

Red	 Hat	 Enterprise	 Linux
Troubleshooting	Guide

Table	of	Contents

Red	Hat	Enterprise	Linux	Troubleshooting	Guide
Credits
About	the	Author
About	the	Reviewers
www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more
Why	subscribe?
Free	access	for	Packt	account	holders

Preface
What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support

Downloading	the	example	code
Errata
Piracy
Questions

1.	Troubleshooting	Best	Practices
Styles	of	troubleshooting

The	Data	Collector
The	Educated	Guesser
The	Adaptor
Choosing	the	appropriate	style

Troubleshooting	steps
Understanding	the	problem	statement

Asking	questions
Tickets
Humans

Attempting	to	duplicate	the	issue
Running	investigatory	commands

Establishing	a	hypothesis

Putting	together	patterns
Is	this	something	that	I've	encountered	before?

Trial	and	error
Start	by	creating	a	backup

Getting	help
Books
Team	Wikis	or	Runbooks
Google
Man	pages

Reading	a	man	page
Name
Synopsis
Description
Examples
Additional	sections

Info	documentation
Referencing	more	than	commands
Installing	man	pages

Red	Hat	kernel	docs
People

Following	up
Documentation

Root	cause	analysis
The	anatomy	of	a	good	RCA

The	problem	as	it	was	reported
The	actual	root	cause	of	the	problem

A	timeline	of	events	and	actions	taken
Any	key	data	points	to	validate	the	root	cause

A	plan	of	action	to	prevent	the	incident	from	reoccurring
Establishing	a	root	cause

Sometimes	you	must	sacrifice	a	root	cause	analysis
Understanding	your	environment
Summary

2.	Troubleshooting	Commands	and	Sources	of	Useful	Information
Finding	useful	information

Log	files
The	default	location

Common	log	files
Finding	logs	that	are	not	in	the	default	location

Checking	syslog	configuration
Checking	the	application's	configuration

Other	examples
Using	the	find	command

Configuration	files
Default	system	configuration	directory
Finding	configuration	files

Using	the	rpm	command
Using	the	find	command

The	proc	filesystem
Troubleshooting	commands

Command-line	basics
Command	flags
The	piping	command	output

Gathering	general	information
w	–	show	who	is	logged	on	and	what	they	are	doing
rpm	–	RPM	package	manager

Listing	all	packages	installed
Listing	all	files	deployed	by	a	package
Using	package	verification

df	–	report	file	system	space	usage
Showing	available	inodes

free	–	display	memory	utilization
What	is	free,	is	not	always	free
The	/proc/meminfo	file

ps	–	report	a	snapshot	of	current	running	processes
Printing	every	process	in	long	format
Printing	a	specific	user's	processes
Printing	a	process	by	process	ID
Printing	processes	with	performance	information

Networking
ip	–	show	and	manipulate	network	settings

Show	IP	address	configuration	for	a	specific	device
Show	routing	configuration
Show	network	statistics	for	a	specified	device

netstat	–	network	statistics
Printing	network	connections
Printing	all	ports	listening	for	tcp	connections
Delay

Performance
iotop	–	a	simple	top-like	I/O	monitor
iostat	–	report	I/O	and	CPU	statistics

Manipulating	the	output
vmstat	–	report	virtual	memory	statistics
sar	–	collect,	report,	or	save	system	activity	information

Using	the	sar	command
Summary

3.	Troubleshooting	a	Web	Application
A	small	back	story
The	reported	issue
Data	gathering

Asking	questions
Duplicating	the	issue
Understanding	the	environment

Where	is	this	blog	hosted?
Lookup	IPs	with	nslookup
What	about	ping,	dig,	or	other	tools?

Ok,	it's	within	our	environment;	now	what?
What	services	are	installed	and	running?

Validate	the	web	server
Validating	the	database	service
Validating	PHP

A	summary	of	installed	and	running	services
Looking	for	error	messages

Apache	logs
Finding	the	location	of	Apache's	logs
Reviewing	the	logs

Using	curl	to	call	our	web	application
Requesting	a	non-PHP	page
Reviewing	generated	log	entries

What	we	learned	from	httpd	logs
Verifying	the	database

Verifying	the	WordPress	database
Finding	the	installation	path	for	WordPress

Checking	the	default	configuration
Finding	the	database	credentials

Connecting	as	the	WordPress	user
Validating	the	database	structure

What	we	learned	from	the	database	validation
Establishing	a	hypothesis
Resolving	the	issue

Understanding	database	data	files
Finding	the	MariaDB	data	folder
Resolving	data	file	issues

Validating
Final	validation

Summary
4.	Troubleshooting	Performance	Issues

Performance	issues
It's	slow

Performance
Application
CPU

Top	–	a	single	command	to	look	at	everything
What	does	this	output	tell	us	about	our	issue?
Individual	processes	from	top

Determining	the	number	of	CPUs	available
Threads	and	Cores
lscpu	–	Another	way	to	look	at	CPU	info

ps	–	Drill	down	deeper	on	individual	processes	with	ps
Using	ps	to	determine	process	CPU	utilization

Putting	it	all	together
A	quick	look	with	top

Digging	deeper	with	ps
Memory

free	–	Looking	at	free	and	used	memory
Linux	memory	buffers	and	caches
Swapped	memory
What	free	tells	us	about	our	system

Checking	for	oomkill
ps	-	Checking	individual	processes	memory	utilization
vmstat	–	Monitoring	memory	allocation	and	swapping
Putting	it	all	together

Taking	a	look	at	the	system's	memory	utilization	with	free
Watch	what	is	happening	with	vmstat
Finding	the	processes	that	utilize	the	most	memory	with	ps

Disk
iostat	–	CPU	and	device	input/output	statistics

CPU	details
Reviewing	I/O	statistics
Identifying	devices

Who	is	writing	to	these	devices?
ps	–	Using	ps	to	identify	processes	utilizing	I/O

iotop	–	A	top	top-like	command	for	disk	i/o
Putting	it	all	together

Using	iostat	to	determine	whether	there	is	a	I/O	bandwidth	problem
Using	 iotop	 to	 determine	 which	 processes	 are	 consuming	 disk

bandwidth
Using	ps	to	understand	more	about	processes

Network
ifstat	–	Review	interface	statistics

Quick	review	of	what	we	have	identified
Comparing	historical	metrics

sar	–	System	activity	report
CPU
Memory
Disk
Network

Review	what	we	learned	by	comparing	historical	statistics
Summary

5.	Network	Troubleshooting
Database	connectivity	issues
Data	collection

Duplicating	the	issue
Finding	the	database	server
Testing	connectivity

Telnet	from	blog.example.com
Telnet	from	our	laptop

Ping
Troubleshooting	DNS

Checking	DNS	with	dig
Looking	up	DNS	with	nslookup
What	did	dig	and	nslookup	tell	us?

A	bit	about	/etc/hosts
DNS	summary

Pinging	from	another	location
Testing	port	connectivity	with	cURL
Showing	current	network	connections	with	netstat

Using	netstat	to	watch	for	new	connections
Breakdown	of	netstat	states

Capturing	network	traffic	with	tcpdump
Taking	a	look	at	the	server's	network	interfaces

What	is	a	network	interface?
Viewing	device	configuration

Specifying	the	interface	with	tcpdump
Reading	the	captured	data
A	quick	primer	on	TCP

Types	of	TCP	packet
Reviewing	collected	data
Taking	a	look	on	the	other	side

Identifying	the	network	configuration
Testing	connectivity	from	db.example.com
Looking	for	connections	with	netstat
Tracing	network	connections	with	tcpdump

Routing
Viewing	the	routing	table

The	default	route
Utilizing	IP	to	show	the	routing	table
Looking	for	routing	misconfigurations

More	specific	routes	win
Hypothesis
Trial	and	error

Removing	the	invalid	route

Configuration	files
Summary

6.	Diagnosing	and	Correcting	Firewall	Issues
Diagnosing	firewalls
Déjà	vu
Troubleshooting	from	historic	issues
Basic	troubleshooting

Validating	the	MariaDB	service
Troubleshooting	with	tcpdump
Understanding	ICMP

Understanding	connection	rejections
A	quick	summary	of	what	you	have	learned	so	far
Managing	the	Linux	firewall	with	iptables

Verify	that	iptables	is	running
Show	iptables	rules	being	enforced
Understanding	iptables	rules

Ordering	matters
Default	policies
Breaking	down	the	iptables	rules
Putting	the	rules	together
Viewing	iptables	counters
Correcting	the	iptables	rule	ordering

How	iptables	rules	are	applied
Modifying	iptables	rules
Testing	our	changes

Summary
7.	Filesystem	Errors	and	Recovery

Diagnosing	filesystem	errors
Read-only	filesystems
Using	the	mount	command	to	list	mounted	filesystems

A	mounted	filesystem
Using	fdisk	to	list	available	partitions
Back	to	troubleshooting

NFS	–	Network	Filesystem
NFS	and	network	connectivity
Using	the	showmount	command
NFS	server	configuration

Exploring	/etc/exports
Identifying	the	current	exports
Testing	NFS	from	another	client

Making	mounts	permanent
Unmounting	the	/mnt	filesystem

Troubleshooting	the	NFS	server,	again
Finding	the	NFS	log	messages
Reading	/var/log/messages
Read-only	filesystems

Identifying	disk	issues
Recovering	the	filesystem

Unmounting	the	filesystem
Filesystem	checks	with	fsck

The	fsck	and	xfs	filesystems
How	do	these	tools	repair	a	filesystem?

Mounting	the	filesystem
Repairing	the	other	filesystems

Recovering	the	/	(root)	filesystem
Validation
Summary

8.	Hardware	Troubleshooting
Starting	with	a	log	entry
What	is	a	RAID?

RAID	0	–	striping
RAID	1	–	mirroring
RAID	5	–	striping	with	distributed	parity
RAID	6	–	striping	with	double	distributed	parity
RAID	10	–	mirrored	and	striped

Back	to	troubleshooting	our	RAID
How	RAID	recovery	works
Checking	the	current	RAID	status

Summarizing	the	key	information
Looking	at	md	status	with	/proc/mdstat

Using	both	/proc/mdstat	and	mdadm
Identifying	a	bigger	issue
Understanding	/dev

More	than	just	disk	drives

Device	messages	with	dmesg
Summarizing	what	dmesg	has	provided

Using	mdadm	to	examine	the	superblock
Checking	/dev/sdb2

What	we	have	learned	so	far
Re-adding	the	drives	to	the	arrays

Adding	a	new	disk	device
When	disks	are	not	added	cleanly
Another	way	to	watch	the	rebuild	status

Summary
9.	Using	System	Tools	to	Troubleshoot	Applications

Open	source	versus	home-grown	applications
When	the	application	won't	start

Exit	codes
Is	the	script	failing,	or	the	application?
A	wealth	of	information	in	the	configuration	file

Watching	log	files	during	startup
Checking	whether	the	application	is	already	running

Checking	open	files
Understanding	file	descriptors

Getting	back	to	the	lsof	output
Using	lsof	to	check	whether	we	have	a	previously	running	process

Finding	out	more	about	the	application
Tracing	an	application	with	strace

What	is	a	system	call?
Using	strace	to	identify	why	the	application	will	not	start

Resolving	the	conflict
Summary

10.	Understanding	Linux	User	and	Kernel	Limits
A	reported	issue
Why	is	the	job	failing?

Background	questions
Is	the	cron	job	even	running?
User	crontabs

Understanding	user	limits
The	file	size	limit
The	max	user	processes	limit

The	open	files	limit
Changing	user	limits

The	limits.conf	file
Future	proofing	the	scheduled	job

Running	the	job	again
Kernel	tunables

Finding	the	kernel	parameter	for	open	files
Changing	kernel	tunables

Permanently	changing	a	tunable
Temporarily	changing	a	tunable

Running	the	job	one	last	time
A	look	back

Too	many	open	files
A	bit	of	clean	up

Summary
11.	Recovering	from	Common	Failures

The	reported	problem
Is	Apache	really	down?
Why	is	it	down?
What	else	was	happening	at	that	time?

Searching	the	messages	log
Breaking	down	this	useful	one-liner

The	cut	command
The	sort	command

The	uniq	command
Tying	it	all	together

What	happens	when	a	Linux	system	runs	out	of	memory?
Minimum	free	memory

A	quick	recap
How	oom-kill	works

Adjusting	the	oom	score
Determining	whether	our	process	was	killed	by	oom-kill
Why	did	the	system	run	out	of	memory?

Resolving	the	issue	in	the	long-term	and	short-term
Long-term	resolution
Short-term	resolution

Summary

12.	Root	Cause	Analysis	of	an	Unexpected	Reboot
A	late	night	alert
Identifying	the	issue

Did	someone	reboot	this	server?
What	do	the	logs	tell	us?
Learning	about	new	processes	and	services

What	caused	the	high	load	average?
What	are	the	run	queue	and	load	average?

Load	average
Investigating	the	filesystem	being	full

The	du	command
Why	wasn't	the	queue	directory	processed?
A	checkpoint	on	what	you	learned

Sometimes	you	cannot	prove	everything
Preventing	reoccurrence

Immediate	action
Long-term	actions

A	sample	Root	Cause	Analysis
Problem	summary
Problem	details
Root	cause
Action	plan

Further	actions	to	be	taken
Summary

Index

Red	 Hat	 Enterprise	 Linux
Troubleshooting	Guide

Red	 Hat	 Enterprise	 Linux
Troubleshooting	Guide
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval
system,	or	 transmitted	 in	 any	 form	or	by	 any	means,	without	 the	prior	written
permission	of	the	publisher,	except	in	the	case	of	brief	quotations	embedded	in
critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy
of	the	information	presented.	However,	the	information	contained	in	this	book	is
sold	without	warranty,	 either	 express	or	 implied.	Neither	 the	 author,	nor	Packt
Publishing,	and	 its	dealers	and	distributors	will	be	held	 liable	 for	any	damages
caused	or	alleged	to	be	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of
the	 companies	 and	 products	mentioned	 in	 this	 book	 by	 the	 appropriate	 use	 of
capitals.	 However,	 Packt	 Publishing	 cannot	 guarantee	 the	 accuracy	 of	 this
information.

First	published:	October	2015

Production	reference:	1131015

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78528-355-0

www.packtpub.com

http://www.packtpub.com

Credits
Author

Benjamin	Cane

Reviewers

Brian	C	Galura

Deepak	G	Kulkarni

Warren	Myers

Siddhesh	Poyarekar

Commissioning	Editor

Nadeem	Baghban

Acquisition	Editor

Reshma	Raman

Content	Development	Editor

Mamata	Walkar

Technical	Editor

Ryan	Kochery

Copy	Editors

Tani	Kothari

Merilyn	Pereira

Project	Coordinator

Shipra	Chawhan

Proofreader

Safis	Editing

Indexer

Tejal	Daruwale	Soni

Production	Coordinator

Aparna	Bhagat

Cover	Work

Aparna	Bhagat

About	the	Author
Benjamin	 Cane	 has	 nearly	 10	 years	 of	 experience	 in	 Linux	 systems
administration.	His	 first	systems	administration	role	was	 in	2006.	At	 that	 time,
he	worked	 for	 a	web	 hosting	 company	 supporting	 thousands	 of	 FreeBSD	 and
Linux	systems.

Afterwards,	he	joined	a	managed	services	company	that	specialized	in	managing
mission-critical	 systems.	 There,	 he	 worked	 his	 way	 to	 the	 position	 of	 a	 lead
systems	engineer,	providing	24x7	support	 for	highly	critical	enterprise	systems
that	ran	Red	Hat	Enterprise	Linux.

Now,	 Benjamin	 is	 a	 systems	 architect.	 He	 focuses	 on	 building	 High	 and
Continuous	Availability	environments	within	the	financial	services	industry.	He
is	also	currently	a	Red	Hat	Certified	Engineer	and	Certified	Ethical	Hacker.

With	his	experience	in	mission-critical	environments,	he	has	learned	to	identify
and	troubleshoot	very	complex	issues	quickly,	because	often	these	environments
have	a	low	tolerance	for	downtime.	Being	able	to	identify	the	root	causes	of	very
complex	systems	 issues	quickly	 is	a	 skill	 that	 requires	extensive	knowledge	of
Linux	and	troubleshooting	best	practices.

In	 addition	 to	 this	 book,	 Benjamin	writes	 about	 Linux	 systems	 administration
and	 DevOps	 topics	 on	 his	 blog	 at	 http://bencane.com.	 He	 is	 also	 the	 project
founder	 for	 Runbook	 (https://github.com/Runbook/runbook),	 an	 open	 source
application	 designed	 to	 monitor	 and	 automatically	 resolve	 infrastructure	 and
application	issues.

http://bencane.com
https://github.com/Runbook/runbook

About	the	Reviewers
Brian	 C	 Galura	 spent	 his	 childhood	 tinkering	 with	 subjects	 such	 as	 Java
programming	and	Linux;	his	professional	experience	started	with	VoIP	testing	at
3Com	 in	 suburban	 Chicago.	 He	 then	 spent	 two	 years	 studying	 computer
engineering	at	Purdue	University	before	 leaving	 to	pursue	 freelance	consulting
in	Los	Angeles.

Following	several	years	of	freelancing,	he	developed	his	expertise	in	enterprise
infrastructure	 and	 cloud	 computing	 by	 working	 for	 a	 variety	 of	 start-ups	 and
large	 corporations.	 Later,	 he	 completed	 a	 bachelor's	 in	 IT	 while	 working	 at
Citrix.	 Brian	 is	 currently	 working	 on	 Citrix's	 cloud	 engineering	 and	 systems
architecture	team	in	Santa	Barbara,	California.

Deepak	G	Kulkarni	has	around	10	years	of	experience	in	software	engineering
including	 nine	 years	 of	 strong	 experience	 in	 product	 development	 using
C/C++/Java.

He	has	over	four	years	of	experience	in	JUnit,	Core	JAVA,	Web	Services,	XML,
Spring,	 Spring	 MVC,	 and	 Hibernate.	 He	 also	 has	 extensive	 software
development	experience	using	C/C++	on	UNIX	(HP-UX)	and	Sun-Solaris,	shell
scripting,	 and	 STL	 (Standard	 Template	 Library)	 and	 cross-platform
development.	Deepak	also	has	over	two	years	of	experience	in	the	Mac	OS	using
Objective	C/C++,	Cocoa	framework,	Xcode,	and	MetroWorks	IDE.

Deepak	 has	 a	 working	 knowledge	 of	 Perl/SNMP/TCP/IP,	 OS	 Internals,	 web
services,	 XML,	 XSD,	 database	 (Oracle)/IPC	 (inter	 process
communication)/system	 calls/Pro*C.	He	 has	 been	 exposed	 to	UML	 /	 use	 case
diagrams	 /	 class	 diagrams	 /	 sequence	 diagrams	 /	 activity	 diagrams	 /	 state
diagrams,	 IBM	 Rational	 Rose,	 and	 Design	 Patterns	 (GoF	 Patterns)	 /	 Design
Principles.	 He	 has	 hands-on	 experience	 with	 Ant,	 Maven,	 JUnit,	 JProfiler,
JProbe,	 JSON,	 Servlets,	 Python,	 and	 Ruby	 on	 Rails,	 as	 well	 as	 experience	 in
remote	service	calls	and	client	server	programming.

Warren	 Myers	 has	 been	 a	 professional	 data	 center	 and	 cloud	 automation
architect	 for	 over	 eight	 years,	with	 exposure	 to	 dozens	 of	 platforms,	 scores	 of
customers,	and	hundreds	of	interesting	problems.

He	 was	 a	 reviewer	 on	 Raspberry	 Pi	 Server	 Essentials	 and	 wrote	 the	 freely-
available	 e-book,	 Debugging	 and	 Supporting	 Software	 Systems
(http://cnx.org/contents/aa87c3d5-e350-458e-a948-
8cd1a9bf8e36@2.4:1/Debugging_and_Supporting_Softw).

Siddhesh	Poyarekar	has	been	a	free	and	open	source	software	programmer	for
over	seven	years	and	has	worked	on	a	variety	of	projects	beginning	with	writing
his	own	dialer	program	for	an	ISP	that	did	not	have	a	UI-based	dialer	for	Linux.
He	spent	a	number	of	years	troubleshooting	problems	in	various	domains	from
the	 Linux	 desktop,	 shell,	 and	 the	 kernel	 to	 the	 core	 system	 runtime	 on	 Linux
systems,	that	is,	the	GNU	C	Library	for	which	he	is	now	a	maintainer.

http://cnx.org/contents/aa87c3d5-e350-458e-a948-8cd1a9bf8e36@2.4:1/Debugging_and_Supporting_Softw

www.PacktPub.com

Support	files,	eBooks,	discount	offers,
and	more
For	 support	 files	 and	 downloads	 related	 to	 your	 book,	 please	 visit
www.PacktPub.com.

Did	you	know	 that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	 and	 ePub	 files	 available?	 You	 can	 upgrade	 to	 the	 eBook	 version	 at
www.PacktPub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount
on	the	eBook	copy.	Get	in	touch	with	us	at	<service@packtpub.com>	for	more
details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,
sign	up	for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers
on	Packt	books	and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	 instant	solutions	 to	your	 IT	questions?	PacktLib	 is	Packt's	online
digital	book	library.	Here,	you	can	search,	access,	and	read	Packt's	entire	library
of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	 you	have	 an	 account	with	Packt	 at	www.PacktPub.com,	you	can	use	 this	 to
access	 PacktLib	 today	 and	 view	 9	 entirely	 free	 books.	 Simply	 use	 your	 login
credentials	for	immediate	access.

This	book	is	dedicated	to	my	wife	Ruby	and	our	two	sons	Ethan	and	Jacob.
Ruby,	without	your	love	and	support	I	would	have	never	been	able	to	write
this	book.	Thank	you	for	putting	up	with	the	long	hours	and	sleepless	nights
while	trying	to	complete	this.

http://www.PacktPub.com

Preface
Red	Hat	Enterprise	Linux	is	a	widely	popular	Linux	distribution	that	is	used	in
everything	 from	 Cloud	 to	 enterprise	 mainframe	 computers.	 If	 you	 include
downstream	 distributions	 such	 as	 CentOS,	 the	 adoption	 of	 the	 Red	 Hat
Enterprise	Linux	distribution	is	even	greater.

As	with	most	 things,	 there	 is	 always	 someone	 responsible	 for	 resolving	 issues
with	 all	 of	 these	 various	 systems	 running	Red	Hat	 Enterprise	 Linux.	Red	Hat
Enterprise	Linux	Troubleshooting	Guide	is	written	to	provide	basic	to	advanced
troubleshooting	 practices	 and	 commands	 for	 Linux	 systems,	 with	 these
troubleshooting	 techniques	 specifically	 focused	 on	 systems	 running	 Red	 Hat
Enterprise	Linux.

This	book	is	designed	to	provide	you	with	steps	and	the	knowledge	required	to
remedy	a	wide	variety	of	 scenarios.	The	 examples	 in	 this	 book	use	 real-world
issues	with	real-world	resolutions.

While	the	examples	in	this	book	are	situational,	this	book	can	also	be	used	as	a
reference	for	Linux-related	topics	and	commands.	They	provide	the	reader	with
the	 ability	 to	 reference	 both	 troubleshooting	 steps	 and	 specific	 commands	 to
resolve	complex	issues.

What	this	book	covers
Chapter	1,	Troubleshooting	Best	Practices,	covers	the	troubleshooting	process	at
a	high	level.	By	equating	the	troubleshooting	process	with	the	scientific	method,
this	book	will	explain	how	to	break	down	a	problem	to	identify	the	root	cause,
no	matter	how	complicated	the	problem.

Chapter	 2,	 Troubleshooting	 Commands	 and	 Sources	 of	 Useful	 Information,
provides	 the	 reader	with	 a	 simple	 introduction	 to	 common	 locations	 of	 useful
information.	 It	will	 also	provide	a	 reference	 for	 fundamental	Linux	commands
that	can	be	used	for	troubleshooting	many	types	of	issues.

Chapter	 3,	 Troubleshooting	 a	 Web	 Application,	 takes	 the	 process	 learned	 in
Chapter	 1	 and	 the	 commands	 learned	 in	 Chapter	 2	 to	 work	 through	 a
complicated	 problem.	 The	 problem	 outlined	 in	 this	 chapter	 is	 "By	 example"
meaning	that	the	flow	of	this	chapter	is	designed	to	walk	you	through	the	entire
troubleshooting	process,	from	end	to	end.

Chapter	4,	Troubleshooting	Performance	Issues,	deals	with	performance	 issues
and	 some	 of	 the	 most	 complicated	 problems	 to	 troubleshoot.	 Often,	 the
complications	are	compounded	by	the	perception	of	users	versus	expected	levels
of	performance.	In	this	chapter,	the	tools	and	information	discussed	in	Chapter	2
will,	once	again,	be	used	to	resolve	a	real-world	performance	problem.

Chapter	 5,	Network	 Troubleshooting,	 talks	 about	 networking	 being	 a	 critical
component	 of	 any	 modern	 day	 system.	 This	 chapter	 will	 cover	 the	 core
commands	necessary	for	the	configuration	and	diagnostics	of	Linux	networking.

Chapter	 6,	 Diagnosing	 and	 Correcting	 Firewall	 Issues,	 covers	 the	 complex
nature	 of	 Linux	 firewalls,	 in	 a	 continuation	 of	 Chapter	 5.	 This	 chapter	 will
introduce	 and	 highlight	 commands	 and	 techniques	 necessary	 to	 troubleshoot
Linux	software	firewalls.

Chapter	 7,	 Filesystem	 Errors	 and	 Recovery,	 teaches	 you	 that	 being	 able	 to
recover	 a	 filesystem	 could	 mean	 the	 difference	 between	 losing	 and	 retaining
data.	This	chapter	will	 introduce	some	core	Linux	filesystem	concepts	and	will
demonstrate	how	to	recover	a	read-only	filesystem.

Chapter	 8,	 Hardware	 Troubleshooting,	 starts	 to	 touch	 on	 the	 process	 of
troubleshooting	 hardware	 issues.	 This	 chapter	 will	 walk	 you	 through	 the
restoration	of	a	failed	hard	drive.

Chapter	9,	Using	System	Tools	to	Troubleshoot	Applications,	explores	how	often
a	 system	 administrator's	 role	 is	 not	 only	 to	 troubleshoot	 OS	 issues	 but	 also
application	 issues.	 This	 chapter	will	 show	you	 how	 to	 utilize	 common	 system
tools	to	identify	the	root	cause	of	an	application	issue.

Chapter	10,	Understanding	Linux	User	and	Kernel	Limits,	demonstrates	that	Red
Hat	 Enterprise	 Linux	 has	 many	 components	 in	 place	 to	 prevent	 users	 from
overloading	the	system.	This	chapter	will	explore	these	components	and	explain
how	to	modify	them	to	allow	legitimate	resource	utilization.

Chapter	 11,	 Recovering	 from	 Common	 Failures,	 walks	 you	 through
troubleshooting	 out-of-memory	 conditions.	 This	 scenario	 is	 very	 common	 in
heavily	utilized	environments	and	can	be	difficult	 to	 troubleshoot.	This	chapter
will	 cover	 not	 only	 how	 to	 troubleshoot	 this	 issue,	 but	 also	 why	 the	 issue
occurred.

Chapter	 12,	 Root	 Cause	 Analysis	 of	 an	 Unexpected	 Reboot,	 puts	 the
troubleshooting	process	 and	commands	 learned	 in	 the	previous	 chapters	 to	 the
test.	 This	 chapter	 walks	 you	 through	 performing	 a	 Root	 Cause	Analysis	 on	 a
server	that	has	unexpectedly	rebooted.

What	you	need	for	this	book
Although	this	book	can	be	standalone,	readers	will	benefit	greatly	from	having	a
system	 with	 Red	 Hat	 Enterprise	 Linux	 release	 7,	 with	 the	 operating	 system
available.	You	will	more	effectively	learn	the	commands	and	resources	discussed
in	this	book	when	you	have	the	ability	to	execute	them	on	a	test	system.

While	 it	 is	 possible	 to	 use	 many	 of	 the	 commands,	 processes,	 and	 resources
covered	in	this	book	with	other	Linux	distributions,	it	is	highly	recommended	to
utilize	 a	 Red	 Hat	 downstream	 distribution	 such	 as	 CentOS	 7	 if	 Red	 Hat
Enterprise	Linux	7	is	not	available	to	the	reader.

Who	this	book	is	for
If	 you	 are	 a	 competent	 RHEL	 administrator	 or	 consultant	 with	 a	 desire	 to
increase	your	troubleshooting	skills	and	your	knowledge	of	Red	Hat	Enterprise
Linux,	 then	 this	 book	 is	 perfect	 for	 you.	 A	 good	 knowledge	 level	 and
understanding	of	basic	Linux	commands	are	expected.

Conventions
In	 this	 book,	 you	 will	 find	 a	 number	 of	 text	 styles	 that	 distinguish	 between
different	 kinds	of	 information.	Here	 are	 some	 examples	 of	 these	 styles	 and	 an
explanation	of	their	meaning.

Code	 words	 in	 text,	 database	 table	 names,	 folder	 names,	 filenames,	 file
extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown
as	follows:	"Within	reason,	it	is	not	required	to	include	every	cd	or	ls	command
executed."

When	we	wish	 to	draw	your	attention	 to	a	particular	part	of	 a	code	block,	 the
relevant	lines	or	items	are	set	in	bold:

192.168.33.12	>	192.168.33.11:	ICMP	host	192.168.33.12	unreachable	
-	admin	prohibited,	length	68

Any	command-line	input	or	output	is	written	as	follows:

#	yum	install	man-pages

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the
screen,	for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	"we
will	see	a	message	on	our	screen	that	says	still	here?."

Note

Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	 from	 our	 readers	 is	 always	 welcome.	 Let	 us	 know	 what	 you	 think
about	this	book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us
as	it	helps	us	develop	titles	that	you	will	really	get	the	most	out	of.

To	 send	 us	 general	 feedback,	 simply	 e-mail	 <feedback@packtpub.com>,	 and
mention	the	book's	title	in	the	subject	of	your	message.

If	 there	 is	 a	 topic	 that	 you	 have	 expertise	 in	 and	 you	 are	 interested	 in	 either
writing	 or	 contributing	 to	 a	 book,	 see	 our	 author	 guide	 at
www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things
to	help	you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	 can	 download	 the	 example	 code	 files	 from	 your	 account	 at
http://www.packtpub.com	 for	 all	 the	 Packt	 Publishing	 books	 you	 have
purchased.	 If	 you	 purchased	 this	 book	 elsewhere,	 you	 can	 visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly
to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	 we	 have	 taken	 every	 care	 to	 ensure	 the	 accuracy	 of	 our	 content,
mistakes	do	happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake
in	the	text	or	the	code—we	would	be	grateful	if	you	could	report	this	to	us.	By
doing	 so,	 you	 can	 save	 other	 readers	 from	 frustration	 and	 help	 us	 improve
subsequent	versions	of	 this	book.	 If	you	find	any	errata,	please	report	 them	by
visiting	 http://www.packtpub.com/submit-errata,	 selecting	 your	 book,	 clicking
on	 the	Errata	Submission	Form	 link,	 and	 entering	 the	 details	 of	 your	 errata.
Once	your	 errata	 are	verified,	your	 submission	will	be	 accepted	and	 the	errata
will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	 view	 the	 previously	 submitted	 errata,	 go	 to
https://www.packtpub.com/books/content/support	 and	 enter	 the	 name	 of	 the
book	in	the	search	field.	The	required	information	will	appear	under	the	Errata
section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all
media.	 At	 Packt,	 we	 take	 the	 protection	 of	 our	 copyright	 and	 licenses	 very
seriously.	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	 please	 provide	 us	 with	 the	 location	 address	 or	 website	 name
immediately	so	that	we	can	pursue	a	remedy.

Please	 contact	 us	 at	 <copyright@packtpub.com>	 with	 a	 link	 to	 the	 suspected
pirated	material.

We	appreciate	your	help	 in	protecting	our	authors	and	our	ability	 to	bring	you
valuable	content.

mailto:copyright@packtpub.com

Questions
If	 you	 have	 a	 problem	 with	 any	 aspect	 of	 this	 book,	 you	 can	 contact	 us	 at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	 1.	 Troubleshooting	 Best
Practices
This	 chapter,	 which	 happens	 to	 be	 the	 first	 chapter,	 is	 probably	 the	 most
important	 and	 least	 technical.	Most	 chapters	 in	 this	 book	 cover	 specific	 issues
and	the	commands	necessary	to	troubleshoot	those	issues.	This	chapter,	however,
will	cover	some	troubleshooting	best	practices	that	can	be	applied	to	any	issue.

You	can	think	of	this	chapter	as	the	principles	behind	the	practices	being	applied.

Styles	of	troubleshooting
Before	 covering	 the	 best	 practices	 of	 troubleshooting,	 it	 is	 important	 to
understand	 the	 different	 styles	 of	 troubleshooting.	 In	 my	 experience,	 I	 have
found	that	people	tend	to	use	one	of	three	styles	of	troubleshooting,	which	are	as
follows:

The	Data	Collector
The	Educated	Guesser
The	Adaptor

Each	of	these	styles	have	their	own	strengths	and	weaknesses.	Let's	have	a	look
at	the	characteristics	of	these	styles.

The	Data	Collector
I	 like	 to	 call	 the	 first	 style	 of	 troubleshooting,	 the	Data	Collector.	 The	 Data
Collector	 is	 someone	 who	 generally	 utilizes	 a	 systematic	 approach	 to	 solve
issues.	 The	 systematic	 troubleshooting	 approach	 is	 generally	 characterized	 as
follows:

Asking	 specific	 questions	 to	 parties	 reporting	 issues,	 expecting	 detailed
answers
Running	commands	to	identify	system	performance	for	most	issues
Running	through	a	predefined	set	of	 troubleshooting	steps	before	stepping
into	action

The	strength	of	this	style	is	that	it	is	effective,	no	matter	what	level	of	engineer
or	 administrator	 is	 using	 it.	 By	 going	 through	 issues	 systematically,	 collecting
each	data	point,	 and	understanding	 the	 results	before	executing	any	 resolution,
the	Data	Collector	 is	 able	 to	 resolve	 issues	 that	 they	might	 not	 necessarily	 be
familiar	with.

The	weakness	 of	 this	 style	 is	 that	 the	 data	 collection	 is	 not	 usually	 the	 fastest
method	to	resolve	issues.	Depending	on	the	issue,	collecting	data	can	take	a	long
time	and	some	of	that	data	might	not	be	necessary	to	find	the	resolution.

The	Educated	Guesser
I	 like	 to	 call	 the	 second	 style	 of	 troubleshooting,	 the	Educated	Guesser.	 The
Educated	 Guesser	 is	 someone	 who	 generally	 utilizes	 an	 intuitive	 approach	 to
solve	issues.	The	intuitive	approach	is	generally	characterized	by	the	following:

Identifying	the	cause	of	issues	with	minimal	information
Running	a	few	commands	before	resolving	the	issue
Utilizing	previous	experience	to	identify	root	cause

The	strength	of	this	style	of	troubleshooting	is	that	it	allows	you	to	come	up	with
resolutions	 sooner.	When	 confronted	with	 an	 issue,	 this	 type	of	 troubleshooter
tends	 to	 pull	 from	 experience	 and	 requires	 minimal	 information	 to	 find	 a
resolution.

