
Red Hat Certified
Engineer (RHCE)
Study Guide

Ansible Automation for the Red Hat
Enterprise Linux 8 Exam (EX294)
—
Andrew Mallett

Red Hat Certified
Engineer (RHCE)

Study Guide
Ansible Automation for the
Red Hat Enterprise Linux 8

Exam (EX294)

Andrew Mallett

Red Hat Certified Engineer (RHCE) Study Guide

ISBN-13 (pbk): 978-1-4842-6860-5    	 ISBN-13 (electronic): 978-1-4842-6861-2
https://doi.org/10.1007/978-1-4842-6861-2

Copyright © 2021 by Andrew Mallett

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Divya Modi
Development Editor: Laura Berendson
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER,
fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.
Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-6860-5. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Andrew Mallett
Peterborough, UK

https://doi.org/10.1007/978-1-4842-6861-2

To Joan, my always present wife and friend.

v

Table of Contents

Chapter 1: �Understanding Ansible and the Red Hat RHCE���������������������1

Red Hat and Ansible���2

Red Hat Certifications��3

RHCSA��3

RHCE���4

Lab Systems��4

Installing Ansible on CentOS 8��5

Installing Ansible on Ubuntu 18.04���7

Summary���8

Chapter 2: �Working with the Ansible Configuration����������������������������11

Ansible Configuration Hierarchy���12

Printing the Ansible Configuration��18

Creating a Basic Ansible Configuration File��23

Summary���26

Chapter 3: �Creating an Ansible Inventory��29

Creating an Inventory���30

Query Inventory Entries���32

Listing Inventory Hosts Using Ansible��33

About the Author��xi

About the Technical Reviewer��xiii

Introduction���xv

vi

Listing Hosts Using Ansible-Inventory���35

Adding Host and Group Entries���38

Discovering Hosts on Your Network���39

Inventory Variables���42

Summary���45

Chapter 4: �Using Ad Hoc Commands and Ansible Preparation������������47

Testing Ansible���48

Implementing Ansible Inventory Groups��53

Preparing the User Account for Ansible��55

Creating the User��55

Allowing Passwordless Sudo Access���56

SSH-Key Authentication���57

Configuring the Final Changes���58

Gaining Help on Modules���59

Summary���60

Chapter 5: �Writing YAML and Basic Playbooks������������������������������������63

Writing Simple YAML Playbooks���64

Elements of a Playbook��64

Our First Playbook��65

Extending the Playbook Using Facts��69

Installing Multiple Packages���71

Improving Text Editors��72

Going All GUI���75

Summary���76

Table of Contents

vii

Chapter 6: �Managing Users with Ansible Playbooks���������������������������79

Playbook to Manage Users��80

User Module Help���80

Creating a Consistent User Account���81

Using an Ansible Loop Control��83

Deleting Users��85

Using Variables and Logic with Playbooks���86

Managing User Passwords��87

Password Elements��87

Authenticating Users��89

Generating Passwords in Playbooks��90

Using a Playbook to Create Managed Host Setup��92

Summary���100

Chapter 7: �Working with Variables and Facts�����������������������������������101

Gathering Facts��101

Printing OS Information��102

Upgrading Systems��103

Installing Apache��108

Summary���111

Chapter 8: �Working with Files and Templates�����������������������������������113

The Copy Module���113

Using SRC���114

Content Is King���115

Differing Fold Operators���116

Editing Files in Place��117

Table of Contents

viii

Using Templates���120

Summary���121

Chapter 9: �Managing Services Using Ansible������������������������������������123

The Service Module���124

The Systemd Module���124

Using Ansible Handlers��126

Ensure SSHD Started and Enabled���128

Edit SSHD Config��128

The Handler: restart_sshd��128

Handlers Do Not Run when They Are Not Notified��129

Service Facts���129

Summary���132

Chapter 10: �Securing Sensitive Data with Ansible Vault�������������������135

Creating an External Variables File��136

Encrypt Existing YAML File���138

Creating New Encrypted Files��139

Read Vault Password���141

Summary���142

Chapter 11: �Implementing a Full Apache Deployment����������������������143

Deploying Apache��143

Apache Playbook��145

Dedicated Server Page���146

All About Firewalls��147

The Apache Configuration File��150

Configure Filesystem Security���152

Full Apache Playbook���155

Summary���158

Table of Contents

ix

Chapter 12: �Simplifying Playbooks Using Roles��������������������������������161

Understanding Roles��161

Creating Firewall Role��163

Populating the Firewall Role���164

Updating the Apache Playbook���166

Configure Role for Web Content���167

Creating the Apache Role���170

Execution Order��173

Summary���173

Chapter 13: �Downloading Roles��175

Roles and Collections���175

Searching Roles From the CLI��176

Installing the PHP Role���177

Investigating PHP Role and Learning Better Coding�������������������������������������177

Installing PHP���181

Adding Extra PHP Modules���183

Code Blocks and Extra Configuration for Ubuntu���185

Install the Database Role���187

Create Variable File���187

Installing the MySQL Role and Implementing a Database Server����������������188

Opening MySQL Firewall Port���190

Summary���192

Chapter 14: �Configuring Storage with Ansible����������������������������������195

Block Devices���196

Creating Loopback Devices��196

Partitioning Disks and Mounting Filesystems��198

Managing Logical Volumes��201

Table of Contents

x

Managing VDO with Ansible���203

Updating a Managed Host��203

Updating the Controller��206

Deploying VDO��207

Archiving Files��210

Maintenance of Filesystems��211

Summary���215

Chapter 15: �Managing Scheduled Tasks with Ansible�����������������������217

Ad Hoc Linux Jobs with ATD���217

Creating the Ansible Role to Manage ATD��218

Playbook to Create Jobs in At���218

Creating Regular Jobs with Cron���220

Summary���221

�Index��223

Table of Contents

xi

About the Author

Andrew Mallett is a well-known Linux

consultant and trainer; his YouTube Channel

has over 65K subscribers and more than 1,000

videos. Working mainly online now, he has

authored courses on both Pluralsight and

Udemy, and regularly teaches classes online to

a worldwide audience. Andrew is familiar with

Linux and UNIX and has worked with them for

over 20 years. Scripting and automation are

one of his passions, as he is inherently lazy and will always seek the most

effective way of getting the job done. The Urban Penguin, his alter ego, is a

UK-based company where he creates his work and currently employs five

people.  

xiii

About the Technical Reviewer

Himanshu Tank, Currently works as a

Technical Consultant and serving Airtel as

a Cloud Engineer. He is a Red Hat Certified

Architect in Infrastructures (RHCA), and a Red

Hat Certified Engineer (RHCE). He applies his

knowledge in the fields of DevOps, Cloud, and

on core products by Red Hat such as Ansible,

OpenShift, OpenStack, CEPH Storage, Linux

Troubleshooting and Diagnostics, and Server

Security and Hardening.  

xv

Introduction

For many years the RHCE from Red Hat has been based on managing

services on a single Red Hat host. The big question is: how many RHCEs

manage just a single host? With that in mind, Red Hat has updated the

exam and training to support Ansible, allowing you to learn to manage

many hosts.

Ansible is a configuration management system that is now owned by

Red Hat Inc. Using Ansible, you can manage many systems as easily as you

can manage a single system. Using this book, Red Hat Certified Engineer

(RHCE) Study Guide: Ansible Automation for the Red Hat Enterprise Linux

8 Exam (EX294), you will be able to start without previous knowledge of

Ansible. We take you from zero knowledge to be being exam ready with

the 15 well-written chapters, each with practical examples that you can

implement in your own environment.

We emphasize the need for practical examples, allowing you to really

learn Ansible and learn it well. Although the exam will focus solely on

Red Hat Enterprise Linux 8, we use both CentOS 8 and Ubuntu 18.04,

permitting you to see some really cool features of Ansible that allow easy

integration with multiple Linux distributions. I really do believe that this

book offers better Ansible training than a course or training based on a

single Linux distribution.

By the end of this book you will be ready for the exam, because you

have been able to invest time in practicing the examples shown throughout

the book. This will include installing Ansible on both CentOS and Ubuntu,

and configuring the host inventory and Ansible configuration. You will

begin your familiarity of Ansible by using ad hoc commands directly from

the command line. Using ad hoc commands, you do not need to create

xvi

Playbooks and you can get straight into configuring our remote managed

devices. These commands introduce Ansible modules, and you will learn

how to use examples straight from the documentation.

You will soon learn that ad hoc commands are an awesome quick start,

but we need Playbooks to create repeatably correct configurations that are

documented. Yes, the configuration files also act as your documentation

showing how the hosts should be configured. You will learn to write YAML,

the language used in Playbooks, as well as learning to configure your text

editor to be an effective YAML editor.

Your main project that you work with during the book allows you to

deploy an Apache-based LAMP server on both CentOS and Ubuntu. You

will deploy web content that includes static web pages as well as PHP

pages to see your stack in action. In deploying LAMP with Ansible, you will

learn to use roles, tasks, handlers, variables, and conditional statements—

all of which are required in the exam and in your workplace.

As an experienced Ansible administrator and trainer, I am able to

help you prepare for the exam and share some of my knowledge, and I am

honored to be on this journey with you.

Introduction

1© Andrew Mallett 2021
A. Mallett, Red Hat Certified Engineer (RHCE) Study Guide,
https://doi.org/10.1007/978-1-4842-6861-2_1

CHAPTER 1

Understanding
Ansible and the Red
Hat RHCE
Red Hat has always led the way with their enterprise Linux solutions and the

certification programs that followed. For Linux administrators the pinnacle

of certification has always been the RHCE, the Red Hat Certified Engineer.

With the purchase of Ansible by Red Hat, they again lead the way by

making configuration management the focus of your administrative efforts

and the new RHCE. Enterprises have to make money and become more

efficient; by using configuration management systems such as Ansible, one

administrator can now do the same job as ten administrators. It is important

that you become that one in ten, and you learn and certify in Ansible.

Note  The word “ansible” was first used by the author Ursula K. Le
Guin in her 1966 novel Rocannon’s World. As a contraction of the
word “answerable,” it references fictional devices that can send
messages over interstellar distances to managed systems. Ansible
from Red Hat may not work over interstellar distances, but it certainly
does manage devices usually located on planet Earth.

https://doi.org/10.1007/978-1-4842-6861-2_1#DOI

2

In this first chapter, I start you on your RHCE journey with Ansible

and introduce you to the Red Hat certifications and to the Ansible product.

It would be both amazing and an honor for me if you want to follow along

with your own lab systems, allowing you to gain that all important practice.

Understanding that need, I will explain the systems that I use throughout

the book and what you will need as a minimum to complete your own

practices. You certainly can use this book as a study guide but also, and

more importantly, you can use this book to learn Ansible. The information

that I give you here is geared for real life as well as for the exam. The exam

will, understandably, focus solely on Red Hat Enterprise Linux for your

managed devices. Making use of other Linux distributions, I use Ubuntu

systems as well, allowing you to harness the real power of Ansible even if

we don’t reach interstellar distances.

�Red Hat and Ansible
The Red Hat corporation, based in Raleigh NC, purchased Ansible in 2015.

Originally written by Michael DeHaan, Ansible is an agentless configuration

management system that can be used to manage Linux, Unix, Microsoft

Windows, and managed network systems. Managing your estate from

the Ansible controller, the system with Ansible installed, means that you

can manage more systems and more easily. Ansible both documents

and enforces the configuration and is perfect to ensure that you meet

both enterprise and compliance requirements. In a world of uncertainty,

having the agility to quickly deploy systems in the dictated configuration

reliably every time is an absolute gift. Ansible is free and open source;

there is no cost in deploying Ansible to manage your systems and assist in

your efficiency.

Chapter 1 Understanding Ansible and the Red Hat RHCE

3

Other configuration management systems based in Linux include:

•	 Puppet from PuppetLabs

•	 Chef from chef.io

•	 Salt from SaltStack

�Red Hat Certifications
As I mentioned earlier, Red Hat is at the forefront in Linux certifications,

having the most desirable credibility and recognition. Taking the exam will

test your knowledge in a practical way, providing you with live systems to

configure into the desired state. Certification begins with the RHCSA; with

that taken and passed you can then sit the RHCE.

�RHCSA
The start of your Red Hat certification journey is the Red Hat Certified

System Administrator, commonly known as the RHCSA. Testing you in your

Linux administration skills, currently in Red Hat Enterprise Linux 8, you can

prove to yourself and the world that you are among the best. You will need to

demonstrate management of the file system, users, permissions, networking,

and others. You can gain these skills through nine days of classroom training

based on a five-day course, RH124, followed by a four-day course, RH134.

With this learning under your belt, you will be accomplished and most

deserved in proving your skills with the exam.

Chapter 1 Understanding Ansible and the Red Hat RHCE

4

�RHCE
The latest version of the Red Hat Certified Engineer, launched in 2019, sees

potential candidates, having already certified as an RHCSA, pitting their

skills in a contest with Ansible and Red Hat Enterprise Linux 8. They do so

by configuring the target systems in the desired state laid out by the exam

developers. Your task is made simpler, as you will have gained the requisite

skills from this book or the classroom training of four days with the RH294

course. Using Ansible, you can quickly configure managed devices into the

desired state, usually from YAML files known as Playbooks or, occasionally,

ad hoc commands executed at the command line of the Ansible controller.

�Lab Systems
Throughout this book we will use CentOS 8, a free rebuild of Red Hat

Enterprise Linux. In the exam you will be expected to use Red Hat, but

CentOS and Red Hat are directly comparable. As well as this Red Hat-based

distribution, we will use a Debian-based distribution, Ubuntu 18.04. This

allows you to learn more about Ansible and how we can easily integrate

multiple distributions into our Ansible management. Ansible and most

configuration management systems are agnostic of the underlying OS.

We ask for the configuration to be made without any care on how that is

achieved. Making use of system variables, or facts, we can determine the OS

from the os_family fact and modify any action to meet the needs of the target

OS, such as differing package or service names. Your learning of Ansible will

be enhanced if you can use multiple distributions, but if you are limited in

the system available to you, you must have at least one CentOS 8 system.

Note  We use two CentOS 8 systems and one Ubuntu 18.04 system.

Chapter 1 Understanding Ansible and the Red Hat RHCE

5

These systems can take any form; you just need to have full administrative

access to them. These can be physical systems, virtual systems that you host,

or hosted within the cloud. As this book will be developed over a few months,

I will use internal virtual machines hosted in VMware Fusion in MacOS rather

than the cloud. Using cloud-based systems can be a great idea if you can get

your studies complete in a few weeks. The reality is, the virtualization engine

used in not relevant to Ansible. You will need to use CentOS 8 as your Ansible

controller; it’s the only system needing software added to it, as Ansible does

not require agents on the managed devices. Each device that you will manage

from the controller will need to be accessible to the controller over the network

on TCP port 22, SSH. Ideally, your lab environment would have the managed

devices hosted on the same network, but this is not a requirement.

On each of my lab systems I will always create an account named tux;

this account should be added to the administrator`s group in the distribution.

This is the wheel group in CentOS and the sudo group in Ubuntu.

�Installing Ansible on CentOS 8
You will be expected to work with Red Hat Enterprise Linux 8 in the exam;

here we use the rebuild of this (i.e., CentOS 8). We only need to install Ansible

on this one system, CentOS 8. The Ubuntu systems do not need additional

software installed. This system becomes our Ansible controller and could

quite feasibly be your Linux workstation in the enterprise. We will use a

CentOS 8 server without a GUI installed. If you are starting a clean install for

the labs, a minimal installation of the CentOS 8 server with 1GB RAM and a

20GB disk is sufficient for most of the course.

First, install the EPEL, Extra Products for Enterprise Linux, repository

on the CentOS 8 system that we will use as the Ansible controller. It is on

this system that we install Ansible, and it’s the only system that needs any

Ansible software explicitly installed.

Chapter 1 Understanding Ansible and the Red Hat RHCE

6

Listing 1-1.  Adding the EPEL Repository on the CentOS 8 Controller

System

$ sudo yum install -y epel-release

$ sudo yum update -y epel-release

Installing and then updating will ensure that we have the very latest

version of the EPEL repository. A newer version often will exist in the

repository itself. For CentOS, it is this repository from where we can

install Ansible. If using Red Hat, the repository must be enabled via

the subscription manager. This is not anything that you are likely to

be involved with in the exam. I am sure having to deal with candidate

subscriptions is not something Red Hat would want to become involved

with just for the exam.

Next we can install Ansible. It is not a difficult task; let me show you.

Listing 1-2.  Install Ansible on CentOS

$ yum install -y ansible

With Ansible installed, we can take a moment to check the version that

we installed.

Listing 1-3.  Printing the Version of Ansible

$ ansible --version

ansible 2.9.15

 config file = /etc/ansible/ansible.cfg

 �configured module search path = ['/home/tux/.ansible/plugins/

modules', '/usr/share/ansible/plugins/modules']

 �ansible python module location = /usr/lib/python3.6/site-

packages/ansible

 executable location = /usr/bin/ansible

 �python version = 3.6.8 (default, Apr 16 2020, 01:36:27)

[GCC 8.3.1 20191121 (Red Hat 8.3.1-5)]

Chapter 1 Understanding Ansible and the Red Hat RHCE

7

Reviewing the output, we can see that the EPEL repository has the

2.9.15 version. In the exam you will most likely be using 2.8.x, but there

should be little differences.

�Installing Ansible on Ubuntu 18.04
It is important, or at least I feel that it is important, that we also learn how

to install Ansible on another distribution. Even though Ubuntu will not

be used in the exam, in the real world you may want to use Ansible on a

distribution other than Red Hat-based. I will step you through the process

of installing Ansible on Ubuntu 18.04, but we will only be using the CentOS

8 system as the controller during the course. The Ubuntu system will

remain as a managed node for the rest of the course and will not install the

Ansible package over these nodes.

Firstly, Ansible is within the standard Ubuntu repositories; however,

it is an older version and shows as version 2.5. Although this is OK, it is not

really desirable. We can add the software repository directly from Ansible

to install something much later. In Debian-based systems, these additional

repositories are PPAs or Personal Package Archives.

Listing 1-4.  Adding the PPA to Ubuntu

$ sudo apt update

$ sudo apt install software-properties-common

$ sudo apt-add-repository --yes --update ppa:ansible/ansible

Listing 1-5.  Install Ansible Where We Add sshpass Also

$ sudo apt install ansible sshpass

You can also copy this information for the Ansible documentation as

well: https://docs.ansible.com/ansible/latest/installation_guide/

intro_installation.html#installing-ansible-on-ubuntu.

Chapter 1 Understanding Ansible and the Red Hat RHCE

https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-ansible-on-ubuntu
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-ansible-on-ubuntu

8

This will install the latest version from Ansible themselves. Checking
the version, we see it is currently the same version in EPEL.

Listing 1-6.  Checking the Version Install on Ubuntu

$ ansible --version
ansible 2.9.15
 config file = /etc/ansible/ansible.cfg
 �configured module search path = [u'/home/tux/.ansible/
plugins/modules', u'/usr/share/ansible/plugins/modules']

 �ansible python module location = /usr/lib/python2.7/dist-
packages/ansible

 executable location = /usr/bin/ansible
 �python version = 2.7.17 (default, Sep 30 2020, 13:38:04)
[GCC 7.5.0]

Remember, we will use the CentOS 8 system as the controller; this
Ubuntu host and the other CentOS 8 system will be managed devices.
I remind you at this stage that, if you are short on access to systems, it
is possible to run most tasks with just the controller. The overall effect,
though, is more impressive if we can configure multiple systems with
single command. If you can run two or three systems, then it is better.

�Summary
Do you know what? You are amazing. You now know what Ansible is and

you understand your path to becoming an RHCE, a certified administrative

god! Most importantly, you know that you are going to get there by lots of

practice. I am guessing that you are so enthusiastic that you are already

building your three labs systems. Yes, that is right: two CentOS 8 systems

and one Ubuntu 18.04 system. None of the systems need a GUI desktop,

Chapter 1 Understanding Ansible and the Red Hat RHCE

9

which also means resources can be quite minimal on each system. To be

honest, 1GB RAM and a 20GB disk is more than enough for each system

when only running in console mode. For one chapter we will need 2GB

RAM on the controller.

You should have Ansible installed now on a CentOS 8 system. This

will act as your Ansible controller. Ansible is an agentless configuration

management system, giving the advantage of not having to add supporting

software or clients to your managed devices. You also learned that you can

install Ansible on other systems if you don’t have CentOS 8. The behavior

of Ansible is the same, no matter which system is the controller. In the

exam, you should be familiar with using CentOS 8 or RHEL 8.

Chapter 1 Understanding Ansible and the Red Hat RHCE

11© Andrew Mallett 2021
A. Mallett, Red Hat Certified Engineer (RHCE) Study Guide,
https://doi.org/10.1007/978-1-4842-6861-2_2

CHAPTER 2

Working with the
Ansible Configuration
The configuration file for Ansible controls how the system configuration

utility, Ansible, will operate on the managed devices. This may include the

way in which rights are escalated and the user account to use in making

the connection to the managed device. Do these need to be the same on

every project that you work with? Should individual administrators or

developers have control over their own configuration? These are good

questions, and questions we will try to answer here. Let’s look at both the

contents of the configuration, what can go into an Ansible configuration

file, and the hierarchy of configurations that can be made and their search

order.

Note  The effective configuration for Ansible can be determined
from the command ansible --version. Run this command
from the directory in which you would execute the other Ansible
commands for your project.

https://doi.org/10.1007/978-1-4842-6861-2_2#DOI

12

�Ansible Configuration Hierarchy
The full path to the default Ansible configuration file installed along with

Ansible is: /etc/ansible/ansible.cfg. Ansible needs only to be installed on

the Ansible controller host system, our main CentOS 8 box. By reading the

full output of the version option, we can see the Ansible configuration that

is effective based on the current working directory and shell variables.

Listing 2-1.  Listing the Current and Default Location for the Ansible

Configuration

$ pwd

/home/tux

$ ansible --version

ansible 2.9.15

 config file = /etc/ansible/ansible.cfg

 �configured module search path = ['/home/tux/.ansible/plugins/

modules', '/usr/share/ansible/plugins/modules']

 �ansible python module location = /usr/lib/python3.6/site-

packages/ansible

 executable location = /usr/bin/ansible

 �python version = 3.6.8 (default, Apr 16 2020, 01:36:27)

[GCC 8.3.1 20191121 (Red Hat 8.3.1-5)]

Directly after the Ansible version number, we see the config path

directive. This is shown as /etc/ansible/ansible.cfg. As mentioned before,

this is the default location for the file. It is also the fallback location and

the very bottom layer of the configuration hierarchy. Having a central

location in the /etc structure would make for a very prescriptive Ansible

configuration. Needing to have administrative rights to the controller to

modify files within /etc, you would not expect everyone to edit this file. If no

other file could be used, then these settings would be the same for each

Ansible project on the controller. Now, I can’t argue with that because

Chapter 2 Working with the Ansible Configuration

13

I don’t know the Ansible project or projects that you are working with;

however, often more flexibility will be required and often a configuration

for each project is more preferable to centralized configuration.

Devolution of power is king where Ansible is concerned.

The effective Ansible configuration is applied on the first found – first

applied basis. It is important to note that only one configuration can be

active and applied and that these configurations are NOT cumulative.

The search order is shown in the following bulleted list, with the search

from the top of the list to the bottom. The least effective configuration is

the /etc/ansible/ansible.cfg at the bottom of the list.

•	 ANSIBLE_CONFIG: If the environment variable,

ANSIBLE_CONFIG, is set, then this configuration is

used. Default options are used for any configuration

option not set. This default behavior is common with

all configurations.

•	 ansible.cfg: If there is an ansible.cfg file in the current

working directory (CWD), AND the ANSIBLE_CONFIG

environment variable has not been set, then it is this

file that is used.

•	 ~/.ansible.cfg: If no previously listed configuration is

detected, Ansible will check the current user’s home

directory for a hidden file called .ansible.cfg. If the

file exists, then it becomes the third choice within the

hierarchy. This is a great option for a user to create,

acting as a default for all user projects except those

needing a little tweaking. Those needing tweaks can

have a configuration file added to the project directory;

alternatively, as you will learn, variables can be set to

overwrite certain options as can settings within Ansible

Playbooks. So, there are lots of options to tweak the

configuration as needed.

Chapter 2 Working with the Ansible Configuration

14

•	 /etc/ansible/ansible.cfg: The default file where no

other configuration is in place or detected. The file

itself only contains comments, meaning that there are

no effective settings from the file. Don’t despair though;

this will result in the default settings being applied for

all settings. The file itself is not wasted, acting as great

documentation for the configuration files that you may

want to implement.

As a simple demonstration of how we can build up the hierarchy, we

can add files to their locations starting from the base of the configuration

tree and moving up. Obviously, the base of the tree is in place, as we have

already seen with the initial ansible --version output. The default

ansible.cfg is installed along with Ansible.

With only this default file present, you can be certain that it will be

used. Using the awesome command grep, we can filter the results to see

only the line that we are interested in.

Listing 2-2.  Listing the Default Configuration Location

$ ansible --version | grep 'config file'

 config file = /etc/ansible/ansible.cfg

When there is the hidden Ansible file in the user’s home directory, it will

be the effective file if no other files exist in the later hierarchy. By adding the

$HOME/.ansible.cfg file, we can see how we start to ascend the hierarchy.

Listing 2-3.  Adding a Configuration to the Home Directory

$ touch ~/.ansible.cfg

$ ansible --version | grep 'config file'

 config file = /home/tux/.ansible.cfg

Chapter 2 Working with the Ansible Configuration

15

Moving to level 3 of the hierarchy by adding an ansible.cfg file to the

current working directory, we can see it take over the effective settings. The

ansible.cfg in the CWD is the effective configuration for Ansible commands

in the absence of the ANSIBLE_CONFIG environment variable. In the

following code listing you will see that a new directory is created inside our

home directory. We move into the newly created directory and create the

new empty ansible.cfg file. While this directory is our working directory for

any Ansible command, it is this file that is used for the configuration in the

absence of the variable.

Listing 2-4.  Adding a Configuration to the Current Directory

$ mkdir $HOME/ansible

$ cd $HOME/ansible

$ touch ansible.cfg

$ ansible --version | grep 'config file'

 config file = /home/tux/ansible/ansible.cfg

Important I t is very important for Ansible security that a
configuration file is never loaded from a world-writable directory. If a
directory is world writable, (where others have the write permission),
it is possible that a rogue ansible.cfg file is added to your working
directory by another user either deliberately or by mistake.

To demonstrate the security issue that we could face, we will now

change the permissions on the $HOME/ansible directory that we just

created, adding in world-writable permissions. Once we have proved that

the theory is true, we revert the permissions on the directory, enabling

Ansible to read the configuration from the directory.

Chapter 2 Working with the Ansible Configuration

16

Listing 2-5.  Test Ansible Security

$ cd $HOME/ansible

$ chmod -v 777 $HOME/ansible.

mode of '/home/tux/ansible' changed from 0775 (rwxrwxr-x) to

0777 (rwxrwxrwx)

$ ansible --version | grep 'config file'

[WARNING]: Ansible is being run in a world writable directory

(/home/tux/ansible), ignoring it as an ansible.cfg source.

For more

information see https://docs.ansible.com/ansible/devel/

reference_appendices/config.html#cfg-in-world-writable-dir

 config file = /home/tux/.ansible.cfg

$ chmod -v 775 $HOME/ansible

mode of '/home/tux/ansible' changed from 0777 (rwxrwxrwx) to

0775 (rwxrwxr-x)

$ ansible --version | grep 'config file'

 config file = /home/tux/ansible/ansible.cfg

At the very top of the configuration hierarchy, we have the environment

variable, ANSIBLE_CONFIG. This is the big boss of the configuration world

and what she says matters; she talks and Ansible listens!

This variable could be set within a login script for a user or dynamically

configured at the command line. If it is set within the login script by an

administrator, it is worth making the variable read-only, thus eliminating

any chance of the variable being changed by the user. For example, if we

want to force the configuration to the ansible.cfg file in the user’s home, we

can implement the variable.

Chapter 2 Working with the Ansible Configuration

17

Listing 2-6.  Using the Variable to Set the Configuration Location

and Viewing Read-Only Variables

$ touch $HOME/ansible.cfg

$ declare -xr ANSIBLE_CONFIG=$HOME/ansible.cfg

$ ansible --version | grep 'config file'

 config file = /home/tux/ansible.cfg

$ declare -xr ANSIBLE_CONFIG=$HOME/my.cfg

-bash: declare: ANSIBLE_CONFIG: readonly variable

$ unset ANSIBLE_CONFIG

-bash: unset: ANSIBLE_CONFIG: cannot unset: readonly variable

Note  The option -x to declare sets an environment variable,
(available to all commands) and the option -r sets the variable to be
read-only. As read-only, the variable cannot be unset or changed.
Now, I know you will be used to the export command; we could
use export to make a variable available to the environment and the
readonly command to make the variable read-only. However, using
the declare command affords us the ability to set both options in
the one command execution.

We can see from the examples that as we traverse up the hierarchy,

we use new configurations and ignore those previously used, such as the

default ansible.cfg. We can also see that, as administrators, we can enforce

the use of the variable’s location by understanding the use of the declare

command in the bash shell.

For the moment, we do not want to use the variable; we can’t unset

this, as we have seen already, but we can log out and log back into the

system. We have not set this in a login script, so this will effectively

clear the variable. We will also delete the ansible.cfg file from the home

directory—NOT the hidden file, just the $HOME/ansible.cfg.

Chapter 2 Working with the Ansible Configuration

18

Listing 2-7.  Cleaning the Environment, We Should See the Hidden

File as the Effective Configuration When Executed with Home as the

Working Directory

$ exit

Log back in as tux

$ rm $HOME/ansible.cfg

$ cd $HOME; ansible --version | grep 'config file'

 config file = /home/tux/.ansible.cfg

�Printing the Ansible Configuration
Even though we have not made any configuration settings as yet, we are

still able to print the contents of the effective file, which will be empty. We

will also be able to print the effective settings, that is, the default settings.

For this, we have access to the command ansible-config, which has a

stunning three subcommands:

•	 ansible-config view: Print the contents of the current

effective Ansible configuration.

•	 ansible-config dump: Print the effective settings,

which are made up from explicit settings from the

effective files and the default settings where an option

is unset.

•	 ansible-config list: This fully details the settings

that can be made, either through variables or via

directives in the configuration file or Playbook.

It is amazingly easy to see this in action, which I will demonstrate to

you. Don’t forget to work diligently on your own lab system, the more

practice that you can get with these commands, the clearer they become

in your mind. The exam is also practical based, meaning that hands-on

experience really does matter both for the exam and your own success.

Chapter 2 Working with the Ansible Configuration

19

Listing 2-8.  Printing the Current Configuration File Content; This

Should Be Empty

$ cd

$ ansible-config view

The view subcommand only will print effective settings from the

current configuration; any commented lines will not be printed. We can

test this by renaming the $HOME/.ansible.cfg. This should make the file, /

etc/ansible/ansible.cfg, the effective configuration again as we fall back to

the default file. Even though the file is not empty, each line is commented

so nothing is printed.

