the conclusion that a complete redesign was the  only  way 
to  solve some  of them.  In  particular,.we decided that a  new 
algorithm was necessary  to solve the following  problems. 

1) Although  the exchange  of routing tables  consumed only 
a s..aLfraction of line bandwidth,  the  packets containing the 
tables were long, and the periodicTransmission and processing 
of such  long, high-priority  packets  can adversely affect  the 
flow of  network  traffic. Moreover, as the ARPANET grows to  
100 or  more  nodes,  the  routing packets  would become  cor- 
respondingly larger (or  more frequent),  exacerbating  the 
problem. 

2)  The  route calculation is performed in a distributed  man- 
ner,  with each node basing its calculation on local information 
together  with calculations made  at every other  node. With 
such a scheme,  it is difficult to ensure that  routes used by dif- 
ferent  nodes are consistent. 

3) The  rate  of exchange of  routing tables and  the  distributed 
nature  of  the calculations causes a dilemma:  the  network is 
too slow in  adapting  to congestion  and to  important  topology 
changes, yet  it can respond  too quickly (and,  perhaps, inac- 
curately) t o  minor changes. 

The delay measurement  procedure  of  the old  ARPANET 
routing  algorithm is quite simple.  Periodically,  an IMP counts 
the  number  of packets queued  for transmission on its lines and 
adds a constant  to these counts;  the resulting number is the 
“length”  of  the line for purposes of  routing. This delay meas- 
urement  procedure has three serious defects. 

1) If two lines have different speeds, or different propaga- 
tion  delays,  then  the  fact  that  the same number of  packets is 
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queued for  each line  does not imply that packets can expect 
equal  delays over the  two lines. Even if two lines have the 
same speed and  propagation delay, a difference in the size 
‘of  the  packets  which are queued for each  line may cause dif- 
ferent delays on  the two  lines. 

2 )  In the ARPANET, where  the queues are constrained to 
have a  (short)  maximum  length,  queue  length is a poor  indi- 
cator of delay.  The  constraints  on  queue length are imposed 
by  the  software  in  order to  fairly resolve contention  for  a  limited 
amount of resources. There are a  number  of such  resources 
which  must  be  obtained  before  a  packet  can even be  queued 
for  an  output  line. If a  packet  must wait a significant amount 
of  time to get these  resources, it  may experience a  long  delay, 
even though  the  queue  for its output line is quite  short. 

3) An instantaneous  measurement  of  queue  length does not 
accurately  predict average delay  because there is a significant 
real-time fluctuation in queue lengths at  any  traffic level. Our 
measurements  show  that  under  a high constant  offered  load, 
the average delay is high, but  many individual packets show 
low  delays, and  the  queue  length  often falls to zero!  This 
variation may  be  due  to variation  in the utilization of  the CPU, 
or to other  bottlenecks,  the presence of  which is not  accurately 
reflected  by measuring queue  lengths. 

These three  defects are all reflections  of a single point, 
namely,  that  the  length  of an output  queue is only  one  of 
many  factors  that  affect  a packet’s delay.  A  measurement  pro- 
cedure  that  takes  into  account  only  one  such  factor  cannot 
give accurate results. 

The new routing  algorithm is an improvement over the old 
one  in  that  it uses fewer network resources, operates  on  more 
realistic estimates  of  network  conditions,  reacts faster to  im- 
portant  network changes, and does not  suffer  from  long-term 
loops  or oscillations. 

111. OVERVIEW OF  THE NEW ROUTING  PROCEDURE 

The  routing  procedure we have developed contains several 
basic components.  Each  node in the  network  maintains  a  data- 
base describing the  network  topology  and  the line  delays. 
Using this  database,  each  node  independently calculates the 
best paths  to all other  nodes,  routing outgoing packets  accor- 
dingly. Because the  traffic  in  the.network can be  quite variable, 
each  node periodically  measures the delays  along its  outgoing 
lines and  forwards  this  information (as a  “routing  update”)  to 
all other  nodes.  A  routing  update generated  by a particular 
node  contains  information  only  about  the delays on  the lines 
emanating  from  that  node.  Hence,  an  update  packet is quite 
small (176 bits  on  the average), and its size is independent of 
the  number  of  nodes in the  network. An update generated by 
.a  particular  node travels unchargea to all nodes in the  network 
(not  just  to  the  immediate neighbors  of the originating node, 
as in many  other  routing algorithms). Since the  updates need 
not  be processed before being forwarded ,because they are 
small, and since they are handled  with  the highest priority, 
they  propagate very quickly through  the  network, so that all 
nodes  can  update their  databases  rapidly and  continue  to  route 
traffic in a  consistent  and efficient manner. 

Many algorithms have been devised for  finding  the  shortest 
path  through  a  network. Several of these  are  based on the  con- 
cept  of  computing  the  entire tree of  shortest  paths  from  a 

given node,  the  root of the  tree.  A  recent article [9] dis- 
cusses some of  these  algorithms  and  references several survey 
articles. The algorithm we  have implemented is based on  one 
attributed  to Dijkstra [ lo] ; because  of its search rule, we call 
it  the  shortest-path-first (SPF) algorithm. 

The basic SPF  algorithm uses a database  describing the  net- 
work  to. generate a tree  representing the  minimum delay paths 
from  a given root  node  to every other  network  node. Fig. 1 
shows a simplified flowchart of the algorithm. The  database 
specifies which nodes are directly connected  to which other 
nodes, and  what  the average delay  per packet is on  each  net- 
work  line.  (Both  types  of  data are updated  dynamically, based 
on real-time  measurements.) The  tree initially  consists of  just 
the  root  node.  The  tree is then  augmented  to  contain  the  node 
that is closest (in delay) to  the  root  and  that is adjacent to  a 
node  already  on  the  tree.  The process coritinueP by  repetition 
of this last step. LIST denotes  a  data  structure  containing 
nodes  that have not  yet  been placed on  the  tree  but are 
neighbors of  nodes  that are on the  tree.  The tree is built  up 
shortest-paths-first-hence,  the name of the algorithm. Event- 
ually, the  furthest  node  from  the  root is added to  the  tree,  and 
the  algorithm  terminates. We have made  important  additions 
t o  this basic  algorithm so that changes in network  topology  or 
characteristics  require only  an  incremental calculation rather 
than  a  complete recalculation  of all shortest  paths. 