The	 weakness	 of	 this	 style	 is	 that	 it	 relies	 heavily	 on	 experience,	 and	 thus
requires	 time	 before	 being	 effective.	 When	 focusing	 on	 resolution,	 this
troubleshooter	might	 also	 attempt	multiple	 actions	 to	 resolve	 the	 issue,	which
can	make	it	seem	like	the	Educated	Guesser	does	not	fully	understand	the	issue
at	hand.

The	Adaptor
There	is	a	third	and	often-overlooked	style	of	troubleshooting;	this	style	utilizes
both	the	systematic	and	intuitive	styles.	I	like	to	call	this	style	the	Adaptor.	The
Adaptor	 has	 a	 personality	 which	 enables	 it	 to	 switch	 between	 systematic	 and
intuitive	troubleshooting	styles.	This	combined	style	is	often	faster	than	the	Data
Collector	style	and	is	more	detail	oriented	than	the	Educated	Guesser	style.	This
is	 because	 they	 are	 able	 to	 apply	 the	 troubleshooting	 style	 appropriate	 for	 the
task	at	hand.

Choosing	the	appropriate	style
While	 it	 is	easy	 to	say	 that	one	method	 is	better	 than	 the	other,	 the	 fact	of	 the
matter	 is	 that	 picking	 the	 appropriate	 troubleshooting	 style	 depends	greatly	 on
the	 person.	 It	 is	 important	 to	 understand	which	 troubleshooting	 style	 best	 fits
your	own	personality.	By	understanding	which	style	fits	you	better,	you	can	learn
and	use	 techniques	 that	 fit	 that	 style.	You	 can	 also	 learn	 and	 adopt	 techniques
from	 other	 styles	 to	 apply	 troubleshooting	 steps	 that	 you	 would	 normally
overlook.

This	 book	will	 show	 both	 the	 Data	 Collector	 and	 Educated	 Guesser	 styles	 of
troubleshooting,	and	periodically	highlighting	which	personality	style	 the	steps
best	fit.

Troubleshooting	steps
Troubleshooting	 is	a	process	 that	 is	both	 rigid	and	 flexible.	The	 rigidity	of	 the
troubleshooting	 process	 is	 based	 on	 the	 fact	 that	 there	 are	 basic	 steps	 to	 be
followed.	 In	 this	 way,	 I	 like	 to	 equate	 the	 troubleshooting	 process	 to	 the
scientific	method,	where	 the	 scientific	method	 has	 a	 specific	 list	 of	 steps	 that
must	be	followed.

The	flexibility	of	the	troubleshooting	process	is	that	these	steps	can	be	followed
in	any	order	that	makes	sense.	Unlike	the	scientific	method,	the	troubleshooting
process	often	has	the	goal	of	resolving	the	issue	quickly.	Sometimes,	in	order	to
resolve	an	 issue	quickly,	you	might	need	 to	skip	a	step	or	execute	 them	out	of
order.	For	example,	with	the	troubleshooting	process,	you	might	need	to	resolve
the	immediate	issue,	and	then	identify	the	root	cause	of	that	issue.

The	following	list	has	five	steps	that	make	up	the	troubleshooting	process.	Each
of	 these	 steps	 could	 also	 include	 several	 sub-tasks,	which	may	 or	may	 not	 be
relevant	to	the	issue.	It	is	important	to	follow	these	steps	with	a	grain	of	salt,	as
not	 every	 issue	 can	 be	 placed	 into	 the	 same	 bucket.	 The	 following	 steps	 are
meant	to	be	used	as	a	best	practice	but,	as	with	all	things,	it	should	be	adapted	to
the	issue	at	hand:

1.	 Understanding	the	problem	statement.
2.	 Establishing	a	hypothesis.
3.	 Trial	and	error.
4.	 Getting	help.
5.	 Documentation.

Understanding	the	problem	statement
With	 the	 scientific	method,	 the	 first	 step	 is	 to	 establish	 a	 problem	 statement,
which	 is	 another	 way	 of	 saying:	 to	 identify	 and	 understand	 the	 goal	 of	 the
experiment.	With	the	troubleshooting	process,	the	first	step	is	to	understand	the
problem	 being	 reported.	 The	 better	we	 understand	 an	 issue,	 the	 easier	 it	 is	 to
resolve	the	issue.

There	are	a	number	of	tasks	we	can	perform	that	will	help	us	understand	issues
better.	 This	 first	 step	 is	 where	 a	 Data	 Collector's	 personality	 stands	 out.	 Data
Collectors,	by	nature,	will	gather	as	much	data	as	they	can	before	moving	on	to
the	next	step,	whereas,	the	Educated	Guessers	generally	tend	to	run	through	this
step	 quickly	 and	 then	 move	 on	 to	 the	 next	 step,	 which	 can	 sometimes	 cause
critical	pieces	of	information	to	be	missed.

Adaptors	tend	to	understand	which	data	collecting	steps	are	necessary	and	which
ones	 are	 not.	 This	 allows	 them	 to	 collect	 data	 as	 a	Data	Collector	would,	 but
without	 spending	 time	 gathering	 data	 that	 does	 not	 add	 value	 to	 the	 issue	 at
hand.

The	sub-task	in	this	troubleshooting	step	is	asking	the	right	questions.

Asking	questions

Whether	via	human	or	automated	processes	such	as	a	ticket	system,	the	reporter
of	the	issue	is	often	a	great	source	of	information.

Tickets

When	they	receive	a	ticket,	the	Educated	Guesser	personality	will	often	read	the
heading	 of	 the	 ticket,	make	 an	 assumption	 of	 the	 issue	 and	move	 to	 the	 next
stage	of	understanding	 the	 issue.	The	Data	Collector	personality	will	generally
open	the	ticket	and	read	the	full	details	of	the	ticket.

While	it	depends	on	the	ticketing	and	monitoring	system,	in	general,	there	can	be
useful	information	within	a	ticket.	Unless	the	issue	is	a	common	issue	and	you
are	able	to	understand	all	that	you	know	from	the	header,	it	is	generally	a	good
idea	 to	 read	 the	 ticket	 description.	 Even	 small	 amounts	 of	 information	 might
help	with	particularly	tricky	issues.

Humans

Gathering	 additional	 information	 from	 humans,	 however,	 can	 be	 inconsistent.
This	 varies	 greatly	 depending	 on	 the	 environment	 being	 supported.	 In	 some
environments,	 the	 person	 reporting	 an	 issue	 can	 provide	 all	 of	 the	 details
required	to	resolve	the	issue.	In	other	environments,	 they	might	not	understand
the	issue	and	simply	explain	the	symptoms.

No	matter	what	troubleshooting	style	fits	your	personality	best,	being	able	to	get
important	information	from	the	person	reporting	the	issue	is	an	important	skill.
Intuitive	problem	solvers	such	as	the	Educated	Guesser	or	Adaptor	tend	to	find
this	process	easier	as	compared	to	Data	Collector	personalities,	not	because	these
personalities	 are	 necessarily	 better	 at	 obtaining	 details	 from	 people	 but	 rather
because	they	are	able	to	identify	patterns	with	less	information.	Data	Collectors,
however,	can	get	the	information	they	need	from	those	reporting	the	issue	if	they
are	prepared	to	ask	troubleshooting	questions.

Note

Don't	be	afraid	to	ask	obvious	questions

My	first	technical	job	was	in	a	webhosting	technical	support	call	center.	There	I
often	 received	 calls	 from	 users	 who	 did	 not	 want	 to	 perform	 the	 basic
troubleshooting	steps	and	simply	wanted	the	issue	escalated.	These	users	simply
felt	that	they	had	performed	all	of	the	troubleshooting	steps	themselves	and	had
found	an	issue	beyond	first	level	support.

While	sometimes	this	was	true,	more	often,	 the	issue	was	something	basic	 that
they	 had	 overlooked.	 In	 that	 role,	 I	 quickly	 learned	 that	 even	 if	 the	 user	 is
reluctant	to	answer	basic	or	obvious	questions,	at	the	end	of	the	day,	they	simply
want	their	issue	resolved.	If	that	meant	going	through	repetitive	steps,	that	was
ok,	as	long	as	the	issue	is	resolved.

Even	 today,	 as	 I	 am	 now	 the	 escalation	 point	 for	 senior	 engineers,	 I	 find	 that
many	times	engineers	(even	with	years	of	troubleshooting	experience	under	their
belt)	overlook	simple	basic	steps.

Asking	simple	questions	that	might	seem	basic	are	sometimes	a	great	time	saver;
so	don't	be	afraid	to	ask	them.

Attempting	to	duplicate	the	issue

One	 of	 the	 best	 ways	 to	 gather	 information	 and	 understand	 an	 issue	 is	 to
experience	it.	When	an	issue	is	reported,	it	is	best	to	duplicate	the	issue.

While	users	can	be	a	source	of	a	lot	of	information,	they	are	not	always	the	most
reliable;	oftentimes	a	user	might	experience	an	error	and	overlook	 it	or	simply
forget	to	relay	the	error	when	reporting	the	issue.

Often,	one	of	the	first	questions	I	will	ask	a	user	is	how	to	recreate	the	issue.	If
the	user	is	able	to	provide	this	information,	I	will	be	able	to	see	any	errors	and
often	identify	the	resolution	of	the	issue	faster.

Note

Sometimes	duplicating	the	issue	is	not	possible

While	 it	 is	 always	 best	 to	 duplicate	 the	 issue,	 it	 is	 not	 always	 possible.	Every
day,	 I	work	with	many	 teams;	sometimes,	 those	 teams	are	within	 the	company
but	many	times	they	are	external	vendors.	Every	so	often	during	a	critical	issue,	I
will	see	someone	make	a	blanket	statement	such	as	"If	we	can't	duplicate	it,	we
cannot	troubleshoot	it."

While	it	is	 true	that	duplicating	an	issue	is	sometimes	the	only	way	to	find	the
root	 cause,	 I	 often	 hear	 this	 statement	 abused.	Duplicating	 an	 issue	 should	 be
viewed	 like	a	 tool;	 it	 is	 simply	one	of	many	 tools	 in	your	 troubleshooting	 tool
belt.	If	it	is	not	available,	then	you	simply	have	to	make	do	with	another	tool.

There	is	a	significant	difference	between	not	being	able	to	find	a	resolution	and
not	attempting	to	find	a	resolution	due	to	the	inability	to	duplicate	an	issue.	The
latter	is	not	only	unhelpful,	but	also	unprofessional.

Running	investigatory	commands

Most	 likely,	 you	 are	 reading	 this	 book	 to	 learn	 techniques	 and	 commands	 to
troubleshoot	 Red	 Hat	 Enterprise	 Linux	 systems.	 The	 third	 sub-task	 in
understanding	 the	 problem	 statement	 is	 just	 that—running	 investigative
commands	 to	 identify	 the	 cause	 of	 the	 issue.	 Before	 executing	 investigatory
commands,	 however,	 it	 is	 important	 to	 know	 that	 the	 previous	 steps	 are	 in	 a

logical	order.

It	is	a	best	practice	to	first	ask	the	user	reporting	an	issue	some	basic	details	of
the	issue,	then	after	obtaining	enough	information,	duplicate	the	issue.	Once	the
issue	has	been	duplicated,	the	next	logical	step	is	to	run	the	necessary	commands
to	troubleshoot	and	investigate	the	cause	of	the	issue.

It	 is	 very	 common	 to	 find	 yourself	 returning	 to	 previous	 steps	 during	 the
troubleshooting	process.	After	you	have	 identified	 some	key	errors,	you	might
find	 that	 you	must	 ask	 the	 original	 reporter	 for	 additional	 information.	When
troubleshooting,	do	not	be	afraid	to	take	a	few	steps	backwards	in	order	to	gain
clarity	of	the	issue	at	hand.

Establishing	a	hypothesis
With	the	scientific	method,	once	a	problem	statement	has	been	formulated	it	 is
then	time	to	establish	a	hypothesis.	With	the	troubleshooting	process,	after	you
have	identified	the	issue,	gathered	the	information	about	the	issue	such	as	errors,
system	 current	 state,	 and	 so	 on,	 it	 is	 also	 time	 to	 establish	 what	 you	 believe
caused	or	is	causing	the	issue.

Some	 issues,	 however,	might	 not	 require	much	 of	 a	 hypothesis.	 It	 is	 common
that	errors	 in	 log	files	or	 the	systems	current	state	might	answer	why	 the	 issue
occurred.	In	such	scenarios,	you	can	simply	resolve	the	issue	and	move	on	to	the
Documentation	step.

For	issues	that	are	not	cut	and	dry,	you	will	need	to	put	together	a	hypothesis	of
the	 root	cause.	This	 is	necessary	as	 the	next	 step	after	 forming	a	hypothesis	 is
attempting	 to	 resolve	 the	 issue.	 It	 is	 difficult	 to	 resolve	 an	 issue	 if	 you	do	not
have	at	least,	a	theory	of	the	root	cause.

Here	are	a	few	techniques	that	can	be	used	to	help	form	a	hypothesis.

Putting	together	patterns

While	performing	data	 collection	during	 the	previous	 steps,	 you	might	 start	 to
see	patterns.	Patterns	 can	be	 something	 as	 simple	 as	 similar	 log	 entries	 across
multiple	 services,	 the	 type	 of	 failure	 that	 occurred	 (such	 as,	multiple	 services
going	offline),	or	even	a	reoccurring	spike	in	system	resource	utilization.

These	patterns	can	be	used	to	formulate	a	theory	of	the	issue.	To	drive	the	point
home,	let's	go	through	a	real-world	scenario.

You	are	managing	a	server	that	both	runs	a	web	application	and	receives	e-mails.
You	have	a	monitoring	system	 that	detected	an	error	with	 the	web	service	and
created	a	ticket.	While	investigating	the	ticket,	you	also	receive	a	call	from	an	e-
mail	user	stating	they	are	getting	e-mail	bounce	backs.

When	you	ask	the	user	to	read	the	error	to	you	they	mention	No	space	left	on
device.

Let's	break	down	this	scenario:

A	ticket	from	our	monitoring	solution	has	told	us	Apache	is	down
We	have	also	received	reports	from	e-mail	users	with	errors	indicative	of	a
file	system	being	full

Could	 all	 of	 this	 mean	 that	 Apache	 is	 down	 because	 the	 file	 system	 is	 full?
Possibly.	Should	we	investigate	it?	Absolutely!

Is	this	something	that	I've	encountered	before?

The	above	breakdown	leads	into	the	next	technique	for	forming	a	hypothesis.	It
might	 sound	 simple	 but	 is	 often	 forgotten.	 "Have	 I	 seen	 something	 like	 this
before?"

With	the	previous	scenario,	the	error	reported	from	the	e-mail	bounce	back	was
one	that	generally	indicated	that	a	file	system	was	full.	How	do	we	know	this?
Well,	simple,	we	have	seen	it	before.	Maybe	we	have	seen	that	same	error	with
e-mail	bounce	backs	or	maybe	we	have	seen	the	error	from	other	services.	The
point	is,	the	error	is	familiar	and	the	error	generally	means	one	thing.

Remembering	 common	 errors	 can	 be	 extremely	 useful	 for	 the	 intuitive	 types
such	 as	 the	 Educated	 Guesser	 and	 Adaptor;	 this	 is	 something	 they	 tend	 to
naturally	 perform.	 For	 the	 Data	 Collector,	 a	 handy	 trick	 would	 be	 to	 keep	 a
reference	table	of	common	errors	handy.

Tip

From	 my	 experience,	 most	 Data	 Collectors	 tend	 to	 keep	 a	 set	 of	 notes	 that
contain	 things	 such	 as	 common	 commands	 or	 steps	 for	 procedures.	 Adding
common	 errors	 and	 the	 meaning	 behind	 those	 errors	 are	 a	 great	 way	 for
systematic	thinkers	such	as	Data	Collectors	to	establish	a	hypothesis	faster.

Overall,	 establishing	a	hypothesis	 is	 important	 for	 all	 types	of	 troubleshooters.
This	 is	 the	 area	 where	 the	 intuitive	 thinkers	 such	 as	 Educated	 Guessers	 and
Adaptors	excel.	Generally,	those	types	of	troubleshooters	will	form	a	hypothesis
sooner,	even	if	sometimes	those	hypotheses	are	not	always	correct.

Trial	and	error
In	 the	 scientific	 method,	 once	 a	 hypothesis	 is	 formed,	 the	 next	 stage	 is
experimentation.	With	troubleshooting,	this	equates	to	attempting	to	resolve	the
issue.

Some	issues	are	simple	and	can	be	resolved	using	a	standard	procedure	or	steps
from	 experience.	 Other	 issues,	 however,	 are	 not	 as	 simple.	 Sometimes,	 the
hypothesis	 turns	out	 to	be	wrong	or	 the	 issue	ends	up	being	more	complicated
than	initially	thought.

In	such	cases,	 it	might	 take	multiple	attempts	 to	 resolve	 the	 issue.	 I	personally
like	 to	 think	of	 this	as	similar	 to	 trial	and	error.	 In	general,	you	might	have	an
idea	 of	what	 is	wrong	 (the	 hypothesis)	 and	 an	 idea	 on	 how	 to	 resolve	 it.	You
attempt	to	resolve	it	(trial),	and	if	that	doesn't	work	(error),	you	move	on	to	the
next	possible	solution.

Start	by	creating	a	backup

To	those	taking	up	a	new	role	as	a	Linux	Systems	Administrator,	 if	 there	were
only	one	piece	of	advice	I	could	give,	it	would	be	one	that	most	have	learned	the
hard	way:	back	everything	up	before	making	changes.

Many	 times	 as	 systems	 administrators	 we	 find	 ourselves	 needing	 to	 change	 a
configuration	 file	 or	 delete	 a	 few	 unneeded	 files	 in	 order	 to	 solve	 an	 issue.
Unfortunately,	we	might	 think	we	know	what	needs	 to	be	removed	or	changed
but	are	not	always	correct.

If	 a	 backup	was	 taken,	 then	 the	 change	 can	 simply	 be	 restored	 to	 its	 previous
state,	however,	without	a	backup.	Thus	reverting	changes	is	not	as	easy.

A	 backup	 can	 consist	 of	 many	 things,	 it	 can	 be	 a	 full	 system	 backup	 using
something	 like	 rdiff-backup,	 a	 VM	 snapshot,	 or	 something	 as	 simple	 as
creating	a	copy	of	a	file.

Tip

For	 those	 interested	 in	 seeing	 the	 extent	 of	 this	 tip	 in	 practice,	 simply	 run	 the
following	 command	 on	 any	 server	 that	 has	 more	 than	 four	 systems

administrators	and	has	been	around	for	several	years:

$	find	/etc	–name	"*.bak"

Getting	help
In	many	cases	at	this	point	the	issue	is	resolved,	but	much	like	each	step	in	the
troubleshooting	process,	 it	 depends	on	 the	 issue	at	hand.	While	getting	help	 is
not	exactly	a	troubleshooting	step,	it	is	often	the	next	logical	step	if	you	cannot
solve	the	issue	on	your	own.

When	looking	for	help,	there	are	generally	six	resources	available:

Books
Team	Wikis	or	Runbooks
Google
Man	pages
Red	Hat	kernel	docs
People

Books

Books	(such	as	this	one)	are	good	for	referencing	commands	or	troubleshooting
steps	for	particular	types	of	issues.	Other	books	such	as	the	ones	that	specialize
on	a	specific	technology	are	good	for	referencing	how	that	technology	works.	In
previous	years,	it	was	not	uncommon	to	see	a	senior	admin	with	a	bookshelf	full
of	technical	books	at	his	or	her	disposal.

In	today's	world,	as	books	are	more	frequently	seen	in	a	digital	format,	they	are
even	easier	to	use	as	references.	The	digital	format	makes	them	searchable	and
allows	readers	to	find	specific	sections	faster	than	a	traditional	printed	version.

Team	Wikis	or	Runbooks

Before	Team	 Wikis	 became	 common,	 many	 operations	 groups	 had	 physical
books	called	Runbooks.	These	books	are	a	list	of	processes	and	procedures	used
daily	 by	 the	 operations	 team	 to	 keep	 the	 production	 environments	 operating
normally.	 Sometimes,	 these	 Runbooks	 would	 contain	 information	 for
provisioning	 new	 servers	 and	 sometimes	 they	 would	 be	 dedicated	 to
troubleshooting.

In	 today's	 world,	 these	 Runbooks	 have	mostly	 been	 replaced	 by	 Team	Wikis,
these	Wikis	will	often	have	the	same	content	but	are	online.	They	also	tend	to	be

searchable	and	easier	to	keep	up	to	date,	which	means	they	are	frequently	more
relevant	than	a	traditional	printed	Runbook.

The	 benefit	 of	 Team	 Wikis	 and	 Runbooks	 are	 that	 not	 only	 can	 they	 often
address	 issues	 that	 are	 specific	 to	your	 environment,	 but	 they	 can	 also	 resolve
those	 issues.	 There	 are	many	ways	 to	 configure	 services	 such	 as	Apache,	 and
there	 are	 even	more	 ways	 that	 external	 systems	 create	 dependencies	 on	 these
services.

In	 some	 environments,	 you	might	 be	 able	 to	 simply	 restart	 Apache	whenever
there	 is	 an	 issue,	 but	 in	 others,	 you	might	 actually	 have	 to	 go	 through	 several
prerequisite	steps.	If	there	is	a	specific	process	that	needs	to	be	followed	before
restarting	a	service,	it	is	a	best	practice	to	document	the	process	in	either	a	Team
Wiki	or	Runbook.

Google

Google	is	such	a	common	tool	for	systems	administrators	that	at	one	point	there
were	 specific	 search	 portals	 available	 at	 google.com/linux,
google.com/microsoft,	google.com/mac,	and	google.com/bsd.

Google	 has	 depreciated	 these	 search	 portals	 but	 that	 doesn't	 mean	 that	 the
number	of	times	systems	administrators	use	Google	or	any	other	search	engine
for	troubleshooting	has	decreased.

In	fact,	in	today's	world,	it	is	not	uncommon	to	hear	the	words	"I	would	Google
it"	in	technical	interviews.

A	few	tips	for	those	new	to	using	Google	for	systems	administration	tasks	are:

If	 you	 copy	 and	 paste	 a	 full	 error	message	 (removing	 the	 server	 specific
text)	you	will	likely	find	more	relevant	results:

For	example,	searching	for	kdumpctl:	No	memory	reserved	for	crash	kernel
returns	600	results,	whereas	searching	for	memory	reserved	for	crash	kernel
returns	449,000	results.
You	can	find	an	online	version	of	any	man	page	by	searching	for	man	then	a
command	such	as	man	netstat.
You	can	wrap	an	error	in	double	quotes	to	refine	search	results	to	those	that

contain	the	same	error.
Asking	what	you're	looking	for	in	the	form	of	a	question	usually	results	in
tutorials.	For	example,	How	do	you	restart	Apache	on	RHEL	7?

While	Google	can	be	a	great	resource,	the	results	should	always	be	taken	with	a
grain	 of	 salt.	Often	while	 searching	 for	 an	 error	 on	Google,	 you	might	 find	 a
suggested	command	that	offers	little	explanation	but	simply	says	"run	this	and	it
will	fix	it".	Be	very	cautious	when	running	these	commands,	it	is	important	that
any	command	you	execute	on	a	system	should	be	a	command	you	are	familiar
with.	You	should	always	know	what	a	command	does	before	executing	it.

Man	pages

When	Google	is	not	available	or	even	sometimes	when	it	 is,	 the	best	source	of
information	 on	 commands	 or	 Linux,	 in	 general,	 are	 the	man	 pages.	 The	man
pages	 are	 core	 Linux	 manual	 documents	 that	 are	 accessible	 via	 the	 man
command.

To	 look	up	documentation	 for	 the	netstat	command,	 for	example,	simply	run
the	following:

$	man	netstat
NETSTAT(8)
Linux	System	Administrator's	Manual
NETSTAT(8)

NAME
							netstat	-	Print	network	connections,	routing	tables,	
interface	statistics,	masquerade	connections,	and	multicast	
memberships

As	 you	 can	 see,	 this	 command	 outputs	 not	 only	 the	 information	 on	 what	 the
netstat	 command	 is,	 but	 also	 contains	 a	quick	 synopsis	 of	 usage	 information
such	as	the	following:

SYNOPSIS
						netstat		[address_family_options]		[--tcp|-t]		[--udp|-u]	[--
udplite|-U]	[--raw|-w]	[--listening|-l]	[--all|-a]	[--numeric|-n]	
[--numeric-hosts]
							[--numeric-ports]	[--numeric-users]	[--symbolic|-N]	[--
extend|-e[--extend|-e]]		[--timers|-o]		[--program|-p]	[--verbose|-
v]		[--continuous|-c]

							[--wide|-W]	[delay]

Also,	it	gives	detailed	descriptions	of	each	flag	and	what	it	does:

			--route	,	-r
							Display	the	kernel	routing	tables.	See	the	description	in	
route(8)	for	details.		netstat	-r	and	route	-e	produce	the	same	
output.

			--groups	,	-g
							Display	multicast	group	membership	information	for	IPv4	and	
IPv6.

			--interfaces=iface	,	-I=iface	,	-i
							Display	a	table	of	all	network	interfaces,	or	the	specified	
iface.

In	 general,	 the	 base	 manual	 pages	 for	 the	 core	 system	 and	 libraries	 are
distributed	with	the	man-pages	package.	The	man	pages	for	specific	commands
such	as	top,	netstat,	or	ps	are	distributed	as	part	of	that	command's	installation
package.	 The	 reason	 for	 this	 is	 because	 the	 documentation	 of	 individual
commands	and	components	is	left	to	the	package	maintainers.

This	can	mean	that	some	commands	are	not	documented	to	the	level	of	others.	In
general,	however,	the	man	pages	are	extremely	useful	sources	of	information	and
can	answer	most	day-to-day	questions.

Reading	a	man	page

In	 the	previous	example,	we	can	see	 that	 the	man	page	for	netstat	 includes	a
few	sections	of	information.	In	general,	man	pages	have	a	consistent	layout	with
some	common	sections	that	can	be	found	within	most	man	pages.	The	following
is	a	simple	list	of	some	of	these	common	sections:

Name
Synopsis
Description
Examples

Name

The	Name	section	generally	contains	the	name	of	the	command	and	a	very	brief
description	 of	 the	 command.	 The	 following	 is	 the	 name	 section	 from	 the	 ps

command's	man	page:

NAME
							ps	-	report	a	snapshot	of	the	current	processes.

Synopsis

The	Synopsis	section	of	a	command's	man	page	will	generally	list	the	command
followed	by	the	possible	command	flags	or	options.	A	very	good	example	of	this
section	can	be	seen	in	the	netstat	command's	synopsis:

SYNOPSIS
							netstat		[address_family_options]		[--tcp|-t]		[--udp|-u]	[-
-raw|-w]		[--listening|-l]		[--all|-a]	[--numeric|-n]	[--numeric-
hosts]	[--numeric-ports]
							[--numeric-users]	[--symbolic|-N]	[--extend|-e[--extend|-	
e]]	[--timers|-o]	[--program|-p]	[--verbose|-v]	[--continuous|-c]

This	section	can	be	very	useful	as	a	quick	reference	for	command	syntax.
Description

The	Description	section	will	often	contain	a	longer	description	of	the	command
as	well	as	a	list	and	explanation	of	the	various	command	options.	The	following
snippet	is	from	the	cat	command's	man	page:

DESCRIPTION
							Concatenate	FILE(s),	or	standard	input,	to	standard	output.

							-A,	--show-all
														equivalent	to	-vET

							-b,	--number-nonblank
														number	nonempty	output	lines,	overrides	-n

The	description	 section	 is	very	useful,	 since	 it	goes	beyond	simply	 looking	up
options.	 This	 section	 is	 often	 where	 you	 will	 find	 documentation	 about	 the
nuances	of	commands.
Examples

Often	man	pages	will	also	include	examples	of	using	the	command:

EXAMPLES
							cat	f	-	g
													Output	f's	contents,	then	standard	input,	then	g's	

infocontents.

The	preceding	 is	a	 snippet	 from	 the	cat	 command's	man	page.	We	can	see,	 in
this	 example,	 how	 to	 use	 cat	 to	 read	 from	 files	 and	 standard	 input	 in	 one
command.

This	section	 is	often	where	I	 find	new	ways	of	using	commands	 that	 I've	used
many	times	before.
Additional	sections

In	addition	to	the	previous	section,	you	might	also	see	sections	such	as	See	Also,
Files,	Author,	and	History.	These	sections	can	also	contain	useful	information;
however,	not	every	man	page	will	have	them.

Info	documentation

Along	 with	 man	 pages,	 Linux	 systems	 generally	 also	 contain	 info
documentation,	which	are	designed	to	contain	additional	documentation,	which
go	beyond	that,	within	man	pages.	Much	like	man	pages,	the	info	documentation
is	 included	 with	 a	 command	 package,	 and	 the	 quality/quantity	 of	 the
documentation	can	vary	by	package.

The	method	 to	 invoke	 the	 info	documentation	 is	 similar	 to	man	pages,	 simply
execute	the	info	command	followed	by	the	subject	you	wish	to	view:

$	info	gzip
GNU	Gzip:	General	file	(de)compression

This	manual	is	for	GNU	Gzip	(version	1.5,	10	June	2014),	and	
documents	commands	for	compressing	and	decompressing	data.

			Copyright	(C)	1998-1999,	2001-2002,	2006-2007,	2009-2012	Free
Software	Foundation,	Inc.

Referencing	more	than	commands

In	addition	 to	using	man	pages	and	 info	documentation	 to	 look	up	commands;
these	tools	can	also	be	used	to	view	documentation	around	other	items	such	as
system	calls	or	configuration	files.

As	an	example,	if	you	were	to	use	man	to	search	for	the	term	signal,	you	would
see	the	following:

$	man	signal
SIGNAL(2)
Linux	Programmer's	Manual
SIGNAL(2)

NAME
							signal	-	ANSI	C	signal	handling

SYNOPSIS
							#include	<signal.h>

							typedef	void	(*sighandler_t)(int);

							sighandler_t	signal(int	signum,	sighandler_t	handler);

DESCRIPTION
							The		behavior	of	signal()	varies	across	UNIX	versions,	and	
has	also	varied	historically	across	different	versions	of	Linux.	
Avoid	its	use:	use	sigaction(2)	instead.		See	Portability	below.

signal()	sets	the	disposition	of	the	signal	signum	to	handler,	
which	is	either	SIG_IGN,	SIG_DFL,	or	the	address	of	a	programmer-
defined		function		(a	"signal	handler").

Signal	 is	 a	very	 important	 system	call	 and	a	core	concept	of	Linux.	Knowing
that	 it	 is	 possible	 to	 use	 the	 man	 and	 info	 commands	 to	 look	 up	 core	 Linux
concepts	and	behaviors	can	be	very	useful	during	troubleshooting.

Installing	man	pages

Red	Hat	Enterprise	Linux	 based	 distributions	 generally	 include	 the	man-pages
package;	if	your	system	does	not	have	the	man-pages	package	installed,	you	can
install	it	with	the	yum	command:

#	yum	install	man-pages

Red	Hat	kernel	docs

In	 addition	 to	 man	 pages,	 the	 Red	Hat	 distribution	 also	 has	 a	 package	 called
kernel-doc.	 This	 package	 contains	 quite	 a	 bit	 of	 information	 on	 how	 the
internals	of	the	system	works.

The	 kernel	 documentation	 is	 a	 set	 of	 text	 files	 that	 are	 placed	 into
/usr/share/doc/kernel-doc-<kernel-version>/	 and	 are	 categorized	 by	 the
topic	they	cover.	This	resource	is	quite	useful	for	deeper	troubleshooting	such	as
adjusting	 kernel	 tunables	 or	 understanding	 how	 ext4	 filesystems	 utilize	 the
journal.

By	default,	 the	kernel-doc	 package	 is	 not	 installed,	 however,	 it	 can	 be	 easily
installed	using	the	yum	command:

#	yum	install	kernel-doc

People

Whether	 it	 is	 a	 friend	 or	 a	 team	 leader,	 there	 is	 certain	 etiquette	when	 asking
others	for	help.	The	following	is	a	list	of	things	that	people	tend	to	expect	when
asked	to	help	solve	an	issue.	When	I	am	asked	for	help,	I	would	expect	you	to:

Try	to	resolve	it	yourself:	When	escalating	an	issue,	it	is	always	best	to	at
least	try	to	follow	the	Understanding	the	problem	statement	and	Forming	a
hypothesis	steps	of	the	troubleshooting	process.
Document	what	you've	tried:	Documentation	is	key	to	escalating	issues	or
getting	help.	The	better	you	document	the	steps	tried	and	errors	found,	the
faster	it	will	be	for	others	to	identify	and	resolve	the	issue.
Explain	what	you	think	the	issue	is	and	what	was	reported:	When	you
escalate	 the	 issue,	 one	 of	 the	 first	 things	 to	 point	 out	 is	 your	 hypothesis.
Often	 this	 can	 help	 expedite	 resolution	 by	 leading	 the	 next	 person	 to	 a
possible	solution	without	having	to	perform	data	collection	activities.
Mention	whether	 there	 is	 anything	 else	 that	 happened	 to	 this	 system
recently:	Often	issues	come	in	pairs,	it	is	important	to	highlight	all	factors
of	what	is	happening	on	the	system	or	systems	affected.

The	preceding	list,	while	not	extensive,	is	important	as	each	of	these	key	pieces
of	information	can	help	the	next	person	troubleshoot	the	issue	effectively.

Following	up

When	escalating	issues,	 it	 is	always	best	 to	follow	up	with	that	other	person	to
find	out	what	they	did	and	how	they	did	it.	This	is	important	as	it	will	show	the
person	you	asked	that	you	are	willing	to	learn	more,	which	many	times	will	lead
to	them	taking	time	to	explain	how	they	resolved	and	identified	the	issue.

Interactions	 like	 these	 will	 give	 you	 more	 knowledge	 and	 help	 build	 your
system's	administration	skills	and	experience.

Documentation
Documentation	 is	 a	 critical	 step	 in	 the	 troubleshooting	 process.	 At	 every	 step
during	 the	 process,	 it	 is	 key	 to	 take	 note	 and	 document	 the	 actions	 being
performed.	Why	is	it	important	to	document?	Three	reasons	mainly:

When	escalating	the	issue,	the	more	information	you	have	written	down	the
more	you	can	pass	on	to	another
If	the	issue	is	a	reoccurring	issue,	the	documentation	can	be	used	to	update
a	Team	Wiki	or	Runbook
If,	 in	your	environment,	you	perform	Root	Cause	Analysis	 (RCA),	all	of
this	information	will	be	required	for	a	RCA

Depending	 on	 environments,	 the	 documentation	 can	 be	 anything	 from	 simple
notes	saved	in	a	text	file	on	a	local	system	to	required	notes	for	a	ticket	system.
Each	work	environment	is	different	but	a	general	rule	is	there	is	no	such	thing	as
too	much	documentation.