Listing 2-9.  Printing the Default Configuration

$ mv $HOME/.ansible.cfg $HOME/.ansible.old

$ ansible --version | grep 'config file'

 config file = /etc/ansible/ansible.cfg

$ ansible-config view

$ head -n 15 /etc/ansible/ansible.cfg

config file for ansible -- https://ansible.com/

===

nearly all parameters can be overridden in ansible-playbook

or with command line flags. ansible will read ANSIBLE_CONFIG,

ansible.cfg in the current working directory, .ansible.cfg in

the home directory or /etc/ansible/ansible.cfg, whichever it

finds first

[defaults]

some basic default values...

#inventory = /etc/ansible/hosts

#library = /usr/share/my_modules/

Chapter 2 Working with the Ansible Configuration

20

The configuration takes the form of an INI file, meaning that

configuration options are grouped together within section headers in

square brackets. The section headers in the default files are not commented,

so these are easy to print independently. This is also great practice using

regular expressions, which we can use with our good friend grep. The

regular expressions metacharacters that we use in the query are listed and

explained in the following bulleted list:

•	 ^ : Line starts with

•	 \[: We are literally looking for lines that start with an

opening bracket. We need to escape the bracket, as it

would be interpreted as a start of a range in a regular

expression.

•	 .* : The period in a regular expression represents any

character, and the asterisk represents any amount

of the previous character. In this way we can say the

brackets can contain any number of any character.

•	 \] : Again, we must escape the closing bracket, as we

want it to read as a literal and not a regular expressions

metacharacter.

•	 Using grep, we are looking to print lines that start with

a section header indicated by the header name inside

of square brackets.

Listing 2-10.  Cataloging the Headers

$ grep -E '^\[.*\]' /etc/ansible/ansible.cfg

[defaults]

[inventory]

[privilege_escalation]

[paramiko_connection]

Chapter 2 Working with the Ansible Configuration

21

[ssh_connection]

[persistent_connection]

[accelerate]

[selinux]

[colors]

[diff]

So, we have now gained some understanding of the configuration file

and the ansible-config command. As yet though, we have only seen the

view subcommand. We must move on now and take a look at the dump

subcommand. This shows us the current configuration based on explicit

settings and those unset and using the default options.

Listing 2-11.  Listing the Current Effective Settings

$ ansible-config dump | head

ACTION_WARNINGS(default) = True

AGNOSTIC_BECOME_PROMPT(default) = True

ALLOW_WORLD_READABLE_TMPFILES(default) = False

ANSIBLE_CONNECTION_PATH(default) = None

ANSIBLE_COW_PATH(default) = None

ANSIBLE_COW_SELECTION(default) = default

ANSIBLE_COW_WHITELIST(default) = ['bud-frogs', 'bunny',

'cheese', 'daemon', 'default', 'dragon', 'elephant-in-snake',

'elephant', 'eyes', 'hellokitty', 'kitty', 'luke-koala',

'meow', 'milk', 'moofasa', 'moose', 'ren', 'sheep', 'small',

'stegosaurus', 'stimpy', 'supermilker', 'three-eyes', 'turkey',

'turtle', 'tux', 'udder', 'vader-koala', 'vader', 'www']

ANSIBLE_FORCE_COLOR(default) = False

ANSIBLE_NOCOLOR(default) = False

ANSIBLE_NOCOWS(default) = False

Chapter 2 Working with the Ansible Configuration

22

There are no options currently set in the effective configuration file.
Each option we see printed with the dump subcommand will show the
corresponding default configuration value. This is shown with the use of
(default) following the configuration name. We have only listed the first ten
lines, but each setting would be at its own default setting until we create
our own custom configurations.

Although the dump subcommand is awesome in its ability to see the
current effective settings, it does not provide any help or explanation
to the configuration setting. For this, we will need to employ the list
subcommand. Come on, let’s take a look; but we will filter the output to
see just one setting. The output is verbose, very verbose, so filtering on a
single setting will be easier to see and understand.

Listing 2-12.  List All Configuration Settings with Documentation

$ ansible-config list | grep -A8 DEFAULT_REMOTE_USER
DEFAULT_REMOTE_USER:
 default: null
 �description: [Sets the login user for the target machines,
'When blank it uses the connection plugin''s default,
normally the user currently executing Ansible.']

 env:
 - {name: ANSIBLE_REMOTE_USER}
 ini:
 - {key: remote_user, section: defaults}
 name: Login/Remote User

The option name is DEFAULT_REMOTE_USER; there is no default
value for this, but the current user will be used with the Linux plug-in.
The value can be set with an environment variable, ANSIBLE_REMOTE_
USER, or from the configuration value using the key remote_user in the
defaults section header. The variable, if set, will take precedence over the

configuration file.

Chapter 2 Working with the Ansible Configuration

23

Note  These commands are of great help to you, as they are
available to use in the exam. So, make use of that when needed, and
make sure you practice these commands so you are fluent when in
the exam.

�Creating a Basic Ansible Configuration File
Now, by this stage you must be itching to begin your own configuration. Your

voice has been heard and this is what you will now start learning. By making

settings within our home directory and the .ansible.cfg file, these can act as

default settings for ourselves if they are not set within the working directory.

First, we resurrect the .ansible.cfg file we previously renamed.

Listing 2-13.  Restoring the .ansible.cfg file in Our Home Directory

$ cd ; mv .ansible.old .ansible.cfg

$ ls -la .ansible.cfg

-rw-rw-r--. 1 tux tux 0 Nov 16 14:42 .ansible.cfg

We can now set some configuration options that we may want to

share across multiple Ansible projects. These settings may be best suited

to being configured in the .ansible.cfg in the home directory. We begin by

making sure we have the correct section headers by copying them from the

default file.

Note  Adding the section headers in this way eliminates typos that
can occur, and it does not matter that we have sections that are
unused.

Chapter 2 Working with the Ansible Configuration

24

Listing 2-14.  Creating an Ansible Configuration

$ grep -E '^\[.*\]' /etc/ansible/ansible.cfg > $HOME/.ansible.

cfg

$ vim $HOME/.ansible.cfg

[defaults]

remote_user = ansible ; we will later create this account

inventory = $HOME/inventory ; list of remote hosts

[inventory]

[privilege_escalation]

become = true ; user rights will be elevated

become_method = sudo ; by using sudo

[paramiko_connection]

[ssh_connection]

[persistent_connection]

[accelerate]

[selinux]

[colors]

[diff]

Note  Comments that start a new line can be either the octothorpe
(#) or the semicolon (;). Inline comments placed at the configuration
line end and commenting the rest of the line have to be made using
the semicolon, as we use in this example.

With our brand new configuration in place and waiting to be used,

we will be able to demonstrate a little more using the previous ansible-

config command. It is also important to never assume that what we have

typed into the file was correct; a little testing never hurt anyone.

Chapter 2 Working with the Ansible Configuration

25

Listing 2-15.  Viewing the Configuration

$ ansible-config view

[defaults]

remote_user = ansible

inventory = $HOME/inventory

[inventory]

[privilege_escalation]

become = true

become_method = sudo

[paramiko_connection]

[ssh_connection]

[persistent_connection]

[accelerate]

[selinux]

[colors]

[diff]

We do have to take care with this command, as there is absolutely

no checking of the section headers we have used or of the key or values

supplied. The file will print as long as it matches the INI file format.

Checking the effective settings with the dump subcommand is so much more

useful, especially when we filter with the --only-changed option. Come on;

I will show you.

Listing 2-16.  Viewing Settings Changed from the Default

$ ansible-config dump --only-changed

DEFAULT_BECOME(/home/tux/.ansible.cfg) = True

DEFAULT_BECOME_METHOD(/home/tux/.ansible.cfg) = sudo

DEFAULT_HOST_LIST(/home/tux/.ansible.cfg) = ['/home/tux/

inventory']

DEFAULT_REMOTE_USER(/home/tux/.ansible.cfg) = ansible

Chapter 2 Working with the Ansible Configuration

26

The output now also confirms that the settings are valid and usable

by Ansible. If the key or header is not recognized, then it does not change

anything and the section header or setting is not effective. If we find that we

do not see the option or options that we are looking for within the output, it

is likely that our fat fingers have got somewhat in the way of perfection.

�Summary
The way that I see the current situation is that you are well on your way to

becoming an Ansible superhero. Yes, you—officially an Ansible superhero.

But perhaps we need to focus more on the exam; after all, that is where

the big bucks are. You are well on your way to the acing the exam; just take

a look at the facts and start understanding that you can now configure

Ansible. You know the hierarchy of configuration that is applied. Starting

from the top down, we first search:

•	 ANSIBLE_CONFIG

•	 ansible.cfg in CWD so long as the directory is not

world-writable

•	 $HOME/.ansible.cfg

•	 /etc/ansible/ansible.cfg

Not only that, in this chapter you learned how to view and print the

configuration. First, you learned to use the ansible --version command

to print the path to the configuration and the dedicated command

ansible-config to print settings. With this we have three subcommands:

view, dump and list, with perhaps ansible-config dump --only-changed

being one of the most useful and my personal favorite. And yes, I do have

fat fingers!

Chapter 2 Working with the Ansible Configuration

27

When creating our own custom configurations, we may use comments.

At the start of a new line we may comment the complete line using either

the # or the ;. Whereas, if we need to comment the rest of a line, we are

limited to using the semicolon. We used this knowledge to create a simple

configuration within our home directory. So, of course, the file name was

hidden and created as .ansible.cfg and adding settings that we could use

across projects, overwriting them for specific projects either with their own

project-based configuration or with environment variables. We can now

move on to further our knowledge by looking at creating host inventories

that we have already referenced from our configuration.

Chapter 2 Working with the Ansible Configuration

29© Andrew Mallett 2021
A. Mallett, Red Hat Certified Engineer (RHCE) Study Guide,
https://doi.org/10.1007/978-1-4842-6861-2_3

CHAPTER 3

Creating an Ansible
Inventory
When working with Ansible on our CentOS 8 controller, we can target hosts

that we want to manage directly via a list of hosts. This list can be provided

as an option to the ansible command. Certainly though, we can do better

than this. Rather than an ad hoc list, we will want to create a persistent

file-based list of hosts. This list is the Ansible inventory and within the file

we can also define groups based around geography, function, or operating

system, making it easy to target hosts specifically. Inventory files provide

the consistency that we need when targeting hosts, no matter if we are

working directly at the command line or from Playbooks.

Note  I know we have not introduced Playbook yet, but don’t worry,
we will soon. In the meantime, a Playbook is a text file written in
YAML format that describes the tasks that should be executed on
managed devices: a manifest of work to be done, if you like.

https://doi.org/10.1007/978-1-4842-6861-2_3#DOI

30

�Creating an Inventory
Having created a configuration for Ansible already in the previous chapter,

we can almost certainly proceed with the next tasks in managing host lists

with Ansible and creating the inventory. Within the Ansible configuration

the item name for the location of the inventory file is DEFAULT_HOST_

LIST. Using grep, we can display the documented help on this setting

using the output from ansible-config list.

Listing 3-1.  Gaining Help in the Host List or Inventory

$ ansible-config list | grep -A10 DEFAULT_HOST_LIST

DEFAULT_HOST_LIST:

 default: /etc/ansible/hosts

 �description: Comma separated list of Ansible inventory

sources

 env:

 - {name: ANSIBLE_INVENTORY}

 expand_relative_paths: true

 ini:

 - {key: inventory, section: defaults}

 name: Inventory Source

 type: pathlist

 yaml: {key: defaults.inventory}

One of the first things that we should notice from the output is the

default value to this key; it is the file /etc/ansible/hosts. Although this file

does not contain any effective entries, again, each line being commented,

it does provide great and usable examples. When you are new to the

inventory and inventory groups, this is a great starting point. The default

file is in the INI format but, as we will see later, we can also use YAML

format for inventory files if we wish. To display the examples from this file

without the other commented lines, we can look for lines that start with

Chapter 3 Creating an Ansible Inventory

31

a double comment; further to this, we can remove the comments from

the display by piping the output to the tr command. Where our desire to

become creative at the command line overwhelms, we can additionally

use the command tee to both display the output to the screen as well as

populating our own inventory file. I will show you, but only if you promise

to practice yourself on your own system.

Listing 3-2.  Listing the Default Inventory File to Populate Our Own

Inventory

$ grep '^##' /etc/ansible/hosts | tr -d '##' | tee ~/inventory

 green.example.com

 blue.example.com

 192.168.100.1

 192.168.100.10

 [webservers]

 alpha.example.org

 beta.example.org

 192.168.1.100

 192.168.1.110

 www[001:006].example.com

 [dbservers]

 db01.intranet.mydomain.net

 db02.intranet.mydomain.net

 10.25.1.56

 10.25.1.57

 db-[99:101]-node.example.com

Chapter 3 Creating an Ansible Inventory

32

Note  If you want to gain a better understanding of the command
in the previous pipeline, then build the commands up. Start first by
listing the file without filters:

$ cat /etc/ansible/hosts

$ grep '^##' /etc/ansible/hosts

$ grep '^##' /etc/ansible/hosts | tr -d '##'

$ grep '^##' /etc/ansible/hosts | tr -d '##' | tee ~/inventory

$ cat ~/inventory

Without any work, (this is always a great way to start), we now have an

inventory with groups that we can practice with. For us, this is an awesome

start to understand the inventory files and the associated tool that we can

use to query the inventory. I am guessing the IP Addresses used do not

meet your network and they certainly do not match my hosts, so we will

replace this file, or at least its contents, later, after our initial practice in

querying the inventory.

�Query Inventory Entries
We have two commands that we can use to print entries from the inventory

file. These include the ansible command as well as the specific ansible-

inventory command. In addition to any groups that we explicitly define

within the file, we have two built-in groups:

•	 all: Yes, you have guessed it, the group all refers to all

hosts contained in the inventory file.

•	 ungrouped: The ungrouped group refers to those hosts not

included in any specific inventory group within the file.

Chapter 3 Creating an Ansible Inventory

33

You probably will be using the group all much of the time in Ansible.

Very often we will want to target all hosts; after all, that is why you added

them to the inventory. As yet, I have never had the need to target the

ungrouped group, but there is still time! First let’s make sure that we are

working in the home directory of our user, and we will check the Ansible

configuration that is in use. We want to be certain that the inventory file we

are using is set to $HOME/inventory.

Listing 3-3.  Verify the Ansible Configuration

$ ansible --version | grep 'config file'

 config file = /home/tux/.ansible.cfg

$ ansible-config dump --only-changed

DEFAULT_BECOME(/home/tux/.ansible.cfg) = True

DEFAULT_BECOME_METHOD(/home/tux/.ansible.cfg) = sudo

DEFAULT_HOST_LIST(/home/tux/.ansible.cfg) = ['/home/tux/

inventory']

DEFAULT_REMOTE_USER(/home/tux/.ansible.cfg) = ansible

Note  If you are not seeing the same configuration, your time may
be well spent by reviewing the previous chapter where we created
the configuration file ~/.ansible.cfg. The book is not going away, I
assure you; we will be here waiting for you on your return.

�Listing Inventory Hosts Using Ansible
Having the Ansible configuration file in place and having ensured that the

inventory file used is the file we created, we are ready to go. The simplest

way that we can list all hosts within the inventory is to use the ansible

command. Using the built-in group all, each host will be listed.

Chapter 3 Creating an Ansible Inventory

34

Listing 3-4.  Listing Hosts with the Ansible Command, Some Output

Is Trimmed to Reduce Space Used in This Book, Thereby Not Just

Saving Trees but Saving Your Eyes!

$ ansible all --list-hosts

 hosts (21):

 green.example.com

 blue.example.com

 192.168.100.1

 192.168.100.10

 alpha.example.org

 beta.example.org

 www001.example.com

 www002.example.com

 www003.example.com

 db-99-node.example.com

 db-100-node.example.com

 db-101-node.example.com

We can also list groups and their members; using the webservers group

instead of the all group demonstrates this.

Listing 3-5.  List Specific Groups with Ansible

$ ansible webservers --list-hosts

 hosts (10):

 alpha.example.org

 beta.example.org

 192.168.1.100

 192.168.1.110

 www001.example.com

 www002.example.com

 www003.example.com

Chapter 3 Creating an Ansible Inventory

35

 www004.example.com

 www005.example.com

 www006.example.com

If you recall, we have two built-in groups. We have seen the listing of all

inventory hosts and now we can see the group, ungrouped, those hosts not

included in a named group.

Listing 3-6.  Listing Hosts That Do Not Exist in Any Named Group

$ ansible ungrouped --list-hosts

 hosts (4):

 green.example.com

 blue.example.com

 192.168.100.1

 192.168.100.10

�Listing Hosts Using Ansible-Inventory
Even though the ansible command is quite simple, as we progress

through the course, we will begin to realize that listing only the hosts is

limited. Often there will be inventory variables that we also need to view.

It is times like these, when our needs become more complex, that we can

rely on the ansible-inventory command. Again, as before, we can begin

by listing all hosts in the inventory. The default output is in JSON format,

but I have included the option to print in YAML because it is less verbose.

Chapter 3 Creating an Ansible Inventory

36

Listing 3-7.  Listing All Hosts with the ansible-inventory Command,

Some Output Is Trimmed to Reduce Space Used

$ ansible-inventory --list --yaml

all:

 children:

 dbservers:

 hosts:

 10.25.1.56: {}

 10.25.1.57: {}

 db-100-node.example.com: {}

 db-101-node.example.com: {}

 ungrouped:

 hosts:

 blue.example.com: {}

 green.example.com: {}

 webservers:

 hosts:

 www001.example.com: {}

 www002.example.com: {}

 www003.example.com: {}

We can see the brace-brackets against each host; this is where

inventory variables can be displayed if any are set. We are not using any

at the moment, but I can show you how useful the ansible-inventory

command can be in listing these variables. Taking a working configuration

that I have on my own systems, I can first list all hosts with ansible and

then ansible-inventory.

Chapter 3 Creating an Ansible Inventory

37

Note T he following command is run on my internal Ansible
controller used for deployment of AWS systems. These entries are not
within your own inventory currently, but we will start to use variables
soon in the lab inventory.

Listing 3-8.  Listing Inventory with Variables, First with ansible and

Then ansible-inventory

$ ansible all --list-hosts

 hosts (1):

 3.8.123.144

$ ansible-inventory --list --yaml

all:

 children:

 redhat: {}

 suse:

 hosts:

 3.8.123.144:

 admin_group: sudo

 ansible_user: ec2-user

 ubuntu: {}

 ungrouped: {}

We can see that the host has two variables that have been configured:

the admin_group and the ansible_user. The admin_group variable will

be used when creating users that need to administer the system; the

group may differ from Linux distribution to Linux distribution. Some

distributions use the group wheel and some use the group sudo. In AWS

the default user account that you should connect as differs based on who

created the image; in openSUSE it is the ec2-user and in CentOS it is the

centos user account. By implementing a variable we are able to cater for the

Chapter 3 Creating an Ansible Inventory

38

differing accounts. Variables in Ansible help us deal with these differing

needs and, as administrators, being able to see the variables will help us

debug issues with Ansible commands and Playbook execution.

Working back on the CentOS 8 controller as our lab system, we can use

ansible-inventory to list hosts in just a single group, just as we could with

ansible.

Listing 3-9.  Listing Group Membership with ansible-inventory

$ ansible-inventory --graph --yaml dbservers
@dbservers:

 |--10.25.1.56

 |--10.25.1.57

 |--db-100-node.example.com

 |--db-101-node.example.com

 |--db-99-node.example.com

 |--db01.intranet.mydomain.net

 |--db02.intranet.mydomain.net

�Adding Host and Group Entries
When we add hosts to the inventory file, we can use the resolvable hostname

or IP address. We can also add ranges for both hostnames or IP addresses.

Listing 3-10.  Adding Ranges to the Ansible Inventory

To add www1.example.com, www2.example.com, www3.example.com

www[1:3].example.com

To add a range of IP addresses

192.168.1.[1:5]

When adding in groups, the group name will be added to a section

header. For example, to add a group for London we can add the following

line to the inventory file. Members of the group should be listed below the

group section header.

Chapter 3 Creating an Ansible Inventory

39

Listing 3-11.  Adding a Group to the Ansible Inventory

[London]

We can also make great use of nested groups in the inventory file.

Nested groups are groups listed in other groups. For example, if we have

a London group and Bristol group defined in the inventory, we can nest

these groups in the UK group. The keyword children is used to indicate that

the members are nested groups.

Listing 3-12.  Using Nested Groups in the Ansible Inventory

[London]

server1

server3

[Bristol]

server2

server4

[UK:children]

Bristol

London

�Discovering Hosts on Your Network
If you are using an internal NAT network for VMWare, then you will know

that you have a limited number of hosts running on that network. If, like

me, the only virtual machines that you are running on that NAT network

are the three hosts that you want for this course, then we can make some

magic happen. We can do this through port scans, and to start we will need

to install the port scanner nmap.

Chapter 3 Creating an Ansible Inventory

40

Listing 3-13.  Installing the Port Scanner nmap on the Controller

$ sudo yum install -y nmap

Using the port scanner on our NAT network, we can detect hosts that

are both running on the network and listening on TCP port 22, the SSH

port. We will need the SSH port to connect from Ansible. When scanning

the network, make sure that you enter the network address for your

network, but do not scan the network if you are not authorized to do so!

Important  In some companies scanning of networks may trigger
alerts, as a network scan may be the precursor of a cyber attack on
the network and server resources. If this is not your own personal
network, it is imperative that you have prior written agreement to
run the scan. There is nothing dangerous in the commands that we
run in the example, but of course we are discovering services on the
network that could be viewed as recognizance.

Listing 3-14.  Scanning the Network for SSH Servers

$ sudo nmap -Pn -p 22 -n 172.16.120.0/24 --open -oG -

Nov 18 16:51:36 2020 as: nmap -Pn -p 22 -n --open -oG -

172.16.120.0/24

Host: 172.16.120.185 () Status: Up

Host: 172.16.120.185 () Ports: 22/open/tcp//ssh///

Host: 172.16.120.188 () Status: Up

Host: 172.16.120.188 () Ports: 22/open/tcp//ssh///

Host: 172.16.120.161 () Status: Up

Host: 172.16.120.161 () Ports: 22/open/tcp//ssh///

Nmap done at Wed Nov 18 16:51:41 2020 -- 256 IP addresses

(6 hosts up) scanned in 5.57 seconds

Chapter 3 Creating an Ansible Inventory

41

The port scan that we initiate has several options designed to give us

the best output for our needs. The options are listed as follows:

•	 -Pn: Don’t probe the host initially to see if it is up. As we

are discovering a single port, this will not slow the scan

and may prove more accurate.

•	 -p 22: Only scan port 22; we default to TCP.

•	 -n 172.16.120.0/24: We are scanning the NAT

network in my case.

•	 --open: Only list the result if the port is open, as

opposed to filtered or closed.

•	 -oG -: We make the output more easily filtered by

commands such as grep; the final dash indicates that

we send the output to STDOUT, the screen.

The results that we see are OK but, if you recall, we want to create an

inventory file from this output. This means that we need to exclude the rest

of the data shown in the output. We can choose the command awk to both

filter the lines that we want and the exact field that we want. We want to

look for lines that contain 22/open and we want to return just the second

field, which is the IP address of the host on the network.

Listing 3-15.  Extracting IP Addresses

$ sudo nmap -Pn -p22 -n 172.16.120.0/24 --open -oG - | awk

'/22\/open/{ print $2 }'

172.16.120.185

172.16.120.188

172.16.120.161

Chapter 3 Creating an Ansible Inventory

42

The final step is to send the output to the inventory file once we have

validated it on the screen; if it looks OK, send it to the $HOME/inventory

file. To be certain all is well with the world and the inventory file, we list the

contents of the file with ansible-inventory.

Listing 3-16.  Dynamically Creating Our Own Inventory

 $ sudo nmap -Pn -p22 -n 172.16.120.0/24 --open -oG - | awk

'/22\/open/{ print $2 }' | tee $HOME/inventory

$ ansible-inventory --list --yaml

all:

 children:

 ungrouped:

 hosts:

 172.16.120.161: {}

 172.16.120.185: {}

 172.16.120.188: {}

�Inventory Variables
For this chapter we will conclude by setting host and group variables that

can be used alongside the inventory. The variables can be added directly

to the standard INI style inventory; however, these variables become a little

clearer when abstracted from the inventory and stored in separate files.

This makes the inventory file less dense and the variables more modular.

By default, Ansible uses native OpenSSH to connect to managed

devices. OpenSSH is preferable on Linux- and Unix-based systems

because it supports ControlPersist, Kerberos authentication, and options

stored in ~/.ssh/config such as Jump Host setup. If your controller system

uses an older version of OpenSSH that does not support ControlPersist,

Ansible will fall back to a Python implementation of OpenSSH called

paramiko. Other connection methods are available, such as WinRM for

Chapter 3 Creating an Ansible Inventory

43

Microsoft Windows systems. We may also want to skip the use of SSH when

managing the controller itself; we can use a local connection. To manage

this, we can use a variable assigned to the controller host. This, as we

previously mentioned, can be set on the INI file inventory. You will need to

determine the IP address of your controller to be able to add the variable to

the host.

Listing 3-17.  Determine the Controller IP and Configure Variable

for Local Connection

$ cd

$ ip -4 addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state

UNKNOWN group default qlen 1000

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

2: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

fq_codel state UP group default qlen 1000

 �inet 172.16.120.161/24 brd 172.16.120.255 scope global

dynamic noprefixroute ens33

 valid_lft 1425sec preferred_lft 1425sec

$ sed -Ei 's/(172.16.120.161)/\1 ansible_connection=local/'

inventory

$ ansible-inventory --yaml --host 172.16.120.161

ansible_connection: local

Although this does work, and we can add more variables to this

host, you will find that your inventory becomes denser and less easy to

read. Keeping the inventory separate from the variables is a tidier way

of working. Let’s use sed to revert the setting that we just added to the

inventory.

Chapter 3 Creating an Ansible Inventory

44

Listing 3-18.  Reverting the Inventory

$ cd

$ sed -Ei 's/\<ansible_connection=local\>//' inventory

$ ansible-inventory --yaml --host 172.16.120.161

{}

The brace-brackets for the selected host are now empty, indicating that

there are no host variables in place. We will now create two subdirectories;

these need to be created in the same directory as the inventory file—in this

case, the home directory of our user account. With the directories created,

one for host and one for groups, we can add in YAML files for hosts or

groups that need variables configured.

Listing 3-19.  Separate Inventory and Variables

$ cd

$ mkdir {host,group}_vars

$ echo "ansible_connection: local" > host_vars/172.16.120.161

$ ansible-inventory --yaml --host 172.16.120.161

ansible_connection: local

Note T he separated variable files are in YAML format; the keys are
delimited from their value with a : and a <space>. We can see it in
this newly created file: ansible_connection: local, whereas in
the INI inventory file, the key/value pair use the = sign, so ansible_
connection=local.

Chapter 3 Creating an Ansible Inventory

45

�Summary
I am simply blown away with your progress. You are now able to effectively

configure the Ansible inventory, the list of hosts that we can manage. Not

only this, you have been able to create variables to be used with hosts

or groups. This is truly amazing, and you are going to find this strong

foundation in Ansible really useful moving on from this.

In working through this chapter, we also learned more command line

tips that can help speed up our use of the bash shell. First, we added some

sed examples to dynamically edit files. The stream editor, sed, is very

useful and works in a similar way to grep; with sed though, we can edit

files and not just filter output. As well as using both sed and grep in the

chapter, we also looked at awk, the big brother to both of these commands.

Second, when creating the directories for the variable files, we created

both directories with the one command by using the brace-brackets.

The command mkdir {host,group}_vars will expand into mkdir host_

vars; mkdir group_vars. These shortcuts can make you quicker at the

command line, and time is of the essence in the exam.

You are also able to query the inventory using both the

ansible --list-hosts command and the ansible-inventory command.

If you simply meed to list groups or all hosts, then use the former command.

The latter command is great to list variables associated with hosts or groups.

Chapter 3 Creating an Ansible Inventory

47© Andrew Mallett 2021
A. Mallett, Red Hat Certified Engineer (RHCE) Study Guide,
https://doi.org/10.1007/978-1-4842-6861-2_4

CHAPTER 4

Using Ad Hoc
Commands and
Ansible Preparation
I am beginning to feel your impatience growing; yes, it even transcends the

time and distance between us. You want to learn Ansible and gain great

hands-on experience with the product. Well, I have great news for you;

you do not have to wait any longer. We are about to unleash the scorching

power kept from you thus far. You are about to learn how to configure the

three lab systems in parallel with the execution of a single command on

the Ansible controller. Ad hoc commands allow us to dive straight into

Ansible without the need of Playbook files. This makes them paradoxically

both good and bad. Ad hoc commands are good because they can

be quickly executed when and as needed. They are bad because the

commands that we execute lack the repeatably correct attribute associated

with YAML Playbooks. With a Playbook, the file is a persistent manifest of

the tasks that need to be executed, both documenting the configuration

and achieving the nirvana of any configuration management system: being

repeatably correct. With ad hoc commands we may easily omit a required

configuration parameter, but this will not happen with a Playbook. We will

https://doi.org/10.1007/978-1-4842-6861-2_4#DOI

48

get the same results each time the Playbook is executed. I am guessing that

you now understand the term “ad hoc” in relationship to Ansible. These

commands will be run on an as needed basis and will not necessarily need

to be repeated.

�Testing Ansible
Although we have been as busy as the proverbial bee in creating the

configuration and inventory, we have not yet seen Ansible at work. Simple

configuration changes are at the heart of where ad hoc commands prevail,

and they are executed with our good friend the ansible command. The

simplest of these commands is the Ansible ping module. It is not a network

ICMP ping but connects using the ansible_connect method to discover if

a Python interpreter exists on the managed device. The connection will

normally be SSH but, as we have seen, we have set the controller to use

a local connection. By checking that we can run the ping module on the

managed host against our inventory hosts, we will be able to check that

everything is working adequately and correct issues that may arise. We can

then continue to configure the systems in the desired state for the rest of

the course.

Note  We assume that you are logged in to the controller as the tux
user account who has the ability to run all commands as root using
sudo. The tux account should also exist on the managed devices
with the ability also to run commands with sudo.

Chapter 4 Using Ad Hoc Commands and Ansible Preparation

49

Listing 4-1.  Testing Ansible with the Python Ping Module

$ ANSIBLE_REMOTE_USER=tux ansible all -k -K -m ping

SSH password:

BECOME password[defaults to SSH password]:

 172.16.120.188 | FAILED! => {

 �"msg": "Using a SSH password instead of a key is not

possible because Host Key checking is enabled and sshpass

does not support this. Please add this host's fingerprint

to your known_hosts file to manage this host."

 }

 172.16.120.185 | FAILED! => {

 �"msg": "Using a SSH password instead of a key is not

possible because Host Key checking is enabled and sshpass

does not support this. Please add this host's fingerprint

to your known_hosts file to manage this host."