Fig. 2 shows a six-node network and the  corresponding 
shortest  path  tree  for  node  1.  The figure also shows  the  rout- 
ing directory  which ‘is produced  by  the algorithm and  which 
would  be used by  node 1 to  dispatch traffic. For  example, 
traffic  for  node 4 is routed via node 2 .  Only  the  routing direc- 
tory is used in forwarding  packets;  the  tree is used only in 
creating the  directory. 

The  two  other  important  components of the  routing 
procedure are the mechanism for measuring  delay and the 
scheme for propagating information.  The  routing  algorithm 
must have some  way of measuring the delay  of a  packet  at 
each  hop. This aspect  of  the  routing algorithm is quite crucial; 
an  algorithm  with  poor delay measurement facilities will per- 
form  poorly, no matter how sophisticated  its  other  features 
are. 

Each node measures the  actual delay of each packet flowing 
over each  of its  outgoing lines, and calculates the average delay 
every 10 S. If this delay is significantly different  from  the 
previous delay,  it is reported  to all other  nodes.  The choice of 
10 s as the  measurement period  represents a significant depar- 
ture  from  the  old  routing  algorithm. Since it  takes 10  s-to 
produce  a  measurement,  the delay estimate for a given line 
cannot change more  often  than  once every 10 s. The old rout- 
ing algorithm,  on  the  other  hand, would allow the delay  esti- 
mate  to change as often as once every 128 ms. We now believe, 
however,  that  there is no  point in  changing the  estimate so 
often, since it is not possible to  obtain an accurate  estimate 
of delay  in the ARPANET  in less than several seconds. (See 
Section IV-B.) 

The  updating  procedure  for propagating  delay information 
is of  critical importance because it must  ensure that  each 
update is actually received at all nodes so that  identical  data- 
bases of  routing  information are maintained  at all nodes.  Each 
update is transmitted to  all nodes  by  the simple but reliable 
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Fig. 3. (a) Shortest  path  tree  for  network of Fig. 2(a) after  the  length 
of  the  line 2 + 4 increase t o  6 .  (b)  Modified  tree  after  the  length  of 
line -, 5 decrease to  2. 

transient  loops may form  for  a few packets  when a change is 
being processed, but  that is quite  acceptable, since it has no 
significant impact on the average delay  in the  network. 

Fig. 1. 

DESTINATION 
NODE 

ROUTETRAFFIC 
VIA NODE 

(b) 

Fig. 2. (a) Example  network  (line  lengths  indicated  by  the  numbers 
beside  the  arrowheads).  (b)  Shortest  path  tree.  (c)  Routing  directory. 

method  of  transmitting  it  on all lines. When a  node receives an 
update,  it  first checks to see  if it has processed that  update 
before. If so, the  update is discarded. If not,  it is immediately 
forwarded  to all adjacent  nodes. In this  way,  the  update flows 
quickly  (within 100 ms) to  all other  nodes.  The  fact  that  an 
update flows once in each direction over each network line is 
the basis for a reliable transmission procedure  for  the  updates. 
Because the  updates are short  and are  generated infrequently, 
this  procedure uses little line or node  bandwidth (less than  two 
percent). We have augmented this basic procedure with a 
mechanism to ensure that databases at  nodes are correctly 
updated when a new node or line is installed, or when a whole 
set  of previously disconnected nodes  joins  the  network. This is 

Since all nodes  perform  the same calculation on  an  identical 
database,  there are no  permanent routing loops. Of course, 

1 discussed in more  detail in Section IV-C. 

IV.  DETAILED DESCRIPTION OF THE NEW 
ROUTING  PROCEDURES 

A .  Routing Calculation-The SPF Algorithm 
We now describe the  additions  to  the basic algorithm of 

Fig. 1 which we have developed to handle various possible 
changes in network  status  without having to recalculate the 
whole tree.  For each  change  described below, we assume that 
the  shortest  path tree rooted  at  node I prior to the change is 
known. 

First, consider the case where the delay  of the line AB from 
node A to  node B increases.  Clearly, if the line is not in the 
tree (i.e., not in the  shortest  path  from  that  node  to  any  other 
node), nothing need be done because if the line were not part 
of any  shortest  path prior to  the change, then  it will certainly 
not  be used when its delay increases. If the line is in the  tree, 
then  the delay to B increases, as does the delay to  each node 
whose route  from I passes through B. Thus,  the  nodes in the 
subtree whose root is B are candidates for changed positions  in 
the  tree. Conversely, nodes  not in this subtree will not be 
repositioned. 

The first two  steps  for handling  an increase of X in the de- 
lay from A t o  B are as follows. 

1) Identify  nodes in B’s subtree  and increase their delays 
from I by X .  

2 )  For each subtree  node S, examine S ’ s  neighbors  which 
are not in the  subtree  to see if there is a  shorter  path  from I 
to S via those  neighbors. If such  a  path is found,  put  node S 
on LIST. 

At the conclusion  of  these steps, LIST either will be  empty 
or will contain some subtree  nodes for  which better  paths have 
been found. In order  to find the best paths to  the  nodes  on 
LIST,  a slightly modified version of  SPF can be  invoked. This 
will also find  better  paths, if any  exist,  for  other  subtree  nodes. 
Fig. 3(a) shows the  modification  to  the tree of Fig. 2 that 
results  when the delay of  the line from  node 2 to  node 4 
increases to 6. 