For	 Data	 Collectors,	 this	 step	 is	 fairly	 natural.	 As	 most	 Data	 Collector
personalities	will	 generally	 keep	quite	 a	 few	notes	 for	 their	 own	personal	 use.
For	 Educated	 Guessers,	 this	 step	 might	 seem	 unnecessary.	 However,	 for	 any
issue	that	is	reoccurring	or	needs	to	be	escalated,	documentation	is	critical.

What	kind	of	 information	should	be	documented?	The	 following	 list	 is	a	good
starting	 point	 but	 as	 with	 most	 things	 in	 troubleshooting,	 it	 depends	 on	 the
environment	and	the	issue:

The	problem	statement,	as	you	understand	it
The	hypothesis	of	what	is	causing	the	issue
Data	collected	during	the	information	gathering	steps:

Specific	errors	found
Relevant	 system	 metrics	 (for	 example,	 CPU,	 Memory,	 and	 Disk
utilization)

Commands	executed	during	the	information	gathering	steps	(within	reason,
it	is	not	required	to	include	every	cd	or	ls	command	executed)
Steps	 taken	 during	 attempts	 to	 resolve	 the	 issue,	 including	 specific
commands	executed

With	the	preceding	items	well	documented,	if	the	issue	reoccurs,	it	is	relatively
simple	to	take	the	documentation	and	move	it	to	a	Team	Wiki.	The	benefit	to	this
is	that	a	Wiki	article	can	be	used	by	other	team	members	who	need	to	resolve	the
same	issue	during	reoccurrences.

One	 of	 the	 three	 reasons	 listed	 previously	 for	 documentation	 is	 to	 use	 the
documentation	 during	 Root	 Cause	 Analysis,	 which	 leads	 to	 our	 next	 topic—
Establishing	a	Root	Cause	Analysis.

Root	cause	analysis
Root	cause	analysis	is	a	process	that	is	performed	after	incidents	occur.	The	goal
of	the	RCA	process	is	to	identify	the	root	cause	of	an	incident	and	identify	any
possible	 corrective	 actions	 to	 prevent	 the	 same	 incident	 from	 occurring	 again.
These	 corrective	 actions	 might	 be	 as	 simple	 as	 establishing	 user	 training	 to
reconfiguring	Apache	across	all	web	servers.

The	RCA	process	is	not	unique	to	technology	and	is	a	widely	practiced	process
in	fields	such	as	aviation	and	occupational	safety.	In	these	fields,	an	incident	is
often	more	than	simply	a	few	computers	being	offline.	They	are	incidents	where
a	person's	life	might	have	been	at	risk.

The	anatomy	of	a	good	RCA
Different	work	environments	might	implement	RCA	processes	differently	but	at
the	end	of	the	day	there	are	a	few	key	elements	in	every	good	RCA:

The	problem	as	it	was	reported
The	actual	root	cause	of	the	problem
A	timeline	of	events	and	actions	taken
Any	key	data	points
A	plan	of	action	to	prevent	the	incident	from	reoccurring

The	problem	as	it	was	reported

One	of	the	first	steps	 in	 the	 troubleshooting	process	 is	 to	 identify	 the	problem;
this	 information	 is	 a	 key	 piece	 of	 information	 for	 RCAs.	 The	 importance	 can
vary	 in	 reason	depending	on	 the	 issue.	Sometimes,	 this	 information	will	 show
whether	or	not	the	issue	was	correctly	identified.	Most	times,	it	can	serve	as	an
estimate	of	the	impact	of	the	issue.

Understanding	the	impact	of	an	issue	can	be	very	important,	for	some	companies
and	 issues	 it	 could	 mean	 lost	 revenue;	 for	 other	 companies,	 it	 could	 mean
damage	to	their	brand	or	depending	on	the	issue,	it	could	mean	nothing	at	all.

The	actual	root	cause	of	the	problem

This	 element	 of	 a	 Root	 Cause	 Analysis	 is	 pretty	 self-explanatory	 on	 its
importance.	 However,	 sometimes	 it	 might	 not	 be	 possible	 to	 identify	 a	 root
cause.	In	this	chapter	and	in	Chapter	12,	Root	Cause	Analysis	of	an	Unexpected
Reboot,	 I	 will	 discuss	 how	 to	 handle	 issues	 where	 a	 full	 root	 cause	 is
unavailable.

A	timeline	of	events	and	actions	taken
If	we	use	an	aviation	incident	as	an	example,	it	is	easy	to	see	where	a	timeline	of
events	such	as,	when	did	the	plane	take	off,	when	were	passengers	boarded,	and
when	did	the	maintenance	crew	finish	their	evaluation,	can	be	useful.	A	timeline
for	technology	incidents	can	also	be	very	useful,	as	it	can	be	used	to	identify	the
length	of	impact	and	when	key	actions	are	taken.

A	good	 timeline	 should	consist	of	 times	and	major	events	of	 the	 incident.	The
following	is	an	example	timeline	of	a	technology	incident:

At	08:00,	Joe	B.	phones	the	NOC	helpline	reporting	an	outage	with	e-mail
servers	in	Tempe
At	08:15,	John	C.	logged	into	the	e-mail	servers	in	Tempe	and	noticed	they
were	running	out	of	available	memory
At	08:17,	as	per	the	Runbook,	John	C.	began	rebooting	the	e-mail	servers
one	by	one

Any	key	data	points	to	validate	the	root	cause

In	addition	to	a	timeline	of	events,	the	RCA	should	also	include	key	data	points.
To	 use	 the	 aviation	 example	 again,	 a	 key	 data	 point	 would	 be	 the	 weather
conditions	during	the	incident,	the	work	hours	of	those	involved,	or	the	condition
of	the	aircraft.

Our	timeline	example	included	a	few	key	data	points,	which	include:

Time	of	incident:	08:00
Condition	of	e-mail	servers:	Running	out	of	available	memory
Affected	service:	E-mail

Whether	the	data	points	are	on	their	own	or	within	a	timeline,	it	is	important	to
ensure	those	data	points	are	well	documented	in	the	RCA.

A	plan	of	action	to	prevent	the	incident	from
reoccurring
The	 entire	 point	 of	 performing	 a	 root	 cause	 analysis	 is	 to	 establish	 why	 an
incident	occurred	and	the	plan	of	action	to	prevent	it	from	happening	again.

Unfortunately,	 this	 is	an	area	 that	 I	 see	many	RCA's	neglect.	An	RCA	process
can	be	useful	when	implemented	well;	however,	when	implemented	poorly	they
can	turn	into	a	waste	of	time	and	resources.

Often	with	poor	implementations,	you	will	find	that	RCAs	are	required	for	every
incident	 big	 or	 small.	 The	 problem	with	 this	 is	 that	 it	 leads	 to	 a	 reduction	 of
quality	 in	 the	 RCAs.	 An	 RCA	 should	 only	 be	 performed	 when	 the	 incident
causes	 significant	 impact.	 For	 example,	 hardware	 failures	 are	 not	 preventable,
you	can	proactively	identify	hardware	failure	using	tools	such	as	smartd	for	hard
drives	 but	 apart	 from	 replacing	 them	 you	 cannot	 always	 prevent	 them	 from
failing.	 Requiring	 an	 RCA	 for	 every	 hardware	 failure	 and	 replacement	 is	 an
example	of	a	poorly	implemented	RCA	process.

When	an	engineer	is	required	to	establish	a	root	cause	for	something	as	common
as	hardware	failing,	they	neglect	the	root	cause	process.	When	engineers	neglect
the	 RCA	 process	 for	 one	 type	 of	 incident,	 it	 can	 spread	 to	 other	 types	 of
incidents	causing	quality	of	RCAs	to	suffer.

An	RCA	 should	 only	 be	 reserved	 for	 incidents	with	 significant	 impact.	Minor
incidents	 or	 routine	 incidents	 should	 never	 have	 an	 RCA	 requirement;	 they
should	 however,	 be	 tracked.	 By	 tracking	 the	 number	 of	 hard	 drives	 that	 have
been	replaced	along	with	the	make	and	model	of	those	hard	drives,	it	is	possible
to	identify	hardware	quality	issues.	The	same	is	true	with	routine	incidents	such
as	resetting	user	passwords.	By	tracking	these	types	of	incidents,	it	is	possible	to
identify	possible	areas	of	improvement.

Establishing	a	root	cause
To	 give	 a	 better	 understanding	 of	 the	 RCA	 process,	 let's	 use	 a	 hypothetical
problem	seen	in	production	environments.

Note

A	web	application	crashed	when	writing	to	a	file

After	logging	into	the	system,	you	were	able	to	find	that	the	application	crashed
because	the	file	system	where	the	application	attempted	to	write	to	was	full.

Note

The	root	cause	is	not	always	the	obvious	cause

Was	the	root	cause	of	the	issue	the	fact	that	the	file	system	was	full?	No.	While
the	file	system	being	full	might	have	caused	the	application	to	crash,	this	is	what
is	called	a	contributing	factor.	A	contributing	factor,	such	as	the	filesystem	being
full	can	be	corrected	but	this	will	not	prevent	the	issue	from	reoccurring.

At	this	point,	it	is	important	to	identify	why	the	filesystem	was	full.	On	further
investigation,	you	find	that	it	was	due	to	a	co-worker	disabling	a	cron	job	 that
removes	 old	 application	 files.	 After	 the	 cron	 job	 was	 disabled,	 the	 available
space	on	 the	 filesystem	slowly	kept	decreasing.	Eventually,	 the	 filesystem	was
100	percent	utilized.

In	this	case,	the	root	cause	of	the	issue	was	the	disabled	cron	job.

Sometimes	you	must	sacrifice	a	root	cause	analysis

Let's	 look	 at	 another	 hypothetical	 situation,	 where	 an	 issue	 causes	 an	 outage.
Since	the	issue	caused	significant	impact,	it	will	absolutely	require	an	RCA.	The
problem	is,	in	order	to	resolve	the	issue,	you	will	need	to	perform	an	activity	that
eliminates	the	possibility	of	performing	an	accurate	RCA.

These	 situations	 sometimes	 require	 a	 judgment	 call,	 whether	 to	 live	 with	 the
outage	a	little	longer	or	resolve	the	outage	and	sacrifice	any	chance	of	an	RCA.
Unfortunately,	there	is	no	single	answer	for	these	situations,	the	correct	answer

depends	on	both	the	issue	and	the	environment	affected.

Tip

While	working	on	financial	systems,	I	find	myself	having	to	make	this	decision
often.	With	mission	 critical	 systems,	 the	 answer	was	 almost	 always	 to	 restore
service	above	performing	the	root	cause	analysis.	However,	whenever	possible,
it	 is	always	preferred	 to	 first	capture	data	even	 if	 that	data	cannot	be	reviewed
immediately.

Understanding	your	environment
The	final	section	in	this	chapter	is	one	of	the	most	important	best	practices	I	can
suggest.	 The	 final	 section	 covers	 the	 importance	 of	 understanding	 your
environment.

Some	believe	that	a	systems	administrator's	job	stops	at	the	applications	installed
on	the	system	and	that	the	systems	administrator	should	only	be	concerned	with
the	operating	system	and	the	operating	system's	components,	such	as	networking
or	file	systems.

I	do	not	follow	this	philosophy.	In	reality,	it	is	often	that	a	systems	administrator
will	start	 to	understand	how	an	application	works	 in	production	better	 than	 the
development	team	who	created	it.

From	my	experience,	in	order	to	truly	support	a	server,	you	must	understand	the
service	 and	 applications	 running	 within	 that	 server.	 For	 example,	 in	 many
enterprise	 environments	 the	 systems	 administrator	 is	 expected	 to	 handle	 the
configuration	 and	 management	 of	 the	 web	 server	 (for	 example,	 Apache	 and
Nginx).	 However,	 the	 same	 system	 admin	 is	 not	 expected	 to	 manage	 the
application	(for	example,	Java	and	C)	behind	Apache.

What	makes	Apache	different	 from	a	 Java	 application?	The	 answer	 is	 nothing
really;	at	 the	end	of	 the	day	 they	are	both	applications	running	on	 the	server.	 I
have	 seen	many	 administrators	 simply	wash	 their	 hands	 off	 an	 issue	 once	 the
issue	is	related	to	an	application.	Yet	if	the	issue	is	related	to	Apache,	they	spring
into	action.

In	the	end,	if	those	administration	groups	were	to	partner	with	the	development
group	the	issues	could	be	solved	faster.	It	is	the	administrator's	responsibility	to
understand	 and	 help	 troubleshoot	 issues	 with	 any	 software	 loaded	 on	 their
systems.	Whether	that	software	was	distributed	with	the	OS	or	installed	later	by
an	application	team.

Summary
In	 this	 chapter,	 you	 learned	 that	 there	 are	 two	main	 styles	 of	 troubleshooting,
intuitive	 (Educated	 Guessers)	 and	 systematic	 (Data	 Collectors).	 We	 covered
which	troubleshooting	steps	work	best	for	those	two	styles	and	that	it	is	possible
for	some	(Adaptors)	to	utilize	both	styles	of	troubleshooting.

In	 the	following	chapters	of	 this	book,	as	we	 troubleshoot	 real-life	scenarios,	 I
will	utilize	both	the	intuitive	and	systematic	troubleshooting	steps	highlighted	in
the	processes	discussed	in	this	chapter.

This	chapter	did	not	get	into	technical	specifics;	the	next	chapter	will	be	full	of
technical	 details,	 as	we	 cover	 and	 explore	 common	Linux	 commands	used	 for
troubleshooting.

Chapter	 2.	 Troubleshooting
Commands	 and	 Sources	 of	 Useful
Information
In	the	first	chapter,	we	covered	troubleshooting	best	practices	and	the	high	level
process	 involved.	 Where	 the	 first	 chapter	 was	 a	 20,000	 ft	 view	 on
troubleshooting,	this	chapter	starts	to	dive	into	the	specifics.

This	chapter	will	review	common	troubleshooting	commands	as	well	as	common
places	to	find	helpful	information.	Within	this	book,	we	will	utilize	release	7	of
Red	Hat	Enterprise	Linux	(also	referred	to	as	RHEL).	All	commands	referenced
in	this	chapter	will	be	commands	that	are	included	with	a	default	installation	of
RHEL	7.

We	will	reference	commands	that	are	installed	by	default,	as	I	have	found	myself
in	 situations	where	 I	 could	have	used	 a	 specific	 command	 to	 identify	 an	 issue
immediately	but	that	command	was	not	available	to	me.	By	limiting	this	chapter
to	default	commands,	you	can	be	assured	that	the	troubleshooting	steps	covered
in	 this	chapter	are	not	only	relevant	 to	most	RHEL	7	 installations,	but	are	also
relevant	to	previous	releases	and	other	Linux	distributions.

Finding	useful	information
Before	 starting	 to	 explore	 troubleshooting	 commands,	 I	 first	 want	 to	 cover
locations	 of	 useful	 information.	 Useful	 information	 is	 a	 bit	 of	 a	 vague	 term,
pretty	much	 every	 file,	 directory,	 or	 command	 can	provide	useful	 information.
What	I	really	plan	to	cover	are	places	where	it	is	possible	to	find	information	for
almost	any	issue.

Log	files
Log	 files	 are	 often	 the	 first	 place	 to	 start	 looking	 for	 troubleshooting
information.	Whenever	a	service	or	server	is	experiencing	an	issue,	checking	the
log	files	for	errors	can	often	answer	many	questions	quickly.

The	default	location

By	 default,	 RHEL	 and	 most	 Linux	 distributions	 keep	 their	 log	 files	 in
/var/log/,	which	is	actually	part	of	the	Filesystem	Hierarchy	Standard	(FHS)
maintained	by	 the	Linux	Foundation.	However,	while	/var/log/	might	be	 the
default	 location	 not	 all	 log	 files	 are	 located	 there
(http://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard).

While	/var/log/httpd/	is	the	default	location	for	Apache	logs,	this	location	can
be	changed	with	Apache's	configuration	files.	This	is	especially	common	when
Apache	was	installed	outside	of	the	standard	RHEL	package.

Like	Apache,	most	services	allow	for	custom	log	locations.	It	is	not	uncommon
to	 find	 custom	 directories	 or	 file	 systems	 outside	 of	 /var/log	 created
specifically	for	log	files.

Common	log	files

The	following	table	is	a	short	list	of	common	log	files	and	a	description	of	what
you	can	find	within	them.

Tip

Do	 keep	 in	mind	 that	 this	 list	 is	 specific	 to	 Red	Hat	 Enterprise	 Linux	 7,	 and
while	 other	Linux	 distributions	might	 follow	 similar	 conventions,	 they	 are	 not
guaranteed.

Log	file Description

/var/log/messages By	 default,	 this	 log	 file	 contains	 all	 syslog	messages	 (except	 e-mail)	 of	 INFO	 or
higher	priority.

This	log	file	contains	authentication	related	message	items	such	as:

http://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

/var/log/secure SSH	logins
User	creations
Sudo	violations	and	privilege	escalation

/var/log/cron This	log	file	contains	a	history	of	crond	executions	as	well	as	start	and	end	times	of
cron.daily,	cron.weekly,	and	other	executions.

/var/log/maillog This	log	file	is	 the	default	 log	location	of	mail	events.	If	using	postfix,	 this	is	 the
default	location	for	all	postfix-related	messages.

/var/log/httpd/ This	log	directory	is	the	default	location	for	Apache	logs.	While	this	is	the	default
location,	it	is	not	a	guaranteed	location	for	all	Apache	logs.

/var/log/mysql.log This	 log	 file	 is	 the	 default	 log	 file	 for	mysqld.	Much	 like	 the	httpd	 logs,	 this	 is
default	and	can	be	changed	easily.

/var/log/sa/
This	directory	contains	the	results	of	the	sa	commands	that	run	every	10	minutes	by
default.	 We	 will	 utilize	 this	 data	 more	 in	 later	 sections	 in	 this	 chapter	 and
throughout	this	book.

For	many	 issues,	one	of	 the	 first	 log	 files	 to	 review	 is	 the	/var/log/messages
log.	On	RHEL	systems,	this	log	file	receives	all	system	logs	of	INFO	priority	or
higher.	In	general,	this	means	that	any	significant	event	sent	to	syslog	would	be
captured	in	this	log	file.

The	 following	 is	 a	 sample	 of	 some	 of	 the	 log	messages	 that	 can	 be	 found	 in
/var/log/messages:

Dec	24	18:03:51	localhost	systemd:	Starting	Network	Manager	Script	
Dispatcher	Service...
Dec	24	18:03:51	localhost	dbus-daemon:	dbus[620]:	[system]	
Successfully	activated	service	'org.freedesktop.nm_dispatcher'
Dec	24	18:03:51	localhost	dbus[620]:	[system]	Successfully	
activated	service	'org.freedesktop.nm_dispatcher'
Dec	24	18:03:51	localhost	systemd:	Started	Network	Manager	Script	
Dispatcher	Service.
Dec	24	18:06:06	localhost	kernel:	e1000:	enp0s3	NIC	Link	is	Down
Dec	24	18:06:06	localhost	kernel:	e1000:	enp0s8	NIC	Link	is	Down
Dec	24	18:06:06	localhost	NetworkManager[750]:	<info>	(enp0s3):	
link	disconnected	(deferring	action	for	4	seconds)
Dec	24	18:06:06	localhost	NetworkManager[750]:	<info>	(enp0s8):	
link	disconnected	(deferring	action	for	4	seconds)

Dec	24	18:06:10	localhost	NetworkManager[750]:	<info>	(enp0s3):	
link	disconnected	(calling	deferred	action)
Dec	24	18:06:10	localhost	NetworkManager[750]:	<info>	(enp0s8):	
link	disconnected	(calling	deferred	action)
Dec	24	18:06:12	localhost	kernel:	e1000:	enp0s3	NIC	Link	is	Up	1000	
Mbps	Full	Duplex,	Flow	Control:	RX
Dec	24	18:06:12	localhost	kernel:	e1000:	enp0s8	NIC	Link	is	Up	1000	
Mbps	Full	Duplex,	Flow	Control:	RX
Dec	24	18:06:12	localhost	NetworkManager[750]:	<info>	(enp0s3):	
link	connected
Dec	24	18:06:12	localhost	NetworkManager[750]:	<info>	(enp0s8):	
link	connected
Dec	24	18:06:39	localhost	kernel:	atkbd	serio0:	Spurious	NAK	on	
isa0060/serio0.	Some	program	might	be	trying	to	access	hardware	
directly.
Dec	24	18:07:10	localhost	systemd:	Starting	Session	53	of	user	
root.
Dec	24	18:07:10	localhost	systemd:	Started	Session	53	of	user	root.
Dec	24	18:07:10	localhost	systemd-logind:	New	session	53	of	user	
root.

As	we	can	see,	there	are	more	than	a	few	log	messages	within	this	sample	that
could	be	useful	while	troubleshooting	issues.

Finding	logs	that	are	not	in	the	default	location

Many	times	log	files	are	not	in	/var/log/,	which	can	be	either	because	someone
modified	the	log	location	to	some	place	apart	from	the	default,	or	simply	because
the	service	in	question	defaults	to	another	location.

In	general,	there	are	three	ways	to	find	log	files	not	in	/var/log/.

Checking	syslog	configuration

If	you	know	a	service	is	using	syslog	for	its	logging,	the	best	place	to	check	to
find	which	log	file	its	messages	are	being	written	to	is	the	rsyslog	configuration
files.	 The	 rsyslog	 service	 has	 two	 locations	 for	 configuration.	 The	 first	 is	 the
/etc/rsyslog.d	directory.

The	 /etc/rsyslog.d	 directory	 is	 an	 include	 directory	 for	 custom	 rsyslog
configurations.	The	second	is	the	/etc/rsyslog.conf	configuration	file.	This	is
the	main	configuration	file	for	rsyslog	and	contains	many	of	 the	default	syslog
configurations.

The	following	is	a	sample	of	the	default	contents	of	/etc/rsyslog.conf:

####	RULES	####

#	Log	all	kernel	messages	to	the	console.
#	Logging	much	else	clutters	up	the	screen.
#kern.*																														/dev/console

#	Log	anything	(except	mail)	of	level	info	or	higher.
#	Don't	log	private	authentication	messages!
*.info;mail.none;authpriv.none;cron.none		/var/log/messages

#	The	authpriv	file	has	restricted	access.
authpriv.*																											/var/log/secure

#	Log	all	the	mail	messages	in	one	place.
mail.*																														-/var/log/maillog

#	Log	cron	stuff
cron.*																															/var/log/cron

By	reviewing	the	contents	of	this	file,	it	is	fairly	easy	to	identify	which	log	files
contain	the	information	required,	if	not,	at	least,	the	possible	location	of	syslog
managed	log	files.

Checking	the	application's	configuration

Not	every	application	utilizes	syslog;	for	those	that	don't,	one	of	the	easiest	ways
to	find	the	application's	log	file	is	to	read	the	application's	configuration	files.

A	quick	and	useful	method	for	finding	log	file	locations	from	configuration	files
is	to	use	the	grep	command	to	search	the	file	for	the	word	log:

$	grep	log	/etc/samba/smb.conf
#	files	are	rotated	when	they	reach	the	size	specified	with	"max	
log	size".
		#	log	files	split	per-machine:
		log	file	=	/var/log/samba/log.%m
		#	maximum	size	of	50KB	per	log	file,	then	rotate:
		max	log	size	=	50

The	grep	command	is	a	very	useful	command	that	can	be	used	to	search	files	or
directories	 for	 specific	 strings	 or	 patterns.	 This	 command	 will	 be	 used

throughout	this	book	in	various	methods.	The	simplest	command	can	be	seen	in
the	 preceding	 snippet	 where	 the	 grep	 command	 is	 used	 to	 search	 the
/etc/samba/smb.conf	file	for	any	instance	of	the	pattern	"log".

After	reviewing	the	output	of	the	preceding	grep	command,	we	can	see	that	the
configured	log	location	for	samba	is	/var/log/samba/log.%m.	It	is	important	to
note	that	%m,	in	this	example,	is	actually	replaced	with	a	"machine	name"	when
creating	the	file.	This	is	actually	a	variable	within	the	samba	configuration	file.
These	 variables	 are	 unique	 to	 each	 application	 but	 this	 method	 for	 making
dynamic	configuration	values	is	a	common	practice.
Other	examples

The	following	are	examples	of	using	the	grep	command	to	search	for	the	word
"log"	in	the	Apache	and	MySQL	configuration	files:

$	grep	log	/etc/httpd/conf/httpd.conf
#	ErrorLog:	The	location	of	the	error	log	file.
#	logged	here.		If	you	*do*	define	an	error	logfile	for	a	
<VirtualHost>
#	container,	that	host's	errors	will	be	logged	there	and	not	here.
ErrorLog	"logs/error_log"

$	grep	log	/etc/my.cnf
#	log_bin
log-error=/var/log/mysqld.log

In	both	 instances,	 this	method	was	able	 to	 identify	 the	configuration	parameter
for	the	service's	log	file.	With	the	previous	three	examples,	it	is	easy	to	see	how
effective	searching	through	configuration	files	can	be.

Using	the	find	command

The	find	command,	which	we	will	cover	in	depth	later	in	this	chapter,	is	another
useful	 method	 for	 finding	 log	 files.	 The	 find	 command	 is	 used	 to	 search	 a
directory	 structure	 for	 specified	 files.	 A	 quick	 way	 of	 finding	 log	 files	 is	 to
simply	use	the	find	command	to	search	for	any	files	that	end	in	".log":

#	find	/opt/appxyz/	-type	f	-name	"*.log"
/opt/appxyz/logs/daily/7-1-15/alert.log
/opt/appxyz/logs/daily/7-2-15/alert.log
/opt/appxyz/logs/daily/7-3-15/alert.log

/opt/appxyz/logs/daily/7-4-15/alert.log
/opt/appxyz/logs/daily/7-5-15/alert.log

The	preceding	is	generally	considered	a	last	resort	solution,	and	is	mostly	used
when	the	previous	methods	do	not	produce	results.

Tip

When	executing	 the	find	 command,	 it	 is	considered	a	best	practice	 to	be	very
specific	about	which	directory	to	search.	When	being	executed	against	very	large
directories,	the	performance	of	the	server	can	be	degraded.

Configuration	files
As	discussed	previously,	configuration	files	for	an	application	or	service	can	be
excellent	 sources	 of	 information.	While	 configuration	 files	 won't	 provide	 you
with	 specific	 errors	 such	 as	 log	 files,	 they	 can	 provide	 you	 with	 critical
information	(for	example,	enabled/disabled	features,	output	directories,	and	log
file	locations).

Default	system	configuration	directory

In	general,	system,	and	service	configuration	files	are	 located	within	 the	/etc/
directory	on	most	Linux	distributions.	However,	 this	does	not	mean	 that	 every
configuration	 file	 is	 located	 within	 the	 /etc/	 directory.	 In	 fact,	 it	 is	 not
uncommon	 for	 applications	 to	 include	 a	 configuration	 directory	 within	 the
application's	home	directory.

So	how	do	you	know	when	to	look	in	the	/etc/	versus	an	application	directory
for	configuration	files?	A	general	rule	of	thumb	is,	if	the	package	is	part	of	the
RHEL	distribution,	it	is	safe	to	assume	that	the	configuration	is	within	the	/etc/
directory.	Anything	else	may	or	may	not	be	present	in	the	/etc/	directory.	For
these	situations,	you	simply	have	to	look	for	them.

Finding	configuration	files

In	 most	 scenarios,	 it	 is	 possible	 to	 find	 system	 configuration	 files	 within	 the
/etc/	directory	with	a	simple	directory	listing	using	the	ls	command:

$	ls	-la	/etc/	|	grep	my
-rw-r--r--.		1	root	root						570	Nov	17		2014	my.cnf
drwxr-xr-x.		2	root	root							64	Jan		9		2015	my.cnf.d

The	preceding	code	snippet	uses	ls	 to	perform	a	directory	listing	and	redirects
that	output	to	grep	in	order	to	search	the	output	for	the	string	"my".	We	can	see
from	 the	 output	 that	 there	 is	 a	 my.cnf	 configuration	 file	 and	 a	 my.cnf.d
configuration	 directory.	 The	MySQL	 processes	 use	 these	 for	 its	 configuration.
We	were	able	to	find	these	by	assuming	that	anything	related	to	MySQL	would
have	the	string	"my"	in	it.

Using	the	rpm	command

If	the	configuration	files	were	deployed	as	part	of	a	RPM	package,	it	is	possible
to	 use	 the	 rpm	 command	 to	 identify	 configuration	 files.	 To	 do	 this,	 simply
execute	the	rpm	command	with	the	–q	(query)	flag,	and	the	–c	(configfiles)	flag,
followed	by	the	name	of	the	package:

$	rpm	-q	-c	httpd
/etc/httpd/conf.d/autoindex.conf
/etc/httpd/conf.d/userdir.conf
/etc/httpd/conf.d/welcome.conf
/etc/httpd/conf.modules.d/00-base.conf
/etc/httpd/conf.modules.d/00-dav.conf
/etc/httpd/conf.modules.d/00-lua.conf
/etc/httpd/conf.modules.d/00-mpm.conf
/etc/httpd/conf.modules.d/00-proxy.conf
/etc/httpd/conf.modules.d/00-systemd.conf
/etc/httpd/conf.modules.d/01-cgi.conf
/etc/httpd/conf/httpd.conf
/etc/httpd/conf/magic
/etc/logrotate.d/httpd
/etc/sysconfig/htcacheclean
/etc/sysconfig/httpd

The	 rpm	 command	 is	 used	 to	 manage	 RPM	 packages	 and	 is	 a	 very	 useful
command	when	troubleshooting.	We	will	cover	this	command	further	in	the	next
section	as	we	explore	commands	for	troubleshooting.

Using	the	find	command

Much	like	finding	log	files,	to	find	configuration	files	on	a	system,	it	is	possible
to	utilize	 the	find	command.	When	searching	for	 log	files,	 the	find	command
was	used	to	search	for	all	files	where	the	name	ends	in	".log".	In	the	following
example,	the	find	command	is	being	used	to	search	for	all	files	where	the	name
begins	with	 "http".	 This	 find	 command	 should	 return	 at	 least	 a	 few	 results,
which	will	provide	configuration	files	related	to	the	HTTPD	(Apache)	service:

#	find	/etc	-type	f	-name	"http*"

/etc/httpd/conf/httpd.conf
/etc/sysconfig/httpd
/etc/logrotate.d/httpd

The	preceding	example	searches	the	/etc	directory;	however,	this	could	also	be
used	 to	 search	 any	 application	 home	 directory	 for	 user	 configuration	 files.

Similar	 to	 searching	 for	 log	 files,	 using	 the	 find	 command	 to	 search	 for
configuration	files	is	generally	considered	a	last	resort	step	and	should	not	be	the
first	method	used.

The	proc	filesystem
An	 extremely	 useful	 source	 of	 information	 is	 the	 proc	 filesystem.	 This	 is	 a
special	 filesystem	 that	 is	maintained	by	 the	Linux	kernel.	The	proc	 filesystem
can	be	used	to	find	useful	information	about	running	processes,	as	well	as	other
system	 information.	 For	 example,	 if	 we	 wanted	 to	 identify	 the	 filesystems
supported	by	a	system,	we	could	simply	read	the	/proc/filesystems	file:

$	cat	/proc/filesystems
nodev		sysfs
nodev		rootfs
nodev		bdev
nodev		proc
nodev		cgroup
nodev		cpuset
nodev		tmpfs
nodev		devtmpfs
nodev		debugfs
nodev		securityfs
nodev		sockfs
nodev		pipefs
nodev		anon_inodefs
nodev		configfs
nodev		devpts
nodev		ramfs
nodev		hugetlbfs
nodev		autofs
nodev		pstore
nodev		mqueue
nodev		selinuxfs
		xfs
nodev		rpc_pipefs
nodev		nfsd

This	filesystem	is	extremely	useful	and	contains	quite	a	bit	of	information	about
a	 running	 system.	 The	 proc	 filesystem	 will	 be	 used	 throughout	 the
troubleshooting	 steps	 within	 this	 book.	 It	 is	 used	 in	 various	 ways	 while
troubleshooting	everything	from	specific	processes	to	read-only	filesystems.

Troubleshooting	commands
This	 section	will	 cover	 frequently	used	 troubleshooting	 commands	 that	 can	be
used	to	gather	information	from	the	system	or	a	running	service.	While	it	is	not
feasible	 to	 cover	 every	 possible	 command,	 the	 commands	 used	 do	 cover
fundamental	troubleshooting	steps	for	Linux	systems.

Command-line	basics
The	 troubleshooting	 steps	 used	 within	 this	 book	 are	 primarily	 command-line
based.	While	 it	 is	 possible	 to	 perform	many	 of	 these	 things	 from	 a	 graphical
desktop	 environment,	 the	more	 advanced	 items	 are	 command-line	 specific.	As
such,	 this	 book	 assumes	 that	 the	 reader	 has	 at	 least	 a	 basic	 understanding	 of
Linux.	To	be	more	specific,	this	book	assumes	that	the	reader	has	logged	into	a
server	via	SSH	and	is	familiar	with	basic	commands	such	as	cd,	cp,	mv,	rm,	and
ls.

For	those	who	might	not	have	much	familiarity,	I	wanted	to	quickly	cover	some
basic	command-line	usage	that	will	be	required	knowledge	for	this	book.

Command	flags

Many	readers	are	probably	familiar	with	the	following	command:

$	ls	-la
total	588
drwx------.	5	vagrant	vagrant			4096	Jul		4	21:26	.
drwxr-xr-x.	3	root				root								20	Jul	22		2014	..
-rw-rw-r--.	1	vagrant	vagrant	153104	Jun	10	17:03	app.c

Most	should	recognize	 that	 this	 is	 the	ls	command	and	 it	 is	used	 to	perform	a
directory	listing.	What	might	not	be	familiar	is	what	exactly	the	–la	part	of	the
command	is	or	does.	To	understand	this	better,	 let's	 look	at	the	ls	command	by
itself:

$	ls
app.c		application		app.py		bomber.py		index.html		lookbusy-1.4		
lookbusy-1.4.tar.gz		lotsofiles

The	 previous	 execution	 of	 the	 ls	 command	 looks	 very	 different	 from	 the
previous.	The	reason	for	this	is	because	the	latter	is	the	default	output	for	ls.	The
–la	portion	of	the	command	is	what	is	commonly	referred	to	as	command	flags
or	options.	The	command	flags	allow	a	user	to	change	the	default	behavior	of	the
command	providing	it	with	specific	options.