}

 172.16.120.161 | SUCCESS => {

 "ansible_facts": {

 �"discovered_interpreter_python": "/usr/libexec/

platform-python"

 },

 "changed": false,

 "ping": "pong"

}

Green is good and red is not so good. We have also needed to add in

a heap of switches that we can later omit once the configuration of the

managed hosts is complete. We will cover the switches shortly, but first

let’s correct the error that we see. For me the controller IP address shows

as connecting successfully; it’s the remote systems where we use SSH that

have failed. If we read the message, we can see the cause. Yes, don’t just

Chapter 4 Using Ad Hoc Commands and Ansible Preparation

50

freeze like a rabbit caught in headlights—read the error message! We have

not previously connected using SSH to the remote systems and do not have

their public keys stored as SSH known_hosts. We can take two approaches

here: either use ssh-keyscan to collect the remote keys or, as we will do,

we can choose to disable host key checking. In our lab environment this is

a sage choice. Let’s copy the configuration into our CWD and adjust it to

suit our needs.

Listing 4-2.  Overwriting the Effective Ansible Configuration

$ mkdir -p $HOME/ansible/setup

$ cd !$

cd $HOME/ansible/setup

$ cp ~/.ansible.cfg .

$ ansible --version | grep 'config file'

 config file = /home/tux/ansible/setup/ansible.cfg

Note  We have used the !$ variable to represent the last arguments
used at the command line to make changing directories easier and
quicker.

Editing this file can both correct the error we have seen and improve

the efficiency of command execution. Within the original file, we have set

the option to elevate privileges; for the ping module, we do not need to run

as root, meaning that we do not need to enter the sudo password (-K). We

also use the remote account, ansible, in the original file, which we have not

yet created. Choosing to modify this setting in the configuration will mean

that we do not need to overwrite the setting with the variable. We must

not forget that we should correct the error also; adding the key host_key_
checking with a value of false will resolve this issue. We should edit the file

so it looks similar to this. The changes made to the file are highlighted.

Chapter 4 Using Ad Hoc Commands and Ansible Preparation

51

Listing 4-3.  Modified $HOME/ansible/setup/ansible.cfg

[defaults]

remote_user = tux

inventory = $HOME/inventory

host_key_checking = false

[inventory]

[privilege_escalation]

become = false

become_method = sudo

There is also an advantage in using the setting become = false; we

can raise privileges with ad hoc commands using the option –b but not the

reverse. Not escalating unnecessarily makes the system more secure as a

benefit. Having edited the file with our favored text editor, we are ready to go.

Let us now test the settings are effective before rerunning the Ansible ping.

Listing 4-4.  Testing the Configuration Is Effective and Running the

Ping

$ ansible-config dump --only-changed

DEFAULT_BECOME(/home/tux/ansible/setup/ansible.cfg) = False

DEFAULT_BECOME_METHOD(/home/tux/ansible/setup/ansible.cfg) =

sudo

DEFAULT_HOST_LIST(/home/tux/ansible/setup/ansible.cfg) = ['/

home/tux/inventory']

DEFAULT_REMOTE_USER(/home/tux/ansible/setup/ansible.cfg) = tux

HOST_KEY_CHECKING(/home/tux/ansible/setup/ansible.cfg) = False

$ ansible all -k -m ping

...

Chapter 4 Using Ad Hoc Commands and Ansible Preparation

52

We should now have three successful green outputs, one for each host. If

you are using an Ubuntu 18.04 system, as I am, you will see a warning about

the Python interpreter being detected as /usr/bin/python rather than /usr/

bin/python3. We can fix this by setting Ubuntu 18.04 hosts to use Python 3 by

adding an inventory variable, but we will come back to that. Let’s first make

sure we understand the options used in the command line execution of ad

hoc commands. The following list shows some command options:

•	 all: The argument specifies the group in the inventory

that we want to target. We are using the all group here.

•	 -k: Prompt for the SSH password. We will later use key-

based authentication, allowing us to omit this option.

•	 -K: We have already omitted this, as we did not need

escalation for the ping module to succeed. Where we

do need escalation, ideally the user account will have

passwordless access to sudo. We will configure this with

an ad hoc command.

•	 -b: Use privilege escalation even if it is not set in the

configuration.

•	 -m: The name of the Ansible Python module to execute.

We use the ping module.

•	 -a: Not used or needed here. We can, and often need

to, supply arguments to the module and this is supplied

with the -a option.

Chapter 4 Using Ad Hoc Commands and Ansible Preparation

53

�Implementing Ansible Inventory Groups
From the warning previously generated by the Ubuntu 18.04 system regarding

the Python interpreter, we can start to see the need for groups already.

Although, we could set a host variable for that host, it is likely that we will have

more 18.04 hosts enlisted in the future and adding groups now will save work

in the future. Setting the required variable against the group will be easier to

understand and is likely to be more accurate, where no host is forgotten. At

this stage we will create groups for the CentOS hosts and an Ubuntu group.

We will also create a group for 18.04 hosts, as it is likely that version 20.04 of

Ubuntu will not need the same variable setting. We will use the code name

for 18.04 hosts of bionic for the group name. Group names should not start

with a number. We can nest the bionic group in the Ubuntu group. This is easy

to implement as we will see now. Make sure that you can determine the IP

address of the Ubuntu system, so it is added to the correct group.

Listing 4-5.  Modify Your $HOME/inventory File to Include Groups

$ cat $HOME/inventory

[bionic]

172.16.120.188

[centos]

172.16.120.161

172.16.120.185

[ubuntu:children]

bionic

$ ansible bionic --list-hosts

 hosts (1):

 172.16.120.188

$ ansible ubuntu --list-hosts

 hosts (1):

 172.16.120.188

Chapter 4 Using Ad Hoc Commands and Ansible Preparation

54

$ ansible centos --list-hosts

 hosts (2):

 172.16.120.161

 172.16.120.185

Setting the groups enables the mechanism of targeting these groups

independently in ad hoc commands. We do not have to only use the

group all. We can also use the groups to set the required variables. In

the following we first list the bionic group without the variable being

configured before setting the variable and relisting the group before

rerunning the ping command targeting the Ubuntu group only.

Note  We can still use the --host option to reference a group name
with the command ansible-inventory.

Listing 4-6.  Implementing Group Variables to Resolve Ad Hoc

Issues

$ ansible-inventory --host bionic --yaml

{}

$ echo "ansible_python_interpreter: /usr/bin/python3" > $HOME/

group_vars/bionic

$ ansible-inventory --host bionic --yaml

ansible_python_interpreter: /usr/bin/python3

$ ansible ubuntu -k -m ping

SSH password:

172.16.120.188 | SUCCESS => {

 "changed": false,

 "ping": "pong"

}

Chapter 4 Using Ad Hoc Commands and Ansible Preparation

55

Using both CentOS and Ubuntu allows us to uncover issues that we

would not see with a single distribution. This was mentioned within the

introduction to the lab systems, but it is worth repeating because we

have been able to investigate additional options useful in a disparate

environment that is common to Ansible deployments. This has also

allowed us to cement our understanding of groups and nested groups early

on in the course.

�Preparing the User Account for Ansible
The reality is that using a dedicated account for Ansible operation on the

managed systems allows for greater transparency and security for the

configuration changes. We have used the tux account so far and we will

need to continue with this account until we create the dedicated account

for Ansible.

�Creating the User
We will create the account directly using the user module. We will need

arguments to create the user, enabling us to demonstrate the -a option.

We set the user password as an argument, which needs to be an encrypted

hash. We generate this hash prior to creating the account. Having stored

the encrypted password in a variable, we can run the ad hoc command,

needing to elevate privileges by using the option -b. We also need to

prompt for both the SSH password and sudo password using the

options -k and -K, respectively. Having created the account, we can

confirm that entries exist in both the passwd and shadow databases.

Chapter 4 Using Ad Hoc Commands and Ansible Preparation

56

Listing 4-7.  Using an Ad Hoc Command to Create the Dedicated

Ansible User Account

$ user_password=$(openssl passwd -6 Password1)

$ �ansible all -kKbm user -a "name=ansible password=$user_

password"

...

$ getent passwd ansible

ansible:x:1001:1001::/home/ansible:/bin/bash

$ sudo getent shadow ansible

ansible:6li9wmHhZW/TUHYeX$WzH596QutESoI5j3GYqoqnkSLlN.

9VxdnMt5aix7SX18AE.1.3rH25quQU1wLrtg3zwXCNNdlQ8Bm6CenJenL/

:18586:0:99999:7:::

�Allowing Passwordless Sudo Access
When using the newly created account, we will need to elevate privileges

without adding a password. This helps streamline the operation, especially

if we want to schedule the Ansible commands to run unattended. Adding a

file to the /etc/sudoes.d/ directory on our Linux systems will enable access

to sudo without a password. We create a local file and then distribute

it using the Ansible copy module. We can validate the file before we

distribute it, to maintain the integrity of the sudoers subsystem.

Listing 4-8.  Allowing Access Without a Password to sudo

$ cd ~/ansible/setup

$ echo "ansible ALL=(root) NOPASSWD: ALL" > ansible

$ sudo visudo -cf ansible

ansible: parsed OK

$ �ansible all -bkK -m copy -a "src=ansible dest=/etc/sudoers.d/

ansible"

Chapter 4 Using Ad Hoc Commands and Ansible Preparation

57

�SSH-Key Authentication
We would also prefer to use key-based authentication, making the account

more robust as well as reducing the need for interaction when executing

commands. We need to generate an SSH key-pair for out user account,

tux. The public key will need to be distributed to remote systems and the

Ansible account. Authentication from the tux user to the ansible user

account without the need of a password for SSH. The Ansible module we

will use to distribute the key is the authorized_key module, but first we

need to generate the key pair for tux.

Listing 4-9.  Establishing Key-Based Authentication

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/tux/.ssh/id_rsa):

Enter passphrase (empty for no passphrase): (leave blank)

Enter same passphrase again: (leave blank)

Your identification has been saved in /home/tux/.ssh/id_rsa.

Your public key has been saved in /home/tux/.ssh/id_rsa.pub.

The key fingerprint is:

SHA256:BdooIqc1yJbyIlEC20U/Xqxvx4k7AGqWasvWeTj64wo tux@

controller

The key's randomart image is:

+---[RSA 3072]----+

|o=*o+ .. |

+----[SHA256]-----+

$ �ansible all -bkKm authorized_key -a "user='ansible'

state='present' \

 key='{{ lookup('file','/home/tux/.ssh/id_rsa.pub')}}'"

...

Chapter 4 Using Ad Hoc Commands and Ansible Preparation

58

The output from the three systems should be in yellow, indicating

that changes have taken place. We are very nearly complete in our

configuration. I wonder though if you have been able to think of an issue

that we still may have.

Well, it is quite simple, with two changes needed. We need to tell

Ansible to use the dedicated ansible account we have created, and we need

to ensure that the controller, where we use the local connection from the

tux user, allows passwordless sudo access.

�Configuring the Final Changes

Listing 4-10.  Configuring the tux Account on the Controller System

and Reverting the ansible.cfg

$ cd ~/ansible/setup ; cp ansible tux

$ sed -i s/ansible/tux/ tux

$ sudo visudo -cf tux

tux: parsed OK

$ sudo cp tux /etc/sudoers.d/tux

$ sed -i s/tux/ansible/ ansible.cfg

We can now test this by reexecuting the previous ansible command

that distributed the SSH key. We should now be able to exclude all

password prompts. Reexecuting the command will not cause any

issues, Ansible is idempotent, meaning that we can run the same ad hoc

command many times and changes will only be implemented where we do

not meet the desired state of configuration. We should see green output for

each host, indicating that we are in compliance with the configuration.

Chapter 4 Using Ad Hoc Commands and Ansible Preparation

59

Listing 4-11.  Testing Access Without Interaction

$ ansible all -bm authorized_key -a "user='ansible'

state='present' \

 key='{{ lookup('file','/home/tux/.ssh/id_rsa.pub')}}'"

...

�Gaining Help on Modules
We have made great progress in this chapter and made use of the ping,

copy, user, and authorized_key modules. The question is: how do you know

what modules exist and what arguments they take? This is another simple

but great question that we can answer with the ansible-doc command. In

the following code examples, we first see how to print all modules; we also

count them to see that we have over 3,000 in the version that we are using.

After that we gain help on the user module introduced in this chapter.

Listing 4-12.  List All Ansible Modules

$ ansible-doc --list

...

$ ansible-doc --list | wc -l

3387

Listing 4-13.  Gain Help on a Specific Ansible Module

$ ansible-doc user

When gaining help on a module, you can search for EXAMPLES to

gain practical guides on how the module can be used. They include YAML

Playbook examples, but these are easily adapted to the command line. We

can extend our practice on the command line with ad hoc commands by

adding and removing another user.

Chapter 4 Using Ad Hoc Commands and Ansible Preparation

60

Listing 4-14.  Adding a Supplementary Test User to Our Systems

$ ansible all -bm user -a "name=fred"

When working with the user module the state is assumed to be present

if we do not specify the key. The following command is identical to the

previous listing where we did not define the state. Then output will be

green, indicating that we are compliant with the configuration; the user

exists.

Listing 4-15.  Explicitly Setting the State in the User Module

$ ansible all -bm user -a "name=fred state=present"

When removing a user account, we set the state to be absent. We

can also set to remove their home directory and mail spool file with the

remove=true key/value pair.

Listing 4-16.  Removing a User Account and Their Home Directory

$ ansible all -bm user -a "name=fred state=absent remove=true"

�Summary
We are really able to use Ansible now and use it well. Already you will be

able to see how effective your management of systems can be. We easily

created the new account on the three systems, and added the sudo file and

our authentication key. Each command that we executed was performed

on the three managed hosts. Even with the configuration that we needed

to implement, performing just these tasks will have been quicker with

Ansible than configuring each host individually. This is just the start; the

benefits grow exponentially from this point on.

Chapter 4 Using Ad Hoc Commands and Ansible Preparation

61

In this chapter we added groups to our inventory and added the

variable ansible_python_interpreter for the bionic group, Ubuntu 18.04.

We also made it easy to automatically accept SSH host keys within the

Ansible configuration using the key host_key_checking with a false value.

Where we are often connecting to new hosts such as within an agile

DevOps environment, this setting is essential. With the configuration and

inventory in place we were quickly able to extend our Ansible knowledge,

where we could use the ping module to check the Python interpreter on

the managed devices before using the user module to create a dedicated

account for Ansible to use. This user will need access to sudo without

a password, and we used the copy module to deliver the sudoers file to

each host before using the authorized_key module to allow key-based

authentication to the user account we added.

At the end of this chapter, I really hope that you are building your

confidence in configuration management with Ansible. Don’t forget that

your confidence is going to be built with practice. So please practice the

commands in your own labs and investigate the help you can find with the

ansible-doc command.

Chapter 4 Using Ad Hoc Commands and Ansible Preparation

63© Andrew Mallett 2021
A. Mallett, Red Hat Certified Engineer (RHCE) Study Guide,
https://doi.org/10.1007/978-1-4842-6861-2_5

CHAPTER 5

Writing YAML and
Basic Playbooks
Ad hoc commands in Ansible are awesome; look how we were able to

easily create the user account across all three systems. However, we must

not let ourselves become too caught up in the excitement of what we

have achieved; ad hoc commands were part of our journey but not the

destination. So, let us celebrate that which we have achieved but not rest

too long; we will move forward and begin our understanding of Playbooks

and the basics of YAML. The first thing to understand is the acronym itself:

YAML Ain’t Markup Language. It is for data processing and not a markup

language. The next and most important feature to understand and master

is the use of significant leading whitespace. The indentation level of an

element dictates the relationship with other elements in the file.

In this chapter you will learn to write Playbooks, and benefit from

repeatable commands that are correct on each execution. We will learn

to tune our text editors for YAML files, helping us create correct YAML

syntax. We will also have a sneak peek at a graphical editor and Microsoft

Visual Studio Code on Linux. Remember, the Ansible controller could well

be a Linux workstation, making it quite reasonable to use a GUI to write

YAML. Strap yourself in securely, as we are about to launch your next level

of learning.

https://doi.org/10.1007/978-1-4842-6861-2_5#DOI

64

�Writing Simple YAML Playbooks
When creating Playbooks we need to be aware that, as with Python files,

we are dealing with a file format where leading whitespace is significant

and has a meaning. To keep the file format clean and uncluttered, we

do not use any form of brackets to group related code elements; we use

the indent level. You may look at a file and each element may appear to

be lined up correctly with previous elements. If one line uses a tab as an

indent and another line uses eight spaces, they are not at the same indent

level. It is best that you use explicit spaces and not tabs; using the tab key

still becomes convenient, so being able to configure your text editor to

treat tabs as spaces is a great setting to learn. First, we must understand

what makes up a Playbook.

�Elements of a Playbook
We know Playbooks are YAML files, but what exactly do they contain,

especially, what must they contain? My dear friend and reader, this is

simple: a Playbook will contain at least one play and a play will contain at

least one task. An Ansible task relates to each individual ad hoc command

we could execute from the command line:

•	 Playbook: YAML formatted text file containing one or

more plays

•	 Play: The play will contain one or more tasks and later

we will see additional elements, such as handlers.

•	 Tasks: A task will represent the execution of a module

with arguments, either optional or mandatory, as we

would use with ad hoc commands. The modules we

use in Playbook tasks are exactly the same Python

modules that would be used with ad hoc commands.

Chapter 5 Writing YAML and Basic Playbooks

65

This is a benefit over competitive systems such as Salt

from SaltStack. Salt uses different modules for remote

execution (ad hoc commands), compared with state

modules, where Salt state files are comparable to

Playbooks.

�Our First Playbook
The best way to learn Playbook construction is to actually get our keyboards

dirty and start writing one. That’s so much better than just discussing what

a Playbook could look like. So, let’s make this first Playbook useful and look

at installing software, something that we have not previously looked at

with ad hoc commands. We will continue to use the $HOME/ansible/setup

directory for the project. Please do use the command line text editor that

you are most happy to use. Mine is vim, but we will later look at customizing

both vim and nano to work well with YAML.

Listing 5-1.  Creating Our First Playbook

$ cd $HOME/ansible/setup

$ ansible-config dump --only-changed

DEFAULT_BECOME(/home/tux/ansible/setup/ansible.cfg) = False

DEFAULT_BECOME_METHOD(/home/tux/ansible/setup/ansible.cfg) = sudo

DEFAULT_HOST_LIST(/home/tux/ansible/setup/ansible.cfg) =

['/home/tux/inventory']

DEFAULT_REMOTE_USER(/home/tux/ansible/setup/ansible.cfg) = ansible

HOST_KEY_CHECKING(/home/tux/ansible/setup/ansible.cfg) = False

$ vim software.yml

- name: My first play

 hosts: all

Chapter 5 Writing YAML and Basic Playbooks

66

 become: true

 tasks:

 - name: Install software

 package:

 name: bash-completion

 state: present

...

In the text file we have created, we have one Playbook containing one

play. That play, in turn, contains just the single task.

•	 Playbook: The Playbook is the document itself. YAML

documents will optionally start with three dashes, ---,

and the corresponding document end marker is the

three dots, Sadly, we do not have any reference

to the three amigos, which would be slightly more

amusing. A Playbook will contain at least one play.

These are represented as a list. List items in YAML are

designated with the single dash, -.

•	 Play: Within each play we set the optional name.

Although optional, I would strongly advise adding a

name to both help document the file and help with

diagnostics. The play name is printed as part of the

output to our console. At the same level as the play

name key, we set other keys for the individual play.

These keys must be at the same indent level as the name

key. That is, lining up with the letter n from name and

NOT the dash. We can see that name, hosts, become,

and tasks are all elements of this play being vertically

aligned. Within the play the hosts key is used to

reference the inventory hosts to target. The become key

is used to force elevation of privileges in a similar way

Chapter 5 Writing YAML and Basic Playbooks

67

to the -b option to an ad hoc command. Finally, we
have the tasks dictionary. Unlike a standard YAML key,
which stores a single value, a YAML dictionary contains
multiple keys and values or, as in this case, stores a list
of key/value pairs in the form of individual tasks.

•	 Task: Living beneath the tasks dictionary, each task
needs to indent to the same level of other tasks within
the same dictionary. We use the default eight spaces
used by vim as indentation. Each task is a list item
to the tasks dictionary, so the optional task name is
prefaced with the dash and space. Within the task
we make use of the package Ansible Python module,
akin to the module name we would specify with
the -m option in an ad hoc command. The module
is a YAML dictionary containing a collection of key/
value pairs. Those keys need to be indented to show
their relationship to the package dictionary. We are
consistent with the eight spaces used to indent these
keys. With the module we reference the name of the
package to work with and the state. Here we dictate that
it should be installed with the state present. We could
use absent, present, or latest to ensure the package is
up to date.

Note A lthough we do have a yum module and an apt module,
using the package module to manage software allows Ansible to be
agnostic towards the operating system choosing the most suitable
packager. Although we strive for Ansible Playbooks to be agnostic, we
do need to take care with the package name, which may differ from
OS to OS. Group variables can help us overcome these differences.
In this case, the package has the same name on both CentOS and
Ubuntu.

Chapter 5 Writing YAML and Basic Playbooks

68

Now, at this stage, you should create the Playbook file, software.yml,

within the $HOME/ansible/setup directory. Take great care to observe

the indentation levels we have referenced. Once you have created the file,

you can execute it. You may, optionally, choose to check the syntax prior

to execution. Instead of the ansible command we have used with ad hoc

execution, we now utilize the ansible-playbook command.

Listing 5-2.  Checking Playbook Syntax and Executing Playbooks,

Executed from $HOME/ansible/setup

$ $ ansible-playbook software.yml --syntax-check

playbook: software.yml

$ ansible-playbook software.yml

PLAY [My first play]

TASK [Gathering Facts]

ok: [172.16.120.185]

ok: [172.16.120.188]

ok: [172.16.120.161]

TASK [Install software]

ok: [172.16.120.188]

ok: [172.16.120.161]

changed: [172.16.120.185]

From the output of the Playbook execution, which has been slightly

abbreviated for greater clarity, we can see that on both CentOS hosts that

no changes were necessary; however, the package was not present and

thus installed on the Ubuntu system. All hosts are now in the desired state.

We could execute the same Playbook again to these hosts and none of the

systems would need to install the software. Looking closely, we can now

start to understand why we should not treat the play or task names as

optional. It both helps to document the file and the Ansible output. But,

but, hang on, there are two tasks; we only created a single task, yet two

Chapter 5 Writing YAML and Basic Playbooks

69

tasks are executed. What is Ansible playing at! Ah, great question and I am

glad you noticed. The Gather Facts task will collect facts or information

about the managed device that we can use within the play. This might be

for logic in deciding which tasks should execute or for including some fact

such as the hostname of the system within a task. If we will not use facts

within the play, we can disable this task with the play key: gather_facts:

false.

Tip D isabling the fact collection will speed the execution of the
play and is worthwhile when facts are not required for the individual
play. Having multiple plays within a Playbook will mean multiple
executions of the gather_facts task, one for each play, if not disabled.
Try to group tasks that require facts into a single play when using
more than one play.

�Extending the Playbook Using Facts
I am not sure as to how you are feeling, but I am exploding with excitement

about how much Ansible can and does save me time. Installing software

is essential to me. I run many online training courses on AWS. Being able

to deploy brand new, clean AWS systems and have them configured with

the packages I need for specific courses is invaluable. I regularly configure

ten or more systems for a course, and I use Ansible because it is agentless

and works effortlessly on new systems. As a side note, my personal Ansible

controller is a Raspberry Pi that is always powered on in my home office in

Peterborough, UK.

We can begin to extend the Playbook by adding in a second task to

simply display the hostname of the managed system. We can use the debug

module for this. Also, don’t be too dismayed by this; although it is not

useful in itself, we can become accustomed to using facts.

Chapter 5 Writing YAML and Basic Playbooks

70

Listing 5-3.  Using Facts in the Playbook

- name: My first play

 hosts: all

 become: true

 tasks:

 - name: Install software

 package:

 name: bash-completion

 state: present

 - name: Show hostname

 debug:

 msg: "This host is {{ ansible_hostname }}"

...

Using the debug module and the msg key, we are able to print text to the

output shown on our console. Variables, including facts, must be included

in double-quoted text strings and surrounded with double brace-brackets

as shown in the code. For each host this is executed upon, we will see both

the static text and the hostname of the managed device being printed on

the controller. Both tasks will run, but only the Show hostname task will

result in action, as the software from the first task is already installed.

Listing 5-4.  Viewing Abbreviated Output from the Debug Module

$ ansible-playbook software.yml

TASK [Show hostname]

ok: [172.16.120.161] => {

 "msg": "This host is controller"

}

ok: [172.16.120.185] => {

 "msg": "This host is client"

Chapter 5 Writing YAML and Basic Playbooks

71

}

ok: [172.16.120.188] => {

 "msg": "This host is ubuntu"

}

To list all facts on a host, we can use an ad hoc command and the

setup module. This could also be run from a Playbook but is most suited

to an ad hoc command that provides a quick, once-only reference. We

have excluded output from the following example due to its verbosity, but

please, do run the command and view the output on your own systems.

Listing 5-5.  Listing All Facts from the Targeted Group or Host

$ ansible ubuntu -m setup

�Installing Multiple Packages
If, like me, you have your favored software that is needed on each system, you

will want to ensure that they are omnipresent. We can install many packages

with a single task execution of the package module, creating a list of package

names. We will now edit the file to include more packages in the initial task.

Listing 5-6.  Installing More Than One Package

$ cat $HOME/inventory

$ vim software.yml

- name: My first play

 hosts: all

 become: true

 tasks:

 - name: Install software

 package:

Chapter 5 Writing YAML and Basic Playbooks

72

 name:

 - bash-completion

 - vim

 - tree

 - nano

 state: present

 - name: Show hostname

 debug:

 msg: "This host is {{ ansible_hostname }}"

...

$ ansible-playbook software.yml

TASK [Install software]

changed: [172.16.120.161]

changed: [172.16.120.188]

changed: [172.16.120.185]

Note I n using multiple package names in this manner, we only
use the underlying package once and it would be similar to yum
install curl vim tree, etc. If we used multiple tasks, extra
time and resources are used, as it becomes similar to running yum
install curl, yum install tree, and so on. We are able to
make both the Playbook and its execution more efficient.

�Improving Text Editors
When we look at the developing YAML file we have been working with,

the real estate needed both on the screen and the book to display it is

increasing. Much of this is because of the default indent level of eight

spaces. YAML files will be easier to work with if we set this to a smaller

Chapter 5 Writing YAML and Basic Playbooks

73

amount, together with other options we can use to speed their editing.

First, we will look at customizing the nano text editor, as the defaults in

CentOS don’t allow for any help with YAML files. The final edit to the

software.yml file should have installed nano on all systems where it was

needed. We will create a .nanorc file in our own home directory on the

controller.

Listing 5-7.  Creating the $HOME/.nanorc Control File for the Nano

Text Editor

$ nano $HOME/.nanorc

set autoindent

set tabsize 2

set tabstospaces

Configuring this control file allows efficient editing of YAML files by

ensuring that we return to the previous indent level with the use of the

return key. We set the tab key to use two spaces and convert tabs to be

saved as spaces. We can test it by creating a simple test Playbook within

the setup directory we have been using previously. When using lists, the

autoindent option will return the cursor to the level used by the dash of

the list item. We will need to use the tab key to indent a further two spaces

lining up with the list item rather than the dash. This changes the indent

level so the next use of the return key will position the cursor at the correct

level. This is one reason to use a tab stop of two spaces in YAML files.

Listing 5-8.  Sample Playbook File to Test .nanorc

$ cd $HOME/ansible/setup; vim nano.yml

- name: Ping

 hosts: all

 gather_facts: false

Chapter 5 Writing YAML and Basic Playbooks

74

 tasks:

 - name: Ping hosts

 ping:

...

Using vim, you may have found that you had some assistance in the

editing. Being at the default the result may not have been the best, but

there are huge improvements that we can make. Returning to our home

directory, we can edit the .vimrc file so that it reads similar to the example

shown:

Listing 5-9.  Sample $HOME/.vimrc File for Editing YAML Files

$ vim $HOME/.vimrc

set tabstop=2 shiftwidth=2 expandtab autoindent

set cursorcolumn cursorline

The first line provides for very similar effects as in the previous .nanorc

file we created earlier. The second line of the new .vimrc file is really very

useful in any format where the indent level is significant, such as the

YAML Playbook that we will be working with. We highlight the vertical

column where the cursor is positioned, and the current horizontal line is

underlined. You may find that the column highlighting may not work on

your terminal, depending on the terminal emulation implemented. The

default PuTTY terminal does not work with the setting but can be adjusted.

It will be fantastic if you knew exactly what you should be seeing when

editing files with these new settings. So, with no thought to the expense,

the great folk at Apress have included the following screen capture. This

capture was taken while editing the previous nano.yml file. The highlighted

column is currently on the list of tasks, the dash. We can use this visual tool

to ensure that a consistent indentation is used correctly throughout the

YAML file. As the YAML becomes longer, this feature becomes increasingly

useful.

Chapter 5 Writing YAML and Basic Playbooks

75

�Going All GUI
If we are using a graphical desktop for the controller, we can make use

of quite powerful IDEs, integrated development environments, to edit

the Playbooks. Using an Ubuntu desktop that includes Microsoft’s Visual

Studio Code in the standard repositories, and editing the previously shown

Playbook, we can see some of the benefits of the IDE.

Figure 5-1.  Editing YAML files with vim and new .vimrc file

Figure 5-2.  Editing YAML files in Visual Studio code

Chapter 5 Writing YAML and Basic Playbooks

76

�Summary
As we draw this chapter into the deepening red skies of our expertise,

we should recall how this chapter will shape our success and career.

Being able to create repeatable configurations for new deployments and

continuous compliant deployments is a feature accessible to us through

Ansible Playbooks. Written in YAML format, they both document the

configuration and enforce compliance with your described needs.

Features of a YAML document include the document header shown

with three dashes and the document footer with triple periods.

•	 ---: YAML document header shown with three dashes

•	 ...: Similarly, in YAML three periods indicate the

document footer.

Lists in YAML are shown with a single dash. We have seen lists used

with the lists of plays in a Playbook and the list of tasks within a play. We

have also seen that we can install multiple packages with a list of package

names.

Listing 5-10.  List of Package Names Used with the Ansible Package

Module

package:

 name:

 - bash-completion

 - vim

 - tree

 - nano

 state: present

Chapter 5 Writing YAML and Basic Playbooks

77

Working with YAML files, we have learned the need to understand and

format the indent level to group related items together. Configuring our

text editor to store tabs as spaces can help ensure that we are able to make

these configurations more easily and accurately.

Rather than using the ansible command to execute Playbooks, we

make use of the ansible-playbook command with the option of syntax

checking. Both commands make use of the same inventory and ansible

configuration. Consider setting your configuration file not to elevate

privileges, as it is easy to elevate from within an Ansible play. Often the

most important reminder is to look at the documentation of a module with

the ansible-doc command and dig out their EXAMPLES section.