Now consider the case where the delay on AB decreases by 
X .  If this line is in the  tree,  then  paths  to  the  nodes  of  the  sub- 
tree which have 9 as its  root will be unchanged  because the 
subtree  nodes were already at  minimum  delay,  and hence 
the decreased  delay will only  shorten  their distances from 
1. Moreover, any  node whose  delay from I is less than  or 



714 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL.  COM-28,  NO. 5 ,  MAY 1980 

equal to B s  new distance  from I will not  be  repositioned, since 
the node’s path  must reach B first  in order  to  take advantage 
of the improved line. However, nodes which are not in the  sub- 
tree and which are farther  from I than B may have a shorter 
distance via one of the  subtree nodes. 

The algorithm must  thus first perform  the following steps. 
1) Identify  the  nodes in the  subtree  and decrease their dis- 

tances  from I by X .  
2)  Try to  find a shorter distance  for  each node K that is not 

in the  subtree  but is adjacent to a subtree  node  by  identifying 
a path  to K via an adjacent node which is in the  subtree. If 
such a path is found,  put  node K on LIST. 

At the conclusion of these steps, LIST will contain some 
(possibly zero) subtree adjacent nodes  that have been re- 
positioned. Nodes adjacent to  these that are not in the  sub- 
tree are  also candidates  for improved paths,  and  starting  with 
the LIST generated in step 2) above,  the basic SPF algorithm 
(with  minor  modifications)  can  be used t o  restructure  the rest 
of the  tree. Fig. 3(b) shows  how  the  tree  of Fig. 3(a) changes 
when  the  length of the link from  node 2 to  node 5 decreases 
to  2, while the  length of the link from  node 2 to  4 remains 
at  6. 

If the delay on line AB improved,  but AB was not originally 
in the  shortest  path  tree,  the  algorithm first determines  whether 
B can  take advantage  of ,this  improvement. Since the delay 
from I t o  A cannot  be  improved,  the delay to B using the line 
AB will be  equal to  the original distance to A plus the new 
delay  of AB. If the new  delay is greater than or equal to the 
former delay from I to  node B,  then  the improved  line does 
not  help  and no changes are  made to  the  tree  or  to  the  routing 
table.  If, on the  other  hand,  the  updated delay is less than  the 
original delay,  then  the  best  route to  B now  includes AB. The 
first  change to  the  shortest  path  tree  is,  therefore,  to relocate 
B (and  its  subtree),  attaching  it  to  node A via line AB.  Now 
the  situation is identical to  that of the previous  paragraph in 
which  the line from A to B was in  the  tree in the  first place 
and  its delay  decreased. 

Finally, a change in the  status of a  node-namely, the 
addition  of a  new node,  the removal of a node, a node failure, 
or its recovery from a failure-is implicitly recognized by  the 
change  in the  status of its lines. For  example, if a node fails, its 
neighbors determine  that  the lines to that  node have failed, 
and  when  other  nodes receive this  information,  they calculate 
that  the failed node is unreachable. (Of course,  nodes can be- 
come unreachable even if their lines do  not fail.) Thus,  the 
algorithm need  explicitly consider  only line  changes. 

The basic SPF calculation and all of  the above incremental 
cases are consolidated  into  the  semiformal version of  the algo- 
rithm given in the  Appendix. 

B. Delay  Measurement 
Measuring the delay  of an individual packet is a simple 

matter. When the  packet arrives at  the IMP, it is time-stamped 
with  its arrival time. When the first bit  of  the  packet is trans- 
mitted  to  the  next IMP, the  packet is stamped  with  its  “sent 
time.” If the  packet is retransmitted,  the original sent  time is 
overwritten  with  the  new  sent  time. When the acknowledg- 
ment  for  the  packet is received, the arrival time is subtracted 
from  the  sent  time.  To  this difference  are added  the propaga- 

tion delay  of the line (a constant  for each  line) and  the packet’s 
transmission  delay (found by  looking it  up in  a table  indexed 
by packet  length and  line speed). The result is the packet’s 
total delay at  that  hop-the time it  took  the  packet  to get 
from one IMP t o  the  next. 

Every 10 s the average delay  of all packets which have tra- 
versed a  line in the previous 10 s is computed.  Our measure- 
ments show that when we take an average over a  period of 
less than 10 s, the average shows io0 much variation from 
measurement period t o  measurement  period, even when  the 
offered load is constant. There is a tradeoff  here: a  longer 
measurement period  means less adaptive routing if condi- 
tions actually  change; a shorter period  means less optimal 
routing because of  inaccurate  measurements. 

Another  important aspect of  the  measurement  technique is 
that  the  measurement  periods are not synchronized across the 
network.  Rather,  the  measurement  periods in the  different 
IMP’S are randomly phased.  This is an important  property  be- 
cause synchronized measurement periods could, in theory, 
lead to  instabilities [4] , [ 111 . 

The new routing  algorithm  does  not necessarily generate 
and  transmit  an  update at  the  end  of each measurement  period; 
it  does so only if the average delay just measured is  ‘‘signifi- 
cantly”  different  from  the average delay reported in the last 
update  that was sent (which may  or  may  not  be  the  same as 
the delay  measured  in the previous measurement period). The 
delay is considered to have changed “by a significant amount” 
whenever the  absolute value of  the change  exceeds  a certain 
threshold.  The  threshold is not a constant  but is a  decreasing 
function of time because  whenever there is a large change  in 
delay,  it is desirable to  report  the new  delay as soon as pos- 
sible, so that  routing  can  adapt  quickly;  but  when  the delay 
changes by  only a small amount,  it is not  important to report 
it quickly, since it is not likely to result in important  routing 
changes.  However,  whenever  a  change  in  delay is loug lasting, 
it is important  that  it  be  reported  eventually, even if it  is small; 
otherwise, additive effects can introduce large inaccuracies 
into  routing. What is needed,  then, is a  scheme which reacts 
to  large changes quickly  and small changes  slowly.  A threshold 
value which is initially high but which decreases to  zero over 
a period of time  has  this  effect. In the scheme  we have imple- 
mented,  the  threshold is initially set  to 64 ms. After each 
measurement  period,  the newly measured average delay is 
compared  with  the previously reported delay.  If the  difference 
does  not exceed the  threshold,  the  threshold is decreased by 
12.8 ms. Whenever a  change  in average delay  equals o r  exceeds 
the  threshold, an update is generated,  and  the  threshold is 
reset to   64 ms.  Since the  threshold will eventually decay to  
zero, an update will always be  sent  after a minute, even if 
there is no change  in delay. (This feature is needed to  ensure 
reliability of  the  updating  protocol  under  certain  conditions. 
See Section IV-C.) It should be pointed out that  when a  line 
goes down or comes up,  an  update  reporting  that  fact is 
generated immediately. 