In	 fact,	 the	 –la	 flags	 are	 two	 separate	 options,	 –l	 and	 –a;	 they	 can	 even	 be
specified	separately:

	$	ls	-l	-a
total	588
drwx------.	5	vagrant	vagrant			4096	Jul		4	21:26	.
drwxr-xr-x.	3	root				root								20	Jul	22		2014	..
-rw-rw-r--.	1	vagrant	vagrant	153104	Jun	10	17:03	app.c

We	can	see	from	the	preceding	snippet	that	the	output	of	ls	–la	 is	exactly	 the
same	as	ls	–l	–a.	For	common	commands,	such	as	the	ls	command,	it	does	not
matter	if	the	flags	are	grouped	or	separated,	they	will	be	parsed	in	the	same	way.
Throughout	 this	 book,	 examples	 will	 show	 both	 grouped	 and	 ungrouped.	 If
grouping	or	ungrouping	is	performed	for	any	specific	reason	it	will	be	called	out;
otherwise,	 the	grouping	or	ungrouping	used	within	 this	book	 is	used	for	visual
appeal	and	memorization.

In	addition	to	grouping	and	ungrouping,	 this	book	will	also	show	flags	in	their
long	format.	In	the	previous	examples,	we	showed	the	flag	-a,	this	is	known	as	a
short	flag.	This	same	option	can	also	be	provided	in	the	long	format	--all:

$	ls	-l	--all
total	588
drwx------.	5	vagrant	vagrant			4096	Jul		4	21:26	.
drwxr-xr-x.	3	root				root								20	Jul	22		2014	..
-rw-rw-r--.	1	vagrant	vagrant	153104	Jun	10	17:03	app.c

The	 –a	 and	 the	 --all	 flags	 are	 essentially	 the	 same	 option;	 it	 can	 simply	 be
represented	in	both	short	and	long	form.

One	important	thing	to	remember	is	that	not	every	short	flag	has	a	long	form	and
vice	versa.	Each	command	has	its	own	syntax,	some	commands	only	support	the
short	 form,	others	only	support	 the	 long	form,	but	many	support	both.	 In	most
cases,	 the	 long	and	short	 flags	will	both	be	documented	within	 the	command's
man	page.

The	piping	command	output

Another	 common	 command-line	 practice	 that	 will	 be	 used	 several	 times
throughout	 this	 book	 is	 piping	 output.	 Specifically,	 examples	 such	 as	 the
following:

$	ls	-l	--all	|	grep	app
-rw-rw-r--.	1	vagrant	vagrant	153104	Jun	10	17:03	app.c

-rwxrwxr-x.	1	vagrant	vagrant		29390	May	18	00:47	application
-rw-rw-r--.	1	vagrant	vagrant			1198	Jun	10	17:03	app.py

In	the	preceding	example,	the	output	of	the	ls	-l	--all	command	is	piped	to
the	 grep	 command.	 By	 placing	 |	 or	 the	 pipe	 character	 between	 the	 two
commands,	the	output	of	the	first	command	is	"piped"	to	the	input	for	the	second
command.	The	example	preceding	the	ls	command	will	be	executed;	with	that,
the	grep	 command	will	 then	 search	 that	 output	 for	 any	 instance	of	 the	pattern
"app".

Piping	output	to	grep	will	actually	be	used	quite	often	throughout	this	book,	as	it
is	 a	 simple	 way	 to	 trim	 the	 output	 into	 a	 maintainable	 size.	 Many	 times	 the
examples	will	also	contain	multiple	levels	of	piping:

$	ls	-la	|	grep	app	|	awk	'{print	$4,$9}'
vagrant	app.c
vagrant	application
vagrant	app.py

In	 the	 preceding	 code	 the	 output	 of	 ls	 -la	 is	 piped	 to	 the	 input	 of	 grep;
however,	this	time,	the	output	of	grep	is	also	piped	to	the	input	of	awk.

While	many	 commands	 can	 be	 piped	 to,	 not	 every	 command	 supports	 this.	 In
general,	commands	that	accept	user	input	from	files	or	command-line	also	accept
piped	 input.	As	with	 the	 flags,	 a	command's	man	page	can	be	used	 to	 identify
whether	the	command	accepts	piped	input	or	not.

Gathering	general	information
When	managing	 the	 same	 servers	 for	 a	 long	 time,	 you	 start	 to	 remember	 key
information	 about	 those	 servers.	 Such	 as	 the	 amount	 of	 physical	memory,	 the
size	 and	 layout	 of	 their	 filesystems,	 and	 what	 processes	 should	 be	 running.
However,	when	you	 are	 not	 familiar	with	 the	 server	 in	 question	 it	 is	 always	 a
good	idea	to	gather	this	type	of	information.

The	commands	in	this	section	are	commands	that	can	be	used	to	gather	this	type
of	general	information.

w	–	show	who	is	logged	on	and	what	they	are	doing

Early	in	my	systems	administration	career,	I	had	a	mentor	who	used	to	tell	me:	I
always	 run	w	when	 I	 log	 into	a	 server.	This	 simple	 tip	has	actually	been	very
useful	 over	 and	 over	 again	 in	 my	 career.	 The	 w	 command	 is	 simple;	 when
executed	 it	 will	 output	 information	 such	 as	 system	 uptime,	 load	 average,	 and
who	is	logged	in:

#	w
	04:07:37	up	14:26,		2	users,		load	average:	0.00,	0.01,	0.05
USER					TTY								LOGIN@			IDLE			JCPU			PCPU	WHAT
root					tty1						Wed13			11:24m		0.13s		0.13s	-bash
root					pts/0					20:47				1.00s		0.21s		0.19s	-bash

This	 information	 can	 be	 extremely	 useful	 when	 working	 with	 unfamiliar
systems.	The	output	can	be	useful	even	when	you	are	familiar	with	the	system.
With	this	command,	you	can	see:

When	this	system	was	last	rebooted:

04:07:37	up	14:26:	This	information	can	be	extremely	useful;	whether	it
is	an	alert	for	a	service	like	Apache	being	down,	or	a	user	calling	in	because
they	were	 locked	 out	 of	 the	 system.	When	 these	 issues	 are	 caused	 by	 an
unexpected	 reboot,	 the	 reported	 issue	 does	 not	 often	 include	 this
information.	By	running	the	w	command,	it	 is	easy	to	see	the	time	elapsed
since	the	last	reboot.
The	load	average	of	the	system:

load	average:	0.00,	0.01,	0.05:	The	load	average	is	a	very	important

measurement	 of	 system	 health.	 To	 summarize	 it,	 the	 load	 average	 is	 the
average	number	of	processes	in	a	wait	state	over	a	period	of	time.	The	three
numbers	in	the	output	of	w	represent	different	times.

The	numbers	are	ordered	from	left	to	right	as	1	minute,	5	minutes,	and	15
minutes.
Who	is	logged	in	and	what	they	are	running:

USER	TTY	LOGIN@	IDLE	JCPU	PCPU	WHAT
root	tty1	Wed13	11:24m	0.13s	0.13s	-bash

The	final	piece	of	information	that	the	w	command	provides	is	users	that	are
currently	logged	in	and	what	command	they	are	executing.

This	is	essentially	the	same	output	as	the	who	command,	which	includes	the	user
logged	 in,	 when	 they	 logged	 in,	 how	 long	 they	 have	 been	 idle,	 and	 what
command	their	shell	is	running.	The	last	item	in	that	list	is	extremely	important.

Oftentimes,	 when	 working	 with	 big	 teams,	 it	 is	 common	 for	 more	 than	 one
person	to	respond	to	an	issue	or	ticket.	By	running	the	w	command	immediately
after	 login,	 you	 will	 see	 what	 other	 users	 are	 doing,	 preventing	 you	 from
overriding	any	troubleshooting	or	corrective	steps	the	other	person	has	taken.

rpm	–	RPM	package	manager

The	rpm	command	is	used	to	manage	Red	Hat	package	manager	(RPM).	With
this	command,	you	can	install	and	remove	RPM	packages,	as	well	as	search	for
packages	that	are	already	installed.

Earlier	 in	 this	chapter,	we	saw	how	 the	rpm	 command	can	be	used	 to	 look	 for
configuration	files.	The	following	are	several	additional	ways	we	can	use	the	rpm
command	to	find	critical	information.

Listing	all	packages	installed

Often	when	troubleshooting	services,	a	critical	step	is	identifying	the	version	of
the	 service	 and	 how	 it	 was	 installed.	 To	 list	 all	 RPM	 packages	 installed	 on	 a
system,	simply	execute	the	rpm	command	with	-q	(query)	and	-a	(all):

#	rpm	-q	-a
kpatch-0.0-1.el7.noarch

virt-what-1.13-5.el7.x86_64
filesystem-3.2-18.el7.x86_64
gssproxy-0.3.0-9.el7.x86_64
hicolor-icon-theme-0.12-7.el7.noarch

The	rpm	command	is	a	very	diverse	command	with	many	flags.	In	the	preceding
example	the	-q	and	-a	flags	are	used.	The	-q	flag	tells	the	rpm	command	that	the
action	being	taken	is	a	query;	you	can	think	of	 this	as	being	put	 into	a	"search
mode".	The	-a	or	--all	flag	tells	the	rpm	command	to	list	all	packages.

A	 useful	 feature	 is	 to	 add	 the	 --last	 flag	 to	 the	 preceding	 command,	 as	 this
causes	the	rpm	command	to	list	the	packages	by	install	time	with	the	latest	being
first.

Listing	all	files	deployed	by	a	package

Another	useful	rpm	 function	 is	 to	 show	 all	 of	 the	 files	 deployed	 by	 a	 specific
package:

#	rpm	-q	--filesbypkg	kpatch-0.0-1.el7.noarch
kpatch																				/usr/bin/kpatch
kpatch																				/usr/lib/systemd/system/kpatch.service

In	the	preceding	example,	we	again	use	the	-q	flag	to	specify	that	we	are	running
a	query,	 along	with	 the	--filesbypkg	 flag.	The	--filesbypkg	 flag	will	 cause
the	rpm	command	to	list	all	of	the	files	deployed	by	the	specified	package.

This	example	can	be	very	useful	when	trying	to	identify	a	service's	configuration
file	location.

Using	package	verification

In	this	third	example,	we	are	going	to	use	an	extremely	useful	feature	of	rpm—
verify.	 The	 rpm	 command	 has	 the	 ability	 to	 verify	 whether	 or	 not	 the	 files
deployed	by	a	specified	package	have	been	altered	from	their	original	contents.
To	do	this,	we	will	use	the	-V	(verify)	flag:

#	rpm	-V	httpd
S.5....T.		c	/etc/httpd/conf/httpd.conf

In	 the	 preceding	 example,	 we	 simply	 run	 the	 rpm	 command	 with	 the	 -V	 flag

followed	by	a	package	name.	As	the	-q	flag	is	used	for	querying,	the	-V	flag	is
for	 verifying.	 With	 this	 command,	 we	 can	 see	 that	 only	 the
/etc/httpd/conf/httpd.conf	 file	 was	 listed;	 this	 is	 because	 rpm	 will	 only
output	files	that	have	been	altered.

In	the	first	column	of	this	output,	we	can	see	which	verification	checks	the	file
failed.	While	this	column	is	a	bit	cryptic	at	first,	the	rpm	man	page	has	a	useful
table	(as	shown	in	the	following	list)	explaining	what	each	character	means:

S:	This	means	that	the	file	size	differs
M:	This	means	that	the	mode	differs	(includes	permissions	and	file	type)
5:	This	means	that	the	digest	(formerly	MD5	sum)	differs
D:	This	means	indicates	the	device	major/minor	number	mismatch
L:	This	means	indicates	the	readLink(2)	path	mismatch
U:	This	means	that	the	user	ownership	differs
G:	This	means	that	the	group	ownership	differs
T:	This	means	that	mTime	differs
P:	This	means	that	caPabilities	differs

Using	 this	 list	we	can	see	 that	 the	httpd.conf's	 file	size,	MD5	 sum,	and	mtime
(modify	 time)	 are	 not	what	was	deployed	by	httpd.rpm.	This	means	 that	 it	 is
highly	likely	that	the	httpd.conf	file	has	been	modified	after	installation.

While	the	rpm	command	might	not	seem	like	a	troubleshooting	command	at	first,
the	preceding	examples	show	just	how	powerful	of	a	troubleshooting	tool	it	can
be.	With	these	examples,	it	 is	simple	to	identify	important	files	and	whether	or
not	those	files	have	been	modified	from	the	deployed	version.

df	–	report	file	system	space	usage

The	df	command	 is	 a	 very	 useful	 command	when	 troubleshooting	 file	 system
issues.	 The	 df	 command	 is	 used	 to	 output	 space	 utilization	 for	 mounted	 file
systems:

#	df	-h
Filesystem													Size		Used	Avail	Use%	Mounted	on
/dev/mapper/rhel-root		6.7G		1.6G		5.2G		24%	/
devtmpfs															489M					0		489M			0%	/dev
tmpfs																		498M					0		498M			0%	/dev/shm
tmpfs																		498M			13M		485M			3%	/run

tmpfs																		498M					0		498M			0%	/sys/fs/cgroup
/dev/sdb1														212G			58G		144G		29%	/repos
/dev/sda1														497M		117M		380M		24%	/boot

In	the	preceding	example,	the	df	command	included	the	-h	flag.	This	flag	causes
the	 df	 command	 to	 print	 any	 size	 values	 in	 a	 "human	 readable"	 format.	 By
default,	df	will	simply	print	these	values	in	kilobytes.	From	the	example,	we	can
quickly	see	the	current	usage	of	all	mounted	filesystems.	Specifically,	if	we	look
at	the	output,	we	can	see	that	/filesystem	is	currently	24	percent	used:

Filesystem													Size		Used	Avail	Use%	Mounted	on
/dev/mapper/rhel-root		6.7G		1.6G		5.2G		24%	/

This	is	a	very	quick	and	easy	way	to	identify	whether	any	file	system	is	full.	In
addition,	 the	 df	 command	 is	 also	 very	 useful	 in	 showing	 details	 of	 what	 file
systems	are	mounted	and	where	 they	are	mounted	 to.	From	the	 line	containing
the	/filesystem,	we	can	see	 that	 the	underlying	device	 is	/dev/mapper/rhel-
root.

From	 this	 one	 command,	 we	 were	 able	 to	 identify	 two	 critical	 pieces	 of
information.

Showing	available	inodes

The	default	 behavior	 for	df	 is	 to	 show	 the	 amount	 of	 used	 file	 system	 space.
However,	it	can	also	be	used	to	show	the	quantity	of	inodes	available,	used,	and
free	 for	 each	 file	 system.	 To	 output	 the	 inode	 utilization,	 simply	 add	 the	 -i
(inode)	flag	when	executing	the	df	command:

#	df	-i
Filesystem														Inodes	IUsed				IFree	IUse%	Mounted	on
/dev/mapper/rhel-root		7032832	44318		6988514				1%	/
devtmpfs																125039			347			124692				1%	/dev

It	 is	 still	 possible	 to	 use	 the	 –h	 flag	 with	 df	 to	 print	 the	 output	 in	 a	 human
readable	format.	However,	with	the	–i	flag,	this	abbreviates	the	output	to	M	 for
millions,	K	 for	 thousands,	 and	 so	 on.	 This	 output	 can	 be	 easily	 confused	with
Megabytes	or	Kilobytes,	 so	 in	general,	 I	do	not	use	 the	human	 readable	 inode
output	when	sharing	the	output	with	other	users/administrators.

free	–	display	memory	utilization

When	 executed,	 the	 free	 command	 will	 output	 statistics	 about	 the	 memory
available	and	in	use	on	the	system:

$	free
													total							used							free					shared				buffers					
cached
Mem:							1018256					789796					228460						13116							3608					
543484
-/+	buffers/cache:					242704					775552
Swap:							839676										4					839672

From	 the	 previous	 example,	we	 can	 see	 that	 the	 output	 of	 the	free	 command
provides	 the	 total	 available	 memory,	 amount	 of	 memory	 currently	 used,	 and
amount	 of	 memory	 free.	 The	 free	 command	 is	 a	 simple	 and	 quick	 way	 to
identify	the	current	state	of	memory	on	a	system.

However,	the	output	of	free	can	be	a	bit	confusing	at	first.

What	is	free,	is	not	always	free

Linux	utilizes	memory	differently	as	compared	to	other	operating	systems.	In	the
preceding	 output,	 you	 will	 see	 that	 it	 has	 543,484	 KB	 listed	 as	 cached.	 This
memory,	while	 technically	 used,	 is	 actually	 part	 of	 the	 available	memory.	The
system	can	reallocate	this	cached	memory	as	required.

A	quick	and	easy	way	of	seeing	what	is	actually	used	or	free	can	be	seen	on	the
second	line	of	output.	The	preceding	output	shows	that	775,552	KB	of	memory
is	available	on	the	system.

The	/proc/meminfo	file

In	previous	RHEL	releases,	the	second	line	of	the	free	command	was	the	easiest
method	for	identifying	how	much	memory	is	available.	However,	with	RHEL	7,
there	 have	 been	 some	 improvements	 to	 the	 /proc/meminfo	 file.	 One	 of	 those
improvements	is	the	addition	of	the	MemAvailable	statistic:

$	grep	Available	/proc/meminfo
MemAvailable:					641056	kB

The	/proc/meminfo	file	is	one	of	the	many	useful	files	located	in	the	/proc	file
system.	This	 file	 is	maintained	by	 the	kernel	 and	contains	 the	 system's	current

memory	 statistics.	 This	 file	 can	 be	 very	 useful	when	 troubleshooting	memory
issues	 as	 it	 contains	 much	 more	 information	 than	 the	 output	 of	 the	 free
command.

ps	–	report	a	snapshot	of	current	running	processes

The	ps	 command	 is	 a	 fundamental	 command	 for	 any	 troubleshooting	 activity.
This	command,	when	executed,	will	output	a	list	of	running	processes:

#	ps
		PID	TTY										TIME	CMD
15618	pts/0				00:00:00	ps
17633	pts/0				00:00:00	bash

The	 ps	 command	 has	 many	 flags	 and	 options	 to	 show	 different	 information
about	running	processes.	The	following	are	a	few	example	ps	commands	that	are
useful	during	troubleshooting.

Printing	every	process	in	long	format

The	 following	 ps	 command	 uses	 the	 -e	 (everything,	 all	 process),	 -l	 (long
format),	and	-f	(full	format)	flags.	These	flags	will	cause	the	ps	command	to	not
only	print	every	process	but	will	also	print	them	in	a	format	that	provides	quite	a
bit	of	useful	information:

#	ps	-elf
F	S	UID			PID		PPID		C	PRI		NI	ADDR	SZ	WCHAN		STIME	TTY			TIME	CMD
1	S	root			2					0			0		80		0	-	0	kthrea	Dec24	?			00:00:00	
[kthreadd]

In	 the	 preceding	 output	 of	 ps	 -elf,	 we	 can	 see	 many	 useful	 pieces	 of
information	 for	 the	kthreadd	 process,	 information	 such	 as	 the	parent	process
ID	 (PPID),	 the	 priority	 (PRI),	 the	 niceness	 value	 (NI),	 and	 the	 resident
memory	size	(SZ)	of	the	running	processes.

I	have	found	that	the	preceding	example	is	a	very	general-purpose	ps	command
and	can	be	used	in	most	situations.

Printing	a	specific	user's	processes

The	preceding	example	can	get	quite	large;	making	it	difficult	to	identify	specific
processes.	This	 example	uses	 the	-U	 flag	 to	 specify	 a	 user.	This	 causes	 the	ps

command	 to	 print	 all	 processes	 running	 as	 the	 specified	 user;	 postfix	 in	 the
following	case:

ps	-U	postfix	-l
F	S			UID			PID		PPID		C	PRI		NI	ADDR	SZ	WCHAN		TTY							TIME	CMD
4	S				89		1546		1536		0		80			0	-	23516	ep_pol	?				00:00:00	qmgr
4	S				89	16711		1536		0		80			0	-	23686	ep_pol	?		00:00:00	pickup

It	is	important	to	note	that	the	–U	flag	can	also	be	combined	with	other	flags	to
provide	 even	 more	 information	 on	 the	 running	 processes.	 In	 the	 preceding
example,	the	-l	flag	is	once	again	used	to	print	the	output	in	the	long	format.

Printing	a	process	by	process	ID

If	 the	 process	 ID	 or	 PID	 is	 already	 known,	 it	 is	 possible	 to	 narrow	 down	 the
process	 listing	even	 further	by	specifying	 the	process	with	 the	–p	 (process	 ID)
flag:

#	ps	-p	1236	-l
F	S			UID			PID		PPID		C	PRI		NI	ADDR	SZ	WCHAN		TTY							TIME	CMD
4	S					0		1236					1		0		80			0	-	20739	poll_s	?				00:00:00	sshd

This	 can	 be	 especially	 useful	when	 combined	with	 the	–L	 (show	 threads	with
LWP	column)	or	–m	 (show	 threads	 after	 process)	 flag,	which	 are	 used	 to	 print
process	threads.	When	troubleshooting	multithreaded	applications	the	-L	and	-m
flags	can	be	critical.

Printing	processes	with	performance	information

The	ps	command	allows	the	user	to	customize	the	columns	printed	with	the	-o
(user	defined	format)	flag:

#	ps	-U	postfix	-o	pid,user,pcpu,vsz,cmd
		PID	USER					%CPU				VSZ	CMD
	1546	postfix			0.0		94064	qmgr	-l	-t	unix	-u
16711	postfix			0.0		94744	pickup	-l	-t	unix	-u

The	–o	 option	 allows	 for	 a	wide	number	of	 custom	columns.	 In	 the	preceding
version,	I	selected	options	that	are	similar	to	those	printed	in	the	top	command.

The	top	command	is	one	of	the	most	popular	Linux	troubleshooting	commands.
It	is	used	to	show	the	top	processes	ordered	by	CPU	usage	(by	default).	In	this

chapter,	I	have	opted	to	omit	the	top	command,	as	I	feel	that	the	ps	command	is
even	more	 fundamental	 and	 flexible	 than	 the	 top	 command.	 As	 one	 becomes
more	familiar	with	the	ps	command,	the	top	command	will	be	easy	to	learn	and
understand.

Networking
Networking	 is	 an	 essential	 skill	 for	 any	 systems	 administrator.	 Without	 a
properly	 configured	 network	 interface,	 a	 server	 serves	 little	 purpose.	 The
commands	in	this	section	are	specifically	for	 looking	up	network	configuration
and	current	status.	These	commands	are	essential	to	learn,	as	they	will	not	only
be	useful	for	troubleshooting	but	also	for	day-to-day	setup	and	configuration.

ip	–	show	and	manipulate	network	settings

The	 ip	 command	 is	 used	 to	 manage	 network	 settings	 such	 as	 interface
configuration,	routing	and	essentially	anything	network	related.	While	these	are
not	 traditionally	considered	troubleshooting	tasks,	 the	ip	command	can	also	be
used	to	display	a	system's	network	configuration.	Without	being	able	to	look	up
networking	 details	 such	 as	 routing	 or	 device	 configuration,	 it	 would	 be	 very
difficult	to	troubleshoot	network-related	issues.

The	following	examples	show	various	ways	to	use	the	ip	command	 to	 identify
critical	network	configuration	settings.

Show	IP	address	configuration	for	a	specific	device

One	of	 the	core	uses	of	 the	ip	 command	 is	 to	 lookup	 a	 network	 interface	 and
display	its	configuration.	To	do	this,	we	will	use	the	following	command:

#	ip	addr	show	dev	enp0s3
2:	enp0s3:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	
pfifo_fast	state	UP	qlen	1000
				link/ether	08:00:27:6e:35:18	brd	ff:ff:ff:ff:ff:ff
				inet	10.0.2.15/24	brd	10.0.2.255	scope	global	dynamic	enp0s3
							valid_lft	45083sec	preferred_lft	45083sec
				inet6	fe80::a00:27ff:fe6e:3518/64	scope	link
							valid_lft	forever	preferred_lft	forever

In	the	preceding	ip	command,	the	first	option	provided	addr	(address)	is	used	to
define	the	type	of	information	we	are	looking	for.	The	second	option	show,	tells
ip	to	display	the	configuration	of	the	first	option.	The	third	option	dev	(device)
is	 followed	 by	 the	 network	 interface	 device	 in	 question;	 enp0s3.	 If	 the	 third
option	 is	 omitted	 the	ip	 command	will	 show	 the	 address	 configuration	 for	 all
network	devices.

The	device	name	enp0s3	might	look	a	bit	strange	for	those	who	have	experience
with	previous	RHEL	releases.	This	device	is	following	a	newer	network	device
naming	scheme	introduced	with	systemd.	As	of	RHEL	7,	network	devices	will
use	 device	 names	 such	 as	 the	 previous,	which	 are	 based	 on	 device	 driver	 and
BIOS	details.

To	 find	 out	 more	 about	 RHEL	 7's	 new	 naming	 scheme	 simply	 reference	 the
following	URL:

https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-
Consistent_Network_Device_Naming.html

Show	routing	configuration

The	 ip	 command	 can	 also	 be	 used	 to	 show	 routing	 configurations.	 This
information	is	essential	for	troubleshooting	connectivity	issues	between	servers:

#	ip	route	show
default	via	10.0.2.2	dev	enp0s3		proto	static		metric	1024
10.0.2.0/24	dev	enp0s3		proto	kernel		scope	link		src	10.0.2.15
192.168.56.0/24	dev	enp0s8		proto	kernel		scope	link		src	
192.168.56.101

The	preceding	ip	command	uses	the	route	option	followed	by	the	show	option
to	 display	 all	 defined	 routes	 for	 this	 server.	 Like	 the	 previous	 example,	 it	 is
possible	 to	 limit	 this	 output	 to	 a	 specific	 device	 by	 adding	 the	 dev	 (device)
option	followed	by	the	device	name:

#	ip	route	show	dev	enp0s3
default	via	10.0.2.2		proto	static		metric	1024
10.0.2.0/24		proto	kernel		scope	link		src	10.0.2.15

Show	network	statistics	for	a	specified	device

Where	 the	 previous	 examples	 showed	ways	 to	 lookup	 the	 current	 networking
configuration,	 this	next	command	uses	 the	-s	 (statistics)	 flag	 to	 show	network
statistics	for	the	specified	device:

#	ip	-s	link	show	dev	enp0s3
2:	enp0s3:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	
pfifo_fast	state	UP	mode	DEFAULT	qlen	1000

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Consistent_Network_Device_Naming.html

				link/ether	08:00:27:6e:35:18	brd	ff:ff:ff:ff:ff:ff
				RX:	bytes		packets		errors		dropped	overrun	mcast
				109717927		125911			0							0							0							0
				TX:	bytes		packets		errors		dropped	carrier	collsns
				3944294				40127				0							0							0							0

In	the	preceding	example,	the	link	(network	device)	option	was	used	to	specify
that	the	statistics	should	be	limited	to	the	specified	device.

The	 statistics	 information	 shown	 can	 be	 useful	 when	 troubleshooting	 packets
that	 are	 being	 dropped	 or	 to	 identify	 which	 interface	 has	 higher	 network
utilization.

netstat	–	network	statistics

The	 netstat	 command	 is	 an	 essential	 tool	 in	 any	 system	 administrator's	 tool
belt.	 This	 can	 be	 seen	 by	 the	 fact	 that	 the	 netstat	 command	 is	 universally
available	 even	 to	 operating	 systems	 that	 do	 not	 traditionally	 utilize	 command
line	for	administration.

Printing	network	connections

One	of	the	primary	uses	of	netstat	 is	 to	print	the	existing	established	network
connections.	This	can	be	done	by	simply	executing	netstat;	however,	if	the	-a
(all)	flag	is	used,	the	output	will	also	include	listening	ports:

#	netstat	-na
Active	Internet	connections	(servers	and	established)
Proto	Recv-Q	Send-Q	Local	Address						Foreign	Address				State
tcp								0						0	127.0.0.1:25							0.0.0.0:*										LISTEN
tcp								0						0	0.0.0.0:44969						0.0.0.0:*										LISTEN
tcp								0						0	0.0.0.0:111								0.0.0.0:*										LISTEN
tcp								0						0	0.0.0.0:22									0.0.0.0:*										LISTEN
tcp								0						0	192.168.56.101:22		192.168.56.1:50122	
ESTABLISHED
tcp6							0						0	::1:25															:::*															LISTEN

While	 the	-a	 (all)	 flag	used	 the	preceding	netstat	causes	 to	print	all	 listening
ports,	the	-n	flag	is	used	to	force	output	into	a	numeric	format,	such	as	printing
IP	addresses	rather	than	DNS	host	names.

The	 preceding	 example	 will	 be	 used	 heavily	 during	 Chapter	 5,	 Network

Troubleshooting,	where	we	will	be	troubleshooting	network	connectivity.

Printing	all	ports	listening	for	tcp	connections

I	have	seen	many	instances	where	a	service	is	running	and	is	visible	via	the	ps
command;	 however,	 the	 port	 for	 clients	 to	 connect	 to	 was	 not	 bound	 and
listening.	 The	 following	 netstat	 command	 can	 be	 very	 useful	 when
troubleshooting	connectivity	issues	with	a	service:

#	netstat	-nlp	--tcp
Active	Internet	connections	(only	servers)
Proto	Recv-Q	Send-Q	Local	Address											Foreign	Address	State							
PID/Program	name
tcp								0						0	127.0.0.1:25												0.0.0.0:*	LISTEN						
1536/master
tcp								0						0	0.0.0.0:44969											0.0.0.0:*	LISTEN						
1270/rpc.statd
tcp								0						0	0.0.0.0:111													0.0.0.0:*	LISTEN						
1215/rpcbind
tcp								0						0	0.0.0.0:22														0.0.0.0:*	LISTEN						
1236/sshd
tcp6							0						0	::1:25																		:::*	LISTEN						
1536/master
tcp6							0						0	:::111																		:::*	LISTEN						
1215/rpcbind
tcp6							0						0	:::22																			:::*	LISTEN						
1236/sshd
tcp6							0						0	:::46072																:::*	LISTEN						
1270/rpc.statd

The	preceding	command	is	very	useful	as	it	combines	three	useful	options:

–l	(listening),	which	tells	netstat	to	only	list	listening	sockets
--tcp,	which	tells	netstat	to	limit	the	output	to	TCP	connections
–p	(program),	which	tells	netstat	to	list	the	PID	and	name	of	the	process
listening	on	that	port

Delay

An	 often	 overlooked	 option	 with	 netstat	 is	 to	 utilize	 the	 delay	 feature.	 By
adding	a	number	at	the	end	of	the	command,	netstat	will	continuously	run	and
will	sleep	for	the	specified	number	of	seconds	between	executions.

If	 the	 following	 command	 is	 executed,	 the	 netstat	 command	 will	 print	 all

listening	TCP	sockets	every	five	seconds:

#	netstat	-nlp	--tcp	5

The	 delay	 feature	 can	 be	 very	 useful	when	 investigating	 network	 connectivity
issues.	 As	 it	 can	 easily	 show	 when	 an	 application	 binds	 a	 port	 for	 new
connections.

Performance
While	we	touched	a	bit	on	troubleshooting	performance	with	commands	such	as
free	and	ps,	this	section	will	show	some	very	useful	commands	that	answer	the
age-old	question	of	"Why	is	it	slow?"

iotop	–	a	simple	top-like	I/O	monitor

The	iotop	command	is	a	relatively	newer	command	to	Linux.	In	previous	RHEL
releases	 while	 available	 it	 was	 not	 installed	 by	 default.	 The	 iotop	 command
provides	a	top	command-like	interface	but	rather	than	showing	which	processes
are	utilizing	the	most	CPU	time	or	memory,	 it	shows	processes	ordered	by	I/O
utilization:

#	iotop
Total	DISK	READ	:							0.00	B/s	|	Total	DISK	WRITE	:							0.00	
B/s
Actual	DISK	READ:							0.00	B/s	|	Actual	DISK	WRITE:							0.00	
B/s
		TID		PRIO		USER					DISK	READ		DISK	WRITE		SWAPIN						IO	COMMAND
	1536	be/4	root								0.00	B/s				0.00	B/s		0.00	%		0.00	%	master	
-w
				1	be/4	root								0.00	B/s				0.00	B/s		0.00	%		0.00	%	systemd	
--switched-root	--system	--deserialize	23

Unlike	 some	of	 the	previous	 commands,	iotop	 is	 very	 specialized	 to	 showing
processes	 utilizing	 I/O.	 There	 are	 however,	 some	 very	 useful	 flags	 that	 can
change	 iotop's	 default	 behavior.	 Flags	 such	 as	 –o	 (only),	which	 tells	 iotop	 to
only	 print	 processes	 using	 I/O	 rather	 than	 its	 default	 behavior	 of	 printing	 all
processes.	 Another	 useful	 set	 of	 flags	 are	 -q	 (quiet)	 and	 –n	 (number	 of
iterations).

Together	with	the	-o	flag,	these	flags	can	be	used	to	tell	iotop	to	print	only	the
processes	using	I/O	without	clearing	the	screen	for	the	next	iteration:

#	iotop	-o	-q	-n2
Total	DISK	READ	:					0.00	B/s	|	Total	DISK	WRITE	:							0.00	B/s
Actual	DISK	READ:					0.00	B/s	|	Actual	DISK	WRITE:							0.00	B/s
		TID		PRIO		USER					DISK	READ		DISK	WRITE		SWAPIN			IO			COMMAND
Total	DISK	READ	:					0.00	B/s	|	Total	DISK	WRITE	:							0.00	B/s
Actual	DISK	READ:					0.00	B/s	|	Actual	DISK	WRITE:							0.00	B/s

22965	be/4	root							0.00	B/s				0.00	B/s		0.00	%		0.03	%	
[kworker/0:3]

If	 we	 look	 at	 the	 preceding	 example	 output,	 we	 can	 see	 two	 independent
iterations	of	the	iotop	command.	However,	unlike	previous	examples,	the	output
is	 continuous	 allowing	 us	 to	 see	 which	 processes	 were	 using	 I/O	 at	 each
iteration.

By	default,	the	delay	between	iotop	iterations	is	1	second;	however,	this	can	be
modified	with	the	-d	(delay)	flag.

iostat	–	report	I/O	and	CPU	statistics

Where	 iotop	 shows	 what	 processes	 are	 utilizing	 I/O,	 iostat	 shows	 what
devices	are	being	utilized:

#	iostat	-t	1	2
Linux	3.10.0-123.el7.x86_64	(localhost.localdomain)			12/25/2014	
_x86_64_		(1	CPU)

12/25/2014	03:20:10	PM
avg-cpu:		%user			%nice	%system	%iowait		%steal			%idle
											0.11				0.00				0.17				0.01				0.00			99.72

Device:												tps				kB_read/s				kB_wrtn/s				kB_read	kB_wrtn
sda															0.38									2.84									7.02					261526	646339
sdb															0.01									0.06									0.00							5449	12
dm-0														0.33									2.77									7.00					254948	644275
dm-1														0.00									0.01									0.00								936	4

12/25/2014	03:20:11	PM
avg-cpu:		%user			%nice	%system	%iowait		%steal			%idle
											0.00				0.00				0.99				0.00				0.00			99.01

Device:												tps				kB_read/s				kB_wrtn/s				kB_read	kB_wrtn
sda															0.00									0.00									0.00										0	0
sdb															0.00									0.00									0.00										0	0
dm-0														0.00									0.00									0.00										0	0
dm-1														0.00									0.00									0.00										0	0

The	 preceding	 iostat	 command	 uses	 the	 -t	 (timestamp)	 flag	 to	 print	 a
timestamp	with	each	report.	The	two	numbers	are	interval	and	count	values.	In
the	preceding	example,	 the	iostat	 is	run	with	a	one	second	interval	for	a	total

count	of	two	iterations.