Chapter 5 Writing YAML and Basic Playbooks

79© Andrew Mallett 2021
A. Mallett, Red Hat Certified Engineer (RHCE) Study Guide,
https://doi.org/10.1007/978-1-4842-6861-2_6

CHAPTER 6

Managing Users with
Ansible Playbooks
Although we have already created a new user with an ad hoc command,

we haven’t done the same with a Playbook. Creating users within a

Playbook definition means those ad hoc steps become more prescriptive

and will happen in the same way on each execution, importantly, without

omissions. Even though our three hosts have the dedicated Ansible user

account, we can provision new systems as they come online in a consistent

manner using Playbooks.

In this chapter you will learn to write Playbooks to both add and

remove users and even see how we can use a single Playbook to both

create and delete users with logic to control which task executes. We will

revisit group variables to cater to the differences between Ubuntu and

CentOS, and spend time investigating how user passwords work and the

differences between one-way password hash encryption and encryption

mechanisms that can be decrypted. As an RHCE course, I do not want

you to miss out on essential security knowledge that you will benefit from

learning.

https://doi.org/10.1007/978-1-4842-6861-2_6#DOI

80

�Playbook to Manage Users
We will begin by remaining in the CWD, the $HOME/ansible/setup directory,

and start developing a generic Playbook to manage users in general. Later we

will begin work on the Playbook to create the dedicated Ansible user account,

replicating what we have previously worked on in an ad hoc manner from

the CLI. As always, documentation becomes essential to your learning and

quick reference in the exam environment. If you only use the documentation

when you take the exam, then don’t expect to be quick or proficient on

accessing that help. Building great experience with ansible-doc now will pay

huge dividends in the exam, believe me. Take the time to read the complete

list of options provisioned by the user module and you will gain that broad

understanding on how you can use the module to suit your own needs.

�User Module Help
As a start, would you humor me and, for your own benefit, research the

module that should be used when creating users in the Microsoft Windows

OS; this is listed within the user module help. Once you have aced that, I

would like you to research further into the help to determine how you can

disable password-based authentication for a user.

Listing 6-1.  Researching User Module Documentation

$ ansible-doc user

Note  It does not take a lot of time to read the complete user
module help. Invest in yourself and read the options available. As a tip
though, the module for Windows is shown in the first paragraph. To
disable the password, read the help on the password_lock key. You
can practice with this and other options, observing their behavior.

Chapter 6 Managing Users with Ansible Playbooks

81

�Creating a Consistent User Account
We have already created a dedicated user account for the account Ansible,

but was it consistently created in the same way across each system? I am

guessing your answer is either “I don’t know” or “I guess so.” Well, that

is not good enough is it; yes or no? These accounts should be the same

and they are likely to be the same across the same OS. We are using two

distributions, and where we have used both CentOS and Ubuntu the

consistency is less likely to be the same unless each option for a user has

been set. To demonstrate where user defaults vary, let’s run a new module

that accesses the shell running a command with arguments. We can list the

shell associated with each account by listing the seventh field of the /etc/

passwd file for the user.

Listing 6-2.  Listing the Default Shell for the Ansible User

$ cd $HOME/ansible/setup

$ ansible all -m shell -a "getent passwd ansible | cut -f7 -d:"

172.16.120.161 | CHANGED | rc=0 >>

/bin/bash

172.16.120.188 | CHANGED | rc=0 >>

/bin/sh

172.16.120.185 | CHANGED | rc=0 >>

/bin/bash

We have to do a little detective work here, referencing the IP address to

the OS, but the two CentOS hosts use /bin/bash and Ubuntu uses /bin/sh.

Creating an Ansible Playbook to configure the user’s shell will modify the

existing user, replacing only the fields that need to be updated.

Chapter 6 Managing Users with Ansible Playbooks

82

Listing 6-3.  Ensuring a Consistent Shell Within a New Playbook

$ vim user.yml

- name: Manage User Account

 hosts: all

 become: true

 gather_facts: false

 tasks:

 - name: Create User

 user:

 name: ansible

 shell: /bin/bash

 state: present

...

Currently in this Playbook, we set just the name, default shell, and the

state keys. We could omit the state key, as present is the default value for

this module, but why would we? Including this, although not required,

provides better documentation and uses 14 extra keystrokes, (if I can

count). Executing this Playbook will modify the user account in Ubuntu,

where bash is not currently the user’s default shell.

Listing 6-4.  Setting the Default Shell, Ensuring Consistency Across

Distributions

$ ansible-playbook user.yml

TASK [Create User]

ok: [172.16.120.161]

changed: [172.16.120.188]

ok: [172.16.120.185]

$ ansible all -m shell -a "getent passwd ansible | cut -f7 -d:"

172.16.120.161 | CHANGED | rc=0 >>

Chapter 6 Managing Users with Ansible Playbooks

83

/bin/bash

172.16.120.188 | CHANGED | rc=0 >>

/bin/bash

172.16.120.185 | CHANGED | rc=0 >>

/bin/bash

We can quickly understand how using a Playbook can give us more

accurate and consistent results. Even though we can set exactly the same

options with ad hoc commands, they become less convenient when more

options are required.

�Using an Ansible Loop Control
We’ve also previously seen how we can specify more than one package

name within a single task. That option is not available with the user

module though. Thinking about why this is the case, we have to

understand the underlying commands: yum allows for more than one

package but useradd does not allow for multiple users. We can use loop

controls in Ansible to overcome this limitation. The loop is part of the task

and not part of the module, the alignment is with other task items. The

special variable item is used as the value to the user module name key; the

item variable is populated by the iterating the loop control.

Listing 6-5.  Creating Many Users, Edit the Existing Playbook to

Support Three New Users

$ cd $HOME/ansible/setup

$ vim user.yml

- name: Manage User Account

 hosts: all

 become: true

 gather_facts: false

Chapter 6 Managing Users with Ansible Playbooks

84

 tasks:

 - name: Create User

 user:

 name: "{{ item }}"

 shell: /bin/bash

 state: present

 loop:

 - user1

 - user2

 - user3

...

$ ansible-playbook user.yml

TASK [Create User]

changed: [172.16.120.188] => (item=user1)

changed: [172.16.120.188] => (item=user2)

changed: [172.16.120.161] => (item=user1)

changed: [172.16.120.185] => (item=user1)

changed: [172.16.120.188] => (item=user3)

changed: [172.16.120.161] => (item=user2)

changed: [172.16.120.185] => (item=user2)

changed: [172.16.120.161] => (item=user3)

changed: [172.16.120.185] => (item=user3)

From the output of the Playbook execution, which has been slightly

abbreviated for greater clarity, we clearly see the creation of the three

accounts on each system. The Ansible loop control can be used with any

module and is a real tool within your own armory.

Chapter 6 Managing Users with Ansible Playbooks

85

�Deleting Users
Clicking just a few keys, we can easily modify the Playbook to delete those

same users. We will now quickly delete these user accounts before moving

on to look at using variables more creatively.

Listing 6-6.  Deleting Users Using Playbooks

$ vim user.yml

- name: Manage User Account

 hosts: all

 become: true

 gather_facts: false

 tasks:

 - name: Delete User

 user:

 name: "{{ item }}"

 state: absent

 remove: true

 loop:

 - user1

 - user2

 - user3

...

$ ansible-playbook user.yml

Note  If you recall from Chapter 4, remove: true is used to
ensure the user’s home directory and associated mail spool and cron
files are removed.

Chapter 6 Managing Users with Ansible Playbooks

86

�Using Variables and Logic with Playbooks
Returning to managing a single user, we can learn how we can become

quite inventive in creating and deleting users. By not hard coding the

user’s name into the Playbook, we can allow more flexibility. We may also

want the choice to either create or delete the account. Variables passed to

the Playbook at runtime can allow this to happen and easily, as you will

soon learn.

In the following edited Playbook, you will notice that I have added two

tasks to the single play. As part of each task, I have added a when clause that

reads the user_create variable. Please note that we do not enclose the

variable in brace-brackets, as it is the variable is an argument to a clause

that expects a variable. The user’s name for each task comes from another

variable. Both of these variables are passed using the option -e to the

ansible-playbook command.

Listing 6-7.  Building Logic and Choice into the Playbook

$ vim user.yml

- name: Manage User Account

 hosts: all

 become: true

 gather_facts: false

 tasks:

 - name: Create User

 user:

 name: "{{ user_name }}"

 shell: /bin/bash

 state: present

 when: user_create == 'yes'

 - name: Delete User

Chapter 6 Managing Users with Ansible Playbooks

87

 user:

 name: "{{ user_name }}"

 state: absent

 remove: true

 when: user_create == 'no'

...

$ ansible-playbook -e user_create=yes -e user_name=mary user.yml

$ ansible-playbook -e user_create=no -e user_name=mary user.yml

Executing the Playbook with the correct variables allows us the choice

and flexibility so often needed in an agile DevOps work environment.

�Managing User Passwords
When setting passwords for users, we are required to provide the encrypted

hash of the password in the same way that we would need to with the

underlying useradd command. Password hashes are encrypted passwords,

but a hash is a one-way encryption that cannot be decrypted. I feel it is

useful for you to know how authentication with these hashes works and the

elements of the encrypted password that we see in the /etc/shadow file.

�Password Elements
The password stored within the /etc/shadow file contains three elements

allowing for authentication against the password hash. These elements are

delimited with the dollar symbol. We can extract the shadow information

for a user using the getent command.

Chapter 6 Managing Users with Ansible Playbooks

88

Listing 6-8.  Listing a User’s Password

$ sudo getent shadow ansible | cut -f2 -d:

6li9wmHhZW/TUHYeX$WzH596QutESoI5j3GYqoqnkSLlN.9VxdnMt5aix7SX

18AE.1.3rH25quQU1wLrtg3zwXCNNdlQ8Bm6CenJenL/

•	 Encryption Algorithm: The first element of the

password comes directly after the first $ and before

the second. We have the value 6 here, indicating we

use SHA512 encryption to create the hash. A value of 5

would use SHA256 and 1 for the weaker MD5.

•	 SALT: This is a SALTED password, meaning that there

is a randomness added to the password. The SALT is a

16-byte text string that should be randomly generated.

The SALT used here comes directly after the second $

and before the third. The value is:

li9wmHhZW/TUHYeX . The SALT is combined with the

entered password and encryption algorithm to create

the password hash. If the SALT is not randomized, the

password system is weakened. It would be possible

to see users with the same password value, perhaps

accounts that have not been changed from a default

password.

•	 Hash: The final password follows the third $ symbol.

The hash shown here is:

 WzH596QutESoI5j3GYqoqnkSLlN.9VxdnMt5aix7SX18AE.

1.3rH25quQU1wLrtg3zwXCNNdlQ8Bm6CenJenL/ . Use of

the same clear text password, SALT and algorithm will

create exactly the same hash which is the encrypted

form of the password.

Chapter 6 Managing Users with Ansible Playbooks

89

�Authenticating Users
The password hash is secure, as it uses a nonreversable crypt mechanism.

To authenticate users, we have to compare the hash created from the

password that has been entered and used with the SALT from the stored

password and the same algorithm. Neither that SALT nor the algorithm

is encrypted. We can see this in the following examples; first, we show

that when the same password is combined with the default randomly

generated SALT, a unique hash is created each time. We then use the

same SALT value and we are presented with a consistent hash. This is how

authentication works: by checking that same hash is created.

Note  For brevity of output, we use the 128-bit encryption offered
by MD5 rather than the much more secure 512 bits of SHA512. This
is purely to reduce the display space needed for the smaller key and
would not be used in practice.

Listing 6-9.  Using OpenSSL to Demonstrate Authentication

$ openssl passwd -1 Password1

1/EX4F4Hi$YxXViUagixN9DYZ2LvtBM/

$ openssl passwd -1 Password1

$1$7y2QB7Xk$aBdYTlO5vHFY0T61luJeU0

$ openssl passwd -salt 7y2QB7Xk -1 Password1

$1$7y2QB7Xk$aBdYTlO5vHFY0T61luJeU0

By using the same SALT from a stored password, the hash produced

will be the same if we have entered the same password.

Chapter 6 Managing Users with Ansible Playbooks

90

�Generating Passwords in Playbooks
Generating passwords within Ansible Playbook utilizes a Python function,

password_hash. This is quite simple and is demonstrated through a URL

link in the help documentation for the user module. The big issue here is

that within their example a static text SALT is used. This is NOT what you

want to do, as it will create the same hash for the same given password.

Their example also uses an ad hoc command, but this could easily be

adjusted to a Playbook style. Using the debug module to print to the screen,

we can see the generated hash. In our examples, which follow, we show the

Ansible example before adjusting it to use a random SALT. Just as before,

we will be using MD5 rather than the more secure SHA512 for reasons of

compactness of the output:

•	 Example 1: Uses the static SALT of mysecret

•	 Example 2: Uses the same static SALT, and we can see

the same hash is produced

•	 Example 3: It’s actually simpler to use a random SALT,

by excluding the second argument to the password_

hash function. This produces a unique hash for the

entered password.

Listing 6-10.  Using Python to Generate Password Hashes, First with

Static SALT and then Random SALT Values

$ ansible ubuntu -m debug -a "msg={{ 'mypassword' | password_

hash('md5', 'mysecret') }}"

172.16.120.188 | SUCCESS => {

 "msg": "1mysecret$E0Xe5aWuqhm5pgpi4Epcy/"

}

$ ansible ubuntu -m debug -a "msg={{ 'mypassword' | password_

hash('md5', 'mysecret') }}"

Chapter 6 Managing Users with Ansible Playbooks

91

172.16.120.188 | SUCCESS => {

 "msg": "1mysecret$E0Xe5aWuqhm5pgpi4Epcy/"

}

$ ansible ubuntu -m debug -a "msg={{ 'mypassword' | password_

hash('md5') }}"

172.16.120.188 | SUCCESS => {

 "msg": "1.GAXnycZ$CZGGRTWc..KKqFijwWJpW1"

}

Adding this to the Playbook is child’s play for us by this stage. Later in

this book, you will see how to protect the clear text password value, which

will be stored in the YAML file. As well as adding the password key to the

Playbook, we will add the key update_password so we can avoid resetting

a password of a user who has changed their password. We only want to set

the default value for new user passwords.

Listing 6-11.  Setting Passwords with Playbooks for New User

Accounts

$ vim user.yml

- name: Manage User Account

 hosts: all

 become: true

 gather_facts: false

 tasks:

 - name: Create User

 user:

 name: "{{ user_name }}"

 shell: /bin/bash

 state: present

 password: "{{ 'Password1' | password_hash('sha512') }}"

 update_password: on_create

Chapter 6 Managing Users with Ansible Playbooks

92

 when: user_create == 'yes'

 - name: Delete User

 user:

 name: "{{ user_name }}"

 state: absent

 remove: true

 when: user_create == 'no'

...

We now can manage our user accounts by using the single Playbook to

either create or delete the account, as well as understanding the best ways

to manage user passwords. I think that we are about ready to create the

initial setup of Ansible managed hosts with a Playbook.

�Using a Playbook to Create Managed Host
Setup
Maybe you have been wondering why we used the directory name setup

for our project. Well, we have been moving to this point when we can

create a single Playbook to run the initial configuration of the Ansible

controller and managed hosts. Working in a new Playbook, $HOME/

ansible/setup/setup.yml, we will build this up in stages, representing the

building blocks that we have previously run through as ad hoc commands.

The first task is to generate an SSH key pair for our own user account

on the controller. I have been using the user account tux. This key is

ONLY needed on the controller and we specify this within the hosts key

of the play, where previously we have used the group all. The value of the

hosts key should be a string, and as we are using an IP address it needs

to be quoted to avoid misinterpretation. The user’s name can be passed

automatically to the Playbook using the shell variable $USER representing

the logged in user account. We revert to prompting for the sudo password

assuming that we have not yet set passwordless sudo access.

Chapter 6 Managing Users with Ansible Playbooks

93

Listing 6-12.  Ensuring an SSH Key Pair Exists for the Operator User

Account

$ vim setup.yml

- name: Manage User Account

 hosts: "172.16.120.161"

 become: true

 gather_facts: false

 tasks:

 - name: Update User

 user:

 name: "{{ user_name }}"

 state: present

 generate_ssh_key: true

...

$ ansible-playbook -K -e user_name=$USER setup.yml

BECOME password:

I think that you will agree that this is starting to look very good; of

course the key pair will be in place, so nothing will need to be changed.

Next up, we make sure that we have passwordless sudo access. First make

sure that you have the file $HOME/ansible/setup/tux, being the sudo file

to allow tux access to sudo without needing a password. Make sure that

the name used in the file represents the user account that you use on your

controller.

Listing 6-13.  The tux sudo File

$ cat $HOME/ansible/setup/tux

tux ALL=(root) NOPASSWD: ALL

With the file ready, we can add the task to the existing play in the setup.yml.

Chapter 6 Managing Users with Ansible Playbooks

94

Listing 6-14.  Adding the Task to Allow sudo Access Without

Password on the Controller

$ vim setup.yml

- name: Manage User Account

 hosts: "172.16.120.161"

 become: true

 gather_facts: false

 tasks:

 - name: Update User

 user:

 name: "{{ user_name }}"

 state: present

 generate_ssh_key: true

 - name: Password-less access for operator

 copy:

 src: tux

 dest: /etc/sudoers.d/tux...

$ ansible-playbook -K -e user_name=$USER setup.yml

On our controller this file will already be in place, so we should meet

the current configuration.

The next step is to deploy the dedicated account for Ansible to

managed devices. We will need a new play allowing us to specify the hosts

group all. The play will also allow us to set the remote_user key to tux rather

than making changes to the Ansible configuration referring to the ansible

user account. Additionally, we will configure the group membership for

the new user to be a member of the correct administrative group. This will

require adjustment to the inventory variables and allows for a great review

of the inventory commands.

Chapter 6 Managing Users with Ansible Playbooks

95

Listing 6-15.  Creating the Inventory Variables and the new

Dedicated Account

$ echo "admin_group: sudo" >> ~/group_vars/ubuntu

$ echo "admin_group: wheel" >> ~/group_vars/centos

$ ansible-inventory --yaml --list

all:

 children:

 centos:

 hosts:

 172.16.120.161:

 admin_group: wheel

 ansible_connection: local

 172.16.120.185:

 admin_group: wheel

 ubuntu:

 children:

 bionic:

 hosts:

 172.16.120.188:

 admin_group: sudo

 ansible_python_interpreter: /usr/bin/python3

 ungrouped: {}

$ vim setup.yml

- name: Manage User Account

 hosts: "172.16.120.161"

 become: true

 gather_facts: false

 tasks:

 - name: Update User

 user:

Chapter 6 Managing Users with Ansible Playbooks

96

 name: "{{ user_name }}"

 state: present

 generate_ssh_key: true

 - name: Password-less access for operator

 copy:

 src: tux

 dest: /etc/sudoers.d/tux

- name: Manage Dedicated Ansible Account

 hosts: all

 become: true

 gather_facts: false

 remote_user: tux

 tasks:

 - name: Create Ansible Account

 user:

 name: ansible

 state: present

 groups: "{{ admin_group }}"

 password: "{{ 'Password1' | password_hash('sha512') }}"

 update_password: on_create

 comment: Dedicated Ansible Devops Account

 shell: bin/bash

...

$ ansible-playbook -Kk -e user_name=$USER setup.yml

SSH password:

BECOME password[defaults to SSH password]:

The Playbook is really coming along now, although we do meet the

configuration needs. By having the Playbook, we can configure new hosts

in exactly the same consistent manner without extra work. Moving on, we

can now enable SSH authentication to the dedicated account using the

authorized_key module.

Chapter 6 Managing Users with Ansible Playbooks

97

Listing 6-16.  Enabling Key-Based Authentication, Assuming We Are

Using the tux Account on the Controller

$ vim setup.yml

- name: Manage User Account

 hosts: "172.16.120.161"

 become: true

 gather_facts: false

 tasks:

 - name: Password-less access for operator

 copy:

 src: tux

 dest: /etc/sudoers.d/tux

- name: Manage Dedicated Ansible Account

 hosts: all

 become: true

 gather_facts: false

 remote_user: tux

 tasks:

 - name: Create Ansible Account

 user:

 name: ansible

 state: present

 groups: "{{ admin_group }}"

 password: "{{ 'Password1' | password_hash('sha512') }}"

 update_password: on_create

 comment: Dedicated Ansible Devops Account

 shell: /bin/bash

 - name: Install Local User Key

 authorized_key:

 user: ansible

Chapter 6 Managing Users with Ansible Playbooks

98

 state: present

 manage_dir: true

 key: "{{ lookup('file', '/home/tux/.ssh/id_rsa.pub')

}}"

...

$ ansible-playbook -Kk -e user_name=$USER setup.yml
SSH password:

BECOME password[defaults to SSH password]:

The final step is to add the passwordless access to sudo for the

dedicated Ansible account. For us, we already have the file for the account.

We just need to add the last task to the second play. The completed

Playbook is shown in the following code block.

Listing 6-17.  The Final setup.yml

$ vim setup.yml

- name: Manage User Account

 hosts: "172.16.120.161"

 become: true

 gather_facts: false

 tasks:

 - name: Update User

 user:

 name: "{{ user_name }}"

 state: present

 generate_ssh_key: true

 - name: Password-less access for operator

 copy:

 src: tux

 dest: /etc/sudoers.d/tux

- name: Manage Dedicated Ansible Account

 hosts: all

Chapter 6 Managing Users with Ansible Playbooks

99

 become: true

 gather_facts: false

 remote_user: tux

 tasks:

 - name: Create Ansible Account

 user:

 name: ansible

 state: present

 groups: "{{ admin_group }}"

 password: "{{ 'Password1' | password_hash('sha512') }}"

 update_password: on_create

 comment: Dedicated Ansible Devops Account

 shell: /bin/bash

 - name: Install Local User Key

 authorized_key:

 user: ansible

 state: present

 manage_dir: true

 key: "{{ lookup('file', '/home/tux/.ssh/id_rsa.pub')

}}"

 - name: Password-less access for ansible account

 copy:

 src: ansible

 dest: /etc/sudoers.d/ansible

...

$ ansible-playbook -Kk -e user_name=$USER setup.yml

We have now fully documented the steps we ran through with ad hoc

commands. Not only this; these commands are repeatable and correct

as they are now recorded in the Playbook. From now on we can drop the

password prompts, as we have ensured correct SSH key authentication and

passwordless access to privilege escalation.

Chapter 6 Managing Users with Ansible Playbooks

100

�Summary
Wow, that is all the words that I have. Having created the setup.yml Playbook

now, we could easily add new managed hosts without any concerns over

their accurate inclusion in are managed hosts. Everything will be configured

as it has been on the existing hosts. We concentrated on managing users in

this chapter and having reached the end, apart from having created a truly

awesome YAML Playbook, you have learned a whole heap.

Starting with the loop control in Ansible, we saw how we could manage

more than one account with a single task, leading to the when clause that

we could use to examine a variable to determine if the task should run or

not. These variables could be facts from the system or passed to Ansible,

as we used them. In creating users, we had to talk about passwords

and password hashes. These are one-way encrypted files that cannot

be decrypted. We demonstrated how authentication can work where

passwords cannot be decrypted, and the openssl command was a useful

tool used here.

We then transferred the ad hoc commands we used earlier to configure

the managed devices into a Playbook, to document the setup and allow

us to bring in new managed hosts easily without needing to remember

each ad hoc command needed. This truly is a milestone for you, and

the Playbook you have created will prove useful for you within your own

projects.

Chapter 6 Managing Users with Ansible Playbooks

101© Andrew Mallett 2021
A. Mallett, Red Hat Certified Engineer (RHCE) Study Guide,
https://doi.org/10.1007/978-1-4842-6861-2_7

CHAPTER 7

Working with
Variables and Facts
We have already touched upon both variables and facts with previous

examples that we have used and learned. In this chapter we can really

consolidate that knowledge by investigating facts that can be collected or

gathered on managed devices. That includes retrieving items such as the

IP address, hostname, and fully qualified domain name. The previous are

all facts that can be used as variables in the Playbook, either in clauses

to control execution or as values to keys. We will extend the inventory

variables we have used thus far, to allow for package and service name

differences that occur with products such as the Apache HTTPD server. By

the end of this chapter, you will have installed Apache on both CentOS and

Ubuntu using a single task.

�Gathering Facts
Facts are collected automatically by Playbooks unless disabled via the

gather_facts key. It is the Ansible Python module setup that is executed to

gather these facts. From the command, we can see system facts using ad

hoc commands and the setup module. In the first example we display all

facts before filtering the results in the second example.

https://doi.org/10.1007/978-1-4842-6861-2_7#DOI

102

Listing 7-1.  Displaying Facts

$ ansible all -m setup

$ ansible all -m setup -a "filter='*_distribution_*'"

Filters work by using wildcards to represent character ranges in the

same way as file globbing at the command line shell. This can be a useful

alternative to piping the output to grep when the power of a full regular

expression is not required.

�Printing OS Information
Working within a Playbook, we could explicitly run the setup module,

but as long as we have not disabled fact collection with gather_facts:

false, we will be able to use each fact as a variable. We will now create a

new project directory to work within to start looking at software upgrades

across both CentOS and Ubuntu systems.

Listing 7-2.  Creating New Ansible Project to Print OS Details

$ mkdir $HOME/ansible/upgrade ; cd $HOME/ansible/upgrade

$ ansible --version | grep 'config file'

 config file = /home/tux/.ansible.cfg

$ ansible-config dump --only-changed

DEFAULT_BECOME(/home/tux/.ansible.cfg) = True

DEFAULT_BECOME_METHOD(/home/tux/.ansible.cfg) = sudo

DEFAULT_HOST_LIST(/home/tux/.ansible.cfg) = ['/home/tux/

inventory']

DEFAULT_REMOTE_USER(/home/tux/.ansible.cfg) = ansible

$ vim upgrade.yml

- name: Upgrade Systems

 hosts: all

Chapter 7 Working with Variables and Facts

103

 become: true

 gather_facts: true

 tasks:

 - name: Print Host Details

 debug:

 msg: "{{ item }}"

 loop:

 - "{{ ansible_hostname }}"

 - "{{ ansible_distribution }}"

 - "{{ ansible_distribution_version }}"

...

$ ansible-playbook upgrade.yml

Note  We use the loop operator here, but you could also print the one
message with all variables. For us, we can review the loop operator and
reduce page width used by extra long lines. Later in the chapter, we
will look at how we can fold long lines needed within keys.

�Upgrading Systems
It just so happens that my CentOS 8 client system uses 8.0 rather than the

currently available 8.2. I am sure this was just due to the ISO file that was

used to install the client OS, but also indicates how easy it is to have out

of date systems in your environment. We can and will make great use of

these facts to control which systems are updated. In the following task, we

only execute on the CentOS hosts that are not equal to 8.2. The ansible_

distribution_version variable stores this as a text value, which we use in the

comparison. Returning to the upgrade.yml Playbook, we can first remove

the original task that printed the variables before adding the new task

Chapter 7 Working with Variables and Facts

104

to run the package update. You are welcome to keep the first task if you

so wish; we are open here at Apress. The first task is no longer required;

however, the Playbook will still work if you prefer to add a new task and

retain the original.

Tip A when clause can grow quite long, as we can understand. By
using the fold operator >, we are able to span multiple lines without
affecting the clause itself. Don’t forget to indent the folded lines to
two spaces inside of the clause itself.

Listing 7-3.  Updating CentOS Hosts

$ vim upgrade.yml

- name: Upgrade Systems

 hosts: all

 become: true

 gather_facts: true

 tasks:

 - name: Upgrade CentOS

 package:

 name: "*"

 state: latest

 when: >

 ansible_distribution == "CentOS" and

 ansible_distribution_version != "8.2"

...

$ ansible-playbook upgrade.yml

Chapter 7 Working with Variables and Facts

105

Running this Playbook for the first time will update the CentOS 8 client

system. Running it a second time, no update will be required, as both

systems will be at the correct and latest version.

To update the Ubuntu system, we can research the latest 18.04 release,

which is currently 18.04.5. We need to dig into the ansible_lsb.descripton

variable to see this. The following ad hoc command illustrates the ansible_

lsb array, which is available by default on Ubuntu systems.

Listing 7-4.  Decting the Full Ubuntu Version

$ ansible ubuntu -m setup -a "filter=ansible_lsb*"

172.16.120.188 | SUCCESS => {

 "ansible_facts": {

 "ansible_lsb": {

 "codename": "bionic",

 "description": "Ubuntu 18.04.5 LTS",

 "id": "Ubuntu",

 "major_release": "18",

 "release": "18.04"

 }

 },

 "changed": false

}

Note I f we needed the ansible_lsb array on the CentOS host,
we would install the package redhat-lsb-core. We don’t need this
package, so we haven’t installed it.

Chapter 7 Working with Variables and Facts

106

Adding both CentOS and Ubuntu condition groups to the existing

when clause in the Playbook, we will have a single task that could update

both sets of hosts. To control the processing of each set of conditions,

we group related elements with parentheses and combine the two sets

of bracketed condition groups with the logical OR operator. The edited

Playbook follows for you to create and practice with.

Listing 7-5.  Upgrading Both Ubuntu and CentOS in a Single Task

$ vim upgrade.yml

- name: Upgrade Systems

 hosts: all

 become: true

 gather_facts: true

 tasks:

 - name: Upgrade Older Systems

 package:

 name: "*"

 state: latest

 when: >

 (ansible_distribution == "CentOS" and
 ansible_distribution_version != "8.2") or
 (ansible_distribution == "Ubuntu" and
 ansible_lsb.description != "Ubuntu 18.04.5 LTS")

...

We have seen that variables can be read from the inventory, from

the -e option, as well as facts from the systems; however, we can also

define variables within the Playbook itself. These variables are especially

useful to us in an example such as this. Defining the version numbers

early in the Playbook makes it easy to view and edit as required when new

versions are released. Take a look at the updated Playbook in the following

example and I am sure you will get the idea.

Chapter 7 Working with Variables and Facts

107

Listing 7-6.  Setting Variables Inside the Playbook

$ vim ugrade.yml

- name: Upgrade Systems

 hosts: all

 become: true

 gather_facts: true

 vars:

 - ubuntu_version: "Ubuntu 18.04.5 LTS"

 - centos_version: "8.2"

 tasks:

 - name: Upgrade Older Systems

 package:

 name: "*"

 state: latest

 when: >

 (ansible_distribution == "CentOS" and

 ansible_distribution_version != centos_version) or

 (ansible_distribution == "Ubuntu" and

 ansible_lsb.description != ubuntu_version)

...

Being able to check the current version set within the Playbook and

update it easily at the top of the file is very convenient, helping document

the enforced version as well as being super easy to edit. I would highly

recommend executing the Playbook to check your own typing has been

exemplary! The 4-hour exam flies by, and the quicker you are at writing

accurate YAML, the better prepared you are for the exam.

Chapter 7 Working with Variables and Facts

108

�Installing Apache
As we have seen, using the package module, rather than yum or apt, helps

Ansible and our Playbooks maintain that all important agnostic attitude

toward the OS, working across all supported platforms. However, we cannot

cater for differences in the package name, and that is where inventory

variables can race to our aid.