C Updating  Policy 
We next discuss the policy for propagating the delay  in- 

formation  needed in SPF calculations, which require identical 
data bases at all the  nodes [12]. The  updating  technique  must 
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meet  two basic criteria, high efficiency (i.e., low  utilization of 
line  and CPU bandwidth)  and high  reliability.  Efficiency is im- 
portant  both  under  normal  conditions  and when  a change is 
detected  that requires immediate  updating. Reliability  means 
that upd.ates must  be processed in sequence,  handled  without 
loss during  equipment failures, and  treated  correctly  after 
failure  recovery. 

Rather  than having separate updates  for  each  line,  each  up- 
date  contains  information  about all the lines at a  particular 
IMP. That is,  each update  from a given node specifies all the 
neighbors of  that  node, as well as the delay on  the  direct line 
to  each  of  the neighbors.  This  results in more efficiency (i.e., 
less overhead), and  the simplicity  of only  one single serial 
number per node.  The  latter makes  sequencing and  other 
bookkeeping easier. 

We considered different  approaches  for  distributing  the up- 
dates [8] and decided on “flooding,” in  which  each  node sends 
each new update it receives on all its lines except  the line on 
which the  update was received. An important advantage of 
flooding is that  the  node sends the same message on all its 
lines, as opposed to  crea’ting separate messages on  the dif- 
ferent lines.  These messages are short  (no addressing informa- 
tion is required), so that  the  total overhead due  to  routing  up- 
dates is much less than  one  percent. A  final consideration 
which  favors flooding is that  it is independent  of  the  routing 
algorithm. This  makes it a safe, reliable scheme. 

We considered several different ways of augmenting the 
basic flooding  scheme to  ensure reliable transmission [4]. An 
important  feature  of all the schemes is that  updates which 
need to be  retransmitted  can  be  reconstructed  from  the  topol- 
ogy tables in each IMP. The  protocol we have adopted uses an 
explicit acknowledgment  which is a natural  extension  of  the 
basic flooding scheme. Using flooding, there is no need to 
transmit an update  back over the line on which it was received 
since the neighbor on  that line  already  has the  update. In our 
protocol, however, the  updates are transmitted over all lines, 
including the  input  line.  The  “echo” over the  input line serves 
as an  acknowledgment t o  the  sender; if the  echo is not received 
in  a given amount of  time  (measured by a  retransmission timer 
for each line), the  update is retransmitted. In order  to cover 
the case of  a missed echo,  the  retransmitted  update is specially 
marked (with a “Retry”  bit)  to  force  an  echo even if the  up- 
date  has  been seen before.  Note  that acknowledging an  update 
at each hop ensures that  the  update will be received by all 
nodes which have a path  to  the  source. 

One  difficult  problem in maintaining duplicate databases at 
all nodes is that some nodes may become  disconnected  from 
each  other  due  to a network  partition.  For some  period of 
time,  certain  nodes are unable to receive routing  updates  from 
certain  other nodes. When the  partition  ends,  the  nodes in one 
segment of  the  network may remember  the serial numbers  of 
the last updates  they received from  nodes in the  other  segment. 
However, if the  partition lasted  a  long enough  time,  the serial 
numbers used by the  disconnected  nodes  may have wrapped 
around one  or  more times. If there has been  wrap-around,  it is 
meaningless to  compare  the serial numbers  of new updates 
with  the serial numbers  of  old  updates.  Some  method  must  be 
developed to  force all nodes  to discard the  prepartition up- 
dates in favor of  the  postpartition  ones.  The obvious approach 

of ignoring updates from  unreachable nodes is not workable, 
since the SPF databases  may temporarily  be  inconsistent,  and 
different  nodes may ignore different  updates. 

This problem is resolved by having the  update  packets  carry 
around some indication of their age. There is a k-bit field in 
each  packet,  and each node has  a  clock which ticks once every 
t seconds. When an  update is first generated,  the “age field” is 
2k - 1 .  When an  update is received, its age field is decremented 
once  each tick  of  the  clock. An update is considered “too  old” 
when its age field has been decremented to  zero. This  scheme 
ensures that  the age of an  update as seen by a given node is 
determined by the  time  it  has  been held in  the given node, 
plus  the time it was held  in any  nodes  from which it was re- 
transmitted.  The use of a time-out scheme  like the  one  just 
described places several constraints  on  the parameters used 
by  the  routing scheme. 

1) It should be impossible for  the serial numbers  of  updates 
generated by  any  one  node  to  wrap  around (i.e., to get half- 
way  through  the sequence number space) before  the  time-out 
period expires. 

2 )  The  time-out period should  be somewhat longer than  the 
maximum period between  updates  from a single node. This 
means that  good,  recent  updates  from reachable nodes will not 
time  out. 

3) It  should  be impossible for a node to  stop  and be restarted 
within  the  time-out interval.  This  ensures that all of  the node’s 
old  updates will time  out  before  any  new  updates are sent. 