The	iostat	 command	 can	 be	 very	 useful	 for	 diagnosing	 issues	 related	 to	 I/O.
However,	 the	 output	 can	 often	 be	 misleading.	 When	 executed,	 the	 values
provided	in	the	first	report	are	averages	since	the	last	reboot	of	the	system.	The
subsequent	 reports	 are	 since	 the	previous	 report.	 In	 this	 example,	we	executed
two	reports,	one	second	apart.	You	can	see	that	the	numbers	in	the	first	report	are
much	higher	than	the	second	report.

For	 this	 reason,	many	systems	administrators	simply	 ignore	 the	 first	 report	but
they	do	not	 fully	understand	why.	Therefore,	 it	 is	not	uncommon	 for	 someone
unfamiliar	with	iostat	to	react	to	the	values	in	the	first	report.

The	iostat	command	does	have	a	flag	-y	(omit	first	report),	which	will	actually
cause	iostat	to	omit	the	first	report.	This	is	a	good	flag	to	teach	users	who	may
not	be	very	familiar	with	using	iostat.

Manipulating	the	output

The	 iostat	 command	 also	 has	 quite	 a	 few	 useful	 flags	 that	 allow	 you	 to
manipulate	 how	 it	 presents	 data.	 Flags	 such	 as	–p	 (device)	 allow	 you	 to	 limit
statistics	 to	 a	 specified	 device	 or	 –x	 (extended	 stats)	 that	 will	 print	 extended
statistics:

#	iostat	-p	sda	-tx
Linux	3.10.0-123.el7.x86_64	(localhost.localdomain)			12/25/2014	
_x86_64_		(1	CPU)

12/25/2014	03:38:00	PM
avg-cpu:		%user			%nice	%system	%iowait		%steal			%idle
											0.11				0.00				0.17				0.01				0.00			99.72

Device:									rrqm/s			wrqm/s					r/s					w/s				rkB/s				wkB/s	
avgrq-sz	avgqu-sz			await	r_await	w_await		svctm		%util
sda															0.01					0.02				0.13				0.25					2.81					6.95	
51.70					0.00				7.62				1.57			10.79			0.85			0.03
sda1														0.00					0.00				0.02				0.02					0.05					0.02	
3.24					0.00				0.24				0.42				0.06			0.23			0.00
sda2														0.01					0.02				0.11				0.19					2.75					6.93	
65.47					0.00				9.34				1.82			13.58			0.82			0.02

The	preceding	example	uses	the	-p	flag	to	specify	the	sda	device,	the	-t	flag	to

print	timestamps,	and	the	-x	flag	to	print	extended	statistics.	These	flags	can	be
very	useful	when	measuring	I/O	performance	for	specific	devices.

vmstat	–	report	virtual	memory	statistics

Where	iostat	is	used	to	report	statistics	about	disk	I/O	performance,	vmstat	is
used	to	report	statistics	about	memory	usage	and	performance:

#	vmstat	1	3
procs	-----------memory----------	---swap--	-----io----	-system--	-
-----cpu-----
	r		b			swpd			free			buff		cache			si			so				bi				bo			in			cs	
us	sy	id	wa	st
2		0						4	225000			3608	544900				0				0					3					7			17			28	0		
0	100		0		0
0		0						4	224992			3608	544900				0				0					0					0			19			19	0		
0	100		0		0
0		0						4	224992			3608	544900				0				0					0					0				6				9	0		
0	100		0		0

The	vmstat	syntax	is	very	similar	to	iostat	where	you	provide	an	interval	and
count	of	reports	as	command	line	arguments.	Also,	like	iostat,	the	first	report	is
actually	 an	 average	 since	 the	 last	 reboot	 and	 subsequent	 reports	 are	 since	 the
previous	 report.	 Unfortunately,	 unlike	 the	 iostat	 command,	 the	 vmstat
command	does	not	include	a	flag	to	omit	the	first	report.	As	such,	in	most	cases,
it	is	appropriate	to	simply	ignore	the	first	report.

While	vmstat	might	not	include	a	flag	to	omit	the	first	report,	it	does	have	some
very	 useful	 flags;	 they	 are	 flags	 such	 as	 –m	 (slabs),	 which	 causes	 vmstat	 to
output	the	system's	slabinfo	at	a	defined	interval,	and	-s	(stats),	which	prints	an
extended	report	of	the	memory	statistics	for	the	system:

#	vmstat	-stats
						1018256	K	total	memory
							793416	K	used	memory,
							290372	K	active	memory
							360660	K	inactive	memory
							224840	K	free	memory
									3608	K	buffer	memory
							544908	K	swap	cache
							839676	K	total	swap
												4	K	used	swap
							839672	K	free	swap

								10191	non-nice	user	cpu	ticks
											67	nice	user	cpu	ticks
								11353	system	cpu	ticks
						9389547	idle	cpu	ticks
										556	IO-wait	cpu	ticks
											33	IRQ	cpu	ticks
									4434	softirq	cpu	ticks
												0	stolen	cpu	ticks
							267011	pages	paged	in
							647220	pages	paged	out
												0	pages	swapped	in
												1	pages	swapped	out
						1619609	interrupts
						2662083	CPU	context	switches
			1419453695	boot	time
								59061	forks

The	preceding	code	is	an	example	of	the	-s	or	--stats	flag	being	used.

sar	–	collect,	report,	or	save	system	activity	information

One	very	useful	utility	is	the	sar	command,	sar	is	a	utility	that	comes	with	the
sysstat	 package.	 The	 sysstat	 package	 includes	 various	 utilities	 that	 collect
system	metrics	such	as	disk,	CPU,	memory,	and	network	utilization.	By	default,
this	 collection	will	 run	every	10	minutes	 and	 is	 executed	as	 a	cron	 job	within
/ettc/cron.d/sysstat.

While	 the	 data	 collected	 by	 sysstat	 can	 be	 very	 useful,	 this	 package	 is
sometimes	removed	in	high	performance	environments.	As	the	collection	of	the
system	 utilization	 statistics	 can	 add	 to	 the	 system's	 utilization,	 causing
performance	degradation.	To	see	if	the	sysstat	package	is	installed,	simply	use
the	rpm	command	with	the	-q	(query)	flag:

#	rpm	-q	sysstat
sysstat-10.1.5-4.el7.x86_64

Using	the	sar	command

The	 sar	 command	 allows	 users	 to	 review	 the	 information	 collected	 by	 the
sysstat	utilities.	When	executed	with	no	flags,	the	sar	command	will	print	the
current	day's	CPU	statistics:

#	sar	|	head	-6

Linux	3.10.0-123.el7.x86_64	(localhost.localdomain)			12/25/2014			
_x86_64_		(1	CPU)

12:00:01	AM					CPU					%user					%nice			%system			%iowait	%steal					
%idle
12:10:02	AM					all						0.05						0.00						0.20						0.01	0.00					
99.74
12:20:01	AM					all						0.05						0.00						0.18						0.00	0.00					
99.77
12:30:01	AM					all						0.06						0.00						0.25						0.00	0.00					
99.69

Every	day	at	midnight,	 the	systat	 collector	will	 create	 a	 new	 file	 to	 store	 the
collected	statistics.	To	reference	the	statistics	within	that	file,	simply	use	the	-f
(file)	flag	to	run	sar	against	the	specified	file:

#	sar	-f	/var/log/sa/sa13
Linux	3.10.0-123.el7.x86_64	(localhost.localdomain)			12/13/2014			
_x86_64_		(1	CPU)

10:24:43	AM							LINUX	RESTART

10:30:01	AM					CPU					%user					%nice			%system			%iowait	%steal					
%idle
10:40:01	AM					all						2.99						0.00						0.96						0.43	0.00					
95.62
10:50:01	AM					all						9.70						0.00						2.17						0.00	0.00					
88.13
11:00:01	AM					all						0.31						0.00						0.30						0.02	0.00					
99.37
11:10:01	AM					all						1.20						0.00						0.41						0.01	0.00					
98.38
11:20:01	AM					all						0.01						0.00						0.04						0.01	0.00					
99.94
11:30:01	AM					all						0.92						0.07						0.42						0.01	0.00					
98.59
11:40:01	AM					all						0.17						0.00						0.08						0.00	0.00					
99.74
11:50:02	AM					all						0.01						0.00						0.03						0.00	0.00					
99.96

In	 the	 preceding	 code,	 the	 file	 specified	 was	 /var/log/sa/sa13;	 this	 file
contains	statistics	for	the	13th	day	of	the	current	month.

The	sar	command	has	many	useful	flags,	far	too	many	to	list	in	this	chapter.	A

few	extremely	useful	flags	are	listed	as	follows:

-b:	This	prints	I/O	statistics	similar	to	the	iostat	command
-n	ALL:	This	prints	network	statistics	for	all	network	devices
-R:	This	prints	memory	utilization	statistics
-A:	This	prints	all	statistics	gathered.	It	is	essentially	equivalent	to	running
sar	-bBdHqrRSuvwWy	-I	SUM	-I	XALL	-m	ALL	-n	ALL	-u	ALL	-P	ALL

While	the	sar	command	shows	many	statistics,	we	already	covered	commands
such	as	iostat	or	vmstat.	The	biggest	benefit	of	the	sar	command	is	the	ability
to	 review	 statistics	 in	 the	 past.	 This	 ability	 is	 critical	 when	 troubleshooting	 a
performance	 issue	 that	 occurred	 for	 a	 short	 period	 of	 time	 or	 was	 already
mitigated.

Summary
In	 this	 chapter,	 you	 learned	 that	 log	 files,	 configuration	 files,	 and	 the	 /proc
filesystem	 are	 key	 sources	 of	 information	 during	 troubleshooting.	 We	 also
covered	the	basic	use	of	many	fundamental	troubleshooting	commands.

While	reading	this	chapter,	you	might	have	noticed	that	quite	a	few	commands
are	 also	 used	 in	 day-to-day	 life	 for	 non-troubleshooting	 purposes.	 If	 we	 look
back	 at	 the	 troubleshooting	 process	 from	 Chapter	 1,	 Troubleshooting	 Best
Practices,	the	first	step	included	information	gathering.

While	 these	 commands	might	 not	 explain	 the	 issue	 themselves,	 they	 can	 help
gather	 information	 about	 the	 issue,	which	 leads	 to	 a	more	 accurate	 and	 quick
resolution.	 Familiarity	 with	 these	 fundamental	 commands	 is	 critical	 to	 your
success	during	troubleshooting.

In	 the	 next	 few	 chapters,	 we	 will	 use	 these	 fundamental	 commands	 to
troubleshoot	 real-world	scenarios.	The	next	chapter	 focuses	on	 troubleshooting
issues	with	a	web-based	application.

Chapter	 3.	 Troubleshooting	 a	 Web
Application
In	 the	 first	 and	 second	 chapters	 of	 this	 book,	 we	 covered	 the	 troubleshooting
process,	 common	 locations	 for	 information,	 and	 useful	 troubleshooting
commands.	 In	 this	 chapter,	we	will	 run	 through	 an	 example	 problem	 that	 has
been	 created	 in	order	 to	demonstrate	multiple	 troubleshooting	 and	 remediation
steps.	In	particular,	we	will	look	at	the	steps	required	to	troubleshoot	issues	with
web-based	applications.

Throughout	 this	 chapter,	 I	 will	 go	 through	 each	 step	 of	 the	 troubleshooting
process	and	explain	the	reasoning	behind	each	step.	While	the	problem	that	this
chapter	covers	may	not	be	an	extremely	common	issue,	it	is	important	to	look	at
the	 process	 and	 tools	 used.	 The	 process	 and	 tools	 used	 in	 this	 chapter	 can	 be
applied	to	most	web	application	issues.

A	small	back	story
Within	each	chapter	of	this	book,	you	will	find	an	example	issue	that	covers	the
common	 troubleshooting	 topics.	While	 the	 focus	 of	 this	 book	 is	 to	 show	 the
commands	 and	 concepts	 necessary	 to	 resolve	 these	 types	 of	 issues,	 it	 is	 also
important	to	show	the	process	around	resolving	them.	To	do	this,	we	will	explore
these	 issues	 as	 if	we	were	 a	 new	 systems	 administrator	who	 recently	 joined	 a
new	company.

Each	 issue	will	be	presented	a	 little	differently,	but	each	one	will	 start	with	an
issue	being	reported.

The	reported	issue
While	starting	our	new	role	at	a	new	company,	we	have	been	assigned	to	answer
phone	calls	for	the	company's	Network	Operations	Center	(NOC).	In	this	role,
we	 will	 focus	 on	 resolving	 issues	 within	 the	 company's	 environment	 and	 are
expected	 to	 do	 so	 very	 quickly.	 For	 our	 first	 issue,	we	 have	 received	 a	 phone
call;	on	the	other	end	of	this	phone	call	is	a	business	user	who	has	an	issue.	All	of
a	sudden,	our	blog	is	showing	an	installation	page	and	not	our	posts!

Now	 that	 we	 have	 a	 reported	 issue,	 let's	 start	 working	 through	 the
troubleshooting	process.

Data	gathering
If	we	look	back	at	Chapter	1,	Troubleshooting	Best	Practices,	the	first	step	in	the
troubleshooting	process	is	 to	understand	the	problem	statement.	In	this	section,
we	are	going	to	explore	how	the	problem	was	reported	and	will	try	to	collect	any
data	that	we	can	to	find	the	root	cause	of	the	issue.

For	this	example,	we	were	notified	of	the	issue	via	a	phone	call.	This	is	actually
lucky	as	we	have	an	end	user	on	 the	phone	and	can	ask	questions	 to	get	more
information	from	him/her.

Before	asking	the	person	reporting	the	issue	for	more	information,	let's	first	take
a	 look	at	what	was	already	answered.	All	of	a	 sudden,	our	blog	 is	 showing	an
installation	page	and	not	our	posts!

At	first,	you	may	feel	that	this	problem	statement	is	vague;	this	is	because	it	is
vague.	 However,	 there	 is	 still	 quite	 a	 bit	 of	 useful	 information	 in	 this	 single
sentence.	If	we	dissect	the	reported	issue,	we	can	gain	a	better	understanding	of
the	problem.

"Our	blog	is	showing	an	installation	page"
"All	of	a	sudden"
"not	our	posts!"

From	these	three	segments,	we	can	assume	the	following:

The	blog	is	showing	an	unexpected	page
This	blog	was	previously	showing	posts
At	some	point,	this	changed	and	it	seems	that	it	was	somewhat	recently

While	the	above	is	a	pretty	good	start	for	determining	whether	there	is	an	issue
and	what	it	is	related	to,	it	does	not	give	us	enough	to	create	a	hypothesis	yet.

Asking	questions
In	order	to	formulate	a	hypothesis,	we	will	need	more	information.	One	method
of	getting	this	information	is	to	ask	the	person	reporting	the	issue.	In	order	to	get
more	information,	we	will	ask	the	business	user	the	following	questions:

1.	 When	was	the	last	time	you	saw	the	blog	working?

Last	night.
2.	 What	is	the	blog's	address?

http://blog.example.com
3.	 Did	you	receive	any	other	errors?

No.

While	the	above	questions	are	not	enough	to	identify	the	problem,	they	do	give
us	a	starting	point	of	where	to	start	looking.

Duplicating	the	issue
As	previously	stated	in	Chapter	1,	Troubleshooting	Best	Practices	one	of	the	best
methods	of	 finding	 information	 is	 to	 duplicate	 the	 issue.	 In	 this	 case,	 it	 seems
that	we	can	duplicate	the	issue	by	simply	going	to	the	address	provided.

In	the	previous	screenshot,	we	can	see	that	the	blog	is	performing	just	as	the	user
described.	 When	 we	 went	 to	 the	 provided	 URL,	 we	 were	 presented	 with	 a
default	WordPress	installation	screen.

Does	this	give	us	any	clue	about	what	the	cause	of	the	issue	is?	No,	not	really,
not	unless	we	have	seen	this	issue	before.	While	this	may	not	tell	us	the	cause	of
the	issue,	it	does	confirm	that	the	issue	that	the	user	has	reported	is	reproducible.
This	step	has	also	told	us	the	name	of	the	software	that	we	are	troubleshooting:
WordPress.

WordPress	 is	 one	of	 the	most	 popular	 open	 source	 blogging	 platforms.	 In	 this
chapter,	it	is	assumed	that	we	have	no	experience	managing	WordPress	and	will
need	to	find	any	information	that	we	need	around	this	web	application	through
online	sources.

Understanding	the	environment
Since	we	are	 the	new	 systems	 administrator,	 at	 this	 point,	we	know	very	 little
about	this	environment,	which	means	that	we	have	little	knowledge	of	how	this
blog	is	deployed.	In	fact,	we	do	not	even	know	which	server	it	runs	from.

Where	is	this	blog	hosted?

One	 thing	 that	 we	 do	 know,	 however,	 is	 that	 all	 servers	 managed	 by	 our
company	 have	 IPs	 within	 the	 192.168.0.0/16	 subnet.	 In	 order	 to	 determine
whether	this	is	an	issue	that	we	can	resolve,	we	first	need	to	determine	whether
the	blog	is	on	a	server	managed	by	our	company.	If	this	blog	doesn't	exist	on	a
server	managed	by	this	company,	our	troubleshooting	options	may	be	limited.

One	 way	 to	 determine	 where	 the	 blog	 is	 hosted	 is	 to	 simply	 look	 up	 the	 IP
address	of	the	blog.example.com	address.

Lookup	IPs	with	nslookup

There	are	many	ways	 to	 look	up	 the	IP	address	of	a	DNS	name;	 the	command
that	we	will	 discuss	 is	 the	nslookup	 command.	 To	 use	 this	 command,	 simply
execute	nslookup	followed	by	the	DNS	name	to	look	up:	blog.example.com	for
this	example.

$	nslookup	blog.example.com
Server:				192.0.2.1
Address:		192.0.2.1#53

Non-authoritative	answer:
Name:		blog.example.com
Address:	192.168.33.11

In	 the	preceding	output,	 the	 result	may	be	a	bit	 confusing	 for	 those	unfamiliar
with	nslookup.

Non-authoritative	answer:
Name:		blog.example.com
Address:	192.168.33.11

We	know	that	the	preceding	information	is	the	result	of	the	nslookup	query.	This
block	is	saying	that	the	blog.example.com	domain's	address	is	192.168.33.11.

The	first	block	of	output	from	nslookup	is	simply	telling	us	which	DNS	server
was	used	to	look	up	this	information.

Server:				192.0.2.1
Address:		192.0.2.1#53

We	can	see	from	this	block	that	the	DNS	server	used	was	192.0.2.1.

What	about	ping,	dig,	or	other	tools?

There	are	many	commands	that	we	could	have	used	to	look	up	the	IP	address	of
this	domain.	We	could	have	used	dig,	host,	or	even	ping.	The	reason	 that	we
chose	the	nslookup	command	is	that	for	the	most	part,	it	is	included	with	most
operating	systems.	So,	irrespective	of	whether	you	need	to	look	up	an	IP	address
from	 a	 Windows,	 Mac,	 or	 Linux	 desktop,	 you	 can	 always	 use	 the	 nslookup
command.

One	 caveat	 with	 the	 nslookup	 command,	 however,	 is	 that	 it	 specifically	 uses
DNS	 to	 look	 up	 the	 address.	 It	 does	 not	 respect	 values	 in	/etc/hosts	 or	 any
other	name	service	specified	in	/etc/nsswitch.conf.	This	is	something	that	we
will	 explore	 more	 in	 the	 later	 chapters;	 for	 now,	 we	 will	 assume	 that	 the	 IP
address	of	192.168.33.11	is	the	correct	IP.

Ok,	it's	within	our	environment;	now	what?

Since	we	are	working	with	a	Linux	server,	the	most	common	way	to	manage	that
server	 is	via	Secure	Shell	 (SSH).	SSH	 is	a	 secure	network	 service	 that	 allows
users	to	remotely	access	a	server's	shell.	For	this	book,	we	are	going	to	assume
that	you	are	already	 familiar	with	 logging	 into	a	 server	via	SSH.	Whether	you
use	the	SSH	command-line	client	or	a	desktop	client	like	PuTTY,	it	is	assumed
that	you	are	able	to	log	into	the	server	with	SSH.

In	this	scenario,	we	use	a	laptop	that	has	its	own	shell	environment.	To	log	into
our	server,	we	simply	execute	the	ssh	command	from	our	terminal	window.

$	ssh	vagrant@blog.example.com
vagrant@blog.example.com's	password:

Once	logged	in,	the	first	information-gathering	command	that	we	execute	is	the
w	command.

$	w
		18:32:17	up	2	days,	12:05,		1	user,		load	average:	0.11,	0.08,	
0.07
USER					TTY								LOGIN@			IDLE			JCPU			PCPU	WHAT
vagrant		pts/1					00:53				2.00s		0.00s		0.08s	sshd:	vagrant	
[priv]

In	Chapter	2,	Troubleshooting	Commands	and	Sources	of	Useful	Information,	we
covered	the	w	command	and	mentioned	that	it	is	the	first	command	executed.	We
can	see	quite	a	bit	of	useful	information	in	the	output	of	the	w	command.

From	this	output,	we	can	determine	the	following:

Only	1	user	is	currently	logged	in	(which	is	our	login	session)
The	server	in	question	has	been	up	for	2	days
The	load	average	is	low,	which	suggests	normal

Overall,	at	the	first	glance,	the	server	seems	to	be	performing	normally.	The	fact
that	 the	 issue	 started	 last	 night	 suggests	 that	 the	 issue	 did	 not	 start	 after	 the
reboot	 2	 days	 ago.	With	 the	 load	 average	 low,	 it	 is	 also	 safe	 at	 this	 point	 to
assume	that	the	issue	is	not	related	to	the	system	load.

What	services	are	installed	and	running?

Since	we	have	never	logged	into	 this	server	before,	and	are	completely	new	to
this	environment,	the	first	thing	that	we	should	do	is	find	out	what	services	are
running	on	this	server.

Since	we	know	from	the	install	page	that	the	blog	is	a	WordPress	blog,	we	can
search	Google	 about	 the	 services	 that	 it	 requires.	We	can	do	 this	 by	using	 the
search	term	"WordPress	install	requirements."

This	 search	 string	 returned	 with	 the	 following	 URL	 as	 the	 first	 result:
https://wordpress.org/about/requirements/.	 This	 page	 contains	 the	 installation
requirements	for	WordPress	and	lists	the	following:

PHP	5.2.4
MySQL	5.0	or	higher
Either	Apache	or	Nginx	web	servers

From	 the	 fact	 that	 we	 can	 access	 the	 install	 page,	 we	 can	 assume	 that	 a	 web

https://wordpress.org/about/requirements/

server	and	PHP	are	installed	and	somewhat	working.	However,	it	is	always	best
to	validate	rather	than	assume.

Validate	the	web	server

Since	WordPress	 recommends	either	 the	Apache	 or	 the	Nginx	web	 server,	we
first	need	to	determine	which	is	installed	and,	more	importantly,	identify	which
is	in	use	for	this	WordPress	application.

The	 following	 are	 a	 few	ways	 to	 identify	which	web	 servers	 are	 installed	 and
running:

We	could	use	rpm	to	look	at	the	packages	installed
We	could	use	ps	to	look	at	the	processes	running
We	could	simply	go	to	a	non-existent	page	via	a	browser	and	see	whether
the	error	page	says	which	web	server	is	running
We	can	also	go	to	/var/logs	and	look	around	to	see	what	log	files	exist	or
don't	exist

All	of	these	methods	are	valid	and	have	their	own	benefits.	For	this	example,	we
will	use	a	5th	method	(not	mentioned	earlier),	which	will	answer	two	questions
about	the	web	server	configuration	on	this	server.

The	first	step	of	this	method	will	be	to	determine	which	process	is	listening	on
port	80.

$	su	-
#	netstat	-nap	|	grep	80
tcp6							0						0	:::80																			:::*	LISTEN						
952/httpd
unix		3						[]									STREAM					CONNECTED					17280		
1521/master

As	discussed	 in	Chapter	2,	Troubleshooting	Commands	 and	 Sources	 of	Useful
Information,	the	netstat	command	can	be	used	to	determine	which	ports	are	in
use	with	the	–na	 flags.	 If	we	simply	add	 the	–p	 (port)	 flag	 to	netstat,	we	can
also	see	which	process	is	listening	on	each	port.

Tip

In	 order	 to	 identify	 which	 processes	 are	 listening	 on	 each	 port,	 the	 netstat

command	must	be	executed	with	super	user-level	permissions.	As	such,	we	use
the	su	command	to	switch	to	the	root	user	before	executing	netstat.

Throughout	this	book,	any	command	preceded	with	$	 is	run	as	an	unprivileged
user,	while	commands	preceded	with	#	are	executed	as	the	root	user.

Port	 80	 is	 the	 default	 port	 for	HTTP	 requests;	 as	 such,	 if	we	 look	back	 at	 the
steps	performed	to	duplicate	the	issue	at	hand,	we	can	see	that	the	address	used
was	 http://blog.example.com.	 Since	 this	 is	 an	 HTTP	 address	 and	 does	 not
specify	 a	 different	 port,	 this	means	 that	 the	 service	 that	 serves	 the	WordPress
installation	page	is	listening	on	port	80.

From	 the	 output	 of	 the	 netstat	 command,	 we	 can	 see	 that	 process	 952	 is
listening	on	port	80.	The	netstat	output	also	shows	that	process	952	is	running
the	httpd	binary.	On	RHEL	systems,	this	httpd	binary	is	most	often	Apache.

We	 can	 validate	whether	 this	 is	 the	 case	with	 the	ps	 command	with	 the	 –elf
flags	discussed	in	Chapter	2,	Troubleshooting	Commands	and	Sources	of	Useful
Information.	We	will	 also	 search	 the	output	of	 the	ps	 command	with	 the	grep
command,	searching	for	the	string	"952":

$	ps	-elf	|	grep	952
4	S	root							952					1		0		80			0	-	115050	poll_s	Jan11	?	
00:00:07	/usr/sbin/httpd	-DFOREGROUND
5	S	apache				5329			952		0		80			0	-	115050	inet_c	08:54	?	
00:00:00	/usr/sbin/httpd	-DFOREGROUND
5	S	apache				5330			952		0		80			0	-	115050	inet_c	08:54	?	
00:00:00	/usr/sbin/httpd	-DFOREGROUND
5	S	apache				5331			952		0		80			0	-	115050	inet_c	08:54	?	
00:00:00	/usr/sbin/httpd	-DFOREGROUND
5	S	apache				5332			952		0		80			0	-	115050	inet_c	08:54	?	
00:00:00	/usr/sbin/httpd	-DFOREGROUND
5	S	apache				5333			952		0		80			0	-	119196	inet_c	08:54	?	
00:00:00	/usr/sbin/httpd	-DFOREGROUND

With	the	above	output,	we	can	see	 that	process	952	and	 its	child	processes	are
running	under	 the	apache	 user.	This	 confirms	 that	 the	 software	 in	use	 is	most
likely	Apache,	but	to	be	extra	diligent,	we	can	execute	the	httpd	binary	with	the
–version	flag	to	print	the	version	of	the	web	server	software.

$	httpd	-version

Server	version:	Apache/2.4.6
Server	built:			Jul	23	2014	14:48:00

The	output	of	 the	httpd	binary	shows	 that	 it	 is	 in	 fact	 the	Apache	web	server,
which	matches	the	WordPress	requirements.

At	this	point,	we	have	found	out	the	following	facts	about	the	web	server	in	use
for	this	server:

The	web	server	is	Apache
The	Apache	process	is	running
The	Apache	version	is	2.4.6
The	Apache	process	is	listening	on	port	80

It	 is	possible	 to	 identify	 the	 same	 information	by	using	other	methods	 such	as
rpm.	 The	 good	 part	 of	 this	 method	 is	 that	 if	 the	 server	 has	 two	 web	 server
services	installed,	we	know	which	of	these	services	is	listening	on	port	80.	This
also	tells	us	which	service	provides	the	WordPress	install	page.

Validating	the	database	service

A	common	WordPress	 implementation	 is	 to	run	the	Apache,	PHP,	and	MySQL
services	all	on	one	server.	Sometimes,	however,	the	MySQL	service	will	be	run
from	another	server	or	servers.	To	better	understand	the	environment,	we	should
check	whether	this	environment	runs	MySQL	locally	or	from	another	server.

To	check	this,	we	will	once	again	use	the	ps	command;	this	time,	however,	we
will	use	grep	to	search	for	a	process	that	matches	the	string	"mysql":

$	ps	-elf	|	grep	mysql
4	S	mysql					2045					1		0		80			0	-	28836	wait			Jan12	?	00:00:00	
/bin/sh	/usr/bin/mysqld_safe	--basedir=/usr
0	S	mysql					2203		2045		0		80			0	-	226860	poll_s	Jan12	?	
00:00:42	/usr/libexec/mysqld	--basedir=/usr	--
datadir=/var/lib/mysql	--plugin-dir=/usr/lib64/mysql/plugin	--log-	
error=/var/log/mariadb/mariadb.log	--pid-	
file=/var/run/mariadb/mariadb.pid	--	
socket=/var/lib/mysql/mysql.sock

As	 you	 can	 see	 from	 the	 preceding	 output,	 there	 is	 in	 fact	 a	MySQL	 process
currently	running.	It	 is	also	important	 to	note	that	 the	ps	output	shows	 that	 the
mysqld	 process	 is	 using	 the	 following	 option:	 –log-

error=/var/log/mariadb/mariadb.log.

This	is	important	for	two	reasons:	The	first	is	that	this	is	the	location	of	the	log
file	 for	 the	 mysqld	 process,	 and	 the	 second	 is	 the	 fact	 that	 this	 log	 file	 is	 for
MariaDB,	which	is	different	from	MySQL.

We	can	confirm	whether	MySQL	or	MariaDB	is	installed	by	using	the	rpm	and
egrep	commands.

$	rpm	-qa	|	egrep	"(maria|mysql)"
php-mysql-5.4.16-23.el7_0.3.x86_64
mariadb-5.5.40-2.el7_0.x86_64
mariadb-server-5.5.40-2.el7_0.x86_64
mariadb-libs-5.5.40-2.el7_0.x86_64

The	egrep	command	is	similar	to	grep;	however,	it	accepts	search	strings	in	the
form	of	regular	expressions.	In	the	above	command,	we	used	egrep	to	search	for
either	the	string	"mariadb"	or	the	string	"mysql."	From	the	preceding	output,	we
can	see	that	this	server	does	in	fact	have	MariaDB	installed	but	not	MySQL.

With	this	information,	we	can	make	the	assumption	that	the	mysqld	process	that
is	 running	 is	 in	 fact	 a	MariaDB	 binary.	We	 can	 verify	 this	 by	 using	 the	 rpm
command	with	the	–q	(query)	and	–l	(list	all	files)	flags.

$	rpm	-ql	mariadb-server	|	grep	"libexec/mysqld"
/usr/libexec/mysqld

We	 can	 see	 from	 the	 rpm	 command's	 output	 that	 the	 running
/usr/libexec/mysqld	 binary	 is	 deployed	 as	 part	 of	 the	 mariadb-server
package.	Showing	that	the	running	database	process	is	in	fact	MariaDB	and	was
installed	via	the	mariadb-server	package.

At	 this	 point,	 we	 have	 found	 the	 following	 facts	 about	 the	 database	 service
running	on	this	server:

The	database	service	is	actually	MariaDB
MariaDB	is	running
The	log	files	for	this	service	are	at	/var/log/mariadb/

While	 MariaDB	 is	 a	 drop-in	 replacement	 for	 MySQL,	 the	 requirements	 for

WordPress	do	not	list	it	as	the	preferred	database	service.	It	is	important	to	make
note	of	this	difference	as	it	may	determine	the	root	cause	of	the	reported	issue.

Validating	PHP

Since	 we	 know	 that	 PHP	 is	 required	 for	 WordPress,	 we	 should	 also	 check
whether	it	is	installed.	We	can	validate	this	by	again	using	the	rpm	command.

$	rpm	-qa	|	grep	php
php-mbstring-5.4.16-23.el7_0.3.x86_64
php-mysql-5.4.16-23.el7_0.3.x86_64
php-enchant-5.4.16-23.el7_0.3.x86_64
php-process-5.4.16-23.el7_0.3.x86_64
php-xml-5.4.16-23.el7_0.3.x86_64
php-simplepie-1.3.1-4.el7.noarch
php-5.4.16-23.el7_0.3.x86_64
php-gd-5.4.16-23.el7_0.3.x86_64
php-common-5.4.16-23.el7_0.3.x86_64
php-pdo-5.4.16-23.el7_0.3.x86_64
php-PHPMailer-5.2.9-1.el7.noarch
php-cli-5.4.16-23.el7_0.3.x86_64
php-IDNA_Convert-0.8.0-2.el7.noarch
php-getid3-1.9.8-2.el7.noarch

PHP	by	itself	is	not	designed	to	run	as	a	service	such	as	Apache	or	MySQL,	but
rather	as	a	web	server	module.	However,	 it	 is	possible	to	use	a	service	such	as
php-fpm	as	an	application	server.	This	allows	PHP	to	run	as	a	service	and	to	be
called	by	an	upstream	web	server.

To	 check	whether	 this	 server	 runs	php-fpm	 or	 any	other	 service	 that	 frontends
PHP,	we	can	again	use	the	ps	and	grep	commands.

$	ps	-elf	|	grep	php
0	S	root						6342		5676		0		80			0	-	28160	pipe_w	17:53	pts/0				
00:00:00	grep	--color=auto	php

By	using	 the	ps	 command,	we	 do	 not	 see	 any	 specific	 PHP	 service;	 however,
when	going	to	the	blog,	we	were	able	to	see	the	install	page.	This	suggests	that
PHP	is	configured	to	run	via	Apache	directly.	We	can	validate	this	by	executing
the	httpd	binary	again	with	the	–M	(modules)	flag.

$	httpd	-M	|	grep	php
	php5_module	(shared)

The	–M	flag	will	tell	the	httpd	binary	to	list	all	of	the	loaded	modules.	Included
in	this	list	is	php5_module,	which	means	that	this	installation	of	Apache	is	able
to	run	PHP	applications	via	php5_module.
A	summary	of	installed	and	running	services

At	this	point,	we	have	identified	the	following	from	our	data	collection:

The	WordPress	requirement	of	Apache	is	installed	and	running
The	WordPress	 requirement	 of	 MySQL	 appears	 to	 be	 met	 by	 MariaDB,
which	is	installed	and	running
The	WordPress	requirement	of	PHP	is	installed	and	appears	to	be	working
It	appears	that	WordPress	is	deployed	in	a	single-server	setup	rather	than	a
multi-server	setup

We	can	assume	for	now	that	 these	facts	mean	that	 the	 issue	 is	not	caused	by	a
missing	WordPress	requirement.