Important A lthough the package module is very helpful, there
is a cost for its simplicity. There are only a very few options to the
package module, as it has to work across many different packagers.
Using the underlying apt or yum module will provide you with more
functionality while losing the agnostic nature of the generic module.
It is important to understand the differences between the generic and
specific module. A quick ansible-doc against the package and
yum modules can help your understanding.

We will now create a new project to deploy the Apache web server.

The package name is httpd on CentOS and apache2 on Ubuntu. First, let’s

update the inventory variables.

Listing 7-7.  Updating the Ansible Inventory Variables to Support

Apache Installation

$ echo "apache_pkg: httpd" >> ~/group_vars/centos

$ echo "apache_pkg: apache2" >> ~/group_vars/ubuntu

$ ansible-inventory --yaml --list

all:

 children:

 centos:

 hosts:

Chapter 7 Working with Variables and Facts

109

 172.16.120.161:

 admin_group: wheel

 ansible_connection: local

 apache_pkg: httpd

 172.16.120.185:

 admin_group: wheel

 apache_pkg: httpd

 ubuntu:

 children:

 bionic:

 hosts:

 172.16.120.188:

 admin_group: sudo

 ansible_python_interpreter: /usr/bin/python3

 apache_pkg: apache2

 ungrouped: {}

We may also choose to print the variables from a specific host; these

will include those variables defined at both the host and group level. If we

choose the controller, we will be able see this behavior, as it is currently the

only system with host specific variables set as well as group variables.

Listing 7-8.  Listing Variables Associated with a Specific Host

$ ansible-inventory --yaml --host 172.16.120.161

admin_group: wheel

ansible_connection: local

apache_pkg: httpd

Having set and confirmed the inventory variables, we are now able to

move on with the new project to install Apache.

Chapter 7 Working with Variables and Facts

110

Listing 7-9.  Creating the New Apache Project

$ mkdir $HOME/ansible/apache

$ cd $HOME/ansible/apache

$ vim simple_apache.yml

- name: Install Apache

 hosts: all

 become: true

 gather_facts: false

 tasks:

 - name: Install Apache Package

 package:

 name: "{{ apache_pkg }}"

 state: present

...

$ ansible-playbook simple_apache.yml

TASK [Install Apache Package]

changed: [172.16.120.185]

changed: [172.16.120.161]

changed: [172.16.120.188]

With this simple single task, we were able to install Apache on the three

systems. Having great planning combined with great software and great

administrators, we are able to conquer the most formidable challenges

placed before us. We also do need to remind ourselves that we have

literally just installed the software and NOT configured the service. This

will come as we start to work our way through the remaining chapters.

Chapter 7 Working with Variables and Facts

111

�Summary
We are now masters of Ansible variables and facts. Having reached the

end of this chapter, you should be pleased and proud with your progress.

The setup module can be used to display facts from our managed devices.

Using the filter argument to the module, we are able to drill to specific

items we need to research. If gather_facts is enabled within a play, the

setup module will automatically run, making the variables available to you.

Variables used outside of a when clause need to be double-quoted and

inside double-brace brackets for good measure:

name: "{{ ansible_package }}"

Variables used with a when clause do not need quoting in the same

way, but text strings do need to be quoted:

when: ansible_distribution == "CentOS"

These variables can come from many locations. This chapter used

inventory variables, play variables, as well as facts. Having discovered

these variables, we were able to see how useful they become in allowing

flexible execution. Making use of when clauses allows conditional

evaluation to determine if a task executes or not. We constructed a

complex clause using both logical OR and logical AND operators. As the

clause becomes longer, we used the fold operation, the >, to allow multiple

indented lines in the clause.

We also used this module to review commands we have previously

used and do not want to forget.

Chapter 7 Working with Variables and Facts

112

Listing 7-10.  Commands Reviewed in This Chapter

$ ansible --version | grep "config file"

$ ansible-config dump --only-changed

$ ansible-inventory --list --yaml

$ ansible-inventory --host 172.16.120.161 --yaml

$ ansible ubuntu -m setup -a "filter=*lsb*"

Chapter 7 Working with Variables and Facts

113© Andrew Mallett 2021
A. Mallett, Red Hat Certified Engineer (RHCE) Study Guide,
https://doi.org/10.1007/978-1-4842-6861-2_8

CHAPTER 8

Working with Files
and Templates
We have been able to deliver the sudoers files for the tux and ansible user

accounts and we are well aware that files can be distributed with Ansible.

Although this is good for some files, it may not be adequate for many

other files. Where files contain many lines and options, we may prefer just

to change the lines that we need and not the complete file. Delivering a

complete file would provide a single monolithic solution, whereas we can

meet a variety of needs by configuring the options that we need for each

given scenario. In this chapter we investigate how we can copy complete

files, dynamically create files with new content, edit files in place with the

lineinfile module, and use Jinja 2 templates to create files meeting more

complex needs.

�The Copy Module
We have already used this module and it has delivered simple small

files to the managed devices. This can be the complete file using the src

arguments to the module or we can create dynamic content using the

content argument.

https://doi.org/10.1007/978-1-4842-6861-2_8#DOI

114

�Using SRC
Having already seen the use of the src argument using the sudoers files, we

will feel confident with it. Let’s extend it just a little by delivering web content

to the newly deployed web servers. As the Apache web service starts after the

installation on Ubuntu, we can easily test the deployment on that host using

curl. We will deliver to all hosts the web content that they need to promote

our company to the world! Using directory_mode: true within the copy

module, we allow the complete directory to be copied.

Listing 8-1.  Copy Web Content from Controller to Managed Devices

$ cd $HOME/ansible/apache ; mkdir web

$ echo "Welcome" > web/index.html

$ echo "Peterborough, UK" > web/contact.html

$ ls web

contact.html index.html

$ vim simple_apache.yml

- name: Install Apache

 hosts: all

 become: true

 gather_facts: false

 tasks:

 - name: Install Apache Package

 package:

 name: "{{ apache_pkg }}"

 state: present

 - name: Copy web content

 copy:

 src: web/*

 directory_mode: true

Chapter 8 Working with Files and Templates

115

 dest: /var/www/html

...

$ ansible-playbook simple_apache.yml

TASK [Copy web content]

changed: [172.16.120.161]

changed: [172.16.120.188]

changed: [172.16.120.185]

$ curl 172.16.120.188 #use ip of ubuntu host

Welcome

�Content Is King
Where a file’s content is quite simple and, most likely short, we can create it

dynamically using the content argument to the copy module. To demonstrate

this, we will create a new project for the /etc/motd file. This is the text file that

is used as the message of the day when you log in to the system. Nobody ever

reads this message, but we feel compelled to create a message for our users. I

don’t know why; it is just one of those SysAdmin things.

Listing 8-2.  Delivering the MOTD File with Ansible

$ mkdir $HOME/ansible/motd ; cd $HOME/ansible/motd

$ vim motd.yml

- name: Manage the /etc/motd file

 become: true

 hosts: all

 gather_facts: true

 tasks:

 - name: Copy /etc/motd

 copy:

 dest: /etc/motd

Chapter 8 Working with Files and Templates

116

 content: |

 This system is managed by Ansible

 The system name is {{ ansible_hostname }}

 The IP address is {{ ansible_default_ipv4.address }}

...

$ ansible-playbook motd.yml

$ ssh ansible@<ubuntu ip> #login via ssh to the ubuntu or

client system

This system is managed by Ansible

The system name is ubuntu

The IP address is 172.16.120.188

Last login: Wed Nov 25 14:16:09 2020 from 172.16.120.161

$ exit #to return to controller

�Differing Fold Operators
In the motd.yml we used the fold operator as |, the vertical bar. Previously,

we had used the fold operator as >, the greater than symbol. So why have

two and what is the difference? Well, those are great questions, which I will

try to answer here.

•	 > : We used this in the when clause where we needed a

single line, even though we had extended across many

lines. Using the > operator, newlines are replaced with

spaces.

•	 | : We have just used this in the motd.yml in the content

argument. We want the content to be on multiple lines

and the | operator maintains the newlines in the folded

string.

Chapter 8 Working with Files and Templates

117

�Editing Files in Place
There will be many files where we want to implement or replace an

existing setting for a file that already exists on the managed device. We

could replace the complete file but that may not be required or necessarily

be desired. It is very easy to imagine two Ansible projects needing to edit

the same configuration file and causing conflicts. Changing only the lines

that we want allows for the coexistence of projects that need to configure

their own independent lines within the same file. As well as avoiding these

configuration collisions, we use less bandwidth in delivering the changes.

Working within a new project for the SSH server, we will ensure

that the root user is not permitted to log in via the service. We already

know that SSH must be configured on managed devices, as we use SSH

to connect to the remote systems. First, we will compare the SSHD

configuration differences that exist between CentOS and Ubuntu. We

manage this using an ad hoc command to search for the desired setting

from the sshd_config.

Listing 8-3.  Searching Current SSHD Settings, Annotate the Output

with the OS of the Given System

$ �ansible all -m shell -a "grep PermitRootLogin /etc/ssh/

sshd_config"

(CentOS)172.16.120.161 | CHANGED | rc=0 >>

PermitRootLogin yes

the setting of "PermitRootLogin without-password".

(CentOS)172.16.120.185 | CHANGED | rc=0 >>

PermitRootLogin yes

the setting of "PermitRootLogin without-password".

(Ubuntu)172.16.120.188 | CHANGED | rc=0 >>

#PermitRootLogin prohibit-password

the setting of "PermitRootLogin without-password".

Chapter 8 Working with Files and Templates

118

Reviewing (posh word for reading) the output, we can see that the

setting is active in CentOS and allows root login. In Ubuntu, the setting is

not active, but the default setting allows root login only when not using

password-based authentication. We want a consistent setting maintained

on all systems that prevents root login via SSH. It is not required that we

have direct access to the root account via SSH and it is certainly not secure,

especially for public facing systems. The lineinfile module will do the exact

job we need to edit this file.

Listing 8-4.  Editing the SSHD Configuration

$ mkdir $HOME/ansible/ssh ; cd $HOME/ansible/ssh

$ vim sshd.yml

- name: Manage SSHD

 hosts: all

 gather_facts: false

 become: true

 tasks:

 - name: Edit SSHD Config

 lineinfile:

 path: /etc/ssh/sshd_config

 regexp: '^PermitRootLogin '

 insertafter: '#PermitRootLogin'

 line: 'PermitRootLogin no'

...

$ ansible-playbook sshd.yml

TASK [Edit SSHD Config] changed: [172.16.120.161]

changed: [172.16.120.188]

changed: [172.16.120.185]

$ �ansible all -m shell -a "grep PermitRootLogin /etc/ssh/

sshd_config"

Chapter 8 Working with Files and Templates

119

172.16.120.161 | CHANGED | rc=0 >>

PermitRootLogin no

the setting of "PermitRootLogin without-password".

172.16.120.188 | CHANGED | rc=0 >>

#PermitRootLogin prohibit-password

PermitRootLogin no

the setting of "PermitRootLogin without-password".

172.16.120.185 | CHANGED | rc=0 >>

PermitRootLogin no

the setting of "PermitRootLogin without-password"

Important  We have edited the file, but we have not restarted the
service, meaning the setting is not effective yet. We will modify the
Playbook in the next chapter to restart the service on a file change.

The lineinfile module is very powerful, so let me step you through the

arguments used to help you understand:

•	 path: This is the simple one, the path on the managed

device of the file to edit.

•	 regexp: If the line is likely to exist, we can search for it,

allowing replacement the current line.

•	 insertafter: If the line does not exist, a new line will

be added to the end of the file or after the line that we

specify here. We will add the line, if required, after the

commented line.

•	 line: This is the line that we dictate must be in the file

and the desired setting we want to implement.

Chapter 8 Working with Files and Templates

120

�Using Templates
We have seen with the message of the day (MOTD) file that we created

earlier, that it is most certainly possible to pass facts and variables into a

file using the content argument to the copy module. Perhaps it did work

for us as, I think, we used just two variables. As the needs and complexity

of the file increases, we may find Jinja 2 templates much more convenient.

We will move back into the $HOME/ansible/motd directory to develop this

further, initially creating the template to house the text and variables.

Listing 8-5.  Building a Jinja 2 Template

$ cd $HOME/ansible/motd

$ vim motd.j2

Welcome to {{ ansible_hostname }}

The system uses:

{{ ansible_distribution }} {{ ansible_distribution_version }}

The IP Address is: {{ ansible_default_ipv4.address }}

The template is a much more convenient method for larger files, as

the variables can be placed inside of the template for ease of layout. This

is great for keeping your Playbook uncluttered and the template the focus

for the variables. Rather than using the copy module, we use the template

module to ensure the variables are rendered correctly at runtime.

Listing 8-6.  Using the Template Module in Playbooks

$ vim motd.yml

- name: Manage the /etc/motd file

 become: true

 hosts: all

 gather_facts: true

 tasks:

Chapter 8 Working with Files and Templates

121

 - name: Copy /etc/motd

 template:

 dest: /etc/motd

 src: motd.j2

...

$ ansible-playbook motd.yml

$ ssh ansible@172.16.120.185

Welcome to client

The system uses:

CentOS 8.2

The IP Address is: 172.16.120.185

Last login: Thu Nov 26 12:10:05 2020 from 172.16.120.161

$ exit

Placing variables and text, including possible configuration items,

in templates will allow for a much more complex projects where setting

values can be populated from variables.

�Summary
In this chapter it was our goal to become Zen Masters of distributing files and

templates within Ansible. How do you feel, and did I help you attain the goal?

Let’s just take a little time to allow all of our emotions to settle and

recount just some of our journey. Start with the five Ansible modules used

in this chapter:

•	 copy

•	 template

•	 lineinfile

•	 shell

•	 package

Chapter 8 Working with Files and Templates

122

Sure, we had seen the package module before, but this time we saw

that the agnostic nature of the module only stretched so far. We needed

to set the inventory variable to assign the correct package name. We had

also used the copy module previously; this time, though, we looked at the

content argument rather than the src argument that we used before. Using

content allows for the file’s content to be defined dynamically within the

Playbook itself. That also means we can render variables that we could

use as we initially did within the MOTD file. It was here we also learned of

the two fold operators, | and >, the former supporting the retention of line

feeds and the latter changing them to spaces.

Perhaps the king of the modules in the chapter, though, is the lineinfile

module, allowing us to edit or add individual lines to a file rather than

replacing it in a wholesale manner. Some, though, would undoubtedly vote

for the template module, which extends the capabilities of copy/content

but storing the variables and text in a Jinja 2 template file. What was your

most useful feature of this chapter? Do let us know.

Chapter 8 Working with Files and Templates

123© Andrew Mallett 2021
A. Mallett, Red Hat Certified Engineer (RHCE) Study Guide,
https://doi.org/10.1007/978-1-4842-6861-2_9

CHAPTER 9

Managing Services
Using Ansible
As an amazing system administrator, you need to be able to face the

differences in Linux distributions and face them with a smile. We have just

installed the Apache web server; on CentOS the associated service did not

start after the installation, whereas it did in Ubuntu. Of course, ultimately,

we would like the service running on all web servers, regardless of the

distribution. Not only are we faced with this issue relating to services; we

have edited the SSHD configuration on all systems using the lineinfile

module, but those changes are not affected until a restart of the service

itself. So, our systems are still at risk. In this chapter we will solve some of

these issues and prepare for future solutions by implementing both the

service and systemd module in Ansible. We will see how we can start and

enable services as needed, as well as stopping and disabling services we do

not need. Critically, for changes in configuration files that affect services,

we can restart the service on a change in the file’s state. This is a new

element to us in Ansible, known as a handler.

https://doi.org/10.1007/978-1-4842-6861-2_9#DOI

124

�The Service Module
In very much the same vein as the package module, the generic service

module can help you manage services without care for the underlying

OS. In just the same manner, this equally helps and hinders us. It is useful

because of the module’s agonistic nature; however, it cannot help with the

specific features of an underlying service manager. The documentation,

ansible-doc service, will print the help on the module and illustrate the

sparse arguments supported. It has the basics, though, and most times we

can make do with this module.

�The Systemd Module
Both Ubuntu 18.04 and CentOS 8 use the more recent systemd service

manager. If we are uncertain of the manager, then Ansible can help us

discover the underlying service manager on any given host. This is supplied

as an Ansible fact waiting to be interrogated by us at any time, as can the

software package manager. Let’s investigate this on all of our systems using

ad hoc commands.

Listing 9-1.  Interrogating Ansible Facts to Determine Managers

$ ansible all -m setup -a "filter=ansible_*_mgr"

172.16.120.188 | SUCCESS => {

 "ansible_facts": {

 "ansible_pkg_mgr": "apt",

 "ansible_service_mgr": "systemd"

 },

 "changed": false

}

172.16.120.161 | SUCCESS => {

 "ansible_facts": {

Chapter 9 Managing Services Using Ansible

125

 "ansible_pkg_mgr": "dnf",

 "ansible_service_mgr": "systemd",

 �"discovered_interpreter_python": "/usr/libexec/

platform-python"

 },

 "changed": false

}

172.16.120.185 | SUCCESS => {

 "ansible_facts": {

 "ansible_pkg_mgr": "dnf",

 "ansible_service_mgr": "systemd",

 �"discovered_interpreter_python": "/usr/libexec/

platform-python"

 },

 "changed": false

}

We can see that all of the systems use systemd as the underlying

manager for services and can be viewed in the fact: ansible_service_mgr.

The differences we see are contained in the ansible_pkg_mgr, where

Ubuntu uses apt and CentOS makes use of dnf. Using the systemd module,

we make available many more features such as masking and unmasking

services that are not available with the service module. Mainly we can

stick with the agnostic and generic service module; after all, what else do

we want to do with a service other than enable/disable it or start/stop it?

Ninety percent of the time the service module is enough. For our Sunday

best and the odd occasion that we need to mask or unmask a service, we

reserve the systemd module.

Chapter 9 Managing Services Using Ansible

126

�Using Ansible Handlers
Handlers are a similar dictionary list within a play to the tasks dictionary.

As the names suggest, they contain a list of handlers rather than tasks.

Simple, really; it is all in the name. A handler, unlike a task, is executed only

when notified by some other task. Many tasks can notify exactly the same

handler, but the handler will only execute once. If there are no tasks that

notify the handler, then it is not executed. Returning to our SSH project, we

can have the SSHD service restart on changes to the configuration file. We

will do this by implementing our first ever handler. Although we know the

SSH service must be running for use to communicate with Ansible, we can

also implement a task to ensure the service is both enabled and started. By

enabled, we mean the service should start automatically upon system boot.

Listing 9-2.  Managing Services and Implementing Handlers

$ cd $HOME/ansible/ssh

$ vim sshd.yml

PLAY RECAP **

*

- name: Manage SSHD

 hosts: all

 gather_facts: false

 become: true

 tasks:

 - name: Ensure SSHD Started and Enabled

 service:

 name: sshd

 enabled: true

 state: started

Chapter 9 Managing Services Using Ansible

127

 - name: Edit SSHD Config

 lineinfile:

 path: /etc/ssh/sshd_config

 regexp: '^PermitRootLogin '

 insertafter: '#PermitRootLogin'

 line: 'PermitRootLogin no '

 notify: restart_sshd

 handlers:

 - name: restart_sshd

 service:

 name: sshd

 state: restarted

......

$ ansible-playbook sshd.yml

TASK [Edit SSHD Config]

changed: [172.16.120.161]

changed: [172.16.120.188]

changed: [172.16.120.185]

RUNNING HANDLER [restart_sshd]

changed: [172.16.120.161]

changed: [172.16.120.188]

changed: [172.16.120.185]

Important P lease take note that we added a space after the word
no in the line argument to the lineinfile module. To notify the handler
the configuration file must change, adding a space changes the file
without any impact to the actual configuration.

Chapter 9 Managing Services Using Ansible

128

�Ensure SSHD Started and Enabled
This first task is not required to implement handlers; please do not think

that we must have a task to enable the service for the handler to operate.

It is likely though, that if we need to restart a service via a handler, we will

also have a task that ensures that the service is enabled and started. Other

possible states for both the service and systemd module include reloaded,

restarted, started, and stopped.

�Edit SSHD Config
This is the task that checks for the presence of the required configuration

line using the lineinfile module. You will notice that we have added an

argument to the task, meaning at the same indentation level as the name

of the task and the module name. The notify argument is used to link

this task to the named handler. The name we supply must exactly match

the name of the handler. To help with this, I always name my handlers in

lowercase and use the underscore to join words in place of spaces. This is

probably a good naming standard for both tasks and handlers.

�The Handler: restart_sshd
Finally, we have the handler as a list item within the handlers dictionary

to the play. We use the same service module referencing the SSHD service.

The state, though, is set to restarted. Using either of the states, restarted or

reloaded (rereads configuration if supported by service), within an Ansible

task would mean that the task would always execute. Having it in an

Ansible handler allows us to execute the module only when required. This

is pure magic and a feature for you to enjoy and take further.

Chapter 9 Managing Services Using Ansible

129

�Handlers Do Not Run when They Are Not Notified
Running the Playbook again, for a second time, we will observe that the

handler does not execute. As there is no need to change the configuration,

the notify option is not called and the handlers sit peacefully, catching

up on some well-deserved rest and recuperation. From the output of the

Playbook, there is no reference to the handler in any way, shape, or form.

Listing 9-3.  When the Handler Is Not Called, There Is No Reference

to It Within the Playbook Output

 $ ansible-playbook sshd.yml

PLAY [Manage SSHD]

TASK [Ensure SSHD Started and Enabled]

ok: [172.16.120.161]

ok: [172.16.120.188]

ok: [172.16.120.185]

TASK [Edit SSHD Config]

ok: [172.16.120.161]

ok: [172.16.120.188]

ok: [172.16.120.185]

�Service Facts
We can gain a list of services that are present on any given system by

collecting them as facts. This lists all services on the system and is

independent of their current state. The setup module gathers our standard

facts collection; for a list of services we need to execute the service_facts

module as an independent task. This can be collected independently of

the setup module and without reference to the status of gather_facts. This

becomes useful to us by allowing control of the execution of subsequent

tasks based on the presence or absence of a service. For example, if we

Chapter 9 Managing Services Using Ansible

130

want to run the Apache web service we may want to first check that the

Nginx web service is masked, so unable to be started. For us, we already

know that the Apache web service has started without issues, but we

cannot be certain of this in a larger environment. We can assume that

mainly the Nginx service will not be present, which means that there

is no point just having a task to mask the Nginx service unit. If we took

this approach, the Playbook would error on that task if the service is not

present. We need the service_facts module and the skill in constructing a

little logic to smooth any potential issues, to make us the Ansible gurus we

have always aimed to be.

Let’s return to the $HOME/ansible/apache project directory where

we can create a new Playbook to explicitly check for and mask the Nginx

service. The task should only run if the Nginx service is present on the

system and does not depend on the current state of that service. We are the

final authority in managing our systems, so let us prove this now!

Listing 9-4.  Masking a Service If It Is Present on the System

$ cd $HOME/ansible/apache

$ vim nginx.yml

- name: Manage masking of NGINX

 hosts: all

 become: true

 gather_facts: false

 tasks:

 - name: Collect service list

 service_facts:

 - name: Mask Nginx

 systemd:

 name: nginx

 masked: true

Chapter 9 Managing Services Using Ansible

131

 state: stopped

 when: "'nginx.service' in ansible_facts.services"

...

$ ansible-playbook nginx.yml

The when clause now requires that we begin strings with double-

quotes, as we did not start the clause with a variable. The service name is

single-quoted to set it apart. The service array, created by the service_facts

module, will contain a list of services on the system. We simply need to

look for nginx.service within the array to determine its presence on the

system. Currently, on all three of our systems, we do not have the Nginx

service, so the task does not need to run.

If we wanted to test the logic that we are using here, we could add

another task that simply prints text to the console, but only on the Ubuntu

system as we now look for the Apache2 service.

Listing 9-5.  Testing Service Logic

$ vim nginx.yml

- name: Manage masking of NGINX

 hosts: all

 become: true

 gather_facts: false

 tasks:

 - name: Collect service list

 service_facts:

 - name: Mask Nginx

 systemd:

 name: nginx

 masked: true

 state: stopped

 when: "'nginx.service' in ansible_facts.services"

Chapter 9 Managing Services Using Ansible

132

 - name: Is Apache service

 debug:

 msg: "This must be Ubuntu!"

 when: "'apache2.service' in ansible_facts.services"

...

$ ansible-playbook nginx.yml

TASK [Is Apache service]

skipping: [172.16.120.161]

skipping: [172.16.120.185]

ok: [172.16.120.188] => {

 "msg": "This must be Ubuntu!"

}

�Summary
Would you believe it? The four horsemen of the Apocalypse now bend

their knees to your superiority and mastery of Ansible. Your use of logic

to control task execution has surpassed anything that you could have

imagined when starting this book. Not only this, you have been able to

choose to restart services but, crucially, only when needed. This is some

form of AI or artificial intelligence that you have added to your Playbooks,

which have become majestic. Your name now is only ever mentioned in

hushed tones and always with absolute reverence.

Within our Playbooks we became used to and familiar with the service

and systemd modules. These can be used to control services with a generic

module and a specific module for systemd used on most modern Linux

distributions. I would suggest erring toward the generic module, so we

avoid errors with non-Linux OSs and older Linux systems such as CentOS

6: systems that do not implement systemd. We should reserve the use

of the specialized systemd module to those special times when we need

access to the specifics that it provisions.

Chapter 9 Managing Services Using Ansible

133

We learned to master the use of handlers within our carefully crafted

Playbooks. Using handlers, we can ensure that they are only executed

when called by another task. In this way we were able to ensure that an

edited SSHD configuration file notifies the handler used to restart the

SSHD service. We created a highly tuned and perfect Playbook to manage

the SSH service on our managed devices.

We did not stop here, no, not by a long way. We want you to be the

reference for Ansible within your organization, the go-to person who can fix

anything Ansible related. To this goal, we extended Ansible standard facts

by using the service_facts module. This created an array or list of services on

the system, allowing us to create the required logic to run tasks related to

services. For us, this meant that we could ensure that only one web service

was ever to be loaded on the device, ensuring that the Nginx web service

was masked or prevented from starting where we needed Apache to run.

Pure genius! That is what I have heard as people walk reverently past your

door now; pure genius! Bask in that glory before moving on to encrypting

sensitive data with Ansible Vault, which we cover next.

Chapter 9 Managing Services Using Ansible

135© Andrew Mallett 2021
A. Mallett, Red Hat Certified Engineer (RHCE) Study Guide,
https://doi.org/10.1007/978-1-4842-6861-2_10

CHAPTER 10

Securing Sensitive
Data with Ansible
Vault
Some data that we need to use within our Playbooks may contain data

that is sensitive and needs to be secured in some way, shape, or form.

Rather than storing this sensitive data in cleartext directly in the Playbook,

we can use ansible-vault to create a cyphertext file that we use with the

Playbook. A simple requirement for this would be the user.yml file that we

created earlier in the $HOME/ansible/setup directory; the user’s password

is stored in the Playbook in cleartext, which is not exactly ideal. By using

a variable for the password, we can include reference to an encrypted

variables file to secure the Playbook operation, allowing us to rest more

peacefully at night.

https://doi.org/10.1007/978-1-4842-6861-2_10#DOI

136

�Creating an External Variables File
Even if there is no need for encryption, we can still make use of part of the

process by referencing an external file where variables are stored. Within

an Ansible play, we already know that we can reference a list of variables.

We saw using variables had become a very convenient way in which we

could set version numbers used when deciding if we needed to update the

distribution or not. If the list of variables is lengthy or is likely to become so,

we may prefer to reference a file. It is most easy to implement this instead of

using the dictionary vars: we use a dedicated task and module include_

vars. Now, if we recall, within the $HOME/ansible/upgrade/upgrade.yml

we made reference to just two variables, so it’s hardly a lengthy list! But if

you would be so kind as to humor me, we can quickly look at how we would

reference an external file. There is no need to encrypt these variables, so we

keep the variables stored as clear text YAML to begin with.

Listing 10-1.  Storing Variables in an External YAML File

$ cd $HOME/ansible/upgrade ; cat upgrade.yml

- name: Upgrade Systems

 hosts: all

 become: true

 gather_facts: true

 vars:

 - ubuntu_version: "Ubuntu 18.04.5 LTS"

 - centos_version: "8.2"

 tasks:

 - name: Upgrade Older Systems

 package:

 name: "*"

 state: latest

Chapter 10 Securing Sensitive Data with Ansible Vault

137

 when: >

 (ansible_distribution == "CentOS" and

 ansible_distribution_version != centos_version) or

 (ansible_distribution == "Ubuntu" and

 ansible_lsb.description != ubuntu_version)

...

$ #we change the embedded variables to external variables

$ echo 'ubuntu_version: "Ubuntu 18.04.5 LTS"' >> version.yml
$ echo 'centos_version: "8.2"' >> version.yml
$ cat version.yml
ubuntu_version: "Ubuntu 18.04.5 LTS"

centos_version: "8.2"

$ vim upgrade .yml

- name: Upgrade Systems

 hosts: all

 become: true

 gather_facts: true

 tasks:

 - name: read the variables file

 include_vars:

 file: version.yml

 - name: Upgrade Older Systems

 package:

 name: "*"

 state: latest

 when: >

 (ansible_distribution == "CentOS" and

 ansible_distribution_version != centos_version) or

 (ansible_distribution == "Ubuntu" and

 ansible_lsb.description != ubuntu_version)

...

Chapter 10 Securing Sensitive Data with Ansible Vault

138

�Encrypt Existing YAML File
When we need a more secure variable data store, we can simply encrypt

the existing file. If the file does not exist, we can create a brand new file

that is encrypted from the start. As we are starting with an existing YAML

variable store, we will encrypt that existing file before we move on to

creating a new encrypted file.

Listing 10-2.  Encrypting an Existing YAML File

$ ansible-vault encrypt version.yml
New Vault password:

Confirm New Vault password:

Encryption successful

$ cat version.yml
$ANSIBLE_VAULT;1.1;AES256

373130346136303133383830363038343932613832396233353837303862613

33166316163393263

6330356337373032646163626331643530346635663030650a3737343264333

33566383039366662

613234363836376631393935396465303839643361616131336566353032396

63064373166333735

6265613935623733620a6563643331343830393533356435623636323334383

03663333033643939

653065663134336430613965616138306531373465336461366438323630303

43537363038393934

633331353037376134336234396366643233633837653038306232656365653

23433363033646335

353733613537363531663130363062333266

$ ansible-vault view version.yml
Vault password:

ubuntu_version: "Ubuntu 18.04.5 LTS"

centos_version: "8.2"

Chapter 10 Securing Sensitive Data with Ansible Vault

139

Having encrypted the file, it has been protected by AES256 bit

encryption, and a password needs to be entered to access the contents.

The view subcommand can be used to see the contents in cleartext, and

we could use the edit subcommand to allow editing of the file after the

password is entered. To execute the Playbook referencing this file, we also

need to supply the password.

Listing 10-3.  Executing the Playbook When Variables Are Encrypted

$ ansible-playbook --ask-vault-pass upgrade.yml

Vault password:

The Playbook can now execute correctly, as the variables are available

to the ansible-playbook command.