There is one  other  important  facet  to  the  updating  proto- 
col. When a network line  which  has  been down is determined 
to be in good operating  condition, it is placed in a special 
“waiting” state  for a  period of  one  minute.  The line is not 
“officially”  considered to  be  up  until  the waiting  period is 
over. While a  line is in the waiting state,  therefore,  no  data can 
be routed over it. However, routing  updates are transmitted 
over lines in the waiting state. As we indicated in Section IV-B, 
each node is required to  generate at least one  update per minute, 
even if there is no change in delay.  This means  that while a 
line is in the waiting state,  an  update  from every node in the 
network will traverse it;  the line cannot  come  up  until  enough 
time has  elapsed so that  recent  updates  from all nodes have 
been  transmitted over it. This feature is needed for  three 
reasons. 

1) In order  to  properly  perform  the  routing  computation, a 
node  must have a copy of the  network database  which is 
identical to  the copies in all the  other nodes. Recall that  the 
database specifies the  topology  of  the  network (i.e., which 
nodes are direct neighbors of which other nodes), as  well as 
the delay on  each  network  line. When a new node is ready to  
join  the  network,  it  has  none  of  this  information.  It must  some- 
how  obtain  the  information  before  it  can  be  permitted t o  join. 
Note, however, that  the procedure  described above ensures 
that a node  cannot  come  up (because its lines cannot come 
up)  until  it has received an update  from each other  node. Since 
an update  from a given node specifies the neighbors  of that 
node, as well  as the delay on  the line to each neighbor,  it  fol- 
lows that a node  cannot  come  up  until  it  has received enough 
information  to  construct a complete  and  up-to-date  copy  of 
the network  database. 

2 )  When the  network is partitioned,  the  partition  must  not 
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be permitted to  end  until updates from each  segment have 
flowed into  the  other. Otherwise, nodes in one segment may 
have copies of the database which are inconsistent  with those 
in the  other  segment. Again, the  procedure of having each 
node generate at least one  update per minute, while holding a 
line  in the waiting state  before allowing it  up, is sufficient to 
avoid this  problem. Since a  partition  can only  end  when a line 
comes  up,  and  a line cannot come up  until  updates  from all 
nodes have traversed it,  a  partition  cannot  end  until all nodes 
have complete,  consistent,  and  up-to-date copies of the  data- 
base. 

3) There are certain peculiar cases in which flooding is not 
totally reliable, even when augmented by  a retransmission 
strategy.  For  example, suppose a  node has two lines, one  of 
which  comes  up  at  the precise moment  the  other goes down. 
An update which is being flooded  around  the  network might 
arrive at  each line at  a time when  it is down, This means  that 
the  update may never reach that  node, even though  there is 
no  instant  when  both  of  the node’s lines are down. However, 
by ensuring that  a line cannot  come  up  until  enough  time  has 
passed for  updates  ‘from all nodes to  have traversed it, this 
situation is prevented. 

V. PERFORMANCE 

We next describe  some analytical  and empirical  results on 
the  performance  of  the  new  routing  algorithm.  One  important 
measure of  the  efficiency  of  the  SPF  algorithm is the average 
time required to  process changes in  the delays  along network 
lines, since such changes  comprise the  bulk  of  the processing 
requirements. When a given node receives an  update message 
indicating  that  the delay  along some line  has  increased, the 
running time of  the  SPF  algorithm is roughly proportional to  
the  number  of  nodes in that line’s subtree;  that is, it  is roughly 
proportional  to  the  number of nodes to  which the delay has 
become worse. When a given node receives an update message 
indicating  that  the delay  along some line  has  decreased, the 
amount  of  time  it  takes  to  run  the  incremental  SPF  algorithm 
is roughly proportional  to  the  number  of  nodes in that line’s 
subtree after the  algorithm is run;  that  is,  it is roughly propor- 
tional to the  number of nodes  to which the delay got  better. 
Thus, in either  case,  the  SPF  running  time is directly related 
to  the  subtree size. 

Since the average subtree size provides a measure of  SPF 
performance,  it is useful to  understand  how  this  quantity 
varies with  the size of the  network.  Let N denote  the  number 
of  network  nodes,  and  let hi represent  the  number  of  hops  on 
the  path  from  the  source  node, i = 1,  to  node  i; in other  words, 
if the  length  of each line is 1, then hi is the  length  of  the  path 
to  node i. Clearly, node i appears  in i’s subtree  and in the  sub- 
trees of all the  nodes along the  path  to  i.Thus, hi is equal to  
the  number of subtrees in which  node i is present, so that 

total  number of all subtree  nodes 

N 

= hi 
i= 2 

and since there are N - 1  subtrees  (the  complete  tree  from  the 

source node is not considered to  be  a  “subtree”),  the average 
subtree size is  given by 

average subtree size 

1 -__ - 2 hi. 
N-1 i=2  

But this expression is identical to  the average hop  length  of all 
paths,  and  thus we have the remarkable  result that in any  tree, 
the average subtree size is equal  to  the average hop  length 
from  the  root  to all nodes.  This  result is significant  because 
the average hop  length generally increases quite slowly as the 
number  of  nodes increases. (For  a  network  with  uniform  con- 
nectivity c > 2 ,  the average hop  length increases  roughly as 

To establish some  estimate  of  the  running  time of the algo- 
rithm, we programmed  a  stand-alone version for  the  ARPANET 
nodes. We randomly assigned each line in the  ARPANET  a 
length  between  1  and 20. We ran the  SPF  algorithm to initialize 
the  data  structure in each  node.  Then we picked 50 lines at 
random  and successively gave each  a  new  random  length. Every 
time we  changed the  length  of  a  line, we  changed it  by  at  least 
15  percent. Also, some lines were brought  down  by being as- 
signed a  length  which  represented  infinity.  Each  time we did 
this, we ran the  SPF  algorithm  with each node as the  source 
node. We obtained  the following  results. 

1) The average time  per node  to run the  incremental  SPF 
algorithm was about 2.2 ms. 

2 )  The average time per subtree  node to run  the  incremental 
SPF  algorithm was about 1 .I ms. 