By	gathering	all	of	 these	data	points,	we	have	not	only	learned	more	about	the
environment	 that	 we	 are	 troubleshooting	 but	 also	 eliminated	 several	 possible
causes	of	this	issue.

Looking	for	error	messages
Now	 that	 the	 installed	 and	 configured	 services	 have	 been	 identified,	we	 know
where	 to	start	 looking	 for	errors	or	helpful	messages.	 In	 the	next	stage	of	data
collection,	we	are	going	to	look	through	the	various	log	files	of	these	services	to
try	and	to	identify	any	errors	that	may	indicate	the	cause	of	this	issue.

Apache	logs

Since	Apache	calls	PHP	when	web	requests	are	made,	the	most	likely	log	file	to
contain	PHP-related	errors	is	the	Apache	error	log.	The	default	log	location	for
RHEL's	httpd	 package	 is	/var/log/httpd/.	However,	we	don't	know	 just	yet
whether	the	running	httpd	service	is	the	RHEL	packaged	version.

Finding	the	location	of	Apache's	logs

Since	we	don't	know	the	location	of	Apache's	 logs,	we	will	need	 to	 find	 them.
One	way	to	find	log	files	is	to	simply	look	in	/var/log	for	any	file	or	folder	that
matches	the	name	of	the	service	in	question.	This	solution,	however,	is	a	bit	too
simple	for	our	example.

To	 find	 the	 location	of	 the	httpd	 log	 files,	we	will	 use	 a	method	discussed	 in
Chapter	2,	Troubleshooting	Commands	and	Sources	 of	Useful	 Information	and
search	 through	 the	 service's	 configuration	 files.	 The	/etc	 folder	 is	 the	 default
folder	for	system	configuration	files.	It	 is	also	the	standard	location	for	service
configurations.	Therefore,	 it	 is	 fairly	 safe	 to	 assume	 that	 the	/etc/	 folder	will
contain	a	configuration	file	or	folder	for	the	httpd	service.

#	cd	/etc/httpd/
#	ls	-la
total	20
drwxr-xr-x.		5	root	root			86	Jan		7	23:29	.
drwxr-xr-x.	79	root	root	8192	Jan	13	16:10	..
drwxr-xr-x.		2	root	root			35	Jan		7	23:29	conf
drwxr-xr-x.		2	root	root	4096	Jan		7	23:29	conf.d
drwxr-xr-x.		2	root	root	4096	Jan		7	23:29	conf.modules.d
lrwxrwxrwx.		1	root	root			19	Jan		7	23:29	logs	->	
../../var/log/httpd
lrwxrwxrwx.		1	root	root			29	Jan		7	23:29	modules	->	
../../usr/lib64/httpd/modules
lrwxrwxrwx.		1	root	root			10	Jan		7	23:29	run	->	/run/httpd

In	 the	preceding	commands,	we	can	see	 that	we	can	switch	 to	 the	/etc/httpd
folder,	which	 contains	 several	 configuration	 files.	 Since	we	 don't	 know	which
configuration	file	contains	the	logging	configuration,	we	could	spend	quite	a	bit
of	time	reading	through	each	configuration	file.

To	make	this	process	faster,	we	can	use	the	grep	command	to	search	through	all
of	 the	 files	 for	 the	 string	 "log."	 Since	 the	 /etc/httpd/	 folder	 contains
subfolders,	 we	 can	 simply	 add	 the	 –r	 (recursive)	 flag	 to	 cause	 the	 grep
command	to	search	through	files	contained	in	these	subfolders.

#	grep	-r	"log"	/etc/httpd/*
./conf/httpd.conf:#	with	"/",	the	value	of	ServerRoot	is	prepended	
--	so	'log/access_log'
./conf/httpd.conf:#	server	as	'/www/log/access_log',	whereas	
'/log/access_log'	will	be
./conf/httpd.conf:#	interpreted	as	'/log/access_log'.
./conf/httpd.conf:#	container,	that	host's	errors	will	be	logged	
there	and	not	here.
./conf/httpd.conf:ErrorLog	"logs/error_log"
./conf/httpd.conf:#	LogLevel:	Control	the	number	of	messages	logged	
to	the	error_log.
./conf/httpd.conf:<IfModule	log_config_module>
./conf/httpd.conf:				<IfModule	logio_module>
./conf/httpd.conf:				#	define	per-<VirtualHost>	access	log	files,	
transactions	will	be
./conf/httpd.conf:				#	logged	therein	and	*not*	in	this	file.
./conf/httpd.conf:				#CustomLog	"logs/access_log"	common
./conf/httpd.conf:				#	If	you	prefer	a	log	file	with	access,	
agent,	and	referer	information
./conf/httpd.conf:				CustomLog	"logs/access_log"	combined
./conf.modules.d/00-base.conf:LoadModule	log_config_module	
modules/mod_log_config.so
./conf.modules.d/00-base.conf:LoadModule	logio_module	
modules/mod_logio.so
./conf.modules.d/00-base.conf:#LoadModule	log_debug_module	
modules/mod_log_debug.so

Tip

The	preceding	code	snippet	has	been	truncated	for	the	sake	of	brevity,	and	only
the	key	lines	of	interest	are	shown.

While	 there	 is	 quite	 a	 bit	 of	 output	 from	 the	 preceding	grep	 command,	 if	we
review	the	returned	data,	we	can	see	that	there	are	actually	two	log	files	defined

for	the	httpd	service:	logs/access_log	and	logs/error_log.

./conf/httpd.conf:ErrorLog	"logs/error_log"

./conf/httpd.conf:				CustomLog	"logs/access_log"	combined

The	defined	logs	use	the	relative	path	of	logs/;	this	path	is	relative	to	the	httpd
services	 running	folder.	 In	 this	case,	 this	means	 that	 the	 logs'	 folder	 is	actually
/etc/httpd/logs;	 however,	 this	 may	 not	 always	 be	 the	 case.	 To	 validate
whether	 this	 is	 the	 case,	 we	 can	 simply	 perform	 a	 folder	 listing	 with	 the	 ls
command	in	the	/etc/httpd	folder.

#	ls	-la	/etc/httpd	|	grep	logs
lrwxrwxrwx.		1	root	root			19	Jan		7	23:29	logs	->	
../../var/log/httpd

From	the	ls	command,	we	can	see	that	/etc/httpd/logs	exists;	however,	this	is
not	a	 folder	but	a	 symbolic	 link	 to	/var/log/httpd/.	This	means	 that	 the	 two
log	 files,	 namely	 access_log	 and	 error_log,	 are	 actually	 located	 within	 the
/var/log/httpd/	folder.

Reviewing	the	logs

Now	that	we	know	where	the	log	files	are	located,	we	can	search	these	log	files
for	any	useful	information.	To	do	this,	we	will	use	the	tail	command.

The	tail	command	is	a	useful	command	that	can	be	used	to	read	the	last	part	of
a	file	or	files.	By	default,	when	tail	is	executed	without	any	flags,	the	command
will	print	the	last	10	lines	of	the	specified	file.

For	our	troubleshooting,	we	want	to	not	only	see	the	last	10	lines	of	data	but	also
watch	the	file	for	any	new	data	being	appended.	To	do	this,	we	can	use	 the	–f
(follow)	flag,	which	tells	tail	to	follow	the	specified	file	or	files.

#	tail	-f	logs/access_log	logs/error_log
==>	logs/access_log	<==
192.168.33.1	-	-	[12/Jan/2015:04:39:08	+0000]	"GET	/wp-
includes/js/wp-util.min.js?ver=4.1	HTTP/1.1"	200	981	
"http://blog.example.com/wp-admin/install.php"	"Mozilla/5.0	
(Macintosh;	Intel	Mac	OS	X	10_10_1)	AppleWebKit/537.36	(KHTML,	like	
Gecko)	Chrome/39.0.2171.95	Safari/537.36"
"http://blog.example.com/wp-admin/install.php"	"Mozilla/5.0	
(Macintosh;	Intel	Mac	OS	X	10_10_1)	AppleWebKit/537.36	(KHTML,	like	

Gecko)	Chrome/39.0.2171.95	Safari/537.36"
192.168.33.1	-	-	[12/Jan/2015:04:39:08	+0000]	"GET	/wp-
admin/js/password-strength-meter.min.js?ver=4.1	HTTP/1.1"	200	737	
"http://blog.example.com/wp-admin/install.php"	"Mozilla/5.0	
(Macintosh;	Intel	Mac	OS	X	10_10_1)	AppleWebKit/537.36	(KHTML,	like	
Gecko)	Chrome/39.0.2171.95	Safari/537.36"
::1	-	-	[13/Jan/2015:16:08:33	+0000]	"GET	/	HTTP/1.1"	302	-	"-"	
"curl/7.29.0"
192.168.33.11	-	-	[13/Jan/2015:16:10:19	+0000]	"GET	/	HTTP/1.1"	302	
-	"-"	"curl/7.29.0"

==>	logs/error_log	<==
[Sun	Jan	11	06:01:03.679890	2015]	[auth_digest:notice]	[pid	952]	
AH01757:	generating	secret	for	digest	authentication	...
[Sun	Jan	11	06:01:03.680719	2015]	[lbmethod_heartbeat:notice]	[pid	
952]	AH02282:	No	slotmem	from	mod_heartmonitor
[Sun	Jan	11	06:01:03.705469	2015]	[mpm_prefork:notice]	[pid	952]	
AH00163:	Apache/2.4.6	(CentOS)	PHP/5.4.16	configured	--	resuming	
normal	operations
[Sun	Jan	11	06:01:03.705486	2015]	[core:notice]	[pid	952]	AH00094:	
Command	line:	'/usr/sbin/httpd	-D	FOREGROUND'

Tip

The	RHEL	7	implementation	of	the	tail	command	can	actually	follow	multiple
files	at	the	same	time.	To	do	this,	simply	specify	all	of	the	files	that	you	wish	to
read	or	follow	when	executing	the	command.	The	above	is	an	example	of	using
tail	to	read	two	files	at	once.

While	there	are	no	immediate	PHP	errors	caused	by	the	last	10	lines	of	each	file,
this	does	not	necessarily	mean	 that	 these	files	will	not	show	the	errors	 that	we
need.	As	this	is	a	web-based	application,	we	may	need	to	load	the	application	in
order	to	trigger	any	errors.

We	 could	 simply	 open	 our	 browser	 and	 once	 again	 navigate	 to
http://blog.example.com.	 However,	 for	 this	 example,	 we	will	 utilize	 a	 very
useful	troubleshooting	command:	curl.
Using	curl	to	call	our	web	application

The	curl	 command	 can	 be	 used	 as	 a	 client	 to	 access	many	 different	 types	 of
protocols,	 everything	 from	FTP	 to	SMTP.	This	 command	 is	particularly	useful
when	troubleshooting	a	web	application	as	it	can	be	used	as	an	HTTP	client.

When	 troubleshooting	 a	 web	 application,	 you	 can	 use	 the	 curl	 command	 to
make	an	HTTP,	GET,	or	POST	 request	 to	a	specified	URL,	which	when	placed	 in
the	verbose	mode	with	the	–v	(verbose)	flag	can	produce	quite	a	bit	of	interesting
information.

$	curl	-v	http://blog.example.com
*	About	to	connect()	to	blog.example.com	port	80	(#0)
*			Trying	192.168.33.11...
*	Connected	to	blog.example.com	(192.168.33.11)	port	80	(#0)
>	GET	/	HTTP/1.1
>	User-Agent:	curl/7.29.0
>	Host:	blog.example.com
>	Accept:	*/*
>
<	HTTP/1.1	302	Found
<	Date:	Tue,	13	Jan	2015	21:10:51	GMT
<	Server:	Apache/2.4.6	PHP/5.4.16
<	X-Powered-By:	PHP/5.4.16
<	Expires:	Wed,	11	Jan	1984	05:00:00	GMT
<	Cache-Control:	no-cache,	must-revalidate,	max-age=0
<	Pragma:	no-cache
<	Location:	http://blog.example.com/wp-admin/install.php
<	Content-Length:	0
<	Content-Type:	text/html;	charset=UTF-8
<
*	Connection	#0	to	host	blog.example.com	left	intact

The	 preceding	 output	 shows	 four	 key	 pieces	 of	 information	 that	 I	 want	 to
highlight.

*	Connected	to	blog.example.com	(192.168.33.11)	port	80	(#0)

The	 preceding	 line	 shows	 us	 that	 when	 we	 addressed	 the	 page	 called
blog.example.com,	we	did	in	fact	go	to	the	server	at	192.168.33.11.	While	we
already	 identified	 that	blog.example.com	 resolved	 to	192.168.33.11,	 this	 line
confirms	 that	 the	 output	 from	 this	 command	 produces	 data	 from	 the	 expected
system.

<	HTTP/1.1	302	Found

The	 second	 key	 piece	 of	 information	 shows	 the	 HTTP	 status	 code	 that	 was
provided	by	the	web	server.

In	this	case,	 the	web	server	replied	with	a	status	code	of	302,	which	 is	used	 to
indicate	 a	 temporary	 redirect.	 When	 a	 browser	 requests	 a	 page	 and	 the	 web
server	replies	with	a	302	status	code,	the	browser	knows	to	redirect	the	end	user
to	another	page.

<	Location:	http://blog.example.com/wp-admin/install.php

The	next	page	is	determined	by	the	Location	HTTP	header.	This	header,	which
is	assigned	by	the	web	server,	along	with	the	HTTP	status	code	of	302	will	cause
any	browser	to	redirect	the	end	user	to	the	/wp-admin/install.php	page.

This	 explains	 why	 we	 see	 an	 installation	 page	 when	 we	 navigate	 to
blog.example.com	as	the	web	server	simply	responds	with	this	302	redirect.

<	X-Powered-By:	PHP/5.4.16

The	fourth	key	piece	of	information	is	the	HTTP	header	X-Powered-By;	this	is
an	HTTP	header	added	by	PHP.	This	header	is	added	by	PHP	when	the	requested
page	 is	 processed	 as	 by	 PHP,	which	means	 that	 our	 curl	 request	was	 actually
processed	by	PHP.

More	 importantly,	 we	 can	 see	 that	 the	 version	 of	 PHP	 (5.4.16)	 meets	 our
minimum	requirements	as	outlined	by	WordPress.
Requesting	a	non-PHP	page

We	can	see	when	requesting	a	non-PHP	page	 that	no	X-Powered-By	header	 is
added	in	the	web	server	reply.	We	can	do	this	by	requesting	an	invalid	URL.

#	curl	-v	http://192.168.33.11/sdfas
*	About	to	connect()	to	192.168.33.11	port	80	(#0)
*			Trying	192.168.33.11...
*	Connected	to	192.168.33.11	(192.168.33.11)	port	80	(#0)
>	GET	/sdfas	HTTP/1.1
>	User-Agent:	curl/7.29.0
>	Host:	192.168.33.11
>	Accept:	*/*
>
<	HTTP/1.1	404	Not	Found
<	Date:	Tue,	13	Jan	2015	21:18:57	GMT
<	Server:	Apache/2.4.6	PHP/5.4.16
<	Content-Length:	203
<	Content-Type:	text/html;	charset=iso-8859-1

As	we	can	see	from	the	output	obtained	when	requesting	a	non-PHP	based	page,
the	X-Powered-By	header	is	not	present.	This	indicates	that	the	web	server	did
not	process	this	page	as	PHP.

The	presence	of	 the	X-Powered-By	header	 tells	us	 that	when	we	requested	 the
blog.example.com	 page,	 it	 was	 processed	 by	 PHP.	 This	 also	 means	 that	 the
HTTP	 status	 code	 of	 302	 was	 a	 response	 provided	 by	 WordPress.	 This
information	 is	 important	 as	 it	means	 that	 PHP	 is	most	 likely	 processing	 pages
without	 any	 issue,	 thereby	 eliminating	 PHP	 as	 a	 possible	 root	 cause	 of	 the
reported	issue,	at	least	for	now.

We	 can	 validate	 this	 further	 by	 reviewing	 any	 log	 entries	 generated	 from	 the
abovementioned	web	requests.
Reviewing	generated	log	entries

When	making	 the	abovementioned	 requests	with	curl,	we	 should	have	caused
new	log	messages	 to	be	appended	 to	 the	 two	httpd	 logs.	Since	we	were	using
the	 tail	 command	 to	 continuously	 follow	 the	 log	 files,	 we	 can	 return	 to	 our
terminal	and	review	the	new	messages.

==>	logs/access_log	<==
192.168.33.11	-	-	[13/Jan/2015:23:22:17	+0000]	"GET	/	HTTP/1.1"	302	
-	"-"	"curl/7.29.0"

After	our	HTTP	 request	 to	 the	blog	URL,	 the	only	entry	 in	 either	 log	was	 the
preceding	one.	However,	 this	 is	only	an	 informational	 log	message	and	not	an
error	 that	would	 explain	 the	 issue.	However,	 the	 informational	 log	message	 is
also	a	key	data	point.	If	there	were	an	issue	with	the	PHP	code	or	processing,	an
error	message	similar	to	the	following	would	have	been	generated.

[Tue	Jan	13	23:24:31.339293	2015]	[:error]	[pid	5333]	[client	
192.168.33.11:52102]	PHP	Parse	error:		syntax	error,	unexpected	
'endif'	(T_ENDIF)	in	/var/www/html/wp-includes/functions.php	on	
line	2574

The	absence	of	a	PHP	error	actually	confirms	that	PHP	is	working	as	expected.
This	when	combined	with	 the	curl	 results	 leads	us	 to	confidently	assume	 that
PHP	is	not	the	root	cause.

What	we	learned	from	httpd	logs

While	the	httpd	service	logs	may	not	have	shown	us	an	error	that	could	answer
why	this	issue	is	appearing,	they	have	allowed	us	to	eliminate	a	possible	cause.
While	 troubleshooting,	 you	 will	 often	 find	 yourself	 ruling	 out	 many	 possible
causes	 before	 finding	 the	 exact	 cause	 of	 an	 issue.	 The	 troubleshooting	 steps
mentioned	earlier	are	exactly	that,	thereby	eliminating	possible	causes.

Verifying	the	database
Earlier	while	checking	what	services	were	running,	we	found	that	the	MariaDB
service	 was	 running.	 We	 did	 not,	 however,	 validate	 that	 we	 can	 access	 the
service	or	that	the	WordPress	application	can	access	this	database	service.

To	 validate	 that	 we	 can	 access	 the	 MariaDB	 service,	 we	 can	 simply	 use	 the
mysql	command.

#	mysql
Welcome	to	the	MariaDB	monitor.		Commands	end	with	;	or	\g.
Your	MariaDB	connection	id	is	28
Server	version:	5.5.40-MariaDB	MariaDB	Server

Copyright	(c)	2000,	2014,	Oracle,	Monty	Program	Ab	and	others.

Type	'help;'	or	'\h'	for	help.	Type	'\c'	to	clear	the	current	input	
statement.

MariaDB	[(none)]>

The	mysql	command	is	actually	a	MariaDB	client	command.	When	run	from	the
command	line	as	the	root	user	(as	shown	above),	the	mysql	command	by	default
will	 log	 into	 the	MariaDB	service	 as	 the	MariaDB	 root	 user.	While	 this	 is	 the
default	 behavior,	 it	 is	 possible	 to	 configure	 the	 MariaDB	 service	 to	 disallow
direct	root	login.

The	abovementioned	results	imply	that	MariaDB	allows	direct	root	login,	which
shows	 that	 the	MariaDB	 service	 itself	 is	 up	 and	 accepting	 connections.	What
they	do	not	 reveal	 is	whether	 or	 not	 the	WordPress	 application	 can	 access	 the
database.

To	determine	this,	we	will	need	to	log	into	the	MariaDB	service	with	the	same
username	and	password	as	the	application.

Verifying	the	WordPress	database

In	 order	 to	 connect	 to	 the	 MariaDB	 service	 with	 the	 same	 credentials	 as
WordPress,	we	need	 to	 obtain	 these	 credentials.	We	 could	 ask	 the	person	who
reported	 the	 issue	 for	 these	details,	but	being	a	business	user,	 they	most	 likely

would	 not	 know.	 Even	 if	 they	 worked	 with	 WordPress	 daily,	 in	 general,	 the
database	 username	 and	 password	 are	 configured	 by	 one	 person	 and	 only	 used
during	installation.

This	means	that	we	must	find	this	information	for	ourselves.	One	way	to	do	this
is	to	look	through	the	configuration	for	WordPress	as	every	web	application	that
connects	to	a	database	has	to	obtain	the	login	credentials	from	somewhere,	and
the	most	common	way	to	do	this	is	to	store	them	within	a	configuration	file.

An	 interesting	 challenge	 to	 this	 approach	 is	 the	 fact	 that	 this	 chapter	 assumes
that	 we	 have	 little-to-no	 knowledge	 of	 WordPress.	 Finding	 where	 WordPress
stores	 its	database	credentials	will	be	a	bit	 tricky;	 this	 is	particularly	 true	since
we	also	do	not	know	offhand	where	the	WordPress	application	is	installed	either.

Finding	the	installation	path	for	WordPress

What	we	do	know	 is	 that	WordPress	 is	a	web	application	served	by	 the	httpd
service.	This	means	that	the	httpd	service	will	have	the	installation	path	defined
somewhere	within	its	configuration	files.

The	default	configuration	for	httpd	 is	 to	 serve	a	 single	domain	 from	a	default
folder.	 The	 default	 folder	 can	 change	 from	 distribution	 to	 distribution,	 but	 in
general,	for	RHEL	systems,	it	is	placed	under	/var/www/html.

It	 is	 possible	 to	 configure	httpd	 to	 serve	multiple	 domains;	 this	 is	 done	via	 a
Virtual	Hosts	configuration.	At	this	point,	we	do	not	know	whether	this	system
is	configured	to	host	multiple	domains	or	one	single	domain.
Checking	the	default	configuration

With	 the	 default	 single-domain	 configuration,	 any	 and	 all	 domains	 pointing	 to
the	server's	IP	would	serve	the	same	.html	or	.php	files.	With	Virtual	Hosts,	you
can	 configure	 Apache	 to	 serve	 specific	 .html	 or	 .php	 files	 depending	 on	 the
domain	that	the	request	is	being	made	to.

We	can	determine	whether	the	httpd	service	is	configured	for	Virtual	Hosts	or	a
single	domain	by	executing	a	simple	grep	command.

#	grep	-r	"DocumentRoot"	/etc/httpd/
/etc/httpd/conf/httpd.conf:#	DocumentRoot:	The	folder	out	of	which	

you	will	serve	your
/etc/httpd/conf/httpd.conf:DocumentRoot	"/var/www/html"
/etc/httpd/conf/httpd.conf:				#	access	content	that	does	not	live	
under	the	DocumentRoot.

Since	the	/etc/httpd	folder	has	a	multiple	subfolder,	we	once	again	used	the	–r
(recursive)	 flag	for	grep.	The	command	searched	 the	entire	/etc/httpd	 folder
structure	for	the	DocumentRoot	string.

DocumentRoot	 is	 the	Apache	 configuration	 item	 that	 specifies	 the	 local	 folder
that	contains	the	.html	or	.php	files	for	the	specified	domain.	The	DocumentRoot
setting	will	be	present	multiple	times	for	systems	that	are	configured	for	multiple
domains	and	only	one	time	for	single-domain	configurations.

From	 the	 output	 above,	 we	 can	 see	 that	 on	 this	 server,	 DocumentRoot	 is	 only
defined	once	and	set	to	/var/www/html.	As	this	is	the	default	for	RHEL	systems,
it	is	fairly	safe	to	assume	that	the	httpd	service	is	configured	in	a	single	domain-
based	configuration.

To	 validate	 that	 this	 is	 the	 installation	 folder	 of	 WordPress,	 we	 can	 simply
execute	the	ls	command	to	list	the	files	and	folders	within	this	path.

#	ls	-la	/var/www/html/
total	156
drwxr-xr-x.		5	root	root		4096	Jan		9	22:54	.
drwxr-xr-x.		4	root	root				31	Jan		7	23:29	..
-rw-r--r--.		1	root	root			418	Jan		9	21:48	index.php
-rw-r--r--.		1	root	root		4951	Jan		9	21:48	wp-activate.php
drwxr-xr-x.		9	root	root		4096	Jan		9	21:48	wp-admin
-rw-r--r--.		1	root	root			271	Jan		9	21:48	wp-blog-header.php
-rw-r--r--.		1	root	root		5008	Jan		9	21:48	wp-comments-post.php
-rw-r--r--.		1	root	root		3159	Jan		9	22:01	wp-config.php
-rw-r--r--.		1	root	root		2726	Jan		9	21:48	wp-config-sample.php
drwxr-xr-x.		6	root	root				77	Jan		9	21:48	wp-content
-rw-r--r--.		1	root	root		2956	Jan		9	21:48	wp-cron.php
drwxr-xr-x.	10	root	root		4096	Jan	13	23:25	wp-includes
-rw-r--r--.		1	root	root		2380	Jan		9	21:48	wp-links-opml.php
-rw-r--r--.		1	root	root		2714	Jan		9	21:48	wp-load.php
-rw-r--r--.		1	root	root	33435	Jan		9	21:48	wp-login.php
-rw-r--r--.		1	root	root		8252	Jan		9	21:48	wp-mail.php
-rw-r--r--.		1	root	root	11115	Jan		9	21:48	wp-settings.php
-rw-r--r--.		1	root	root	25152	Jan		9	21:48	wp-signup.php
-rw-r--r--.		1	root	root		4035	Jan		9	21:48	wp-trackback.php

-rw-r--r--.		1	root	root		3032	Jan		9	21:48	xmlrpc.php

From	the	ls	command's	output,	we	can	see	that	WordPress	is	in	fact	installed	in
/var/www/html/.	We	can	conclude	this	on	the	basis	of	the	large	number	of	.php
files	along	with	the	"wp-"	naming	scheme	of	these	files.	This	will	be	confirmed,
however,	by	the	next	steps.

Finding	the	database	credentials

Now	that	we	have	identified	 the	 installation	folder,	we	simply	need	 to	 find	 the
database	 credentials	 within	 the	 WordPress	 application's	 configuration	 files.
Unfortunately,	we	are	not	very	familiar	with	WordPress	and	do	not	know	which
of	these	files	hold	the	database	credentials.

So,	how	are	we	going	to	find	them?	By	googling	it,	of	course.

As	we	covered	 in	Chapter	1,	Troubleshooting	Best	Practices,	Google	 can	be	 a
system	 administrator's	 best	 friend.	 Since	WordPress	 is	 a	 common	 open	 source
application,	 it	 is	 very	 likely	 that	 there	will	 be	 online	 help	 documentation	 that
covers	how	to	configure	or	at	least	recover	the	database	password.

To	 get	 started,	 we	 will	 simply	 search	WordPress	 database	 configuration	 via
Google.	While	searching	Google,	we	find	that	one	of	the	first	results	is	linked	to
the	WordPress	 forum	where	 a	user	 asked	where	 to	 find	 the	database	details	 in
WordPress.	(https://wordpress.org/support/topic/finding-the-database-settings-in-
wordpress).

The	first	answer	was	to	look	through	the	wp-config.php	file.

Tip

While	googling	this	type	of	information	is	easy	for	popular	open	source	projects,
it	 can	 also	 be	 effective	 for	 closed	 source	 applications	 as	 well,	 as	many	 times
even	closed	source	applications	have	their	documentation	online	and	indexed	by
Google.

To	obtain	the	database	details,	we	can	read	the	wp-config.php	file	with	the	less
command.	The	less	 command	 is	 a	 simple	 command	 that	 allows	users	 to	 read
files	via	the	command	line.	This	is	particularly	useful	for	large	files	as	it	buffers

https://wordpress.org/support/topic/finding-the-database-settings-in-wordpress

the	output	rather	than	simply	dumping	all	contents	to	the	screen	as	in	the	case	of
the	cat	command.

#	less	/var/www/html/wp-config.php

//	**	MySQL	settings	-	You	can	get	this	information	from	your	web	
host	**	//
/**	The	name	of	the	database	for	WordPress	*/
define('DB_NAME',	'wordpress');

/**	MySQL	database	username	*/
define('DB_USER',	'wordpress');

/**	MySQL	database	password	*/
define('DB_PASSWORD',	'password');

/**	MySQL	hostname	*/
define('DB_HOST',	'localhost');

By	 reading	 the	 configuration	 file,	we	 can	 clearly	 see	 the	 database	 credentials,
which	are	conveniently	located	towards	the	top	of	the	file.	The	following	is	a	list
of	the	details	that	we	could	extract	from	this	file:

NAME	(wordpress)	of	the	database	that	WordPress	is	trying	to	use

define('DB_NAME',	'wordpress');

HOST	(localhost)	that	WordPress	is	attempting	to	connect	to

define('DB_HOST',	'localhost');

The	 USER	 (wordpress)	 database	 that	 WordPress	 is	 trying	 to	 authenticate
with

define('DB_USER',	'wordpress');

PASSWORD	(password)	that	it	is	using	for	authentication

define('DB_PASSWORD',	'password');

With	the	above	details,	we	can	connect	to	the	MariaDB	services	in	the	same	way
that	 the	 WordPress	 application	 does.	 This	 will	 be	 a	 critical	 step	 in	 our
troubleshooting	process.
Connecting	as	the	WordPress	user

Now	 that	we	have	 the	database	 credentials,	we	 can	 test	 the	 connectivity	 again
with	the	mysql	command.	To	connect	to	MariaDB	with	a	specific	username	and
password,	we	will	 need	 to	 use	 the	–u	 (user)	 and	–p	 (password)	 flags	with	 the
mysql	command.

#	mysql	–uwordpress	-p
Enter	password:	Welcome	to	the	MariaDB	monitor.		Commands	end	with	
;	or	\g.
Your	MariaDB	connection	id	is	30
Server	version:	5.5.40-MariaDB	MariaDB	Server
MariaDB	[(none)]>

In	the	preceding	command,	we	can	see	that	we	added	the	username	after	the	–u
flag	 but	 did	 not	 include	 the	 password	 after–p.	 Since	 we	 did	 not	 include	 the
password,	 the	 mysql	 client	 simply	 asked	 for	 the	 password	 after	 we	 hit	 enter.
While	 it	 is	 possible	 to	 include	 the	 password	 after–p,	 this	 is	 considered	 a	 bad
practice	from	a	security	perspective.	It	is	always	better	to	let	the	mysql	client	ask
for	the	password	to	reduce	the	chances	of	the	password	being	compromised	by
those	looking	through	the	command	history.

From	the	mysql	client	connection,	we	can	see	that	by	using	the	same	credentials
as	WordPress,	we	were	able	to	log	into	the	MariaDB	service.	This	is	important
as	 the	 inability	 to	connect	 to	 the	database	service	would	 impact	 the	WordPress
application	and	could	have	been	a	possible	cause	of	the	reported	issue.
Validating	the	database	structure

Since	 we	 can	 connect	 to	 the	 MariaDB	 service	 by	 using	 the	 WordPress
credentials,	we	should	next	validate	whether	the	database	structure	exists	and	is
intact.

Tip

In	 this	 section,	 we	 will	 be	 executing	 Structured	 Query	 Language	 (SQL)
statements	from	the	MariaDB	command-line	interface.	These	statements	are	not
shell	commands	but	SQL	queries.

SQL	 is	 the	 standard	 language	 for	 interacting	with	 relational	 databases	 such	 as
MySQL,	 MariaDB,	 Postgres,	 and	 Oracle.	 While	 SQL	 is	 not	 necessarily	 a
language	 that	 every	 administrator	 needs	 to	 know,	 it	 is	 my	 advice	 that	 any

systems	administrator	that	supports	a	significant	number	of	databases	should	at
least	know	the	basics	of	SQL.

This	 is	particularly	 true	 if	 the	environment	you	 support	does	not	have	 specific
database	administrators	that	manage	the	database	and	the	database	services.

The	first	item	to	validate	is	that	the	database	itself	is	created	and	accessible.	We
can	do	this	by	using	the	show	databases	query.

MariaDB	[(none)]>	show	databases;
+--------------------+
|	Database											|
+--------------------+
|	information_schema	|
|	test															|
|	wordpress										|
+--------------------+
3	rows	in	set	(0.00	sec)

We	can	see	that	the	WordPress	database	is	in	fact	listed	in	this	output,	meaning
that	it	exists.	To	validate	that	the	WordPress	database	is	accessible,	we	will	use
the	use	SQL	statement.

MariaDB	[(none)]>	use	wordpress;
Database	changed

With	 the	 Database	 changed	 result,	 it	 seems	 that	 we	 have	 confirmed	 that	 the
database	itself	is	created	and	accessible.	Now,	what	about	the	tables	within	this
database?	We	can	validate	 that	 the	database	 tables	have	been	created	by	using
the	show	tables	query.

MariaDB	[wordpress]>	show	tables;
+-----------------------+
|	Tables_in_wordpress			|
+-----------------------+
|	wp_commentmeta								|
|	wp_comments											|
|	wp_links														|
|	wp_options												|
|	wp_postmeta											|
|	wp_posts														|
|	wp_term_relationships	|
|	wp_term_taxonomy						|
|	wp_terms														|

|	wp_usermeta											|
|	wp_users														|
+-----------------------+
11	rows	in	set	(0.00	sec)

From	the	results,	it	appears	that	quite	a	few	tables	exist.

Since	we	are	new	to	WordPress,	it	is	possible	that	we	may	be	missing	a	table	and
not	even	know	it.	As	WordPress	is	documented	online	quite	extensively,	we	are
likely	 to	 find	 a	 list	 of	 tables	 by	 googling	WordPress	 list	 of	 database	 tables,
which	 returns	 a	 very	 useful	 database	 description	 from	 the	 WordPress
documentation	pages:	(https://codex.wordpress.org/Database_Description)

After	 comparing	 the	 output	 of	 the	 show	 tables	 query	 and	 the	 Database
Description	page,	we	find	that	no	tables	are	missing.

Since	 we	 know	which	 tables	 exist,	 we	 should	 check	 whether	 these	 tables	 are
accessible;	we	can	do	this	by	running	a	select	query.

MariaDB	[wordpress]>	select	count(*)	from	wp_users;
ERROR	1017	(HY000):	Can't	find	file:	'./wordpress/wp_users.frm'	
(errno:	13)

At	long	last,	we	have	found	an	error!

The	error	 that	we	have	found,	however,	 is	quite	 interesting	as	 it	 is	not	an	error
that	 you	 would	 typically	 see	 from	 an	 SQL	 query.	 In	 fact,	 this	 error	 seems	 to
indicate	that	there	is	an	issue	with	a	file	that	contains	the	table	data.