�Creating New Encrypted Files
If the encrypted variables do not exist in a YAML file, we can create a new

file directly with ansible-vault. On CentOS the default editor is vim. If we

want the ansible-vault to open with nano or another editor, we can work

with the EDITOR environment variable. Returning to the setup directory

we can create an encrypted file for the user password variable.

Listing 10-4.  Creating a New Encrypted YAML File Bypassing the

Default Editor

$ cd $HOME/ansible/setup

$ EDITOR=nano ansible-vault create private.yml

New Vault password:

Confirm New Vault password (nano will then open)

user_password: Password1

Chapter 10 Securing Sensitive Data with Ansible Vault

140

$ $ ansible-vault view private.yml

Vault password:

user_password: Password1

Having created the new file, we can edit it at any stage using ansible-

vault edit private.yml. Of course, we will need to enter the password

used to encrypt the file. We won’t need to edit the file, but in the real world

this could well be required.

Note T ake great care with the password! Forgetting the password
used will mean that access is lost to that file. NO! Storing on a Post-it
note is not an option!

To make use of this, just as before, we will need to add the additional

task to the Playbook. This time we are working with the user.yml that we

created in the $HOME/ansible/setup directory.

Listing 10-5.  Editing the user.yml

$ vim user.yml

- name: Manage User Account

 hosts: all

 become: true

 gather_facts: false

 tasks:

 - name: Read password variable

 include_vars:

 file: private.yml

 - name: Create User

 user:

 name: "{{ user_name }}"

Chapter 10 Securing Sensitive Data with Ansible Vault

141

 shell: /bin/bash

 state: present

 �password: "{{ user_password | password_hash('sha512') }}"

 update_password: on_create

 when: user_create == 'yes'

 - name: Delete User

 user:

 name: "{{ user_name }}"

 state: absent

 remove: true

 when: user_create == 'no'

...

$ ansible-playbook -e user_name=april -e user_create=yes \

 --ask-vault-pass user.yml

Vault password:

�Read Vault Password
If the interactive method of entering the vault password is not possible,

such as when scheduling a Playbook execution, it is possible to read the

password from a file. I am not a big fan of this method though. To me, it is

a little like the children’s song, “There’s a hole in my bucket.” We are back at

square one, having sensitive data in a cleartext file, but this time we store

the vault password in cleartext. If we are forced to use this as a solution,

then we certainly should ramp up the file security. In the example, we set

the file to be read-only to the file’s owner, using the module of 400.

Chapter 10 Securing Sensitive Data with Ansible Vault

142

Listing 10-6.  Reading the Vault Password from a File

$ echo Password1 > passwd.txt

$ chmod 400 passwd.txt

$ ansible-playbook -e user_name=may \

 -e user_create=yes --vault-password-file=passwd.txt user.yml

�Summary
Protecting sensitive data, such as user passwords, should make an everyday

presence in your Ansible world. You can become the triple-headed Cerberos

and sit guarding your own gates of Hades. Humor put to one side, this is a

serious matter. If any unauthorized access to a Playbook holding sensitive

data—or the key to data such as a password—is gained, the data protection

regulators within your geography are likely to jump on you like a ton of

bricks. This is no longer an internal error, and it becomes reportable.

Encrypting passwords and those default passwords used for Playbooks does

allow you a level of protection while still automating your administration.

The command ansible-vault manages the encryption and

decryption using the AES256 crypt algorithm. We can create new

encrypted files or encrypt existing files. If necessary, we can remove the

encryption altogether using the decrypt subcommand. This returns the file

to cleartext. Should you ever feel that the encryption password has been

compromised, you have the option with the re-key subcommand to specify

a new key and reencrypt the file.

To access the encrypted file from a Playbook, we need to use

the --ask-vault-pass option. Within the Ansible play where the variables are

required, we must use the task module include_vars so we can reference

the variable file. That variable file can be encrypted or unencrypted. Just

because we want to include a variables file, it does not mean that it needs

to be encrypted. Where access to many variables is required, a file may be

the best solution.

Chapter 10 Securing Sensitive Data with Ansible Vault

143© Andrew Mallett 2021
A. Mallett, Red Hat Certified Engineer (RHCE) Study Guide,
https://doi.org/10.1007/978-1-4842-6861-2_11

CHAPTER 11

Implementing a Full
Apache Deployment
With great thanks to the amazing Douglas Adams and “The Hitchhiker’s

Guide to the Galaxy,” we all know that 42 is the ultimate answer—being the

meaning of life, the universe, and everything. I would respectfully suggest

that it may now be Ansible, and in this chapter I hope to persuade you

with a demonstration of how much we can achieve using automation. We

have used many of the tools and elements of Ansible that we need to know,

meaning that we can start on something more powerful. We will work out

everything that we need to do when installing Apache and have Ansible

automate it on both Ubuntu and CentOS Linux distributions.

�Deploying Apache
As I have just mentioned, a deployment of the Apache web server is not

just a single task of installing the package. There are many smaller tasks

that form together to make an awesome configuration where nothing is

ever forgotten. When we look at pretty much the bare minimum in the

deployment, we will need to include the following as tasks:

•	 Deploy the correct Apache package

•	 Start service, especially when we are working with Red

Hat distributions; Debian-based systems usually start

their services in the install

https://doi.org/10.1007/978-1-4842-6861-2_11#DOI

144

•	 Open the correct port in the firewall manager: ufw for

Ubuntu and firewalld for CentOS

•	 Make configuration changes to the distribution-specific

Apache configuration files

•	 Use handlers to restart service on configuration change

•	 Deploy standard web content

•	 Configure DocumentRoot filesystem security

These represent the minimum tasks that we are likely to configure; of

course it could be more, but just think for a moment how useful this will

be. Once you have the list of tasks that you need, you can document the

setup in the Playbook and automate that same configuration.

As we work through this chapter, we will learn new Ansible modules

as well as recapping on previous modules we have learned. As always, we

will ensure that we can repeatedly and correctly deploy the web service

every time. We will be working with a single Playbook containing all

tasks and handlers. Later we will see how using roles can streamline the

Playbook. Rather than repeating the tasks in each and every Playbook

where they are needed, roles store shared code that can be used in many

Playbooks.

As we work through this chapter, the Playbook will grow to many

lines. Rather than showing the complete Playbook file after each edit,

we will list just the recent edits for each section. The complete Playbook

will be listed at the chapter end. Your learning and understanding is my

primary goal, and I want to make each learning step clear to you, which

is why tasks are listed individually. To understand the big picture, the

final completed Playbook helps you see what the final YAML should

look like.

Chapter 11 Implementing a Full Apache Deployment

145

�Apache Playbook
We will move into the $HOME/ansible/apache directory. Within this

directory we have already created the Playbook, which has been used

to deploy the web server and web content. We will start with this file

and improve it as we work through the chapter. I will make a copy of the

existing YAML Playbook before adjusting the new content.

Listing 11-1.  Beginning a Full Apache Deployment

$ cd $HOME/ansible/apache

$ cp simple_apache.yml full_apache.yml

$ vim full_apache.yml

- name: Manage Apache Deployment

 hosts: all

 become: true

 gather_facts: true

 tasks:

 - name: Install Apache Package

 package:

 name: "{{ apache_pkg }}"

 state: present

 - name: Copy web content

 copy:

 src: web/

 directory_mode: true

 dest: /var/www/html

 - name: Start and Enable Apache Service

 service:

Chapter 11 Implementing a Full Apache Deployment

146

 name: "{{ apache_pkg }}"

 state: started

 enabled: true

...

$ ansible-playbook full_apache.yml

Having created the new Playbook, we have made a couple of minor

changes. We have changed the Play title to better suit the tasks we use, and

we have started to collect Ansible facts, which we will use shortly. The new

task we have added ensures that the Apache service is enabled and started.

The service name conveniently matches the package name, so we are able

to make use of the existing variable.

�Dedicated Server Page
We should dedicate some time to templating practice. We can create a new

template within the Apache project directory to deploy to our systems along

with the other web content. The template will reside on the controller but

not in the web directory we previously created, and it is copied using the copy

module; we need the template module to serve Jinja 2 templates. The template

module populates the variable content that we add to the template file.

Listing 11-2.  Deploying a Jinja 2 Template as the server.html

Web Page

$ vim server.j2

This is {{ ansible_hostname }}

We are running {{ ansible_distribution }}

$ vim full_apache.yml

 - name: Custom web content

 template:

 src: server.j2

 dest: /var/www/html/server.html

Chapter 11 Implementing a Full Apache Deployment

147

Note  I would recommend testing the Playbook at each stage,
making it easier to detect and correct typos as they occur rather than
more complex debugging when all changes have been added.

�All About Firewalls
We can test access to the remote systems now. In a previous chapter I was

able to demonstrate access to the Ubuntu system. This worked fine, as

the service had started automatically and by default the firewall was not

enabled in Ubuntu. Having now added the custom page and ensured the

service will be running on all systems, we can test a little further. From the

controller we should be able to access the controller’s web service and

that of Ubuntu, but most likely the firewall will block access on the CentOS

client. The following lists the IP addresses used in my lab for each system:

•	 172.16.120.161: My CentOS controller

•	 172.16.120.185: My CentOS client

•	 172.16.120.188: My Ubuntu host

Listing 11-3.  Testing HTTP Access to the Web Servers

$ curl 172.16.120.161/server.html

This is controller

We are running CentOS

$ curl 172.16.120.188/server.html

This is ubuntu

We are running Ubuntu

$ curl 172.16.120.185/server.html

curl: �(7) Failed to connect to 172.16.120.185 port 80: No route

to host

Chapter 11 Implementing a Full Apache Deployment

148

It would appear that we cannot connect to the client system but,

with a little knowledge of CentOS, we should know that the Firewalld

firewall is active by default. We do gain access on the controller and that

too is CentOS, but remember we are accessing it from the controller and

not remotely. When using Ansible to remedy the situation, we have the

choice to disable the firewall on each system or enable the firewall on each

system. The main target is consistency across all systems, but security also

has to be prominent in this cyber-aware world. Bearing security in mind,

we will choose to enable the firewall on each system; on Ubuntu UFW is

used but disabled and on CentOS Firewalld is used and enabled. To start,

we will add variables to identify the underlying firewall manager.

Listing 11-4.  Updating Inventory Variables

$ echo "firewall_pkg: firewalld" >> $HOME/group_vars/centos

$ echo "firewall_pkg: ufw" >> $HOME/group_vars/ubuntu

$ ansible-inventory --yaml --host 172.16.120.161

admin_group: wheel

ansible_connection: local

apache_pkg: httpd

firewall_pkg: firewalld

$ ansible-inventory --yaml --host 172.16.120.188

admin_group: sudo

ansible_python_interpreter: /usr/bin/python3

apache_pkg: apache2

firewall_pkg: ufw

Now that we have the variables configured, we can configure the

firewalls on our systems. We will ensure the correct firewall package is

installed and the service is running. This is where we can use the firewall_

pkg variable for both the package name and service name. Then, using

the correct module to manage the installed firewall, we enable SSH and

HTTP. This is a great revision for the when clause also.

Chapter 11 Implementing a Full Apache Deployment

149

Listing 11-5.  Enabling the Ubuntu UFW Firewall and Allowing
Access to SSH and HTTP

$ vim full_apache.yml
 - name: Firewall Package
 package:
 name: "{{ firewall_pkg }}"
 state: present
 - name: Firewall Service
 service:
 name: "{{ firewall_pkg }}"
 enabled: true
 state: started
 - name: UFW Ubuntu
 ufw:
 state: enabled
 policy: deny
 rule: allow
 port: "{{ item }}"
 proto: tcp
 loop:
 - "80"
 - "22"
 when: ansible_distribution == "Ubuntu"
 - name: Firewalld CentOS
 firewalld:
 service: "{{ item }}"
 permanent: true
 immediate: true
 state: enabled
 loop:
 - "http"
 - "ssh"

 when: ansible_distribution == "CentOS"

Chapter 11 Implementing a Full Apache Deployment

150

We have written all of these firewall-related tasks in one go. What we

don’t want to do is enable the firewall service and find out that SSH or

TCP port 22 is not enabled in the default settings for the firewall system.

That would lock us and Ansible out of the system. We do usually advocate

testing tasks as we create them; but we also need to be aware of possible

pitfalls in our methodology.

We introduce the ufw and firewalld Ansible modules:

•	 firewalld: Here, we use the permanent and immediate

arguments. Firewalld can implement the permanent

settings by writing to the back-end configuration

files. These settings are not loaded until the service is

restarted, and this is why we also have the immediate

argument to assign the settings to the runtime

configuration.

•	 ufw: The UFW firewall service can be started, but the

configuration can be independently disabled. This was

the default on my Ubuntu system. Within the module

we first enable the firewall. We then set the default

policy to deny. Any packet that does not match an

existing rule will have the default policy applied. This

means that we need to explicitly allow the incoming

traffic that we want to succeed.

�The Apache Configuration File
The Apache directive ServerName used in its configuration is not set

by default and will cause warning in the log files. We can easily resolve

this annoyance by setting the directive with the systems hostname. The

hostname is available through an ansible fact. The location and name of

the Apache configuration files differ, as you may have already guessed,

between Ubuntu and Centos. So, we will start by setting the required

inventory variables.

Chapter 11 Implementing a Full Apache Deployment

151

Listing 11-6.  Setting Variables for the Apache Configuration files

$ �echo "apache_cfg: /etc/httpd/conf/httpd.conf" >> $HOME/group_

vars/centos

$ �echo "apache_cfg: /etc/apache2/sites-enabled/000-default.

conf" >> \

 $HOME/group_vars/ubuntu

$ ansible-inventory --yaml --host 172.16.120.188

admin_group: sudo

ansible_python_interpreter: /usr/bin/python3

apache_cfg: /etc/apache2/sites-enabled/000-default.conf

apache_pkg: apache2

firewall_pkg: ufw

$ ansible-inventory --yaml --host 172.16.120.161

admin_group: wheel

ansible_connection: local

apache_cfg: /etc/httpd/conf/httpd.conf

apache_pkg: httpd

firewall_pkg: firewalld

With the groundwork completed and the variables waiting patiently,

we can configure the Apache server and ensure that we add the handler to

restart the service on a configuration change.

Listing 11-7.  Configuring Apache ServerName

$ vim full_apache.yml

- name: Configure Apache

 lineinfile:

 path: "{{ apache_cfg }}"

 line: "ServerName {{ ansible_hostname }}"

 insertafter: "#ServerName"

 notify:

Chapter 11 Implementing a Full Apache Deployment

152

 - restart_apache
 handlers:
 - name: restart_apache
 service:
 name: "{{ apache_pkg }}"
 state: restarted

�Configure Filesystem Security
The filesystem security for the Apache HTTP server delivered from either
the CentOS or Ubuntu package is not the best. The web server itself will
gain access through rights granted to others. We would be well advised to
remove access to others and allow access through to the Apache user or
group account. This to me seems to be the basics of any security system.
Grant the permissions to smaller groups and not a global group like others.
We can use the file module in Ansible to set standard permissions or use
the acl module to grant permissions though POSIX ACLs. We will use
ACLs, as they offer greater flexibility.

Using POSIX ACLs we can achieve the following filesystem security
advantages:

•	 Default ACL: Adding a default ACL to a directory will
allow all new files created in the directory to apply
the default ACL. New files then can have the correct
permissions without regard to who created the file or
the current UMASK value.

•	 Multiple users and groups: The standard file mode
allows for a single user and a single group to be
assigned permissions. This is why others are used as
an entity quite often, as more than one user or group
would need access. Using an ACL, we can assign
limited or no rights to others and list the required users

or groups independently.

Chapter 11 Implementing a Full Apache Deployment

153

As the web service will use different user accounts across the differing

distributions, we will need to set inventory variables again. On CentOS the

user account is apache and on Ubuntu the account is www-data.

Listing 11-8.  Creating Inventory Variable for the Apache User

Account

$ echo "apache_user: apache" >> $HOME/group_vars/centos

$ echo "apache_user: www-data" >> $HOME/group_vars/ubuntu

$ ansible-inventory --yaml --host 172.16.120.161

admin_group: wheel

ansible_connection: local

apache_cfg: /etc/httpd/conf/httpd.conf

apache_pkg: httpd

apache_user: apache

firewall_pkg: firewalld

$ ansible-inventory --yaml --host 172.16.120.188

admin_group: sudo

ansible_python_interpreter: /usr/bin/python3

apache_cfg: /etc/apache2/sites-enabled/000-default.conf

apache_pkg: apache2

apache_user: www-data

firewall_pkg: ufw

Using the acl module, we can learn something new. We will use this

Ansible module to secure the filesystem used by Apache. We set both

the default ACL on the Apache DocumentRoot and including specific

permissions for the correct Apache account. The account does not need

the write permission and it is not assigned. We remove permissions from

the global group others from both the ACL of the directory and the default

ACL, so new files will not have access to others when created below the

DocumentRoot.

Chapter 11 Implementing a Full Apache Deployment

154

Listing 11-9.  Creating an ACL and Default ACL to Secure Apache

$ vim full_apache.yml

 - name: Secure default ACL for apache user on document root

 acl:

 path: /var/www/html

 entity: "{{ apache_user }}"

 etype: user

 state: present

 permissions: rx

 default: true

 - name: Secure default ACL for others on document root

 acl:

 path: /var/www/html

 entry: default:others::---

 state: present

 - �name: Set read and execute permissions on document root

for apache user

 acl:

 path: /var/www/html

 entity: "{{ apache_user }}"

 etype: user

 state: present

 permissions: rx

 - �name: Set permissions to others to nothing on document

root

 acl:

 path: /var/www/html

 entry: others::---

 state: present

Chapter 11 Implementing a Full Apache Deployment

155

�Full Apache Playbook
There has been a lot that we have written for the Playbook. I am sure that

your keyboards are crying out for rest, but not quite yet. As promised, we

kept the content short by showing just the added elements at each point.

We now list the completed Playbook for you.

Listing 11-10.  Fill Apache Playbook Listing

- name: Manage Apache Deployment

 hosts: all

 become: true

 gather_facts: true

 tasks:

 - name: Install Apache Package

 package:

 name: "{{ apache_pkg }}"

 state: present

 - name: Copy web content

 copy:

 src: web/

 directory_mode: true

 dest: /var/www/html

 - name: Start and Enable Apache Service

 service:

 name: "{{ apache_pkg }}"

 state: started

 enabled: true

 - name: Custom web content

 template:

 src: server.j2

Chapter 11 Implementing a Full Apache Deployment

156

 dest: /var/www/html/server.html

 - name: Firewall Package

 package:

 name: "{{ firewall_pkg }}"

 state: present

 - name: Firewall Service

 service:

 name: "{{ firewall_pkg }}"

 enabled: true

 state: started

 - name: UFW Ubuntu

 ufw:

 state: enabled

 policy: deny

 rule: allow

 port: "{{ item }}"

 proto: tcp

 loop:

 - "80"

 - "22"

 when: ansible_distribution == "Ubuntu"

 - name: Firewalld CentOS

 firewalld:

 service: "{{ item }}"

 permanent: true

 immediate: true

 state: enabled

 loop:

 - "http"

 - "ssh"

 when: ansible_distribution == "CentOS"

Chapter 11 Implementing a Full Apache Deployment

157

 - name: Configure Apache

 lineinfile:

 path: "{{ apache_cfg }}"

 line: "ServerName {{ ansible_hostname }}"

 insertafter: "#ServerName"

 notify:

 - restart_apache

 - name: Secure default ACL for apache user on document root

 acl:

 path: /var/www/html

 entity: "{{ apache_user }}"

 etype: user

 state: present

 permissions: rx

 default: true

 - name: Secure default ACL for others on document root

 acl:

 path: /var/www/html

 entry: default:others::---

 state: present

 - �name: Set read and execute permissions on document root

for apache user

 acl:

 path: /var/www/html

 entity: "{{ apache_user }}"

 etype: user

 state: present

 permissions: rx

 - �name: Set permissions to others to nothing on document

root

 acl:

Chapter 11 Implementing a Full Apache Deployment

158

 path: /var/www/html

 entry: others::---

 state: present

 handlers:

 - name: restart_apache

 service:

 name: "{{ apache_pkg }}"

 state: restarted

...

�Summary
Deploying your services to a mixed deployment environment is always

a little more complex than you think. It is for this reason we use Ansible,

making sure that everything is always completed and nothing is forgotten.

The more time spent in planning all of the elements that make up the

deployment, the better your deployments will be.

During this chapter we have made a full deployment of Apache by

making sure the software is installed and the service started. With host-

based firewalls being more common to mitigate cyber threats, we also

need to make sure that the correct ports for the service are open. For us,

this meant learning the ufw module for Ubuntu and the firewalld module

in CentOS. On all systems, we wanted the HTTP port open (we are not

using HTTPS in the book).

By reviewing the use of the lineinfile module, we could change the

Apache configuration to have the correct ServerName directive configured

to the hostname of each web server. It was good to review this so we could

also see that we can use variables in setting the required line. If you recall,

this is one of my number 1 modules.

Chapter 11 Implementing a Full Apache Deployment

159

We added content to the web servers by copying the content of a

directory on the Ansible controller to each web server, the copy module

and the directory_mode: true argument allowing the complete contents

to be copied. The custom web page we created using a Jinja 2 template

allows specific host information to be displayed. This was delivered with

the template module.

Correcting some of the weaknesses of the filesystem permission in

an Apache deployment, we used the acl module in Ansible to configure

specific permissions for the correct Apache account. This removed the

defaults where others were granted permission to the web page location

known as the DocumentRoot in Apache.

Chapter 11 Implementing a Full Apache Deployment

161© Andrew Mallett 2021
A. Mallett, Red Hat Certified Engineer (RHCE) Study Guide,
https://doi.org/10.1007/978-1-4842-6861-2_12

CHAPTER 12

Simplifying Playbooks
Using Roles
Having everything related to the Apache management in the single Playbook

is convenient to a degree, as we have just one file to work with. It is this single

file that also provides us with a large and complex amount of data in the one

place. By creating smaller code elements, we not only simplify the code, but

we also allow for possible code reuse. We will spend our time in this chapter

investigating a new command to us, ansible-galaxy, which we use to

manage roles. In doing so we may well be able to rewrite some code, such as

the firewall tasks, so they become more flexible and allow for code reuse in

other Playbooks.

�Understanding Roles
Roles contain elements of a Playbook such as tasks, variables, and files that

are collated within a directory. Roles can be created locally to your own

specification or they can be downloaded from the Ansible Galaxy website

(we visit the website in the next chapter). These roles contain the necessary

components of a Playbook but as individual elements. So instead of one

really long Playbook, a role is made from a collection of subdirectories

and files. These represent the tasks, handlers, files, templates, variables,

https://doi.org/10.1007/978-1-4842-6861-2_12#DOI

162

and so on that would otherwise be used in a monolithic Playbook. Roles

are managed via the ansible-galaxy command. Subcommands from the

command are listed as follows:

•	 init: Creates the required structure for a role

•	 list: Lists roles within the path structure

•	 search: Searches for roles on the Galaxy repository

•	 install: Downloads and installs a role from the URL

•	 remove: Removes a role from the system

Roles can be created on a per-user basis in the directory in $HOME/.

ansible/roles or can be shared between users on the controller in the /etc/

ansible/roles or /usr/share/ansible/roles directories. We will not have any

roles on the system to start with; roles are not installed by default with

Ansible. The $HOME/.ansible/roles directory does not exist by default

either, so we do start with a pretty bleak outlook. Don’t worry though, this

will quickly change. Let’s try listing the roles and see what happens:

Listing 12-1.  Listing Ansible Roles

$ ansible-galaxy list

/usr/share/ansible/roles

/etc/ansible/roles

[WARNING]: - the configured path /home/tux/.ansible/roles does

not exist.

OK, so nothing. I did not lie to you and we get the warning that the

directory does not exist. We do not need to do anything at the moment,

as we can create the required directory along with our roles. Speaking of

which, let’s look at our first role and see what ansible-galaxy is all about.

Chapter 12 Simplifying Playbooks Using Roles

163

�Creating Firewall Role
As we have seen with the full_ansible.yml Playbook, the lines required

for the firewall elements are quite extensive. Removing the code from

the Playbook relating to the firewall not only will make the Playbook

more readable and succinct but will additionally allow for code reuse.

Rather than hard-coding the port or service that we want to open up in

the firewall, we will use a variable. This variable can then be populated

within the calling play and not be stored with the role. We really do get the

double benefit with this role straightaway: clarity of code and the ability to

reuse that saved code in other plays and Playbooks. We will work from the

Apache project directory that we have been working within for a little while

and begin by creating a new role for the firewall.

Listing 12-2.  Creating the Firewall Role

$ cd $HOME/ansible/apache

$ ansible-galaxy role init $HOME/.ansible/roles/firewall

- �Role /home/tux/.ansible/roles/firewall was created

successfully

$ $ tree $HOME/.ansible/roles/firewall

/home/tux/.ansible/roles/firewall

├── defaults
│ └── main.yml
├── files
├── handlers
│ └── main.yml
├── meta
│ └── main.yml
├── README.md
├── tasks
│ └── main.yml

Chapter 12 Simplifying Playbooks Using Roles

164

├── templates
├── tests
│ ├── inventory
│ └── test.yml
└── vars
 └── main.yml
 dest: /var/www/html/server.html

$ ansible-galaxy list

/home/tux/.ansible/roles

- firewall, (unknown version)

/usr/share/ansible/roles

/etc/ansible/roles

�Populating the Firewall Role
The firewall role is now created and does show when listing the roles

that we have installed on the system. The role can be shared between

Playbooks and is not limited to any particular YAML file. Using the tree

command, we can see the subdirectory structure and the associated files.

We can add the tasks that should be used with the role to the main.yml

file in the roles’s tasks subdirectory. We only add the tasks and not the

plays to this file. Additionally, we will use a new variable in the task to

define the service we require opening in the firewall. We will not define the

variable in the role, as we want the role to work with any service and not

just Apache. The variable will be set from the calling play in the Playbook.

First, we will create the role content by editing the $HOME/.ansible/roles/

firewall/tasks/main.yml file. The content that we add can be first removed

from the full_apache.yml before being copied to the main.yml. Take care to

remove unnecessary indents from the copied data; each task will now be a

list item at the root level of the file.

Chapter 12 Simplifying Playbooks Using Roles

165

Note I t is probably wise to make a backup copy of the full_apache.
yml before deleting the redundant lines. It is easy to delete too
many lines, and being able to revert to a saved version is always a
comforting option.

Listing 12-3.  Populating the Firewall Role tasks/main.yml File

$ vim $HOME/.ansible/roles/firewall/tasks/main.yml

- name: Firewall Package

 package:

 name: "{{ firewall_pkg }}"

 state: present

- name: Firewall Service

 service:

 name: "{{ firewall_pkg }}"

 enabled: true

 state: started

- name: UFW Ubuntu

 ufw:

 state: enabled

 policy: deny

 rule: allow

 port: "{{ item }}"

 loop:

 - "{{ service_name }}"

 - "ssh"

 when: ansible_distribution == "Ubuntu"

- name: Firewalld CentOS

 firewalld:

Chapter 12 Simplifying Playbooks Using Roles

166

 service: "{{ item }}"

 permanent: true

 immediate: true

 state: enabled

 loop:

 - "{{ service_name }}"

 - "ssh"

 when: ansible_distribution == "CentOS"

...

Note T he ufw module port argument can take a service name or
port number. We standardize on using the service name for ease in
these examples. We always want SSH enabled, which we have hard-
coded to the list of services.

These 31 lines have been removed from the original Playbook and

can now be used independently. This single role can work by opening the

correct port for MySQL, Redis, SMTP, or any required port.

�Updating the Apache Playbook
The original Playbook will still operate without the deleted lines that

relate to the firewall; however, we still want to ensure that the firewall is

configured correctly on each managed device. Within our play, we can

add a new list of roles. We must also set the service_name variable that is

used by the role. Having made sure that we have removed the tasks relating

to the firewall configuration from the full_apache.yml Playbook, we can

reedit it, setting the variable and referencing the role. To reduce the output

display, we list only the play details and the list of roles, not the tasks or

handlers.

Chapter 12 Simplifying Playbooks Using Roles

167

Listing 12-4.  Editing the full_apache.yml Playbook to Reference

the Role

$ vim $HOME/ansible/apache/full_apache.yml

- name: Manage Apache Deployment

 hosts: all

 become: true

 gather_facts: true

 vars:

 - service_name: http

 roles:

 - firewall

We have two new lists: the list of variables and the lists of roles. The firewall

related tasks have been removed, but this is not displayed. Configuring the

service_name variable within this play, we will enable the HTTP port within

the firewall role. We are not limited to just the one port that we open; we

could easily create another play within the same Playbook to set another

port such as MySQL. The variable for each play is independent of the other.

Implementing this process will allow us to deploy a full LAMP, Linux, Apache,

MySQL, and PHP server and reuse shared code, with the firewall role opening

both HTTP and MySQL ports.

�Configure Role for Web Content
It is eminently possible that different web server configurations will need

different web content. Is this a marketing web server or is it an IT web

server? By having different roles for content, we can include the correct

content role with the Apache Playbook. In doing so, we can also learn to

use different elements of the role, and we introduce the files and templates

directory. To deliver the correct files to managed devices, those files should

Chapter 12 Simplifying Playbooks Using Roles

168

be added to the files subdirectory of the role. In delivering the template, we

add the server.j2 file to the role’s templates subdirectory. In this way, the

files and YAML code are better organized and more easily identified and

located. We start by creating a new role called standard_web.

Listing 12-5.  Adding Files and Templates to New Web Content Role

$ ansible-galaxy role init /home/tux/.ansible/roles/standard_web

- �Role /home/tux/.ansible/roles/standard_web was created

successfully

$ �mv $HOME/ansible/apache/web $HOME/.ansible/roles/standard_

web/files/

$ �mv $HOME/ansible/apache/server.j2 \ $HOME/.ansible/roles/

standard_web/templates/

$ tree /home/tux/.ansible/roles/standard_web/

/home/tux/.ansible/roles/standard_web/

├── defaults
│ └── main.yml
├── files
│ └── web
│ ├── contact.html
│ └── index.html
├── handlers
│ └── main.yml
├── meta
│ └── main.yml
├── README.md
├── tasks
│ └── main.yml
├── templates
│ └── server.j2

Chapter 12 Simplifying Playbooks Using Roles

169

├── tests
│ ├── inventory
│ └── test.yml
└── vars
 └── main.yml

Browsing the output from the tree command, we can see how the new

standard_web role should appear with the newly added content. We again

need to work with the main.yml file with the tasks subdirectory. We will

remove the tasks related to content from the full_apache.yml Playbook,

adding them to the standard_web role.