Since we calculated that  the average subtree size multiplied 
by  the  probability  that  a line is in the  tree is about 2 ,  these 
two results are in agreement.  Note  that these  are average times; 
actual  times varied from  under  1 to  40 ms. 

The figures given above are for  the  shortest  path  calculation 
only. Processing an  update invokes a  routine to  maintain  the 
topology  database (including the  ability to  dynamically add or 
delete lines and nodes), and  a  routine t o  determine which nodes 
can be reached from  the  root  node. These modules increase 
the running time  by  about  a  factor  of  two;  and  the  total  stor- 
age requirement, including  these modules,  the  topology  data- 
base, and  the  measurement  and  updating packages, is about 
2000 16-bit  words. 

We designed and programmed the new routing  procedure 
over a period of  about six months. We than began an extensive 
series of  tests  on  the ARPANET, at  off-peak  hours  but  under 
actual  network  conditions [SI .  Our tests involved a great  deal 
more than simply turning  the new routing  algorithm  on  to see 
whether  it would run.  The  tests were specifically designed to  
stress the  algorithm, by  inducing those  situations which would 
be  most  difficult  for  it  to  handle well. To stress  its  ability to  
react  properly to topological  changes, we induced line and 
node failures  in as  many  different ways as we could  think  of, 
including  multiple simultaneous failures. We also generated 
large amounts of  test traffic in order  to see how the  algorithm 
performs  under heavy load. (In this  respect,  it  should  be  noted 
that  the  periods during  which we were testing  were “off-peak” 

logN/log (c - 1) [3] .) 
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only  with  respect  to  the  amount of ordinary user traffic in the 
network.  The  amount of  test traffic we  generated  far exceeds 
the  amount  of  traffic generated by users, even during  peak 
hours.) We experimented  with  many  different  traffic  patterns, 
in order  to  test  the  algorithm  under a wide variety of heavily 
loaded  conditions. In particular, we tried to  induce those  situa- 
tions which would  be  most likely to result in loops or in wild 
oscillations. We also designed and  implemented a sophisticated 
set of  measurement  and  instrumentation  tools, so that we 
could  evaluate the  routing algorithm’s performance.  Some of 
these tools  enabled us to  monitor  the  utilization of  resources 
used by  the  algorithm.  Others enabled us to  monitor changes 
in delay (as measured by  the  routing algorithm), as well as 
changes in  the  routing trees themselves at particular network 
nodes.  One of  our  most  important tools was the “tagged 
packet.”  A tagged packet is a packet  which,  as  it travels through 
the  network, receives an  imprint  from  each  node  through which 
it travels. When such a packet reaches its  destination,  it  con- 
tains a  list of all the  nodes  it has  traversed, as well as the delay 
it  experienced  at each node. These packets provided  us with a 
very straightforward  indication  of  the  routing algorithm’s 
performance. Of course, since the  network was also in use by 
ordinary users during our  tests, we cannot claim to have per- 
formed  “controlled”  experiments, in the  strict scientific sense. 
However, all our  experiments were repeated  many times  be- 
fore being used to  draw conclusions. Some  of  our main  results 
are as follows. 

1) Utilization of resources (line and processor bandwidth) 
by  the new routing  algorithm is as expected,  and compares 
quite favorably with  the  old  algorithm. Line  overhead is less 
than  one  percent; CPU overhead is less than  two  percent. We 
have measured  these quantities  repeatedly since the new routing 
algorithm  became operational in May 1979,  and we have found 
this result to  hold even during  peak hours  on  the  network. 

2) The new algorithm responds  quickly and  correctly to  
topological  changes; most  nodes  adapt  to  the change within 
100 ms. 

3) The new  algorithm is capable  of detecting congestion, 
and will route  packets  around a  congested  area. 
4) The  new algorithm tends  to  route  traffic  on  minimum 

hop  paths, unless there are  special  circumstances  which make 
other  paths  more  attractive. 

5) The new  algorithm  does not show  evidence of serious 
instability or oscillations due  to  feedback  effects. 

6 )  Routing  loops  occur  only as transients, affecting only 
packets  which are already  in transit  at  the  time when there is 
a routing change. The few packets  that we have observed looping 
have not traversed any  node more than twice.  However, the 
loop can be  many  hops long. Although packets  which loop 
may experience  a  longer  delay than  packets  which  do  not,  there 
is no significant impact  on  the average delay in the  network. 

7) Under heavy load,  the new algorithm will seek out  paths 
where there is excess bandwidth, in order  to  try  to deliver as 
much traffic as possible to  the  destination. 

Of course,  the new routing  algorithm  does not generate 
optimal routing-no  single-path  algorithm  with  statistical 
input  data  could  do  that. It  has performed well, and is suc- 
cessful  in  eliminating many  of  the  problems associated  with 

the  old  routing scheme.  After several months  of  careful  testing 
during which  both old and new routing algorithms were resi- 
dent in the  network  and used for  experiments [ S I ,  we began 
to  operate  the ARPANET with  the new routing scheme in May 
1979,  and removed the old routing program.  Since that  time, 
we have continued  to  monitor  the  performance  of  the algo- 
rithm.  The results obtained during our test periods have con- 
tinued to hold, even during  peak hours,  and  no new or unfore- 
seen problems have yet arisen. 