What	we	learned	from	the	database	validation

At	this	point,	after	validating	the	database,	we	have	learnt	the	following:

MariaDB	is	accessible	by	both	the	root	user	and	the	WordPress	application
The	 database	 being	 accessed	 is	 created	 and	 accessible	 by	 the	WordPress
user
An	error	is	shown	when	querying	one	of	the	database	tables

With	 this	 information,	 we	 can	 move	 to	 the	 next	 step	 of	 the	 troubleshooting
process	by	establishing	a	hypothesis.

https://codex.wordpress.org/Database_Description

Establishing	a	hypothesis
At	this	stage	of	the	troubleshooting	process,	we	will	take	all	of	the	information
that	we	have	gathered	and	use	it	to	establish	an	idea	as	to	why	the	issue	occurred
and	what	can	be	done	to	resolve	it.

To	start,	let's	first	review	what	we	have	learnt	from	the	Data	Gathering	steps.

An	established	blog	site	is	currently	showing	a	page	that	is	designed	to	only
be	shown	during	initial	installation	of	the	blog	software
The	blog	is	using	the	open	source	software	WordPress
WordPress	 is	 written	 in	 PHP	 and	 utilizes	 both	 Apache	 and	 MariaDB
services
Apache	and	PHP	are	working	correctly	and	showing	no	errors
The	WordPress	installation	is	located	at	/var/www/html
The	MariaDB	service	is	up	and	accepting	connections
The	WordPress	application	is	able	to	connect	to	the	database	service
When	reading	 from	the	database	 tables,	we	 receive	an	error	 that	 indicates
an	issue	with	the	files	that	contain	the	database	data

The	hypothesis	that	we	can	formulate	from	all	of	these	data	points	is	as	follows:

At	some	point,	the	data	files	for	MariaDB,	and	more	specifically	the	WordPress
database,	 are	 inaccessible	 to	 the	 MariaDB	 service.	 It	 appears	 that	 when
WordPress	connects	to	the	database,	it	cannot	query	the	tables;	thus,	it	believes
that	the	application	has	not	been	installed.	Since	WordPress	does	not	believe	that
the	application	has	been	installed,	it	presents	an	installation	page.

We	 can	 formulate	 this	 hypothesis	 on	 the	 basis	 of	 the	 following	 key	 points	 of
information:

1.	 The	only	error	we	have	seen	is	the	error	from	MariaDB.
2.	 The	 error	 is	 not	 a	 typical	 SQL	 error,	 and	 the	message	 itself	 indicates	 an

issue	with	accessing	the	database	files.
3.	 There	are	no	PHP	errors	in	the	Apache	logs.
4.	 Everything	else	about	the	WordPress	environment	seems	to	be	correct.

Now	that	we	have	formed	a	hypothesis,	we	need	to	validate	that	this	is	true	by

attempting	 to	 resolve	 the	 issue.	 This	 brings	 us	 to	 the	 third	 stage	 of	 the
troubleshooting	process:	Trial	and	Error.

Resolving	the	issue
In	this	stage,	we	will	attempt	to	resolve	the	issue.	To	do	this,	let's	take	a	look	at
what	these	data	files	are	and	what	they	are	used	for.

Understanding	database	data	files
Most	databases	with	the	exception	of	in-memory-only	databases	have	some	sort
of	file	that	is	used	to	store	the	data	on	a	file	system;	this	is	often	referred	to	as
persistent	storage.	MariaDB	and	MySQL	are	no	exception	to	this	rule.

Depending	on	 the	database	storage	engine	 in	use,	 there	may	be	one	big	 file	or
multiple	 files	 with	 different	 file	 extensions.	 Irrespective	 of	 the	 file	 type	 or
where/how	 the	 files	 are	 stored,	 at	 the	 end	 of	 the	 day,	 if	 these	 files	 are	 not
accessible,	the	database	will	have	issues.

Finding	the	MariaDB	data	folder
Since	 we	 are	 new	 to	 this	 environment,	 we	 currently	 do	 not	 know	 where	 the
MariaDB	data	files	are	stored.	Identifying	the	location	of	these	files	will	be	the
first	step	 in	correcting	 the	 issue.	One	way	 to	 identify	 the	data	 folder	 is	 to	 look
through	the	database	services'	configuration	file.

Since	the	/etc	folder	is	home	to	most	(but	not	all)	configuration	files,	this	is	the
first	place	we	should	look.

#	ls	-la	/etc/	|	grep	-i	maria

To	identify	the	proper	configuration	file,	we	can	use	the	ls	command	to	list	the
/etc	 folder	and	 the	grep	 command	 to	 search	 the	 results	 for	 anything	with	 the
string	 "maria."	 The	 abovementioned	 grep	 command	 uses	 the	 –i	 (insensitive)
flag,	which	causes	grep	to	search	for	both	uppercase	and	lowercase	strings.	This
can	be	helpful	if	the	folder	or	file	has	a	mixed	case	name.

Since	our	command	printed	no	output,	 there	 is	no	folder	or	file	with	 the	string
"maria"	in	its	name.	This	means	that	the	MariaDB	services'	configuration	either
is	named	something	that	we	are	not	expecting	or	is	not	within	the	/etc/	folder.

Since	MariaDB	is	supposed	to	be	a	drop-in	replacement	for	MySQL,	we	should
also	check	whether	there	is	a	mysql-named	folder	or	file.

#	ls	-la	/etc/	|	grep	–i	mysql

It	appears	that	there	is	no	folder	or	file	matching	this	name	either.

We	 could	 easily	 spend	 several	 hours	 trying	 to	 find	 configuration	 files	 for
MariaDB	by	using	the	ls	command.	Fortunately,	there	is	a	faster	way	to	find	the
configuration	files.

Since	MariaDB	was	installed	via	an	RPM	package,	we	can	use	the	rpm	command
to	list	all	files	and	folders	deployed	by	the	package.	Earlier	when	checking	how
MariaDB	 was	 installed,	 the	 rpm	 command	 shows	 multiple	 packages	 for
MariaDB.	The	package	that	we	are	interested	in	is	the	mariadb-server	package.
This	package	 installs	 the	MariaDB	service	as	well	 as	 the	default	 configuration

files.

Earlier	 we	 used	 the	 –q	 and	 –l	 flags	 of	 rpm	 to	 list	 all	 files	 deployed	 by	 this
package.	 If	we	wanted	 to	 limit	our	query	 to	only	configuration	 files,	we	could
use	the	–q	and	–c	flags.

$	rpm	-qc	mariadb-server	/etc/logrotate.d/mariadb
/etc/my.cnf.d/server.cnf
/var/log/mariadb/mariadb.log

From	 the	 above,	 we	 can	 see	 that	 the	 mariadb-server	 package	 deploys	 three
configuration	 files.	 The	 mariadb.log	 and	 logrotate.d	 files	 are	 not	 likely	 to
contain	the	information	that	we	are	looking	for	as	they	are	related	to	the	logging
process.

This	leaves	the	/etc/my.cnf.d/server.cnf	file.	We	can	read	this	file	by	using
the	cat	command.

#	cat	/etc/my.cnf.d/server.cnf
#
#	These	groups	are	read	by	the	MariaDB	server.
#	Use	it	for	options	that	only	the	server	(but	not	clients)	should	
see
#
#	See	the	examples	of	server	my.cnf	files	in	/usr/share/mysql/
#

#	this	is	read	by	the	standalone	daemon	and	embedded	servers
[server]

#	this	is	only	for	the	mysqld	standalone	daemon
[mysqld]

#	this	is	only	for	embedded	server
[embedded]

#	This	group	is	only	read	by	MariaDB-5.5	servers.
#	If	you	use	the	same	.cnf	file	for	MariaDB	of	different	versions,
#	use	this	group	for	options	that	older	servers	don't	understand
[mysqld-5.5]

#	These	two	groups	are	only	read	by	MariaDB	servers,	not	by	MySQL.
#	If	you	use	the	same	.cnf	file	for	MySQL	and	MariaDB,
#	you	can	put	MariaDB-only	options	here

[mariadb]

[mariadb-5.5]

Unfortunately,	 this	 file	 also	 does	 not	 contain	 the	 data	 folder	 details	 as	we	had
hoped.	This	file	does,	however,	give	us	a	clue	as	to	where	to	look	next.

The	parent	folder	of	the	server.conf	file	is	the	/etc/my.cnf.d	folder.	The	.d	at
the	end	of	the	folder	name	is	important,	as	this	naming	convention	has	a	special
purpose	 in	 Linux.	 The	 .d	 (dot	D)	 folder	 types	 are	 designed	 to	 allow	 users	 to
simply	add	a	file	or	many	files	with	custom	configurations	for	the	service.	When
the	service	is	started,	all	files	within	this	folder	are	read	and	the	configurations
are	applied.

This	allows	users	to	configure	a	service	without	editing	the	default	configuration
files;	 they	 can	 simply	 drop	 in	 the	 configurations	 that	 they	 want	 to	 add	 by
creating	a	new	file	in	the	.d	folder.

It's	 important	 to	note	 that	 this	 is	 a	configuration	scheme	and	not	every	 service
supports	this	scheme.	It	seems,	however,	that	the	MariaDB	service	does	in	fact
support	this	scheme.

What	is	interesting,	however,	is	the	name	of	this	.d	folder.	Typically,	the	naming
convention	 for	 a	.d	 configuration	 folder	 is	 the	 service	name	or	 folder	purpose
followed	 by	 .d.	 You	 can	 see	 this	 in	 practice	 with	 the	 /etc/cron.d	 or
/etc/http/conf.d	folder.	The	name	of	the	MariaDB	.d	folder	suggests	that	the
main	configuration	file	may	be	named	my.cnf.

If	we	check	whether	such	a	file	exists	or	not,	we	will	see	that	it	does.

#	ls	-la	/etc/	|	grep	my.cnf
-rw-r--r--.		1	root	root						570	Nov	17	12:28	my.cnf
drwxr-xr-x.		2	root	root							64	Jan		9	18:20	my.cnf.d

This	 file	 appears	 to	 be	 the	 main	 MariaDB	 configuration	 file,	 which	 will
hopefully	contain	the	data	folder	configuration.	To	find	out,	we	can	read	this	file
with	the	cat	command.

#	cat	/etc/my.cnf
[mysqld]

datadir=/var/lib/mysql
socket=/var/lib/mysql/mysql.sock
#	Disabling	symbolic-links	is	recommended	to	prevent	assorted	
security	risks
symbolic-links=0
#	Settings	user	and	group	are	ignored	when	systemd	is	used.
#	If	you	need	to	run	mysqld	under	a	different	user	or	group,
#	customize	your	systemd	unit	file	for	mariadb	according	to	the
#	instructions	in	http://fedoraproject.org/wiki/Systemd

[mysqld_safe]
log-error=/var/log/mariadb/mariadb.log
pid-file=/var/run/mariadb/mariadb.pid

#
#	include	all	files	from	the	config	folder
#
!includedir	/etc/my.cnf.d

As	anticipated,	this	file	does	actually	contain	the	data	folder	configuration.

datadir=/var/lib/mysql

Armed	with	 this	 information,	we	can	now	 troubleshoot	 the	current	 state	of	 the
WordPress	database's	data	files.

Resolving	data	file	issues
If	we	change	to	the	/var/lib/mysql	folder	and	use	the	ls	command	to	list	 the
folder	contents,	we	can	see	quite	a	few	database	data	files/folders.

#	cd	/var/lib/mysql/
#	ls	-la
total	28712
drwxr-xr-x.		6	mysql	mysql					4096	Jan	15	00:20	.
drwxr-xr-x.	29	root		root						4096	Jan	15	05:40	..
-rw-rw----.		1	mysql	mysql				16384	Jan	15	00:20	aria_log.00000001
-rw-rw----.		1	mysql	mysql							52	Jan	15	00:20	aria_log_control
-rw-rw----.		1	mysql	mysql	18874368	Jan	15	00:20	ibdata1
-rw-rw----.		1	mysql	mysql		5242880	Jan	15	00:20	ib_logfile0
-rw-rw----.		1	mysql	mysql		5242880	Jan		9	21:39	ib_logfile1
drwx------.		2	mysql	mysql					4096	Jan		9	21:39	mysql
srwxrwxrwx.		1	mysql	mysql								0	Jan	15	00:20	mysql.sock
drwx------.		2	mysql	mysql					4096	Jan		9	21:39	performance_schema
drwx------.		2	mysql	mysql								6	Jan		9	21:39	test
drwx------.		2	mysql	mysql					4096	Jan		9	22:55	wordpress

It	 appears	 that	 each	 database	 created	 on	 this	 server	 exists	 as	 a	 folder	 under
/var/lib/mysql/.	 It	 also	 appears	 from	 the	ls	 output	 that	 the	 folders	 are	 in	 a
normal	state.	Since	 the	 issue	 is	with	 the	WordPress	database,	we	will	 focus	on
this	database	by	switching	to	the	wordpress	folder.

#	cd	wordpress/
#	ls	-la
total	156
drwx------.	2	mysql	mysql		4096	Jan		9	22:55	.
drwxr-xr-x.	6	mysql	mysql		4096	Jan	15	00:20	..
-rw-rw----.	1	mysql	mysql				65	Jan		9	21:45	db.opt
----------.	1	root		root			8688	Jan		9	22:55	wp_commentmeta.frm
----------.	1	root		root		13380	Jan		9	22:55	wp_comments.frm
----------.	1	root		root		13176	Jan		9	22:55	wp_links.frm
----------.	1	root		root			8698	Jan		9	22:55	wp_options.frm
----------.	1	root		root			8682	Jan		9	22:55	wp_postmeta.frm
----------.	1	root		root		13684	Jan		9	22:55	wp_posts.frm
----------.	1	root		root			8666	Jan		9	22:55	
wp_term_relationships.frm
----------.	1	root		root			8668	Jan		9	22:55	wp_terms.frm
----------.	1	root		root			8768	Jan		9	22:55	wp_term_taxonomy.frm
----------.	1	root		root			8684	Jan		9	22:55	wp_usermeta.frm
----------.	1	root		root			8968	Jan		9	22:55	wp_users.frm

Right	 after	 executing	 the	 ls	 command,	 we	 can	 see	 that	 there	 is	 something
unusual	with	the	files	within	this	folder.

The	item	that	stands	out	is	simply	the	fact	that	all	the	.frm	files	have	a	file	mode
of	000.	This	means	that	neither	the	owner	nor	the	group	or	other	Linux	users	can
read	or	write	these	files.	This	includes	the	user	that	MariaDB	runs	as.

If	we	 look	back	 at	 the	 error	 that	we	 received	 from	MariaDB,	we	 find	 that	 the
error	 seems	 to	 support	 the	 supposition	 that	 the	 invalid	 permissions	 are	 in	 fact
causing	an	issue.	To	correct	this	error,	we	simply	need	to	reset	the	permissions	to
the	correct	values.

Since	we	 are	 new	 to	MariaDB,	we	 currently	 do	 not	 know	 exactly	what	 these
values	should	be.

Luckily,	 there	 is	 an	 easy	 way	 to	 figure	 out	 what	 the	 permissions	 should	 be:
simply	look	at	another	database's	file	permissions.

If	we	look	back	at	the	output	of	the	folder	listing	for	/var/lib/mysql,	we	find
that	there	were	several	folders.	At	least	one	of	these	other	folders	should	also	be
a	 database's	 data	 folder.	 To	 determine	what	 permissions	 our	 .frm	 files	 should
have,	we	simply	need	to	find	other	.frm	files.

#	find	/var/lib/mysql	-name	"*.frm"	-ls
134481927			12	-rw-rw----			1	mysql				mysql								9582	Jan		9	
21:39	/var/lib/mysql/mysql/db.frm
134481930			12	-rw-rw----			1	mysql				mysql								9510	Jan		9	
21:39	/var/lib/mysql/mysql/host.frm
134481933			12	-rw-rw----			1	mysql				mysql							10630	Jan		9	
21:39	/var/lib/mysql/mysql/user.frm
134481936			12	-rw-rw----			1	mysql				mysql								8665	Jan		9	
21:39	/var/lib/mysql/mysql/func.frm
134481939			12	-rw-rw----			1	mysql				mysql								8586	Jan		9	
21:39	/var/lib/mysql/mysql/plugin.frm
134481942			12	-rw-rw----			1	mysql				mysql								8838	Jan		9	
21:39	/var/lib/mysql/mysql/servers.frm
134481945			12	-rw-rw----			1	mysql				mysql								8955	Jan		9	
21:39	/var/lib/mysql/mysql/tables_priv.frm
134481948			12	-rw-rw----			1	mysql				mysql								8820	Jan		9	
21:39	/var/lib/mysql/mysql/columns_priv.frm
134481951			12	-rw-rw----			1	mysql				mysql								8770	Jan		9	
21:39	/var/lib/mysql/mysql/help_topic.frm

134309941			12	-rw-rw----			1	mysql				mysql								8700	Jan		9	
21:39	/var/lib/mysql/mysql/help_category.frm

The	find	 command	 is	 a	 very	 useful	 command	 for	 troubleshooting	 and	 can	 be
used	in	many	different	situations.	In	our	example,	we	use	the	find	command	to
search	 for	 any	 file	 in	 the	/var/lib/mysql	 folder	 that	 has	 a	 filename	 that	 ends
with	 ".frm"	 via	 the	 –name	 flag.	 The	 –ls	 (folder	 listing)	 flag	 tells	 the	 find
command	 to	print	any	 files	 that	 it	 finds	 in	a	 long	 list	 format,	which	will	 show
each	file's	permissions	without	having	to	run	a	second	command.

From	the	find	command's	output,	we	can	see	that	 the	permissions	on	the	.frm
files	 are	 set	 to	 -rw-rw----;	 the	 numeric	 representation	 of	 this	 is	 660.	 These
permissions	 seem	 appropriate	 for	 our	 database	 table	 and	 allow	 the	 owner	 and
group	to	read	and	write	these	files.

To	 reset	 the	 permissions	 on	 our	WordPress	 data	 files,	 we	 will	 use	 the	 chmod
command.

#	chmod	-v	660	/var/lib/mysql/wordpress/*.frm
mode	of	'/var/lib/mysql/wordpress/wp_commentmeta.frm'	changed	from	
0000	(---------)	to	0660	(rw-rw----)
mode	of	'/var/lib/mysql/wordpress/wp_comments.frm'	changed	from	
0000	(---------)	to	0660	(rw-rw----)
mode	of	'/var/lib/mysql/wordpress/wp_links.frm'	changed	from	0000	
(---------)	to	0660	(rw-rw----)
mode	of	'/var/lib/mysql/wordpress/wp_options.frm'	changed	from	0000	
(---------)	to	0660	(rw-rw----)
mode	of	'/var/lib/mysql/wordpress/wp_postmeta.frm'	changed	from	
0000	(---------)	to	0660	(rw-rw----)
mode	of	'/var/lib/mysql/wordpress/wp_posts.frm'	changed	from	0000	
(---------)	to	0660	(rw-rw----)
mode	of	'/var/lib/mysql/wordpress/wp_term_relationships.frm'	
changed	from	0000	(---------)	to	0660	(rw-rw----)
mode	of	'/var/lib/mysql/wordpress/wp_terms.frm'	changed	from	0000	
(---------)	to	0660	(rw-rw----)
mode	of	'/var/lib/mysql/wordpress/wp_term_taxonomy.frm'	changed	
from	0000	(---------)	to	0660	(rw-rw----)
mode	of	'/var/lib/mysql/wordpress/wp_usermeta.frm'	changed	from	
0000	(---------)	to	0660	(rw-rw----)
mode	of	'/var/lib/mysql/wordpress/wp_users.frm'	changed	from	0000	
(---------)	to	0660	(rw-rw----)

In	the	preceding	command,	the	–v	(verbose)	flag	was	used	with	chmod	so	that	we

could	see	the	changes	in	each	file's	permissions	as	the	command	executed.

Validating

Now	that	the	permissions	have	been	set,	we	can	yet	again	validate	with	an	SQL
select	query.

MariaDB	[wordpress]>	select	count(*)	from	wp_users;
ERROR	1017	(HY000):	Can't	find	file:	'./wordpress/wp_users.frm'	
(errno:	13)

From	the	above	query,	we	can	see	there	is	still	an	error	with	MariaDB	accessing
these	files.	This	means	that	we	must	not	have	corrected	all	of	the	issues	with	the
data	files.

#	ls	-la
total	156
drwx------.	2	mysql	mysql		4096	Jan		9	22:55	.
drwxr-xr-x.	6	mysql	mysql		4096	Jan	15	00:20	..
-rw-rw----.	1	mysql	mysql				65	Jan		9	21:45	db.opt
-rw-rw----.	1	root		root			8688	Jan		9	22:55	wp_commentmeta.frm
-rw-rw----.	1	root		root		13380	Jan		9	22:55	wp_comments.frm
-rw-rw----.	1	root		root		13176	Jan		9	22:55	wp_links.frm
-rw-rw----.	1	root		root			8698	Jan		9	22:55	wp_options.frm
-rw-rw----.	1	root		root			8682	Jan		9	22:55	wp_postmeta.frm
-rw-rw----.	1	root		root		13684	Jan		9	22:55	wp_posts.frm
-rw-rw----.	1	root		root			8666	Jan		9	22:55	
wp_term_relationships.frm
-rw-rw----.	1	root		root			8668	Jan		9	22:55	wp_terms.frm
-rw-rw----.	1	root		root			8768	Jan		9	22:55	wp_term_taxonomy.frm
-rw-rw----.	1	root		root			8684	Jan		9	22:55	wp_usermeta.frm
-rw-rw----.	1	root		root			8968	Jan		9	22:55	wp_users.frm

By	reviewing	the	ls	command's	output,	we	can	see	one	more	difference	from	the
example	.frm	files.

134481927			12	-rw-rw----			1	mysql				mysql								9582	Jan		9	
21:39	/var/lib/mysql/mysql/db.frm

The	owner	and	group	permissions	for	the	files	in	the	wordpress	folder	are	set	to
root,	whereas	the	other	.frm	files	are	owned	and	grouped	as	the	mysql	user.

The	permissions	of	660	mean	that	only	the	owner	and	group	members	of	the	file
can	access	 it.	 In	 the	case	of	our	WordPress	 files,	 this	means	 that	only	 the	 root

user	and	any	member	of	the	root	group	can	access	these	files.

Since	MariaDB	runs	as	the	mysql	user,	the	MariaDB	service	still	cannot	access
these	 files.	We	can	 reset	 the	ownership	and	group	membership	with	 the	chown
command.

#	chown	-v	mysql.mysql	./*.frm
changed	ownership	of	'./wp_commentmeta.frm'	from	root:root	to	
mysql:mysql
changed	ownership	of	'./wp_comments.frm'	from	root:root	to	
mysql:mysql
changed	ownership	of	'./wp_links.frm'	from	root:root	to	mysql:mysql
changed	ownership	of	'./wp_options.frm'	from	root:root	to	
mysql:mysql
changed	ownership	of	'./wp_postmeta.frm'	from	root:root	to	
mysql:mysql
changed	ownership	of	'./wp_posts.frm'	from	root:root	to	mysql:mysql
changed	ownership	of	'./wp_term_relationships.frm'	from	root:root	
to	mysql:mysql
changed	ownership	of	'./wp_terms.frm'	from	root:root	to	mysql:mysql
changed	ownership	of	'./wp_term_taxonomy.frm'	from	root:root	to	
mysql:mysql
changed	ownership	of	'./wp_usermeta.frm'	from	root:root	to	
mysql:mysql
changed	ownership	of	'./wp_users.frm'	from	root:root	to	mysql:mysql

Now	that	the	ownership	and	the	group	membership	of	the	files	are	mysql,	we	can
rerun	our	query	to	see	whether	the	issue	is	resolved.

MariaDB	[wordpress]>	select	count(*)	from	wp_users;
count(*)
1

At	 long	 last,	 we	 have	 resolved	 the	 error	 by	 querying	 the	WordPress	 database
tables.

Final	validation
Since	we	have	resolved	the	database	error,	and	we	did	not	find	any	other	errors
while	troubleshooting,	the	next	validation	step	is	to	see	whether	the	blog	is	still
showing	the	installation	screen.

By	navigating	to	http://blog.example.com	from	our	browser,	we	can	now	see
that	we	no	longer	receive	the	installation	page,	but	rather	the	blog's	front	page.
At	this	point,	it	seems	that	the	issue	has	been	resolved.

In	general,	when	working	on	an	issue	reported	by	a	person,	it	is	a	best	practice	to
have	 the	 person	who	 initially	 reported	 the	 problem	 to	 validate	 that	 everything
has	 been	 restored	 to	 an	 expected	 state.	 I	 have	 seen	many	 instances	 where	 an
incident	is	caused	by	more	than	one	issue,	and	while	the	more	apparent	issue	is
resolved	 quickly,	 the	 other	 issue(s)	 is(are)	 often	 overlooked.	 Having	 the	 user
verify	that	we	have	fixed	the	entire	problem	will	help	to	ensure	that	everything
has	been	truly	resolved.

For	 this	 scenario,	when	we	 asked	 the	 business	 user	who	 reported	 the	 issue	 to
check	whether	the	issue	has	been	resolved,	he/she	replied	with	Everything	looks
fixed.	Thank	you!

Summary
In	this	chapter,	we	walked	through	the	troubleshooting	process	by	using	an	issue
that	can	easily	occur	in	the	real	world.	We	iterated	through	Steps	1,	2,	and	3	of
the	 troubleshooting	 process	 to	 collect	 data,	 establish	 a	 hypothesis,	 and	 resolve
the	issue;	these	steps	were	covered	in	detail	in	Chapter	1,	Troubleshooting	Best
Practices.	We	then	used	several	commands	and	log	files	that	we	learned	about	in
Chapter	 2,	Troubleshooting	 Commands	 and	 Sources	 of	 Useful	 Information	 as
well	as	a	few	new	ones.

While	learning	the	commands	used	in	this	chapter	is	important	for	any	systems
administrator	working	with	web	applications,	it	is	more	important	to	look	at	the
process	 that	 we	 followed.	 We	 started	 working	 on	 the	 problem	 with	 no	 prior
knowledge	 of	 the	 environment	 or	 application,	 but	 with	 some	 basic	 data
collection	and	trial	and	error,	we	could	resolve	the	problem.

In	 the	next	 chapter,	we	will	 use	 this	 same	 troubleshooting	process	 and	 similar
tools	for	troubleshooting	performance	issues.

Chapter	 4.	 Troubleshooting
Performance	Issues
In	 Chapter	 3,	 Troubleshooting	 a	 Web	 Application	 we	 walked	 through
troubleshooting	 a	 web	 application	 problem	 by	 using	 the	 troubleshooting
methodology	 covered	 in	 Chapter	 1,	 Troubleshooting	 Best	 Practices.	 We	 also
used	several	of	the	fundamental	troubleshooting	commands	and	resources	found
in	Chapter	2,	Troubleshooting	Commands	and	Sources	of	Useful	Information.

Performance	issues
For	 this	 chapter,	we	will	 continue	 the	 scenario	 that	 we	 covered	 in	 Chapter	 3,
Troubleshooting	a	Web	Application,	where	we	are	a	new	systems	administrator
at	a	new	company.	As	we	arrive	to	start	our	day,	a	fellow	systems	administrator
asks	us	to	look	into	a	server	being	"slow."

When	asked	 for	 details,	 the	only	 information	our	 colleague	 could	provide	was
the	hostname	and	the	IP	of	the	server	deemed	"slow."	Our	peer	mentioned	that	a
user	reported	it	and	that	the	user	did	not	provide	many	details.

In	this	scenario,	unlike	in	the	scenario	discussed	in	Chapter	3,	Troubleshooting	a
Web	Application	we	don't	 have	much	 information	 to	 begin	with.	 It	 also	 seems
that	 we	 are	 not	 able	 to	 ask	 the	 user	 troubleshooting	 questions.	 It	 is	 not
uncommon	 as	 a	 systems	 administrator	 to	 be	 required	 to	 troubleshoot	 an	 issue
with	very	little	information.	In	fact,	this	type	of	scenario	is	quite	common.

It's	slow
"It's	slow"	is	problematic	to	troubleshoot.	The	biggest	problem	with	a	complaint
about	 a	 server	 or	 service	 being	 slow	 is	 that	 "slow"	 is	 relative	 to	 the	 user
experiencing	the	issue.

An	important	distinction	 to	understand	when	dealing	with	any	complaint	about
performance	 is	 the	 benchmark	 that	 the	 environment	 has	 been	 designed	 for.	 In
some	 environments,	 a	 system	 running	 at	 30%	 CPU	 utilization	 could	 be	 a
business-as-usual	 activity,	 whereas	 the	 other	 environments	 may	 keep	 their
systems	 running	 at	 10%	CPU	utilization	 and	a	 spike	of	30%	utilization	would
signal	an	issue.

While	 troubleshooting	 and	 investigating	 performance	 issues,	 it	 is	 important	 to
look	back	at	the	historical	performance	metrics	of	the	system	to	ensure	that	you
have	 context	 around	 the	 measurements	 being	 collected.	 This	 will	 assist	 in
determining	whether	the	current	system	utilization	is	expected	or	abnormal.

Performance
In	general,	performance	issues	can	be	categorized	into	five	areas:

Application
CPU
Memory
Disk
Network

A	bottleneck	in	any	one	area	can	often	affect	other	areas	as	well;	therefore,	it	is	a
good	 idea	 to	 understand	 each	 of	 these	 topics.	 By	 understanding	 how	 each	 of
these	resources	is	accessed	and	interacts,	you	will	be	able	to	find	the	root	cause
of	issues	that	consume	multiple	resources.

Since	 the	 issue	 being	 reported	 did	 not	 include	 any	 details	 of	 the	 performance
issue,	we	will	explore	and	 learn	about	each	of	 these	areas.	Once	complete,	we
will	 look	 at	 the	 data	 collected	 and	 look	 at	 historical	 statistics	 to	 determine
whether	 the	 performance	 is	 as	 expected	 or	 whether	 the	 system	 performance
really	is	degraded.

Application
While	creating	a	 list	of	performance	categories,	 I	ordered	 them	by	areas	 that	 I
see	 most	 often.	 Every	 environment	 is	 different,	 but	 in	 my	 experience,	 the
application	can	often	be	a	primary	source	of	performance	issues.

While	 this	 chapter	 is	 designed	 to	 cover	 performance	 issues,	 Chapter	 9,	Using
System	Tools	to	Troubleshoot	Applications	is	dedicated	to	using	system	tools	for
troubleshooting	 application	 issues,	 including	 performance	 issues.	 For	 this
chapter,	 we	 will	 assume	 that	 our	 issue	 is	 not	 application	 related	 and	 focus
specifically	on	system	performance.

CPU
CPU	 is	a	very	common	performance	bottleneck.	Sometimes,	 issues	are	strictly
CPU-based,	 and	 at	 other	 times,	 there	 are	 instances	where	 an	 increase	 in	 CPU
usage	is	a	symptom	of	another	issue.

The	most	common	command	to	investigate	CPU	utilization	is	the	top	command.
The	 primary	 role	 of	 this	 command	 is	 to	 identify	 the	 CPU	 utilization	 of	 the
processes.	 In	 Chapter	 2,	 Troubleshooting	 Commands	 and	 Sources	 of	 Useful
Information	we	discussed	utilizing	the	ps	command	for	this	type	of	activity.	In
this	 section,	we	are	going	 to	 investigate	our	 slowness	complaint	by	using	both
top	and	ps	to	investigate	our	CPU	utilization.

Top	–	a	single	command	to	look	at	everything

The	top	command	is	one	of	the	first	commands	that	both	systems	administrators
and	users	run	 to	 look	at	 the	overall	system	performance.	The	reason	for	 this	 is
that	top	shows	not	only	a	breakdown	of	Load	Average,	CPU,	and	memory,	but	it
also	shows	a	sorted	list	of	processes	utilizing	these	resources.

The	best	part	of	top	is	the	fact	that	when	run	without	any	flags,	these	details	are
updated	every	3	seconds.

The	following	is	an	example	of	the	top	output	when	run	without	any	flags.

top	-	17:40:43	up		4:07,		2	users,		load	average:	0.32,	0.43,	0.44
Tasks:	100	total,			2	running,		98	sleeping,			0	stopped,			0	
zombie
%Cpu(s):	37.3	us,		0.7	sy,		0.0	ni,	62.0	id,		0.0	wa,		0.0	hi,		0.0	
si,		0.0	st
KiB	Mem:				469408	total,			228112	used,			241296	free,						764	
buffers
KiB	Swap:		1081340	total,								0	used,		1081340	free.				95332	
cached	Mem

		PID	USER						PR		NI				VIRT				RES				SHR	S	%CPU	%MEM					TIME+	
COMMAND
	3023	vagrant			20			0				7396				720				504	S	37.6		0.2		91:08.04	
lookbusy
			11	root						20			0							0						0						0	R		0.3		0.0			0:13.28	
rcuos/0

		682	root						20			0		322752			1072				772	S		0.3		0.2			0:05.60	
VBoxService
				1	root						20			0			50784			7256			2500	S		0.0		1.5			0:01.39	
systemd
				2	root						20			0							0						0						0	S		0.0		0.0			0:00.00	
kthreadd
				3	root						20			0							0						0						0	S		0.0		0.0			0:00.24	
ksoftirqd/0
				5	root							0	-20							0						0						0	S		0.0		0.0			0:00.00	
kworker/0:0H
				6	root						20			0							0						0						0	S		0.0		0.0			0:00.04	
kworker/u2:0
				7	root						rt			0							0						0						0	S		0.0		0.0			0:00.00	
migration/0
				8	root						20			0							0						0						0	S		0.0		0.0			0:00.00	
rcu_bh
				9	root						20			0							0						0						0	S		0.0		0.0			0:00.00	
rcuob/0
			10	root						20			0							0						0						0	S		0.0		0.0			0:05.44	
rcu_sched

There	is	quite	a	bit	of	information	displayed	with	just	the	default	output	of	top.
For	this	section,	we	will	focus	solely	on	the	CPU	utilization	information.