Listing 12-6.  Adding Tasks to the standard_web Role tasks/main.yml

$ vim $HOME/.ansible/standard_web/tasks/main.yml

- name: Copy web content

 copy:

 src: web/

 directory_mode: true

 dest: /var/www/html

- name: Custom web content

 template:

 src: server.j2

 dest: /var/www/html/server.html

We take care in removing these lines from the full_apache.yml Playbook

and adding them to the role. Each task is added as a list item at the root

level of the file’s indentation. Take great care to ensure that you maintain

the correct indentation level for the module and module arguments. The

module should be at the same level as the task name and the arguments

indented below the module. With this very carefully prepared, we can now

return to the full_apache Playbook and include the new role.

Chapter 12 Simplifying Playbooks Using Roles

170

Listing 12-7.  Referencing the Web Content Role from the full_

apache.yml Playbook

$ vim $HOME/ansible/apache/full_apache.yml

- name: Manage Apache Deployment

 hosts: all

 become: true

 gather_facts: true

 vars:

 - service_name: http

 roles:

 - firewall

 - standard_web

We can now start seeing the benefits that we can harvest from using

roles. We have reduced the number of lines within the Playbook, making

it easier to read and manage. These lines still exist but have now been

farmed out to roles, which can be used in many different Playbooks if

required.

�Creating the Apache Role
The tasks and handlers that remain in the full_apache.yml probably can

exist together within the final role. This role will install the web package

and start the service. That service will need the ServerName directive

setting, and we should secure the DocumentRoot. Although they could

be separate, these events should all happen if the web server is installed,

which is why we set these tasks as a single role. As before, these deleted

tasks will be added to the main.yml below the tasks subdirectory of the

new role. We will also be able to add the handler to the new role’s handlers

subdirectory.

Chapter 12 Simplifying Playbooks Using Roles

171

Listing 12-8.  Creating and Populating the Apache Role

$ ansible-galaxy role init $HOME/.ansible/roles/apache

- Role /home/tux/.ansible/roles/apache was created successfully

$ vim $HOME/.ansible/roles/apache/tasks/main.yml

- name: Install Apache Package

 package:

 name: "{{ apache_pkg }}"

 state: present

- name: Start and Enable Apache Service

 service:

 name: "{{ apache_pkg }}"

 state: started

 enabled: true

- name: Configure Apache

 lineinfile:

 path: "{{ apache_cfg }}"

 line: "ServerName {{ ansible_hostname }}"

 insertafter: "#ServerName"

 notify:

 - restart_apache

- name: Secure default ACL for apache user on document root

 acl:

 path: /var/www/html

 entity: "{{ apache_user }}"

 etype: user

 state: present

 permissions: rx

 default: true

- name: Secure default ACL for others on document root

 acl:

Chapter 12 Simplifying Playbooks Using Roles

172

 path: /var/www/html

 entry: default:others::---

 state: present

- �name: Set read and execute permissions on document root for

apache user

 acl:

 path: /var/www/html

 entity: "{{ apache_user }}"

 etype: user

 state: present

 permissions: rx

- name: Set permissions to others to nothing on document root

 acl:

 path: /var/www/html

 entry: others::---

 state: present

$ vim $HOME/.ansible/roles/apache/handlers/main.yml

- name: restart_apache

 service:

 name: "{{ apache_pkg }}"

 state: restarted

$ vim $HOME/ansible/apache/full_apache.yml

- name: Manage Apache Deployment

 hosts: all

 become: true

 gather_facts: true

 vars:

 - service_name: http

 roles:

Chapter 12 Simplifying Playbooks Using Roles

173

 - apache

 - firewall

 - standard_web

We now list the complete full_apache Playbook, which is now just

11 lines long. Yes, just 11 lines where it had previously been 92 lines! The

simplicity of the Playbook is now so beautiful to behold, with each element

being moved to a more concise and specific file.

�Execution Order
If you pay careful attention to the roles that we have now added, we made

sure that the apache role is listed first. If we have tasks and roles listed in

the play, they will play in the order in which they are listed or written in the

play. If the tasks are listed first, they will execute first; if the roles are listed

first, the roles will execute first. Likewise, each role or task is executed

in the order of the list definition. Within our roles, we need to have the

Apache web server installed before we add web content to it. Although

it may not appear to matter with our current systems, as everything was

already in place, on new systems added to the inventory we do need to

take care and consider the execution order.

�Summary
Roles are one of the most useful elements that you will use with Ansible. By

implementing roles, we are making that big step forward to code reuse. We

discard and put behind us the monolithic Playbooks we have created in

the past and we see a new dawn of productivity.

Chapter 12 Simplifying Playbooks Using Roles

174

We became a little familiar with the command ansible-galaxy

to create and list roles. Using the init subcommand, we can create the

filesystem structure needed by the role. This is optional, as we could create

the directories and files ourselves but, frankly, I love the convenience of

not having to create them myself. Adding roles to the $HOME/.ansible/

roles directory allows the roles we create to be available to use from any of

our Playbooks, in much the same way as we use the $HOME/.ansible.cfg

file to share across Playbook projects.

We started by creating a firewall role and making it more useful by

allowing a variable to control the port we need to open. We need to list

the role and the variable that we set within the play for ease of use. Next

we created the web content role, which we use to add the standard web

pages and custom content from the template. This role will make use of

both files and templates, and the role organizes these files within their

own subdirectories. Organization of your code and files is paramount with

roles. Finally, we learned how we can use both tasks and handlers within a

role when we created a role to deploy the Apache web server—tasks being

organized with their own directory, and the same with handlers.

The original line count of the Playbook was reduced from 92 lines to

just 11. Sure, the code has not simply disappeared; it has been added to

three new roles, but we can share these roles between Playbooks. In this

chapter we have learned the basics of roles by creating our own. In the next

chapter we will learn to search and download prewritten roles to save us

the effort. Remember that big retort, why reinvent the wheel?

Chapter 12 Simplifying Playbooks Using Roles

175© Andrew Mallett 2021
A. Mallett, Red Hat Certified Engineer (RHCE) Study Guide,
https://doi.org/10.1007/978-1-4842-6861-2_13

CHAPTER 13

Downloading Roles
We are not limited to the roles that we create ourselves, far from it. We can

download community created roles and freely use them on our own system.

You will find these roles are hosted on the https://galaxy.ansible.

com website, which you can browse from the command line or graphically

through a web browser. In this chapter we will continue developing our

Apache Playbook by adding PHP and MySQL to make a LAMP server, Linux

Apache, MySQL(MariaDB), and PHP.

�Roles and Collections
For the RHCE exam EX294, you should only need to know about roles and

not collections. The current exam objectives state: “This exam is based

on Red Hat Enterprise Linux 8 and Red Hat Ansible Engine 2.8.” We are

using Ansible version 2.9.x and we now have both roles and collections.

Collections are simply, collections of roles, and the technology does not

really change. Collections can make organizing related roles a little easier

and provides a simple single download. We will be working with roles

within this chapter to add PHP and MySQL. This will be a superficial look

at roles but concentrating on searching and downloading the required

roles. We will also be able to look at a couple of new standalone tasks

contained in a code block, so there’s lots to look forward to.

https://doi.org/10.1007/978-1-4842-6861-2_13#DOI
https://galaxy.ansible.com
https://galaxy.ansible.com

176

�Searching Roles From the CLI
When working from the CLI or the command line environment of the

Ansible controller, we can use ansible-galaxy to search for roles located

within the Galaxy repository. If we just search for a module name, we

may find that we have too many results to choose from. Remember that

these are community created. Knowing a reliable author can help, and we

can add the author name to the search. Having located a possible match,

we can use the info subcommand to list more detail. Like always, and

as we have promoted throughout this book, we want you to get hands-

on practice in your own lab environment. This will help you to become

proficient both at work and in the exam.

Listing 13-1.  Searching for Roles from the CLI

$ ansible-galaxy search php

Found 1075 roles matching your search. Showing first 1000.

...

$ ansible-galaxy search --author geerlingguy php

Found 24 roles matching your search:

...

$ ansible-galaxy info geerlingguy.php

...

When looking at the output provided by the info subcommand, the

download count can help you understand the popularity of the role.

The author listed here is very well respected in the community and I

use his modules myself. The command line is OK, but the web front end

to Galaxy offers much more detail on the roles. Browsing the https://

galaxy.ansible.com website is simple and provides access to the role’s

readme file, which is more detailed than the simple info output we see at

the command line. Try visiting the website and locating the same PHP

module.

Chapter 13 Downloading Roles

https://galaxy.ansible.com
https://galaxy.ansible.com

177

�Installing the PHP Role
Installing these oven-ready roles saves us the hassle and time of creating

our own roles. We could certainly install PHP ourselves, but the roles save

us from researching the package names. We can also make changes to the

PHP settings if needed.

•	 php: The PHP script engine for use at the command

line or with a web server

Listing 13-2.  Installing PHP Role on the Ansible Controller Node

$ ansible-galaxy install geerlingguy.php

- downloading role 'php', owned by geerlingguy

- �downloading role from https://github.com/geerlingguy/ansible-

role-php/archive/4.5.1.tar.gz

- �extracting geerlingguy.php to /home/tux/.ansible/roles/

geerlingguy.php

- geerlingguy.php (4.5.1) was installed successfully- Role

$ ansible-galaxy list

/home/tux/.ansible/roles

- firewall, (unknown version)

- standard_web, (unknown version)

- apache, (unknown version)

- geerlingguy.php, 4.5.1

/usr/share/ansible/roles

/etc/ansible/roles

�Investigating PHP Role and Learning Better Coding
The default path to install the role to is $HOME/.ansible/roles/; if you need

to install to a different location, you will need to use the option --roles-

path. We can list the contents of the role using the tree command.

Chapter 13 Downloading Roles

178

Listing 13-3.  Listing the Role

$ tree /home/tux/.ansible/roles/geerlingguy.php/

/home/tux/.ansible/roles/geerlingguy.php/

├── defaults
│ └── main.yml
├── handlers
│ └── main.yml
├── LICENSE
├── meta
│ └── main.yml
├── molecule
│ └── default
│ ├── converge.yml
│ ├── molecule.yml
│ ├── playbook-source.yml
│ └── requirements.yml
├── README.md
├── tasks
│ ├── configure-apcu.yml
│ ├── configure-fpm.yml
│ ├── configure-opcache.yml
│ ├── configure.yml
│ ├── install-from-source.yml
│ ├── main.yml
│ ├── setup-Debian.yml
│ └── setup-RedHat.yml
├── templates
│ ├── apc.ini.j2
│ ├── fpm-init.j2
│ ├── opcache.ini.j2
│ ├── php-fpm.conf.j2

Chapter 13 Downloading Roles

179

│ ├── php.ini.j2
│ └── www.conf.j2
└── vars
 ├── Debian-10.yml
 ├── Debian-9.yml
 ├── Debian.yml
 ├── RedHat.yml
 ├── Ubuntu-16.yml
 ├── Ubuntu-18.yml
 └── Ubuntu-20.yml

Taking our research and learning a little further, we can begin the

journey into writing better code. The tasks directory contains many YAML

files, and not just the main.yml file. To learn how this can work, let’s list

the contents main.yml. It is certainly worth taking our time to look at the

complete file; we just list part of it for clarity of output in the book.

Listing 13-4.  The Tasks default.yml Includes Other YAML Files

$ �grep -A10 Setup $HOME/.ansible/roles/geerlingguy.php/tasks/

main.yml

Setup/install tasks.

- include_tasks: setup-RedHat.yml

 when:

 - not php_install_from_source

 - ansible_os_family == 'RedHat'

- include_tasks: setup-Debian.yml

 when:

 - not php_install_from_source

 - ansible_os_family == 'Debian'

Chapter 13 Downloading Roles

180

We can see that the author, Jeff Geerling, includes additional tasks

from the specialist distribution files working with Red Hat, Ubuntu, and

Debian-based systems. CentOS is part of the Red Hat OS Family. We can

dig further into the Red Hat file and see what will be executed. It is always

worth researching this; after all it is going to be our systems in which the

code runs. We want to be certain that the correct actions will take place,

and we can learn by viewing the code from others. This is a fundamental

premise of open source code.

Listing 13-5.  Listing the Red Hat Tasks

$ cat $HOME/.ansible/roles/geerlingguy.php/tasks/setup-RedHat.yml

- name: Ensure PHP packages are installed.

 package:

 name: "{{ php_packages + php_packages_extra }}"

 state: "{{ php_packages_state }}"

 enablerepo: "{{ php_enablerepo | default(omit, true) }}"

 notify: restart webserver

As the web server needs to be restarted after PHP has been added, we

can see that we notify a handler to complete this. The handler is organized

separately from the tasks in their own directory. We saw this previously

with our own Apache role.

Listing 13-6.  Listing Handlers in the PHP Role

$ cat $HOME/.ansible/roles/geerlingguy.php/handlers/main.yml

- name: restart webserver

 service:

 name: "{{ php_webserver_daemon }}"

 state: restarted

Chapter 13 Downloading Roles

181

 notify: restart php-fpm

 when: php_enable_webserver

- name: restart php-fpm

 service:

 name: "{{ php_fpm_daemon }}"

 state: "{{ php_fpm_handler_state }}"

 when:

 - php_enable_php_fpm

 - php_fpm_state == 'started'

There are many variables in use throughout this role; for example, we

can see the web server that will be restarted is the variable php_webserver_

daemon. We can search this further in the vars subdirectory of the role.

Listing 13-7.  Listing Role Variables

$ grep php_webserver_daemon \

 $HOME/.ansible/roles/geerlingguy.php/vars/RedHat.yml

__php_webserver_daemon: "httpd"

We also can control these variables from our Playbook or inventory.

We will use a variable to ensure that we do link PHP to the web server, for

example. We will see this in the very next section.

�Installing PHP
Now we are, at least, a little familiar with the role and we can add it to the

full_apache.yml Playbook. We will set the PHP variables to link to the web

server and create a simple PHP page so we can test the operation of PHP.

Chapter 13 Downloading Roles

182

Listing 13-8.  Installing PHP from the Role

$ vim $HOME/ansible/apache/full_apache.yml

- name: Manage Apache Deployment

 hosts: all

 become: true

 gather_facts: true

 vars:

 - service_name: http

 - php_enable_webserver: true

 roles:

 - apache

 - firewall

 - standard_web

 - geerlingguy.php

 tasks:

 - name: add php page

 copy:

 dest: /var/www/html/test.php

 content: "<?php phpinfo(); ?>"

After running your Playbook, you will have PHP installed and the web

server will have restarted. It was the variable implemented in the Playbook

that enables the handler to run. To test this, you should use a browser on

your host system and point it to the IP address of your host; for me this

would be: http://172.16.120.161/test.php. You should see a colored

table illustrating the configuration of your web server and PHP.

Note T he test.php file should display correctly on CentOS. There is
a little more work needed on Ubuntu, which we will add later in the
chapter when we investigate code blocks in Ansible.

Chapter 13 Downloading Roles

183

�Adding Extra PHP Modules
In a lab environment we will eventually need to connect from the PHP

code running on Apache through to our database server. Jeff Geerling,

(geerlingguy), does have a role for this but it is not updated for CentOS 8.

We could modify the geerlingguy.php-msql role to suit our needs; however,

it is easy to install the required package. In doing so, we can demonstrate

that we can make use of the handler within the PHP role to restart the web

server after installation of the required module. We do not need to create

our own handler.

The required PHP packages that we need to install for both CentOS 8

and Ubuntu 18.04 are listed as follows:

•	 CentOS 8: php-mysqlnd

•	 Ubuntu 18:04: php7.2-mysql

We are well aware by now of our inventory variables, and it is easy

to add these package names to the correct files group files. This we

demonstrate now. But don’t forget, you are meant to be following along in

your own labs, so don’t just read; you need to read and practice!

Listing 13-9.  Adding Correct PHP MySQL Packages to the Systems,

Allowing PHP to Talk to the Database Server

$ echo "php_mysql: php7.2-mysql" >> $HOME/group_vars/ubuntu

$ echo "php_mysql: php-mysqlnd" >> $HOME/group_vars/centos

$ ansible-inventory --yaml --host 172.16.120.188

admin_group: sudo

ansible_python_interpreter: /usr/bin/python3

apache_cfg: /etc/apache2/sites-enabled/000-default.conf

apache_pkg: apache2

apache_user: www-data

firewall_pkg: ufw

Chapter 13 Downloading Roles

184

php_mysql: php7.2-mysql

$ ansible-inventory --yaml --host 172.16.120.161
admin_group: wheel

ansible_connection: local

apache_cfg: /etc/httpd/conf/httpd.conf

apache_pkg: httpd

apache_user: apache

firewall_pkg: firewalld

php_mysql: php-mysqlnd

$ vim full_apache.yml

- name: Manage Apache Deployment

 hosts: all

 become: true

 gather_facts: true

 vars:

 - service_name: http

 - php_enable_webserver: true

 roles:

 - apache

 - firewall

 - standard_web

 - geerlingguy.php

 tasks:

 - name: add php page

 copy:

 dest: /var/www/html/test.php

 content: "<?php phpinfo(); ?>"

 - name: Install mysql-php

 package:

 name: "{{ php_mysql }}"

 notify: restart webserver

Chapter 13 Downloading Roles

185

This time we set the variables within the group inventory and not

the play itself. The values needed will be different, based on the host’s

distribution, so it is best suited to the inventory. The task will restart the

web server; the handler for that is within the geerlingguy.php role and

there is no need to redefine the handler.

�Code Blocks and Extra Configuration for Ubuntu
Installing Apache on Ubuntu 18.04 does not install the PHP Apache

module by default. We need to install and enable the Apache module.

Ideally, we would add this to the Apache role specifically for Apache, but

there is an argument that would suggest not to install modules in Apache

that you don’t need. Not every Apache server will need to run PHP. For

the moment, we will add tasks to the existing play so we can demonstrate

using code blocks within Ansible. A code block is an additional

indentation level that can contain one or more tasks. We need to add two

additional tasks that we can add to the block, adding the when clause to the

code block to ensure it only runs on Ubuntu. The restriction is defined at

the code block level and will affect all tasks in the block.

Note T he when clause can be added to a code block but the
notify operator is not compatible with a block; we add the notify
operator to each task.

Listing 13-10.  Adding Code Blocks to Finalize Ubuntu Apache PHP

Installation

$ vim full_apache.yml

- name: Manage Apache Deployment

 hosts: all

Chapter 13 Downloading Roles

186

 become: true

 gather_facts: true

 vars:

 - service_name: http

 - php_enable_webserver: true

 roles:

 - apache

 - firewall

 - standard_web

 - geerlingguy.php

 tasks:

 - name: add php page

 copy:

 dest: /var/www/html/test.php

 content: "<?php phpinfo(); ?>"

 - name: Install mysql-php

 package:

 name: "{{ php_mysql }}"

 notify: restart webserver

 - name: Add Apache PHP and Enable on Ubuntu

 block:

 - name: Install Apache PHP Module

 apt:

 name: libapache2-mod-php

 state: present

 notify: restart webserver

 - name: Enable PHP Module

 apache2_module:

 state: present

 name: php7.2

 notify: restart web server

 when: ansible_distribution == "Ubuntu"

Chapter 13 Downloading Roles

187

The Apache module is both installed and enabled with the apt module.

We know we are using this only on Ubuntu, so apt is used rather than

package. As a double-check, we independently enable the module using

the apache2_module. This covers situations where the Apache module is

manually disabled; in this way we ensure that the module is both installed

and enabled, no matter what occurs.

We now have Apache and PHP installed and running on each system.

We will soon install the database server, but for the moment just make sure

you can display the info.php page on each system. Remember, this should

show an extensive page with graphics and colored table columns.

�Install the Database Role
You might notice that I have not been explicit with the Database server that

we are installing. I am not trying to be secretive but will use Jeff Geerling’s

mysql module. On CentOS 8 it will install MariaDB and on Ubuntu 18.04

it will install MySQL. Both will work for us, but we again highlight the

differences in distributions and the advantages of learning Ansible on

more than one Linux flavor.

�Create Variable File
Instead of adding the variables directly to the Playbook as we have done

so far, we will use a vars_file: argument just as we did with ansible-vault.

We do not need an encrypted file to use the vars_file: argument, and this is

demonstrated to you. We do store the MySQL root password in the variable

file, so do consider encrypting the file. The more practice you can gather,

the better prepared you will be for the exam. You have done an awesome

job so far and you do not want to forget anything that you have previously

looked at.

Chapter 13 Downloading Roles

188

Listing 13-11.  Creating Variables for MySQL

$ vim $HOME/ansible/apache ; mkdir vars

$ vim vars/main.yml

mysql_root_password: Password1

mysql_root_password_update: true

mysql_enabled_on_startup: true

mysql_users:

 - name: bob

 host: "%"

 password: Password1

 priv: "*.*:ALL"

The variables are used with a new role that we will download shortly.

Most of the variables are quite self-explanatory, but we do create a new

user on each database server. To aid the creation of that user, we define

a dictionary for each element needed. We set the database user’s name,

we allow access from any host for that user, set their password, and allow

access to all databases. Having an additional account is useful for our

testing, as the MySQL root account should not be able to log on from

anywhere other than the localhost for security reasons.

�Installing the MySQL Role and Implementing
a Database Server
We can now download the mysql role and reference both the role and

variable file from the Playbook. As always, we should test the Playbook

at each stage. So please run the Playbook after editing it; you will be

immensely pleased when you see it run. Believe me; you have this covered!

Chapter 13 Downloading Roles

189

Listing 13-12.  Downloading and Using the mysql Role

$ ansible-galaxy install geerlingguy.mysql

$ vim $HOME/ansible/apache/full_apache.yml

- name: Manage Apache Deployment

 hosts: all

 become: true

 gather_facts: true

 vars:

 - service_name: http

 - php_enable_webserver: true

 vars_files:

 - vars/main.yml

 roles:

 - apache

 - firewall

 - standard_web

 - geerlingguy.php

 - geerlingguy.mysql

 tasks:

 - name: add php page

 copy:

 dest: /var/www/html/test.php

 content: "<?php phpinfo(); ?>"

 - name: Install mysql-php

 package:

 name: "{{ php_mysql }}"

 notify: restart webserver

 - name: Add Apache PHP and Enable on Ubuntu

 block:

 - name: Install Apache PHP Module

Chapter 13 Downloading Roles

190

 apt:

 name: libapache2-mod-php

 state: present

 notify: restart webserver

 - name: Enable PHP Module

 apache2_module:

 state: present

 name: php7.2

 notify: restart web server

 when: ansible_distribution == "Ubuntu"

Testing the Playbook now should show the installation of the Database

server and the creation of the new database user.

�Opening MySQL Firewall Port
We will be able to connect locally as root and bob, but we will need to open

the database port on each system’s firewall to connect as bob remotely.

We can use the existing firewall role that we created earlier. We will create

an additional play to allow us to execute the role again with a new service

definition. The second play can be added to the existing Playbook. For ease

we add it as the first play, but it does not matter if it is the first or second

play. For me, using it as the first play means that I only need to list the top

of the Playbook for you to see what was added.

Listing 13-13.  Adding a New Play to the Existing Playbook

$ vim full_apache.yml

New Play 1

- name: Enable MySQL Port

 hosts: all

 gather_facts: true

Chapter 13 Downloading Roles

191

 become: true

 vars:

 - service_name: mysql

 roles:

 - firewall

Existing Play is now Play 2

- name: Manage Apache Deployment

We have now completed a full LAMP installation and we will be able to

test the database connectivity from the command line. We should be able

to connect as the MySQL bob user to each host from our controller. Adjust

the following to match your own lab IP addresses. We connect as the new

user and list the standard databases that are hosted on each system.

Listing 13-14.  Testing Database Connectivity

$ �mysql -h 172.16.120.188 -u bob -pPassword1 -e "SHOW DATABASES;"

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| performance_schema |

| sys |

+--------------------+

$ �mysql -h 172.16.120.185 -u bob -pPassword1 -e "SHOW DATABASES;"

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| performance_schema |

+--------------------+

Chapter 13 Downloading Roles

192

$ mysql -h 172.16.120.161 -u bob -pPassword1 -e "SHOW DATABASES;"

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| performance_schema |

+--------------------+

I am hoping this was successful for you. If not, carefully read any errors

and check the Playbook and variable files. It is really worthwhile to stick

with this to get this working.

�Summary
Wow, look what you have done! The one Playbook will now reliably

install the full LAMP stack on CentOS 8 and Ubuntu 18.04. Nothing will

be forgotten, and this is repeatably correct. We have met the nirvana of

configuration management; just stop and absorb this a little before you

continue.

We had previously seen that we can create our own roles, and that

was very good for us as we have been honing our Ansible skills. So, it did

make sense that we build on those skills in developing the initial roles

that we created. Now that we have these skills, we can learn that there are

many community-created roles to save our effort. However, if we don’t

understand Ansible, the roles are not so useful, so your learning has not

been wasted in any way, shape, or form.

Chapter 13 Downloading Roles

193

We looked at new modules in this chapter too. We used the apt module

specifically for Ubuntu and the apache_module Ansible module that is

used to enable and disable Apache modules in Ubuntu. This led us to

learning about code blocks, allowing us to isolate tasks to a specific when

clause.

The final solution that we have created is something you should keep

and archive. This is a valuable resource and should not be wasted; you will

want to keep this I am sure for future use.

Chapter 13 Downloading Roles

195© Andrew Mallett 2021
A. Mallett, Red Hat Certified Engineer (RHCE) Study Guide,
https://doi.org/10.1007/978-1-4842-6861-2_14

CHAPTER 14

Configuring Storage
with Ansible
There are many items in Linux, as well as many other systems, that we

can manage using Ansible. We have concentrated on managing the web

server in the demonstrations so far, and I am truly hopeful this has helped

your learning of Ansible configuration management. We will now tack

differently and take a look at managing the storage subsystem in Linux.

We will learn to partition disks, and create logical volumes before creating

filesystems and mounting those filesystems. New from CentOS 7.5 is VDO,

the Virtual Data Optimizer. Using VDO we can learn how to create volumes

that are enabled for compression and data deduplication, and of course

this will be managed with Ansible.

Note  Demonstrations in the chapter will take place using the
controller node only, due to the fact that we need to add additional
block storage to the node. You are welcome to add the storage to
each node or deploy your systems with additional unused storage.

https://doi.org/10.1007/978-1-4842-6861-2_14#DOI

196

�Block Devices
We certainly could add additional virtual disks to our controller to make

more block devices available to us. We can, alternatively, create loopback

devices in Linux implementing virtual block devices. This is easier than

adding external disks, as we perform this all from the Linux command line

where we have available free disk space. My controller defaulted to a 20GB

drive, leaving me 15GB free space, which is more than enough. We will

add additional block devices to support the exercises, using a 5GB disk for

VDO, as a minimum size of 4GB is required.

�Creating Loopback Devices
A loopback device is an internal virtual block device in Linux. We can use

this to mount ISO files to loopback devices as an example. For the labs,

we will create raw files and then connect them as loopback devices. To list

current block devices in Linux, we can use the command lsblk.

Listing 14-1.  Listing Block Devices in Linux from the CLI

$ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 20G 0 disk

├─sda1 8:1 0 1G 0 part /boot
└─sda2 8:2 0 19G 0 part
 ├─cl-root 253:0 0 17G 0 lvm /
 └─cl-swap 253:1 0 2G 0 lvm [SWAP]
sr0 11:0 1 6.7G 0 rom

Reviewing the TYPE column, we see disks, partitions, logical volumes,

and a CD-ROM. Currently we do not have loop devices. If we had

listed loop devices, we could list them independently with the losetup

command. Without loop devices, the output of losetup will be empty.

Chapter 14 Configuring Storage with Ansible

197

Listing 14-2.  Listing Loop Devices in Linux Using losetup

$ losetup

The first step in creating a loop device is to create the back-end file to

use as storage. This is created with either the command dd or fallocate.

We use fallocate because it is quicker.

Listing 14-3.  Creating a 1GB Raw Disk File Using fallocate

$ cd $HOME/ansible ; mkdir disk ; cd disk

$ fallocate -l 1G disk0 # The option is -l for length

$ ls -lh disk0

-rw-rw-r--. 1 tux tux 1.0G Dec 10 13:59 disk0

Reviewing the demonstrated commands, we first create a new Ansible

project directory before creating a 1GB file with fallocate within the disk

project directory. We can now use this raw file to be linked to a loop device.

Currently we do not have any loop devices, making the first available

device /dev/loop0.

Listing 14-4.  Creating Our First Linux Loop Device

$ sudo losetup /dev/loop0 disk0

$ losetup

NAME SIZELIMIT OFFSET AUTOCLEAR RO BACK-

FILE DIO LOG-SEC

/dev/loop0 0 0 0 0 /home/tux/ansible/

disk/disk0 0 512

$ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

loop0 7:0 0 1G 0 loop

sda 8:0 0 20G 0 disk

├─sda1 8:1 0 1G 0 part /boot

Chapter 14 Configuring Storage with Ansible

198

└─sda2 8:2 0 19G 0 part
 ├─cl-root 253:0 0 17G 0 lvm /
 └─cl-swap 253:1 0 2G 0 lvm [SWAP]
sr0 11:0 1 6.7G 0 rom

Listing loop devices with losetup now shows our new block device, as

does the lsblk command. We can use /dev/loop0 in the same way as any

read/write block device. This is where we start to engage with Ansible as

we look at partitioning this device.

�Partitioning Disks and Mounting
Filesystems
We will use Ansible to add a new partition before adding an XFS filesystem

to it and mounting the filesystem to a newly created directory. Mounting

the partition will also add an entry to the /etc/fstab file to persist the

filesystems on reboot. As we are quite familiar with Ansible now, we will

create a complete new Playbook in the disk project directory with all the

required tasks.

Note T he hosts argument in the play should be set to the IP
address of your controller node used in the inventory.

Listing 14-5.  Partitioning Disk and Mounting filesystem with

Ansible

$ vim partition.yml

- name: Partition disk/filesystem/mount

 hosts: 172.16.120.161

 gather_facts: no

Chapter 14 Configuring Storage with Ansible

199

 become: true

 tasks:

 - name: Partition loop0 P1

 parted:

 device: /dev/loop0

 part_start: 0%

 part_end: 50%

 number: 1

 state: present

 - name: Create XFS filesystem on P1

 filesystem:

 dev: /dev/loop0p1

 fstype: xfs

 - name: Create mount point

 file:

 path: "{{ item }}"

 state: directory

 loop:

 - /data

 - /data/p1

 - name: Mount P1 to /data/p1

 mount:

 path: /data/p1

 src: /dev/loop0p1

 fstype: xfs

 state: mounted

$ ansible-playbook partition.yml

$ tail -n1 /etc/fstab

/dev/loop0p1 /data/p1 xfs defaults 0 0

$ mount -t xfs

Chapter 14 Configuring Storage with Ansible

200

/dev/mapper/cl-root on / type xfs

(rw,relatime,seclabel,attr2,inode64,noquota)

/dev/loop0p1 on /data/p1 type xfs (rw,relatime,seclabel,attr2,i

node64,noquota)

Now that we are getting proficient in creating these Playbooks, it is

probably quicker to run these tasks via the Playbook than using the raw

commands at the command line. The Ansible modules used are listed for

you now:

•	 parted: Used in much the same way as the parted

command at the command line. We can use this

module to create and add partitions on a disk.