Is the new routing algorithm really better  than  the  old? We 
are  convinced that  it is for reasons that we  will summarize 
shortly. We would  like  first to  point  out,  though,  that  there is 
no general answer to  the  question, “What makes routing algo- 
rithm A better  than  routing algorithm B?” If one could claim 
that algorithm A performs  better in every possible situation 
than  algorithm B does,  according to  some  well-defined metric 
of  performance,  then  one  would have a  good  reason for  prefer- 
.ring A .  However,’such a claim could never be  supported  for  it 
is untestable. One  might try  to claim that algorithm A per- 
forms  better  than algorithm B in “most”  situations,  but  that 
would not necessarily show that A is a better algorithm than 
B. A’s performance in the  minority  of  situations might be so 
much worse than B’s that B is to  be preferred.  Furthermore,  it 
is difficult  to define  a performance  metric which is equally 
applicable to  every possible situation. For example, in some 
situations  it  may be desirable to minimize delay; in others  to 
maximize throughput. Yet  these two intuitively  desirable  per- 
formance metrics  are  in conflict. In attempting  to decide  which 
of two  routing algorithms is the  better  one,  one  cannot  appeal 
to  any  procedure simple enough to be followed by rote. Rather, 
one  must first look  at particular situations  which are known  to 
give  rise to  performance difficulties. Then  one must  decide 
what  sort  of  performance  one would  like to  see in those  situa- 
tions (a decision often akin to a value judgment).  Only then 
can  one  compare  the  two algorithms to see which gives the 
more  desirable performance. 

Our  purpose in designing and implementing  a  new routing 
algorithm for  the ARPANET was to eliminate certain  prob- 
lems  in the  performance  of  the  old algorithm, while at  the 
same time maintaining the  strengths of the old  algorithm. We 
believe that  one  of  the  strengths  of  the  old algorithm was that 
it was distributed, in the sense that  the  routing  computation 
was performed  by every node. In the ARPANET environment, 
this makes good sense from  the  point  of view of reliability and 
efficiency. The new routing algorithm  retains  this feature  by 
replicating the  SPF  computation  at every node.  There is a 
sense, however, in which the  old  routing  computation was a 
distributed  computation  but  the  SPF  computation is not. In 
the  old  algorithm,  the  inputs  to  the  computation  at  one  node 
were the  outputs  of  the  computation  at  the neighboring nodes. 
In this sense, then,  the  old  routing  computation was a global 
computation,  with each node performing just a piece of it. 
Since the  nodes performed the  computation in an  unsynchro- 
nized manner,  the  output  of  the global computation  at  any 
instant  depended more on  the  history of  events around  the 
network  than  on  the  traffic in the  network  at  that  instant.  The 
SPF  computation,  on  the  other  hand, is a  local computation. 
It  does depend  on measurements  which have been made all 
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around  the  network,  but  the  updating  protocol provides these 
measurements  to all nodes  unchanged and unprocessed; the 
SPF  computation  at  one  node never learns of  the results of 
the  SPF  computation  at  any  other  node. In this way, we have 
kept  the advantages of distributed  routing while dispensing 
with  the disadvantages of having a distributed  computation. 

Another  good  quality  of  the old algorithm was its  attempt 
to  adapt  to changing  delay conditions in the  network. We real- 
ize that  there  may be certain applications,  where network  traf- 
fic can  be accurately  predicted  and  the  network can be sized 
to handle  exactly  that  traffic load and  pattern, in which it 
may  not be important  for  the  routing  to be adaptive.  In  the 
ARPANET,  however, nodes  and  trunks are frequently  added 
or removed.  These  changes  are  primarily made  for  administra- 
tive or  economic reasons, rather  than  for  the purpose of opti- 
mizing traffic flows. The traffic  in the ARPANET is quite un- 
predictable, being largely determined  by  the behavior of a  com- 
munity  of researchers. Furthermore,  although  there are  sites 
on  the ARPANET separated  by as many as 11 hops,  about 
one-third of the messages in the  network travel no  more  than 
one  hop;  about half travel no more  than  three  hops. This leads 
to  situations in which  the  load in the  network is very nonuni- 
form,  and these  are the  situations in which adaptive routing is 
likely to be of great utility.  For reasons such as these,  adaptive 
routing seems no less important to us now than  it did to  the 
original designers of  the ARPANET many years  ago. There 
were,  however, several problems in the way the old  algorithm 
responded to changes  in network  delay. Most of the  problems 
stemmed  from deficiencies  in the delay measurement  procedure 
of the  old algorithm (see Section 11). Because of these  defi- 
ciencies, the  old algorithm was often incapable of  detecting 
congestion,  and would sometimes send traffic  directly  into a 
congested area,  thereby causing the congestion to spread.  Our 
tests [5] show  that we have eliminated  this problem,  and have 
done so without  introducing  any countervailing problems, 
such as instability  or wild oscillation of  the  routing  patterns. 
In  its  ability  to adjust to changes  in delay,  the new algorithm 
appears to dominate  the old completely. 

An important deficiency of  the old  algorithm was its slow 
response to topological  changes. The old algorithm  would  take 
many seconds to respond properly to a node or line  failure. 
During this  period,  many  nodes could  be directing traffic to- 
wards a failed node. Having to buffer  such traffic for seconds 
at a time was a  significant  cause of congestion  in the  network. 
With the new algorithm, however, the time for all nodes to re- 
spond to topological changes is on  the  order  of 100 ms. Since 
the new algorithm was installed, we have not observed any 
congestion arising due  to slow response to  line or  node failures. 

The  updates  of  the old routing algorithms  were over 1200 
bits  long.  There were often as many as seven such  updates per 
second on each line. The new routing  updates average 176 bits. 
Even during  peak periods, it is rare to see more  than  two  up- 
dates per second per line. One of the  problems  with  the old 
algorithm was the increase in  the delay of  ordinary  data  packets 
due to the presence of the  long,  frequently  sent  routing  up- 
dates. Clearly, the new routing  updates  interfere  much less 
with  ordinary  network  traffic  than did the  old. 

The old routing  algorithm  took a  fixed amount of time (15- 
20 ms) to  process an update.  The new algorithm, as we have 

pointed out,  takes a variable amount  of  time, with the  amount 
of time proportional to  the size of  the routing change neces- 
sitated by  the  update. This results  in  a  much  more efficient 
use of the CPU. 