•	 filesystem: Used to format the block device

•	 file: The file module to ensure the present or absence

of a file and attributes. Here we ensure that they are

directories.

•	 mount: The mount module is used to mount or

unmount filesystems and add or remove them from the

/etc/fstab file.

Note A dding entries to the fstab file should ensure the mounts are
persisted across reboots. This will not be the case with our systems,
as the loop devices created with losetup do not persist the reboot.
It is possible to script this with a new systemd unit file to create the
loop devices on reboot.

Chapter 14 Configuring Storage with Ansible

201

�Managing Logical Volumes
Rather than using complete disks or partitions, LVMs or logical volumes

are often used as an alternative. These are dynamic disks that can easily

be extended in ways impossible with physical disks or partitions. We can

create a copy of the partition.yml Playbook, calling it lvm.yml to have

Ansible manage logical volumes.

Listing 14-6.  Managing Logical Volumes with Ansible Playbooks

$ cp partition.yml lvm.yml

$ vim lvm.yml

- name: Using LVMs

 hosts: 172.16.120.161

 gather_facts: no

 become: true

 tasks:

 - name: Partition loop0 P2

 parted:

 device: /dev/loop0

 part_start: 50%

 part_end: 100%

 number: 2

 flags: [lvm]

 state: present

 - name: Create Volume Group

 lvg:

 vg: vg1

 pvs: /dev/loop0p2

 - name: Create LV

 lvol:

Chapter 14 Configuring Storage with Ansible

202

 lv: lv1
 vg: vg1
 size: 100%FREE
 shrink: false
 - name: Create XFS filesystem on lv1
 filesystem:
 dev: /dev/vg1/lv1
 fstype: xfs
 - name: Create mount point
 file:
 path: "{{ item }}"
 state: directory
 loop:
 - /data
 - /data/lv1
 - name: Mount lv1 to /data/lv1
 mount:
 path: /data/lv1
 src: /dev/vg1/lv1
 fstype: xfs
 state: mounted
$ ansible-playbook lvm.yml
...
$ tail -n1 /etc/fstab
/dev/vg1/lv1 /data/lv1 xfs defaults 0 0
$ mount -t xfs
/dev/mapper/cl-root on / type xfs (rw,relatime,seclabel,attr2,i
node64,noquota)
/dev/loop0p1 on /data/p1 type xfs (rw,relatime,seclabel,attr2,i
node64,noquota)
/dev/mapper/vg1-lv1 on /data/lv1 type xfs (rw,relatime,seclabel

,attr2,inode64,noquota)

Chapter 14 Configuring Storage with Ansible

203

One side effect of copying the file is thinking we have made all the

necessary changes when we haven’t. Take care when editing the Playbook

to make the required changes; these include the device name and partition

number. The edited existing content is highlighted for you in my output.

We can see, though, that managing logical volumes is as easy as managing

physical devices when combined with the Ansible lvg and lvol modules.

Don’t forget with any of these new modules we introduce to research what

can be done, using the ansible-doc lvol command or whatever module

you need help on.

�Managing VDO with Ansible
VDO is one of the new features of RHEL 8 but its actual debut was in RHEL

7.5. Using VDO we can create an extra Kernel layer that sits between the

block device and the filesystem, allowing for data deduplication and

compression.

�Updating a Managed Host
We need to make sure that we have both the VDO tools and the Kernel

module installed. Installing the VDO Kernel module will ensure that we

also have the latest Kernel installed. For this reason, it is best to check

that the system is updated and rebooted to ensure we are booted with the

correct Kernel. This can be done with Ansible, including the reboot, but as

we are working on the controller node, we will drop our own connection

to the Ansible engine on the reboot. In order to demonstrate this, we will

initially use the CentOS 8 client for the update before we do an update

manually on the controller. We will not use this client system for VDO, only

the controller. I merely want to demonstrate the update and reboot and

some additional Ansible features.

Chapter 14 Configuring Storage with Ansible

204

We only want to reboot if the update is needed, so for this we know to

use a handler. By default, handlers will run after all tasks. In a real VDO

deployment, we would need to reboot the managed device if a new Kernel

was added, ensuring the running Kernel matches the version of the Kernel

module. The reboot would need to happen before the Playbook continues

by creating the VDO device. We would ideally have a single Playbook

that performed the update, reboot, and VDO creation. To ensure that the

reboot happens before the remaining VDO tasks, we use the Ansible meta

module to force the reboot handler at the correct time.

As well as learning about the meta module, we want to look at a new way

to use variables. We will run a new task to collect the Kernel version after

the reboot on the client system. Rather than printing the version directly to

the Ansible controllers screen, we can also use the register operator to store

the output in an array variable. This is great for your learning looking at new

options for variable population, as if we haven’t seen enough already!

Listing 14-7.  Rebooting the Client Device After an Update

$ vim update.yml

- name: Update and reboot

 hosts: 172.16.120.185

 gather_facts: no

 become: true

 tasks:

 - name: Update all packages

 package:

 name: '*'

 state: latest

 notify: reboot

 - name: run handlers now

 meta: flush_handlers

Chapter 14 Configuring Storage with Ansible

205

 - name: Collect Kernel
 shell: "uname -r"
 register: kernel_version
 - name: Show Kernel
 debug:
 msg: "The kernel is: {{ kernel_version.stdout }}"
 handlers:
 - name: reboot
 reboot:
$ ansible-playbook update.yml
PLAY [Update and reboot]

TASK [Update all packages]
changed: [172.16.120.185]

RUNNING HANDLER [reboot]
changed: [172.16.120.185]

TASK [Collect Kernel]
changed: [172.16.120.185]

TASK [Show Kernel] **

ok: [172.16.120.188] => {
 "msg": "The kernel is: 4.18.0-240.1.1.el8_3.x86_64"

}

Note T he variable kernel_version is an array storing many
elements, not just stdout. These include the executed command and
start time as examples. If you list the complete variable, you will see
the full content. We just need the output, which is retrieved from
kernel_version.stdout.

Chapter 14 Configuring Storage with Ansible

206

The complete Playbook will run. After the reboot we should see the

printed Kernel version. Running the Playbook again, we should observe

that the reboot does not occur as a handler; it is only executed when the

update occurs.

�Updating the Controller

Note W ith CentOS 8.3 the RAM requirement increases for VDO. If
your test system is running with less than 1GB RAM, I would
recommend increasing the RAM assigned to the VM to 2GB. If
necessary, you can reduce the virtual machines that you have
running now, and make do with just the controller node.

To update the controller, we will manually run yum and then the reboot.

Remember, we are doing this to make sure we have the latest Kernel so

when we add Kernel modules, the versions will match. Before we reboot,

we may choose to comment the two new lines added to the /etc/fstab file.

The loop devices we created will be lost on the reboot. As a quick edit, we

choose to use sed to delete the last line of the file. We run that command

twice, ensuring the two newly added lines are removed. It is a quick edit,

but you need to be certain that you do need to remove the last two lines

and they are what you expect. Take care on your own systems.

Listing 14-8.  Updating the Controller Node and Rebooting

$ sudo sed -i '$d' /etc/fstab

$ sudo sed -i '$d' /etc/fstab

$ sudo yum update -y && reboot

Working at the command line of the controller, we can update the

complete system; we only reboot if the yum command succeeds.

Chapter 14 Configuring Storage with Ansible

207

�Deploying VDO
We will need to create a new raw disk file of at least 5GB for the loop device

that we will use as the underlying storage for VDO. VDO required at least

4GB storage, and much of this space is used as a cache drive to allow

expansion of compressed files if space is limited on the rest of the drive.

Listing 14-9.  Creating Loop Device for VDO

$ cd $HOME/ansible/disk

$ fallocate -l 5G disk1

$ sudo losetup /dev/loop1 disk1

We can now turn out attention to VDO with Ansible. VDO is an

objective of the RHCSA for RHEL 8 and we don’t cover it in detail here.

This is enough to install VDO, and create and mount VDO devices. This is

run only on the controller node.

Listing 14-10.  Managing VDO with Ansible

$ vim vdo.yml

- name: Managing VDO in Ansible

 hosts: 172.16.120.161

 become: true

 gather_facts: false

 tasks:

 - name: Install VDO

 package:

 name:

 - vdo

 - kmod-kvdo

 state: latest

 - name: Start VDO service

Chapter 14 Configuring Storage with Ansible

208

 service:

 name: vdo

 enabled: true

 state: started

 - name: Create VDO device

 vdo:

 name: vdo1

 state: present

 device: /dev/loop1

 logicalsize: 10G

 - name: Format VDO device

 filesystem:

 type: xfs

 dev: /dev/mapper/vdo1

 - name: Create Mount Point

 file:

 path: "{{ item }}"

 state: directory

 loop:

 - /data

 - /data/vdo

 - name: Mount VDO filesystem

 mount:

 path: /data/vdo

 fstype: xfs

 state: mounted

 src: /dev/mapper/vdo1

 opts: defaults,x-systemd.requires=vdo.service

$ ansible-playbook vdo.yml

PLAY [Managing VDO in Ansible]

Chapter 14 Configuring Storage with Ansible

209

TASK [Install VDO]

ok: [172.16.120.161]

TASK [Start VDO service]

ok: [172.16.120.161]

TASK [Create VDO device]

changed: [172.16.120.161]

TASK [Format VDO device]

changed: [172.16.120.161]

TASK [Create Mount Point]

ok: [172.16.120.161] => (item=/data)

changed: [172.16.120.161] => (item=/data/vdo)

TASK [Mount VDO filesystem]

changed: [172.16.120.161]

PLAY RECAP

172.16.120.161 : ok=6 changed=6 unreachable=0

 failed=0 skipped=0 rescued=0 ignored=0

You now have created a VDO device and mounted it to its own

directory. Files added to this directory will be automatically compressed

if space will be gained. For example, adding JPEG images that are already

compressed will not benefit from additional compression, whereas text

log files that are archived here will benefit from compression. If you are

storing virtual machine images or containers in this directory, each block

is examined to see if it’s duplicated elsewhere on the VDO device; if it is,

there is no need to duplicate that block. These are common features of

storage devices these days, and it is nice to see it as a filesystem agnostic

feature of CentOS versions > 7.5.

Chapter 14 Configuring Storage with Ansible

210

�Archiving Files
While we are looking at filesystems, we may as well look at backing up

files and directories using the Ansible archive module. The default format

for the created files is to use the gzip compression algorithm, but other

formats can be used. If you want to create a tgz archive, you must specify a

directory as the source. We may want to use this to create an archive of the

Apache DocumentRoot on each host.

Listing 14-11.  Archiving Directories

$ cd $HOME/ansible/disk

$ vim archive.yml

- name: Backup web

 hosts: all

 become: true

 gather_facts: false

 tasks:

 - name: Archive DocRoot

 archive:

 path: /var/www/html/

 dest: /root/web.tgz

 format: gz

$ ansible-playbook archive.yml

$ ansible all -b -m command -a "tar -tzf /root/web.tgz

warn=false"

 172.16.120.188 | CHANGED | rc=0 >>

 contact.html

 server.html

 test.php

 index.html

Chapter 14 Configuring Storage with Ansible

211

 172.16.120.185 | CHANGED | rc=0 >>

 index.html

 contact.html

 server.html

 test.php

 172.16.120.161 | CHANGED | rc=0 >>

 index.html

 contact.html

 server.html

 test.php

The Playbook creates the archive on each host and we can use the ad

hoc command to list the contents of the archive. We turn off warnings in

this case; if we don’t, Ansible advises us that we could make use of the

unarchive module instead of the tar command. We only want to list the

contents, which is why the command is good.

�Maintenance of Filesystems
Our last objective that we look at in this chapter is parallelism of tasks in

Ansible. Consider how many systems tasks should run on in parallel with

each other. The more resources we have on the controller node, the more

systems we could manage at the same time. The default number of forks is

set to 5; as we have only 3 managed nodes, this has not been a problem for

us. If we were managing 50 hosts, this relatively low value may impact on

the speed of the Playbook execution.

Listing 14-12.  The Default Forks Are Set to 5

$ ansible-config dump | grep -i fork

DEFAULT_FORKS(default) = 5

Chapter 14 Configuring Storage with Ansible

212

Setting forks=20 within the [defaults] header of the ansible.cfg would

raise the number of nodes that could be managed at a single time. As

well as controlling this setting globally in the ansible.cfg, we may want to

control this for tasks within a play, for example, if we needed to perform

some maintenance of a filesystem. One reason could be because we want

to secure the filesystems mount point. This would be three tasks:

•	 Unmount filesystem

•	 Change the mode on the mount point

•	 Remount the filesystem

We should make sure that the mount point directory is secured

before the filesystem is mounted. The unmounted directory should

only be accessible to the root user. When the directory is mounted, the

permissions from the root of the mounted filesystem replace those of the

unmounted directory. In this way we prevent users from storing files in the

directory when it is not mounted.

We will observe the default behavior that each task runs on the three

hosts before moving to the next task. This would mean the three hosts

would be simultaneously unavailable, even if only for a few seconds.

We can configure the play to ensure that the complete play runs on just

one node before progressing to the next node, allowing only one node’s

filesystem to be unavailable at any one time. We will test this with a simple

debug message, first using the defaults and then adjusting the serial value

in the play.

Listing 14-13.  By Default, Each Task Is Executed on Each Node

Before Moving On

$ cd $HOME/ansible/disk

$ vim serial.yml

- name: Serial demo

Chapter 14 Configuring Storage with Ansible

213

 hosts: all

 become: false

 gather_facts: false

 tasks:

 - name: task1

 debug:

 msg: "output1"

 - name: task2

 debug:

 msg: "output2"

$ ansible-playbook serial.yml

PLAY [Serial demo]

TASK [task1]

ok: [172.16.120.161] => {

 "msg": "output1"

}

ok: [172.16.120.185] => {

 "msg": "output1"

}

ok: [172.16.120.188] => {

 "msg": "output1"

}

TASK [task2] ok: [172.16.120.185] => {

 "msg": "output2"

}

ok: [172.16.120.161] => {

 "msg": "output2"

}

ok: [172.16.120.188] => {

 "msg": "output2"

}

Chapter 14 Configuring Storage with Ansible

214

Using the default settings, we can see that the first task runs on all

nodes before the second task is executed on all nodes. If it is important

that tasks in the play all run on each node before moving on to the next, we

can modify the Playbook.

Listing 14-14.  Ensuring All Tasks Complete on a Node Before

Progressing to the Next Node

$ cd $HOME/ansible/disk

$ vim serial.yml

- name: Serial demo

 hosts: all

 become: false

 gather_facts: false

 serial: 1

 tasks:

 - name: task1

 debug:

 msg: "output1"

 - name: task2

 debug:

 msg: "output2"$ ansible-playbook serial.yml

PLAY [Serial demo]

TASK [task1]

ok: [172.16.120.161] => {

 "msg": "output1"

}

TASK [task2]

ok: [172.16.120.161] => {

 "msg": "output2"

}

Chapter 14 Configuring Storage with Ansible

215

PLAY [Serial demo]

TASK [task1]

ok: [172.16.120.185] => {

 "msg": "output1"

}

TASK [task2]

ok: [172.16.120.185] => {

 "msg": "output2"

}

PLAY [Serial demo]

TASK [task1]

ok: [172.16.120.188] => {

 "msg": "output1"

}

TASK [task2]

ok: [172.16.120.188] => {

 "msg": "output2"

}

We can see the play listed three times now instead of once. The play is

executed on one node at a time with the serial: 1 setting. This could be a

higher value or a percentage value if they were appropriate.

�Summary
Ansible is a full-featured configuration management system. Although

we have looked mainly at a LAMP deployment in the book so far, there

are many more elements of Linux that we can manage. Of course, outside

Chapter 14 Configuring Storage with Ansible

216

of Linux there are more pastures to investigate. Although only looking at

Linux in this course, we can expand to investigate storage, and this is what

this chapter was dedicated to.

In trekking through Linux storage with Ansible, we discovered many

new Ansible modules. These included:

•	 parted: Partition disks

•	 filesystem: Create filesystems on devices

•	 file: We have used the file module before, but where we

could see the state of directory.

•	 mount: Mount filesystems and write to /etc/fstab

•	 lvg: Manage volume groups in LVM

•	 lvol: Manage Volumes in LVM

•	 vdo: Create VDO devices

•	 meta: Manage Ansible meta information. We used it to

force handlers to run ahead of remaining tasks.

•	 archive: Backup files and directories

Not only did we look at storage, we could see the use of the register

operator to store output of a task in a variable for later use. We also

reminded ourselves of the order in which handlers run, after all tasks.

Where we need a reboot to happen before other tasks, we can use the

meta Ansible module and flush_handlers as a task directly after the reboot

task. In this way the complete Playbook can run, but tasks that require the

reboot can wait for the device reboot before completing.

We finished up looking at how we can control the amount of nodes

managed at any one time. We may need to increase this default value of

five nodes when we want faster performance or, as we did, by decreasing

the serialization so that the complete play executes on one node at a time

to suit availability needs.

Chapter 14 Configuring Storage with Ansible

217© Andrew Mallett 2021
A. Mallett, Red Hat Certified Engineer (RHCE) Study Guide,
https://doi.org/10.1007/978-1-4842-6861-2_15

CHAPTER 15

Managing Scheduled
Tasks with Ansible
In this last chapter of the RHCE Study Guide, we concentrate on the final

small exam objectives where you need to know how to create and manage

scheduled tasks with Ansible in Linux. This may be with either atd or

crond, where atd is great for scheduling ad hoc Linux commands and

crond for scheduling jobs that need to be run on a regular interval. For

simplicity you can target just your Ansible controller, but we will target all

hosts and include both CentOS and Ubuntu in the examples.

�Ad Hoc Linux Jobs with ATD
The at daemon (atd) allows you to schedule jobs in Linux that need to run

at irregular intervals, perhaps even just once, such as when you need to

schedule the migration of data between servers over a holiday period.

With a minimal install of CentOS 8 and Ubuntu 18.04, the service is

not installed. We will, of course, add this and ensure that it is running

before creating jobs. It would be worthwhile creating a role to install and

configure the atd so we can reference this from any Playbook needing to

create a scheduled at job.

https://doi.org/10.1007/978-1-4842-6861-2_15#DOI

218

�Creating the Ansible Role to Manage ATD
We should be experts at creating roles now with ansible-galaxy, and this

also works as a great memory-jogger.

Listing 15-1.  Creating the ATD Role

$ ansible-galaxy role init /home/tux/.ansible/roles/atd

- Role $HOME/.ansible/roles/atd was created successfully

$ vim $HOME/.ansible/roles/atd/tasks/main.yml

- name: Install AT

 package:

 name: at

 state: present

- name: Manage ATD

 service:

 name: atd

 enabled: true

 state: started

�Playbook to Create Jobs in At
The role for atd is made simple, as the package and service names are

consistent across our distributions. It is still well worth creating the role,

as potentially we may need to create several different Playbooks needing

to schedule at jobs. The role means that we can make use of the one lump

of code in each required Playbook. The RHCSA covers the creation of

scheduled tasks with at in more detail, but suffice it to say at is used to

schedule jobs that may only need to run once rather than regularly. We

can schedule jobs using a full date and time or with abbreviations such as

Tuesday for next Tuesday. We don’t have quite as much flexibility within

Chapter 15 Managing Scheduled Tasks with Ansible

219

Ansible, and we are limited to a count of units. We specify that the job

should run based on the count of the specified units. If we wanted a job to

run tomorrow, we would specify count: 1 and units: days.

Listing 15-2.  Creating at Jobs with Ansible

$ mkdir $HOME/ansible/at ; cd $HOME/ansible/at

$ vim at.yml

- name: Create at job

 hosts: all

 become: true

 gather_facts: false

 roles:

 - atd

 tasks:

 - name: backup users database tomorrow

 at:

 command: �'tar -czf /root/users.tgz /etc/passwd

/etc/group /etc/shadow'

 count: 1

 units: days

 unique: true

$ ansible-playbook at.yml

$ sudo atq

Mon Dec 14 11:53:00 2020 a root

Enabling the uniqueness of this job will ensure that we only have the

listing for this job once in the job database for at. If this was not set, the job

would be created on each execution of the Playbook.

Chapter 15 Managing Scheduled Tasks with Ansible

220

�Creating Regular Jobs with Cron
Scheduling regular jobs using cron is very common in Linux, and the

service and tools are installed by default. If we need to create a regular

backup of those same files rather than a single backup, we could use cron.

The following Playbook will create the named file within the /etc/cron.d/

directory and will run at 5.30 am Monday through Friday.

Listing 15-3.  Creating cron Entries with Ansible

$ mkdir $HOME/ansible/cron ; cd $HOME/ansible/cron

$ vim cron.yml

- name: Manage Cron Entries

 hosts: all

 gather_facts: false

 become: true

 tasks:

 - name: Backup user database

 cron:

 name: Backup Users

 hour: 5

 minute: 30

 weekday: 1-5

 user: root

 job: 'tar -czf /root/user.tgz /etc/passwd /etc/shadow'

 cron_file: user_backup

$ ansible-playbook cron.yml

$ cat /etc/cron.d/user_backup

#Ansible: Backup Users

30 5 * * 1-5 root tar -czf /root/user.tgz /etc/passwd /etc/

shadow

Chapter 15 Managing Scheduled Tasks with Ansible

221

As you can see, the demonstration finished by listing the newly

created entry in /etc/cron.d. The name we assign to the cron job shows as a

comment in the file, making it easily identifiable to ourselves and Ansible.

�Summary
You are at the start of the rest of your DevOps or System Administration

career. You have journeyed a long way from the start of this book, and you

are now ready to commit to your own success. It is you who hold the keys

to your own future. In this closing chapter we were able to tidy up some of

the loose ends of the exam objectives in looking at scheduled tasks. You

learned how to use the at module in Ansible for irregular jobs and the cron

Ansible module where you need those jobs to execute regularly.

You should now ensure that you practice the examples that we have

shown in the chapter; as always, it is the effort that you expend that determines

your success. I would also recommend reviewing each chapter and seeing

how many of the demonstrations you can complete without reference to the

complete step-by-step instructions. Good luck and thank you.

Chapter 15 Managing Scheduled Tasks with Ansible

223© Andrew Mallett 2021
A. Mallett, Red Hat Certified Engineer (RHCE) Study Guide,
https://doi.org/10.1007/978-1-4842-6861-2

Index
A, B
Ad hoc commands

definition, 47
inventory groups

account information, 55
configuration, 58–59
$HOME/inventory file, 53
password, 56
SSH key-authentication, 57–58
user account, 55
variables, 54

modules, 59–60
testing

advantages, 51
command options, 52
hosts, 50
modification, 51
overwriting option, 50
ping module, 48
ping module, 49

Ansible, see Red Hat
at daemon (atd)

cron, 220–221
playbooks, 218–219
role creation, 218
scheduling jobs, 217

C
Configuration file, 11

ansible.cfg, 14
current directory, 15
declare command, 17
effective configuration, 13–14
fallback location, 12
home directory, 14, 23–26
printing process

default option, 19
documentation, 22
effective settings, 21
headers cataloging, 20
regular expressions, 20
sub-commands, 18

test security issue, 15
variables, 16
working directory/shell

variables, 12, 18
Copy module

content argument,
113, 115–116

fold operator, 116
MOTD file, 115
src argument/sudoers

files, 114–115

https://doi.org/10.1007/978-1-4842-6861-2#DOI

224

D, E
Debian-based distribution, 4
Deployment

dedicated server page, 146
definition, 143
filesystem security, 152–154
firewalls

configuration files, 150–152
HTTP access, 147
inventory variables, 148
IP addresses, 147
modules, 150
SSH and HTTP, 149
UFW firewall service, 150

modules, 144
playbooks, 145–146
source code, 155–158
tasks, 143

F, G
Files, 113

definition, 117–119
lineinfile module, 119
SSHD configuration, 117–118
SSH server, 117

Filesystem security, 152–154

H
Hypertext preprocessor (PHP)

controller node, 177
default path, 177–181

default.yml, 179
handlers, 180
installation, 177, 182–183
modules, 183–185
red hat tasks, 180
Ubuntu 18.04 configuration,

185–187
variables, 181

I, J, K
Inventory files

ansible-inventory command
group information, 37
hostnames/IP addresses,

38–39
listing host file, 35
variables, 37

default file, 31–33
definition, 29
host list creation, 30
network, 39–42
paramiko, 42
query entries

built-in groups, 32–33
hosts command, 34–36
ungrouped group, 33

scanner nmap, 40
variables, 42–44

L
Linux administrators, 1

INDEX

225

M, N, O
Message of the day (MOTD)

file, 120

P, Q
Playbooks

account creation, 81–83
consistent shell, 82
definition, 79
deleting users, 85
host setup management

authorized_key
module, 96

dedicated account, 95–96
operator user

account, 93
setup.yml, 93, 98–99
SSH key pair, 92
tux sudo file, 93

loop controls, 83–84
manage users, 80
user module help, 80
user passwords

authentication, 89
elements, 87–88
encryption, 87
encryption algorithm, 88
hash, 88
password generation, 90–92
SALT, 88

variables, 86–87

R
Red Hat

certifications, 3
configuration management

systems, 3
lab system

CentOS 8 system, 4–7
Ubuntu, 7–8
virtualization engine, 5

Linux administrator, 1–2
RHCE, 4
RHCSA, 3

Red Hat Certified Engineer
(RHCE), 4

Red Hat Certified System
Administrator (RHCSA), 3

Roles, Playbooks, 161
collections, 175
command line

environment, 176
database server, 187

firewall port, 190–192
mysql Role, 189–191
testing connectivity, 191
variable files, 187–188

elements, 161–162
execution order, 173
firewall role, 164–166
full_apache.yml, 167
PHP (see Hypertext

preprocessor (PHP))
playbook, 166–167

INDEX

226

subcommands, 162
tasks and handlers, 170–173
web content configuration,

167–170

S
Sensitive data

definition, 135
encrypted file, 139–141
encrypt existing YAML

file, 138–139
external variables file, 136–137
read vault password, 141–142
user.yml, 140

Services
definition, 123
facts

setup module, 129
system management, 130
testing, 131

generic service
module, 123–124

handler implementation,
126–127

lineinfile module, 123
notify argument

edition, 128
playbook output, 129
restart_sshd, 128
SSHD task, 128
systemd module, 124–125, 132

Storage configuration
block devices

definition, 195–196
loopback device, 196–198

directories/files, 210–211
filesystems, 211–215
Linux storage, 216
logical volumes, 201–203
partitioning disk/filesystem,

198–200
VDO (see Virtual data

optimizer (VDO))

T
Templates, 120

U
Ubuntu 18.04 system, 7–8

V, W, X, Y, Z
Variables and facts

Apache installation
host specification, 109
inventory variables, 108
project creation, 110
yum/apt, 108

gather_facts key, 101
package module, 108
print OS details, 102–103
upgrading systems

Roles, Playbooks (cont.)

INDEX

227

CentOS hosts, 104
definition, 103
playbook variables, 107
single task option, 106
Ubuntu version, 105

Virtual data optimizer (VDO)
controller, 206
deployment, 207–209
kernel module, 203
reboot handler, 204–206

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Understanding Ansible and the Red Hat RHCE
	Red Hat and Ansible
	Red Hat Certifications
	RHCSA
	RHCE

	Lab Systems
	Installing Ansible on CentOS 8
	Installing Ansible on Ubuntu 18.04

	Summary

	Chapter 2: Working with the Ansible Configuration
	Ansible Configuration Hierarchy
	Printing the Ansible Configuration
	Creating a Basic Ansible Configuration File

	Summary

	Chapter 3: Creating an Ansible Inventory
	Creating an Inventory
	Query Inventory Entries
	Listing Inventory Hosts Using Ansible

	Listing Hosts Using Ansible-Inventory
	Adding Host and Group Entries

	Discovering Hosts on Your Network
	Inventory Variables
	Summary

	Chapter 4: Using Ad Hoc Commands and Ansible Preparation
	Testing Ansible
	Implementing Ansible Inventory Groups
	Preparing the User Account for Ansible
	Creating the User
	Allowing Passwordless Sudo Access
	SSH-Key Authentication
	Configuring the Final Changes

	Gaining Help on Modules
	Summary

	Chapter 5: Writing YAML and Basic Playbooks
	Writing Simple YAML Playbooks
	Elements of a Playbook
	Our First Playbook
	Extending the Playbook Using Facts
	Installing Multiple Packages

	Improving Text Editors
	Going All GUI
	Summary

	Chapter 6: Managing Users with Ansible Playbooks
	Playbook to Manage Users
	User Module Help
	Creating a Consistent User Account
	Using an Ansible Loop Control
	Deleting Users
	Using Variables and Logic with Playbooks

	Managing User Passwords
	Password Elements
	Authenticating Users
	Generating Passwords in Playbooks

	Using a Playbook to Create Managed Host Setup
	Summary

	Chapter 7: Working with Variables and Facts
	Gathering Facts
	Printing OS Information
	Upgrading Systems
	Installing Apache
	Summary

	Chapter 8: Working with Files and Templates
	The Copy Module
	Using SRC
	Content Is King
	Differing Fold Operators

	Editing Files in Place
	Using Templates
	Summary

	Chapter 9: Managing Services Using Ansible
	The Service Module
	The Systemd Module
	Using Ansible Handlers
	Ensure SSHD Started and Enabled
	Edit SSHD Config
	The Handler: restart_sshd
	Handlers Do Not Run when They Are Not Notified

	Service Facts
	Summary

	Chapter 10: Securing Sensitive Data with Ansible Vault
	Creating an External Variables File
	Encrypt Existing YAML File
	Creating New Encrypted Files
	Read Vault Password
	Summary

	Chapter 11: Implementing a Full Apache Deployment
	Deploying Apache
	Apache Playbook
	Dedicated Server Page
	All About Firewalls
	The Apache Configuration File

	Configure Filesystem Security
	Full Apache Playbook
	Summary

	Chapter 12: Simplifying Playbooks Using Roles
	Understanding Roles
	Creating Firewall Role
	Populating the Firewall Role
	Updating the Apache Playbook
	Configure Role for Web Content
	Creating the Apache Role
	Execution Order

	Summary

	Chapter 13: Downloading Roles
	Roles and Collections
	Searching Roles From the CLI

	Installing the PHP Role
	Investigating PHP Role and Learning Better Coding
	Installing PHP
	Adding Extra PHP Modules
	Code Blocks and Extra Configuration for Ubuntu

	Install the Database Role
	Create Variable File
	Installing the MySQL Role and Implementing a Database Server
	Opening MySQL Firewall Port

	Summary

	Chapter 14: Configuring Storage with Ansible
	Block Devices
	Creating Loopback Devices

	Partitioning Disks and Mounting Filesystems
	Managing Logical Volumes
	Managing VDO with Ansible
	Updating a Managed Host
	Updating the Controller
	Deploying VDO

	Archiving Files
	Maintenance of Filesystems
	Summary

	Chapter 15: Managing Scheduled Tasks with Ansible
	Ad Hoc Linux Jobs with ATD
	Creating the Ansible Role to Manage ATD
	Playbook to Create Jobs in At

	Creating Regular Jobs with Cron
	Summary

	Index