One of the major  problems of the old algorithm was that  it 
was prone to  form  loops which  might persist for several seconds 
at a time. A given packet might be trapped in such a loop  for a 
significant amount  of  time.  Often a large number  of packets 
would get “sucked in” to  such  loops, causing congestion which 
began at  the  locus of the  loop  and  then spread throughout  the 
network. While the new algorithm cannot be said to be loop- 
free,  the  loops  that  it  forms  occur  only as transients while the 
network is adapting to a routing change.  The loops  which  do 
form  do  not persist;  a packet will sometimes loop  once,  but 
we have never seen packets traveling around  and  around in  a 
loop, as would sometimes  happen  with  the old algorithm. The 
small amount  of looping  which has been observed has never 
led to  congestion,  or even to a  significant  increase  in average 
network  delay. We conclude,  therefore,  that looping is not a 
problem  with  the new algorithm, as it was with  the  old. 

Someone might object  that  any algorithm that  permits  loops 
is seriously deficient;  this  point is worth  commenting  on briefly. 
It is certainly  true  that,  other things  being equal,  it is better 
not  to have looping than to have it. But other things  are never 
equal-we know  of  no pair of  routing algorithms that  perform 
exactly  alike,  except  that  one  permits looping and  the  other 
does not. An algorithm which does not  permit  looping  does 
not necessarily result in lower delay, less variable delay, higher 
throughput  or less congestion than  an algorithm which  does. 
We simply do  not believe that a small amount  of  transient 
looping should be regarded as a  problem. 

Are there  any ways in which  the old algorithm is better 
than  the new one?  The new algorithm does  take  about  three 
times the memory as the old one,  but conservation of memory 
is not generally  considered to be an important  desideratum  for 
routing algorithms. From  the  point  of view of performance, 
the new  algorithm seems to  dominate  the old one in every re- 
spect. This is not  to say that  our  approach is appropriate  for 
every possible application, or even that  it is the  only possible 
approach  for our application. We do believe, though,  that we 
have met  our goal of designing a new routing algorithm which 
kept  the  known  strengths  of  the old one while eliminating 
many of its  known weaknesses. 

APPENDIX 

This Appendix gives a  semiformal  description of  the algo- 
rithm  to calculate  and update  the  shortest  path  tree. SOURCE 

denotes  the  node in which the algorithm is running.  The 
algorithm’s basic data  structure, LIST, is a variable-length list 
whose elements are ordered triples. An ordered triple T is of 
the  form  (SON,  FATHER, DISTANCE) where SON and FATHER 

are nodes  and DISTANCE is a member. (We use the  notation 
SON (0 in the obvious way to mean the first element  of  the 
triple T.) Each triple  represents  a  particular path  from SOURCE 
to SON. The  penultimate  hop on this path is FATHER,  and  the 
total length of this path is DISTANCE. The algorithm we de- 
scribe  here  has  been  modified so that changes to  the tree can 
be computed  incrementally,  without having to  recalculate those 
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parts of the  tree  that  do  not change.  Hence, it does not  cor- 
respond  exactly to  the flow chart in Fig. 1. 

SPF Algorithm 

0) If no  tree  exists, place (SOURCE, SOURCE, 0) on  LIST, 
and go to  Step 4). 

1) If the change was to line AB, then perform one  of  the 
following steps. 

a) If AB is in the  tree,  set DELTA equal to  the change in 
distance  along AB. 

b) If AB is not in the  tree,  set DELTA equal to  the dis- 
tance to  node A plus the  distance along AB minus the distance 
to  B;  if DELTA is greater than  or equal to 0, done. 

2) Identify B and all of B’s descendants  (both first  genera- 
tion  and succeeding  generations) as members of  the  subtree; 
increase the distances of all subtree members by DELTA. 

3) For each subtree  node S ,  perform one of  the following 
steps. 

a) If DELTA is positive, try  to  find  a  shorter  path  to S via 
each  of S’s neighbors that i s  not in the  subtree; if such  an im- 
proved path is found,  put  the triple  representing S on LIST. 

b) If DELTA is negative, try to find a  shorter  path to each 
of S’s nonsubtree neighbors by  attempting  to  route  each neigh- 
bor via S;  if such an  improved path is found,  put  the triple for 
the neighbor node  on LIST. 

4) Search LIST for  the triple T with  the smallest DISTANCE. 
Remove T from  LIST; place SON (T)  on  the  shortest  path  tree 
so that  its  father  on  the  tree is FATHER (T ). (Exception: if 
SON (T) = SOURCE, place it in the tree as its  root.) 

5 )  For each  neighbor N of SON (0, do one of the following 
steps. 

a) If N is already  in the  shortest  path  tree,  then 
i) if  its distance from SOURCE  along the  tree is less 

than  or  equal t o  DISTANCE (7‘) + LINE-LENGTH (SON (T),N), 
do  nothing; 

ii) if  its  distance  from SOURCE along the  tree is greater 
than DISTANCE (T) + LINE- LENGTH (SON (T),N), removeN 
from  the  tree and place W, SON (0, DISTANCE (0 + LINE- 

LENGTH (SON (0, N ) )  on LIST. 

b) If there is no triple on LIST such  that SON (i“) = N ,  
then place the triple W, SON (0, DISTANCE (T), + LINE- 
LENGTH (SON (T),N))  on LIST. 

c) If there is already a triple i“ on LIST such  that SON 

(i“) = N ,  and if DISTANCE  (T‘)<DISTANCE (T )  + LINE- 

LENGTH (SON (N), do  nothing. 
d) If there is already a triple 3“ on LIST such  that SON 

(2‘)  = N ,  and if DISTANCE (T’) > DISTANCE (T) + LINE- 
LENGTH (SON (T‘) N), then 

i) remove i“ from LIST; 

ii) place the triple VV, SON (T), DISTANCE ( r )  + 

6) If LIST is nonempty, go to  step 4). Otherwise, the algo- 
LINE- LENGTH (SON (0, N ) )  O N  LIST. 

rithm is finished. 
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