%Cpu(s):	37.3	us,		0.7	sy,		0.0	ni,	62.0	id,		0.0	wa,		0.0	hi,		0.0	
si,		0.0	st

In	the	first	section	of	the	top	command's	output,	there	is	a	single	line	that	shows
a	breakdown	of	 the	current	CPU	utilization.	Each	 item	 in	 this	 list	 represents	 a
different	way	in	which	the	CPU	is	being	used.	To	understand	the	output	better,
let's	take	a	look	at	what	each	of	these	values	mean:

us	–	User:	This	number	is	 the	percentage	of	CPU	being	consumed	by	 the
processes	in	the	user	mode.	In	this	mode,	applications	are	not	able	to	access
the	underlying	hardware	and	are	required	to	use	system	APIs	(a.k.a	system
calls)	to	perform	privileged	executions.	When	executing	these	system	calls,
the	execution	will	be	part	of	the	system	CPU	utilization.
sy	–	System:	This	 number	 is	 the	 percentage	 of	CPU	 being	 consumed	 by
kernel	 mode	 execution.	 In	 this	 mode,	 systems	 can	 directly	 access	 the
underlying	 hardware;	 this	 mode	 is	 generally	 reserved	 for	 trusted	 OS
processes.
ni	–	Nice	user	processes:	This	number	is	the	percentage	of	CPU	time	being
consumed	by	user	processes	that	have	had	a	nice	value	set.	The	us%	value	is

specifically	for	processes	that	have	not	had	their	niceness	values	modified
from	the	original	value.
id	 –	 Idle:	 This	 number	 is	 the	 percentage	 of	 CPU	 time	 spent	 being	 idle.
Essentially,	it	is	the	amount	of	CPU	time	spent	not	being	utilized.
wa	–	Wait:	This	number	is	the	percentage	of	CPU	time	spent	waiting.	This
is	typically	high	when	many	processes	are	waiting	for	I/O	devices.	I/O	wait
states	do	not	just	refer	to	hard	disks,	but	rather	to	all	I/O	devices	including
hard	disks.
hi	 –	Hardware	 interrupts:	 This	 number	 is	 the	 percentage	 of	 CPU	 time
being	 consumed	 by	 hardware	 interrupts.	 Hardware	 interrupts	 are	 signals
from	system	hardware,	such	as	hard	drives	or	network	devices,	that	are	sent
to	 the	CPU.	These	 interrupts	signal	 that	 there	are	events	 that	 require	CPU
time.
si	–	Software	interrupts:	This	number	is	the	percentage	of	CPU	time	being
consumed	 by	 software	 interrupts.	 Software	 interrupts	 are	 similar	 to
hardware	 interrupts;	 however,	 they	 are	 triggered	 by	 a	 signal	 sent	 by	 the
running	processes	to	the	kernel.
st	–	Stolen:	This	number	specifically	applies	to	Linux	systems	running	as	a
virtual	machine.	 This	 number	 is	 the	 percentage	 of	CPU	 time	 stolen	 from
this	 machine	 by	 the	 host.	 This	 number	 is	 usually	 present	 when	 the	 host
machine	 itself	 is	 running	 into	 CPU	 contention.	 This	 can	 also	 happen	 in
some	cloud	environments	as	a	method	of	enforcing	resource	limitations.

Earlier	 I	mentioned	 that	 the	 output	 from	 top	 is	 refreshed	 every	 3	 seconds	 by
default.	 The	 CPU	 percentage	 line	 is	 also	 refreshed	 every	 3	 seconds;	 top	 will
display	the	percentage	of	CPU	time	in	each	state	since	the	last	refresh	interval.

What	does	this	output	tell	us	about	our	issue?

If	we	review	the	previous	top	command's	output,	we	can	determine	quite	a	bit
about	this	system.

%Cpu(s):	37.3	us,		0.7	sy,		0.0	ni,	62.0	id,		0.0	wa,		0.0	hi,		0.0	
si,		0.0	st

From	 the	preceding	output,	we	can	 see	 that	37.3%	of	 the	CPU	 time	was	being
consumed	by	 processes	 in	 the	 user	mode.	Another	0.7%	 of	 the	CPU	 time	was
used	by	processes	in	the	kernel	execution	mode;	this	is	based	on	the	us	and	sy
values.	The	id	value	tells	us	that	the	rest	of	the	CPU	was	not	utilized,	meaning

that	overall,	there	is	ample	CPU	available	on	this	server.

Another	fact	that	the	top	command	shows	is	the	lack	of	CPU	time	being	spent
waiting	for	I/O.	We	can	see	this	from	the	wa	value	being	0.0.	This	is	important
as	it	tells	us	the	performance	issue	that	was	reported	is	not	likely	due	to	high	I/O.
Later	in	this	chapter,	as	we	start	exploring	disk	performance,	we	will	explore	I/O
wait	in	depth.

Individual	processes	from	top

The	CPU	line	in	top	commands	output	is	a	summary	for	the	server	as	a	whole,
but	 top	also	 includes	CPU	utilization	 for	 individual	processes.	To	get	a	clearer
focus,	we	 can	 execute	 top	 again,	 but	 this	 time,	 let's	 focus	 on	 the	top	 running
processes.

$	top	-n	1
top	-	15:46:52	up		3:21,		2	users,		load	average:	1.03,	1.11,	1.06
Tasks:	108	total,			3	running,	105	sleeping,			0	stopped,			0	
zombie
%Cpu(s):	34.1	us,		0.7	sy,		0.0	ni,	65.1	id,		0.0	wa,		0.0	hi,		0.1	
si,		0.0	st
KiB	Mem:				502060	total,			220284	used,			281776	free,						764	
buffers
KiB	Swap:		1081340	total,								0	used,		1081340	free.				92940	
cached	Mem

		PID	USER						PR		NI				VIRT				RES				SHR	S		%CPU	%MEM					TIME+	
COMMAND
	3001	vagrant			20			0				7396				720				504	R		98.4		0.1	121:08.67	
lookbusy
	3002	vagrant			20			0				7396				720				504	S			6.6		0.1		19:05.12	
lookbusy
				1	root						20			0			50780			7264			2508	S			0.0		1.4			0:01.69	
systemd
				2	root						20			0							0						0						0	S			0.0		0.0			0:00.01	
kthreadd
				3	root						20			0							0						0						0	S			0.0		0.0			0:00.97	
ksoftirqd/0
				5	root							0	-20							0						0						0	S			0.0		0.0			0:00.00	
kworker/0:0H
				6	root						20			0							0						0						0	S			0.0		0.0			0:00.00	
kworker/u4:0
				7	root						rt			0							0						0						0	S			0.0		0.0			0:00.67	
migration/0

This	 time	when	 executing	 the	 top	 command,	 the	 –n	 (number)	 flag	 was	 used.
This	flag	tells	top	to	only	refresh	for	a	specified	number	of	times,	in	this	case	1
time.	This	trick	can	be	helpful	when	trying	to	capture	the	output	of	top.

If	we	review	the	output	of	the	above	top	command,	we	can	see	something	quite
interesting.

		PID	USER						PR		NI				VIRT				RES				SHR	S		%CPU	%MEM					TIME+	
COMMAND
	3001	vagrant			20			0				7396				720				504	R		98.4		0.1	121:08.67	
lookbusy

By	 default,	 the	 top	 command	 orders	 the	 processes	 by	 the	 percentage	 of	 CPU
utilized	 by	 the	 processes.	 This	 means	 that	 the	 first	 process	 in	 the	 list	 is	 the
process	consuming	the	most	amount	of	CPU	in	that	interval.

If	we	look	at	the	top	process	running	under	the	process	id	of	3001,	we	find	that	it
is	 using	 98.4%	 of	 the	 CPU	 time.	 However,	 according	 to	 the	 top	 commands
system-wide	CPU	statistics,	65.1%	of	the	CPU	time	is	spent	in	an	idle	state.	This
type	 of	 scenario	 is	 actually	 a	 common	 source	 of	 confusion	 for	many	 systems
administrators.

%Cpu(s):	34.1	us,		0.7	sy,		0.0	ni,	65.1	id,		0.0	wa,		0.0	hi,		0.1	
si,		0.0	st

How	can	a	single	process	be	utilizing	almost	100%	of	the	CPU	time,	while	the
system	itself	 is	 showing	65%	of	 the	CPU	time	 is	spent	 idle?	The	answer	 turns
out	to	be	simple;	when	top	displays	the	CPU	utilization	in	its	header,	the	scale	is
based	on	 the	system	as	a	whole.	With	 individual	processes,	however,	 the	CPU
utilization	 scale	 is	 for	 one	CPU.	This	means	 that	 our	 process	 3001	 is	 actually
utilizing	 almost	 one	 full	 CPU	 and	 that	 our	 system	 most	 likely	 has	 multiple
CPUs.

It	is	quite	common	to	see	processes	that	are	able	to	utilize	multiple	CPUs	show	a
percentage	higher	than	100%.	For	example,	a	process	that	is	fully	utilizing	three
CPUs	would	show	300%.	This	can	also	cause	quite	a	bit	of	confusion	for	users
unfamiliar	 with	 the	 difference	 of	 top	 commands	 server	 total	 and	 per-process
output.

Determining	the	number	of	CPUs	available

Previously,	we	determined	that	this	system	must	have	multiple	CPUs	available.
What	we	did	not	determine	 is	how	many.	The	easiest	method	 to	determine	 the
number	of	CPUs	available	is	to	simply	read	the	/proc/cpuinfo	file.

#	cat	/proc/cpuinfo
processor		:	0
vendor_id		:	GenuineIntel
cpu	family		:	6
model				:	58
model	name		:	Intel(R)	Core(TM)	i7-3615QM	CPU	@	2.30GHz
stepping		:	9
microcode		:	0x19
cpu	MHz				:	2348.850
cache	size		:	6144	KB
physical	id		:	0
siblings		:	2
core	id				:	0
cpu	cores		:	2
apicid				:	0
initial	apicid		:	0
fpu				:	yes
fpu_exception		:	yes
cpuid	level		:	5
wp				:	yes
flags				:	fpu	vme	de	pse	tsc	msr	pae	mce	cx8	apic	sep	mtrr	pge	mca	
cmov	pat	pse36	clflush	mmx	fxsr	sse	sse2	ht	syscall	nx	rdtscp	lm	
constant_tsc	rep_good	nopl	pni	ssse3	lahf_lm
bogomips		:	4697.70
clflush	size		:	64
cache_alignment		:	64
address	sizes		:	36	bits	physical,	48	bits	virtual
power	management:

processor		:	1
vendor_id		:	GenuineIntel
cpu	family		:	6
model				:	58
model	name		:	Intel(R)	Core(TM)	i7-3615QM	CPU	@	2.30GHz
stepping		:	9
microcode		:	0x19
cpu	MHz				:	2348.850
cache	size		:	6144	KB
physical	id		:	0
siblings		:	2
core	id				:	1
cpu	cores		:	2

apicid				:	1
initial	apicid		:	1
fpu				:	yes
fpu_exception		:	yes
cpuid	level		:	5
wp				:	yes
flags				:	fpu	vme	de	pse	tsc	msr	pae	mce	cx8	apic	sep	mtrr	pge	mca	
cmov	pat	pse36	clflush	mmx	fxsr	sse	sse2	ht	syscall	nx	rdtscp	lm	
constant_tsc	rep_good	nopl	pni	ssse3	lahf_lm
bogomips		:	4697.70
clflush	size		:	64
cache_alignment		:	64
address	sizes		:	36	bits	physical,	48	bits	virtual
power	management:

The	 /proc/cpuinfo	 file	 contains	 quite	 a	 bit	 of	 useful	 information	 about	 the
CPUs	 available	 to	 our	 system.	 It	 shows	 the	 type	 of	 CPU	 down	 to	 the	model,
what	 flags	 are	 available,	 the	 speed	 of	 the	 CPU,	 and,	 most	 importantly,	 the
number	of	CPUs	available.

Every	CPU	available	to	the	system	will	be	listed	in	the	cpuinfo	file.	This	means
that	you	can	simply	count	the	number	of	processors	available	in	the	cpuinfo	file
to	determine	the	number	of	CPUs	available	to	a	server.

From	 the	 above	 example,	 we	 can	 determine	 that	 this	 server	 has	 2	 CPUs
available.

Threads	and	Cores

An	interesting	caveat	with	using	cpuinfo	 to	 determine	whether	 the	 number	 of
CPUs	available	is	that	the	details	are	a	bit	misleading	when	working	with	CPUs
that	have	multiple	cores	and	are	hyper-threaded.	The	cpuinfo	file	reports	both	a
core	and	a	thread	on	the	CPU	as	a	processor	that	it	can	utilize.	This	means	that
even	 though	you	may	have	one	physical	 chip	 installed	on	your	 system,	 if	 that
chip	was	a	four-core	hyper-threaded	CPU,	the	cpuinfo	file	would	display	eight
processors.

lscpu	–	Another	way	to	look	at	CPU	info

While	/proc/cpuinfo	is	a	method	that	many	admins	and	users	use	to	determine
CPU	information;	on	RHEL-based	distributions,	there	is	another	command	that
will	display	this	info	as	well.

$	lscpu
Architecture:										x86_64
CPU	op-mode(s):								32-bit,	64-bit
Byte	Order:												Little	Endian
CPU(s):																2
On-line	CPU(s)	list:			0,1
Thread(s)	per	core:				1
Core(s)	per	socket:				2
Socket(s):													1
NUMA	node(s):										1
Vendor	ID:													GenuineIntel
CPU	family:												6
Model:																	58
Model	name:												Intel(R)	Core(TM)	i7-3615QM	CPU	@	2.30GHz
Stepping:														9
CPU	MHz:															2348.850
BogoMIPS:														4697.70
L1d	cache:													32K
L1d	cache:													32K
L2d	cache:													6144K
NUMA	node0	CPU(s):					0,1

A	difference	between	the	contents	of	/proc/cpuinfo	and	the	lscpu	command	is
that	 lscpu	 makes	 it	 very	 easy	 to	 identify	 the	 number	 of	 cores,	 sockets,	 and
threads.	It	can	often	be	a	bit	difficult	to	identify	this	same	information	from	the
/proc/cpuinfo	file.

ps	–	Drill	down	deeper	on	individual	processes	with	ps

While	the	top	command	can	be	used	to	look	at	individual	processes,	I	personally
feel	that	the	ps	command	is	better-suited	for	investigating	running	processes.	In
Chapter	 2,	Troubleshooting	Commands	 and	 Sources	 of	Useful	 Information	 we
covered	 the	 ps	 command	 and	 how	 it	 can	 be	 used	 to	 look	 at	 many	 different
aspects	of	a	running	process.

In	 this	 chapter,	we	will	 use	 the	ps	 command	 to	 take	 a	 deeper	 look	 at	 process
3001	that	we	identified	with	the	top	command	as	the	process	utilizing	the	most
CPU	time.

$	ps	-lf	3001
F	S	UID								PID		PPID		C	PRI		NI	ADDR	SZ	WCHAN		STIME	TTY	TIME	
CMD
1	S	vagrant			3001		3000	73		80			0	-		1849	hrtime	01:34	pts/1	

892:23	lookbusy	--cpu-mode	curve	--cpu-curve-peak	14h	-c	20-80

In	Chapter	2,	Troubleshooting	Commands	and	Sources	of	Useful	Information	we
discussed	using	the	ps	command	to	display	running	processes.	In	the	preceding
example,	we	specified	two	flags	that	were	shown	in	Chapter	2,	Troubleshooting
Commands	 and	 Sources	 of	 Useful	 Information,	 -l	 (long	 listing)	 and	 –f	 (full
format).	In	this	chapter,	we	discussed	how	these	flags	provide	additional	details
for	the	processes	displayed.

To	better	 understand	 the	 above	process,	 let's	 break	down	 the	 additional	 details
that	these	two	flags	provide.

Current	State:	S	(interruptible	sleep)
User:	vagrant
Process	ID:	3001
Parent	Process	ID:	3000
Priority	Value:	80
Niceness	Level:	0
Command	being	executed:	lookbusy	–cpu-mode-curve	–cpu-curve-peak
14h	–c	20-80

Earlier	 with	 the	 top	 command,	 this	 process	 was	 utilizing	 almost	 a	 full	 CPU,
which	means	that	this	process	is	a	suspect	for	the	reported	slowness.	By	looking
at	the	above	details,	we	can	determine	a	few	things	about	this	process.

First,	it	is	a	sub	process	of	process	3000;	something	we	determined	by	the	parent
process	ID.	The	second	being	that,	when	we	ran	the	ps	command,	it	was	waiting
for	a	task	to	finish;	we	can	determine	this	by	the	interruptible	sleep	state	that	the
process	is	currently	in.

In	addition	to	these	two	items,	we	can	tell	that	the	process	does	not	have	a	high
scheduling	 priority.	 We	 can	 determine	 this	 by	 looking	 at	 the	 priority	 value,
which	 in	 this	 case	 is	80.	The	 scheduling	priority	 system	works	as	 follows:	 the
higher	 the	 number,	 the	 lower	 the	 priority	 that	 the	 process	 has	with	 the	 system
scheduler.

We	can	also	see	that	the	niceness	level	is	set	to	0,	the	default.	This	means	that	a
user	has	not	adjusted	the	niceness	level	to	a	higher	(or	lower)	priority.

These	 are	 all	 important	 data	 points	 to	 collect	 about	 the	 process,	 but	 by
themselves,	 they	do	not	answer	whether	or	not	 this	process	 is	 the	cause	of	 the
reported	slowness.

Using	ps	to	determine	process	CPU	utilization

Since	we	know	that	process	3001	is	a	child	of	process	3000,	we	should	not	only
look	at	 the	 same	 information	 for	process	3000	 but	 also	use	ps	 to	 identify	how
much	 CPU	 process	 3000	 is	 utilizing.	We	 can	 do	 this	 all	 in	 one	 command	 by
using	 the	-o	 (options)	 flag	with	ps.	 This	 flag	 allows	 you	 to	 specify	 your	 own
output	 format;	 it	 also	 allows	 you	 to	 see	 fields	 that	 are	 not	 always	 visible	 via
common	ps	flags.

In	 the	 following	 command,	 the	 –o	 flag	 is	 used	 to	 format	 the	 ps	 command's
output	with	the	key	fields	from	our	previous	run	and	include	the	%cpu	field.	This
additional	field	will	show	the	CPU	utilization	of	the	process.	The	command	will
also	use	the	–p	flag	to	specify	both	process	3000	and	process	3001.

$	ps	-o	state,user,pid,ppid,nice,%cpu,cmd	-p	3000,3001
S	USER							PID		PPID		NI	%CPU	CMD
S	vagrant			3000		2980			0		0.0	lookbusy	--cpu-mode	curve	--cpu-	
curve-peak	14h	-c	20-80
R	vagrant			3001		3000			0	71.5	lookbusy	--cpu-mode	curve	--cpu-	
curve-peak	14h	-c	20-80

While	the	above	command	is	quite	long,	it	shows	just	how	useful	the	–o	flag	can
be.	Given	the	right	options,	it	is	possible	to	find	out	a	great	deal	of	information
about	processes	with	just	the	ps	command.

From	the	above	command's	output,	we	can	see	that	process	3000	 is	yet	another
instance	of	the	lookbusy	command.	We	can	also	see	that	process	3000	is	a	child
process	of	process	2980.	Before	going	much	further,	we	should	try	to	identify	all
of	the	processes	associated	with	process	3001.

We	can	do	this	by	using	the	ps	command	with	the	--forest	flag,	which	tells	ps
to	print	 the	parent	and	child	processes	 in	a	 tree	 format.	When	provided	 the	–e
(everything)	flag,	the	ps	command	will	print	all	processes	in	this	tree	format.

Tip

By	default,	 the	ps	 command	will	 only	 print	 processes	 related	 to	 the	 user	who
executed	 the	command.	The	–e	 flag	changes	 this	behavior	 to	print	 all	possible
processes.

The	below	output	is	truncated	to	specifically	identify	the	lookbusy	process.

$	ps	--forest	-eo	user,pid,ppid,%cpu,cmd
root						1007					1		0.0	/usr/sbin/sshd	-D
root						2976		1007		0.0		_	sshd:	vagrant	[priv]
vagrant			2979		2976		0.0						_	sshd:	vagrant@pts/1
vagrant			2980		2979		0.0										_	-bash
vagrant			3000		2980		0.0														_	lookbusy	--cpu-mode	curve	
-	-cpu-curve-peak	14h	-c	20-80
vagrant			3001		3000	70.4																		_	lookbusy	--cpu-mode	
curve	--cpu-curve-peak	14h	-c	20-80
vagrant			3002		3000	14.6																		_	lookbusy	--cpu-mode	
curve	--cpu-curve-peak	14h	-c	20-80

From	 the	ps	 output	 above,	we	 can	 see	 that	 the	lookbusy	 process	with	 the	 ID
3000	has	spawned	 two	processes,	namely	3001	and	3002.	We	can	also	 see	 that
the	 vagrant	 user,	 who	 is	 currently	 logged	 in	 via	 SSH	 started	 the	 lookbusy
processes.

Since	we	also	used	the	–o	flag	with	ps	to	show	CPU	utilization,	we	can	see	that
process	3002	is	utilizing	14.6%	of	a	single	CPU.

Tip

It	is	important	to	note	that	the	ps	command	also	displays	the	percentage	of	CPU
time	 for	a	 single	processor,	meaning	 that	a	process	 that	utilizes	more	 than	one
processor	could	have	a	value	higher	than	100%.

Putting	it	all	together
Now	 that	 we	 have	 gone	 through	 the	 commands	 to	 identify	 the	 system's	 CPU
utilization,	let's	put	it	together	to	summarize	what	has	been	found.

A	quick	look	with	top

Our	first	step	to	identifying	issues	related	to	CPU	performance	is	to	execute	the
top	command.

$	top

top	-	01:50:36	up	23:41,		2	users,		load	average:	0.68,	0.56,	0.48
Tasks:	107	total,			4	running,	103	sleeping,			0	stopped,			0	
zombie
%Cpu(s):	34.5	us,		0.7	sy,		0.0	ni,	64.9	id,		0.0	wa,		0.0	hi,		0.0	
si,		0.0	st
KiB	Mem:				502060	total,			231168	used,			270892	free,						764	
buffers
KiB	Swap:		1081340	total,								0	used,		1081340	free.				94628	
cached	Mem

		PID	USER						PR		NI				VIRT				RES				SHR	S		%CPU	%MEM					TIME+	
COMMAND
	3001	vagrant			20			0				7396				724				508	R		68.8		0.1	993:06.80	
lookbusy
	3002	vagrant			20			0				7396				724				508	S			1.0		0.1	198:58.16	
lookbusy
			12	root						20			0							0						0						0	S			0.3		0.0			3:47.55	
rcuos/0
			13	root						20			0							0						0						0	R			0.3		0.0			3:38.85	
rcuos/1
	2718	vagrant			20			0		131524			2536			1344	R			0.3		0.5			0:02.28	
sshd

From	the	output	of	top,	we	can	identify	the	following:

Overall,	the	system	is	around	60%–70%	idle
There	are	 two	processes	 running	 the	lookbusy	 command/program,	one	of
which	appears	to	be	using	70%	of	a	single	CPU

Given	 the	CPU	utilization	 on	 this	 individual	 process	 and	 the	 system
CPU	utilization,	the	server	in	question	most	likely	has	multiple	CPUs
We	 can	 confirm	 the	 presence	 of	 multiple	 CPUs	 with	 the	 lscpu

command
Processes	3001	and	3002	are	 the	 top	 two	processes	utilizing	CPU	on	 this
system
The	CPU	wait	state	percentage	is	0,	which	means	that	the	issue	is	not	likely
to	be	disk	I/O	related

Digging	deeper	with	ps

Since	 we	 identified	 processes	 3001	 and	 3002	 as	 suspicious	 from	 the	 top
command's	 output,	 we	 can	 investigate	 these	 processes	 further	 with	 the	 ps
command.	To	keep	our	 investigation	quick,	we	will	 use	 the	ps	 command	with
the	–o	 and	--forest	 flags	 to	 identify	 the	maximum	possible	 information	with
one	command.

$	ps	--forest	-eo	user,pid,ppid,%cpu,cmd
root						1007					1		0.0	/usr/sbin/sshd	-D
root						2976		1007		0.0		_	sshd:	vagrant	[priv]
vagrant			2979		2976		0.0						_	sshd:	vagrant@pts/1
vagrant			2980		2979		0.0										_	-bash
vagrant			3000		2980		0.0														_	lookbusy	--cpu-mode	curve	
--cpu-curve-peak	14h	-c	20-80
vagrant			3001		3000	69.8																		_	lookbusy	--cpu-mode	
curve	--cpu-curve-peak	14h	-c	20-80
vagrant			3002		3000	13.9																		_	lookbusy	--cpu-mode	
curve	--cpu-curve-peak	14h	-c	20-80

From	this	output,	we	can	determine	the	following:

Processes	3001	and	3002	are	child	processes	of	process	3000
Process	3000	was	started	by	the	vagrant	user
The	lookbusy	command	seems	to	be	a	command	that	utilizes	a	significant
amount	of	CPU
The	method	used	to	launch	lookbusy	is	not	indicative	of	a	system	process
but	rather	a	user	running	an	ad-hoc	command

Given	 the	 above	 information,	 there	 is	 a	 possibility	 that	 the	 lookbusy	 process
launched	by	 the	vagrant	user	 is	 the	source	of	 the	performance	 issue.	This	 is	a
reasonable	hypothesis	of	the	root	cause	if	 this	system	normally	operates	with	a
lower	CPU	utilization.	However,	considering	that	we	are	not	very	familiar	with
this	system,	it	is	also	possible	that	the	lookbusy	process	using	almost	a	full	CPU
is	normal.

Considering	 that	 we	 are	 not	 familiar	 with	 the	 system's	 normal	 running
conditions,	 we	 should	 continue	 to	 investigate	 the	 other	 possible	 sources	 for
performance	issues	before	reaching	a	conclusion.

Memory
After	 application	 and	 CPU	 utilization,	 memory	 utilization	 is	 a	 very	 common
source	 of	 performance	 degradation.	 In	 the	CPU	 section,	we	 utilized	top	 quite
extensively,	 and	 while	 top	 can	 also	 be	 used	 to	 identify	 system	 and	 process
memory	utilization,	in	this	section,	we	will	be	using	other	commands.

free	–	Looking	at	free	and	used	memory

As	discussed	 in	Chapter	2,	Troubleshooting	Commands	 and	 Sources	 of	Useful
Information	 the	 free	 command	 simply	 prints	 the	 current	 memory	 availability
and	usage	for	the	system.

When	 executed	 with	 no	 flags,	 the	 free	 command	 will	 output	 its	 values	 in
kilobytes.	 To	 have	 the	 output	 in	 megabytes,	 we	 can	 simply	 execute	 the	 free
command	with	the	-m	(megabytes)	flag.

$	free	-m
							total							used							free					shared				buffers					cached
Mem:					490									92								397										1										0									17
-/+	buffers/cache:									74								415
Swap:									1055									57								998

The	free	command	shows	quite	a	bit	of	information	about	this	system	and	how
much	 memory	 is	 being	 used.	 In	 order	 to	 gain	 a	 better	 understanding	 of	 this
command,	let's	break	down	the	output	a	bit.

Since	there	are	multiple	lines	in	the	output,	we	will	start	with	the	first	line	after
the	output	header:

Mem:									490								92							397									1									0									17

The	first	value	in	this	line	is	the	total	amount	of	physical	memory	available	to
the	 system.	 In	 our	 case,	 this	 is	 490	MB.	 The	 second	 value	 is	 the	 amount	 of
memory	used	by	 the	system.	The	 third	value	 is	 the	amount	of	memory	on	 the
system	that	is	unused;	note	that	I	used	the	term	"unused"	rather	than	"available."
The	fourth	value	is	the	amount	of	memory	used	for	shared	memory;	unless	your
system	uses	shared	memory	often,	this	is	typically	a	low	number.

The	fifth	value	is	the	amount	of	memory	used	for	buffers.	Linux	will	often	try	to

speed	up	disk	access	by	putting	 frequently	used	disk	 information	 into	physical
memory.	 The	 buffer	 memory	 is	 typically	 file	 system	 metadata.	 The	 Cached
memory,	 which	 happens	 to	 be	 the	 sixth	 value,	 is	 the	 contents	 of	 frequently
accessed	files.

Linux	memory	buffers	and	caches

Linux	will	 typically	 try	 to	 use	 "unused"	memory	 for	 buffers	 and	 caches.	 This
means	 that	 in	 order	 to	 gain	 efficiencies,	 the	Linux	kernel	will	 store	 frequently
accessed	 file	 data	 and	 filesystem	metadata	 in	 the	unused	memory.	This	 allows
the	 system	 to	 utilize	 memory	 that	 otherwise	 would	 not	 have	 been	 used	 to
enhance	disk	access	which	is	often	slower	than	system	memory.

This	is	why	the	third	value	"unused"	memory	is	 typically	a	lower	number	than
expected.

When	 a	 system	 is	 running	 low	on	unused	memory,	 however,	 the	Linux	kernel
will	 release	 the	buffers	 and	cached	memory,	 as	 it	 needs.	This	means	 that	 even
though	 technically,	 the	 memory	 used	 for	 buffers	 and	 caches	 is	 used,	 it	 is
technically	available	to	the	system	when	required.

This	brings	us	to	the	second	line	in	the	output	of	free.

-/+	buffers/cache:									74								415

The	second	line	has	two	values,	the	first	being	a	part	of	the	Used	column	and	the
second	being	a	part	of	the	Free	or	"unused"	column.	These	values	are	Used	or
Free	memory	values	after	taking	into	consideration	the	availability	of	buffers	and
cached	memory.

To	explain	in	simpler	terms,	the	Used	value	on	the	second	line	is	the	result	of	the
used	memory	value	from	the	first	line	being	subtracted	by	the	buffers	and	cached
values.	For	our	example,	it	is	92	MB	(used)	minus	17	MB	(cached).

The	free	value	in	the	second	line	is	the	result	of	the	Free	value	on	the	first	line
with	the	buffers	and	cached	memory	added.	Using	the	values	from	our	example,
this	would	be	397	MB	(free)	plus	17	MB	(cached).

Swapped	memory

The	third	line	in	the	output	of	the	free	command	is	for	swap	memory.

Swap:									1055									57								998

In	this	line,	there	are	three	columns:	available,	used,	and	free.	The	swap	memory
values	 are	 fairly	 self-explanatory.	 The	 available	 swap	 value	 is	 the	 amount	 of
swap	memory	 available	 to	 the	 system,	 the	 used	 value	 is	 the	 amount	 of	 swap
currently	allocated,	and	the	free	value	is	essentially	the	amount	of	swap	available
minus	the	amount	of	swap	allocated.

There	 are	 many	 environments	 where	 a	 significant	 amount	 of	 swap	 being
allocated	is	frowned	upon	as	this	is	generally	an	indicator	that	the	system	has	run
out	of	memory	and	used	the	swap	space	to	compensate.

What	free	tells	us	about	our	system

If	we	look	again	at	the	output	of	free,	we	can	determine	quite	a	few	things	about
this	server.

$	free	-m
									total							used							free					shared				buffers					
cached
Mem:							490								105								385										1										0									
25
-/+	buffers/cache:									79								410
Swap:									1055									56								999

We	can	identify	that	only	a	small	amount	of	memory	(79	MB)	is	actually	in	use.
This	means	that	overall,	the	system	should	have	plenty	of	memory	available	for
processes.

There	is	an	additional	interesting	fact,	however,	on	the	third	line,	it	shows	that	56
MB	of	memory	has	been	written	to	swap.	Although	there	is	currently	plenty	of
memory	available	on	the	system,	56	MB	has	been	written	to	swap.	This	means
that	at	some	point	in	the	past,	this	system	might	have	been	low	on	memory,	low
enough	that	the	system	had	to	swap	memory	pages	from	the	physical	memory	to
the	swap	memory.

Checking	for	oomkill

When	a	Linux	system	runs	out	of	physical	memory,	it	first	attempts	to	reuse	the

memory	allocated	 to	buffers	 and	 caches.	 If	 there	 is	 no	 additional	memory	 that
can	 be	 reclaimed	 from	 these	 sources,	 then	 the	 kernel	 will	 take	 older	memory
pages	from	the	physical	memory	and	write	them	to	the	swap	memory.	Once	both
the	physical	and	 the	swap	memory	have	been	allocated,	 the	kernel	will	 launch
the	out	of	memory	killer	(oomkill)	process.	The	oomkill	process	is	designed	to
find	processes	that	utilize	large	amounts	of	memory	and	kill	(stop)	them.

In	 general,	 the	 oomkill	 process	 is	 unwanted	 in	 most	 environments.	 When
invoked,	 the	 oomkill	 process	 can	 kill	 many	 different	 types	 of	 processes.
Whether	processes	are	part	of	 the	 system	or	at	 the	user	 level,	oomkill	has	 the
ability	to	kill	them.

With	a	performance	issue	that	may	have	affected	memory	utilization,	it	is	always
a	good	idea	to	check	whether	the	oomkill	process	was	invoked	recently	or	not.
The	 easiest	 way	 to	 determine	whether	 oomkill	 was	 run	 recently	 is	 to	 simply
view	the	console	of	the	system	as	the	initiation	of	this	process	is	logged	directly
to	 the	 system	 console.	 In	 the	 cloud	 and	 virtual	 environments,	 however,	 the
console	may	not	be	available.

Another	 good	 way	 to	 determine	 whether	 oomkill	 was	 invoked	 recently	 is	 to
search	 the	/var/log/messages	 log	 file.	We	 can	do	 this	 by	 executing	 the	grep
command	and	searching	for	the	string	Out	of	memory.

#	grep	"Out	of	memory"	/var/log/messages

For	our	example	system,	there	have	been	no	oomkill	invocations	recently.	If	our
system	had	invoked	the	oomkill	process,	we	could	expect	a	message	similar	to
the	following:

#	grep	"Out	of	memory"	/var/log/messages
Feb		7	19:38:45	localhost	kernel:	Out	of	memory:	Kill	process	3236	
(python)	score	838	or	sacrifice	child

In	Chapter	11,	Recovering	from	Common	Failures	we	will	once	again	investigate
memory	issues	and	take	a	deeper	look	into	oomkill	and	how	it	works.	For	this
chapter,	 we	 can	 conclude	 that	 the	 system	 has	 not	 completely	 exhausted	 its
available	memory.

ps	-	Checking	individual	processes	memory	utilization

So	far,	the	memory	usage	on	this	system	seems	pretty	small,	but	we	know	from
the	CPU	validation	steps	that	the	processes	running	lookbusy	are	suspicious	and
possibly	 cause	 our	 performance	 issues.	 Since	 we	 suspect	 that	 the	 lookbusy
processes	 are	 a	 problem,	 we	 should	 also	 look	 at	 how	 much	 memory	 these
processes	are	using.	To	do	this,	we	can	once	again	use	the	ps	command	with	the
-o	flag.

$	ps	-eo	user,pid,ppid,%mem,rss,vsize,comm	|	grep	lookbusy
vagrant			3000		2980		0.0					4			7396	lookbusy
vagrant			3001		3000		0.0			296			7396	lookbusy
vagrant			3002		3000		0.0			220			7396	lookbusy
vagrant			5380		2980		0.0					8			7396	lookbusy
vagrant			5381		5380		0.0			268			7396	lookbusy
vagrant			5382		5380		0.0			268			7396	lookbusy
vagrant			5383		5380	40.7	204812	212200	lookbusy
vagrant			5531		2980		0.0				40			7396	lookbusy
vagrant			5532		5531		0.0			288			7396	lookbusy
vagrant			5533		5531		0.0			288			7396	lookbusy
vagrant			5534		5531	34.0	170880	222440	lookbusy

This	 time,	 however,	 we	 ran	 our	 ps	 command	 a	 little	 differently	 and	 thus,
received	different	 results.	This	 time	when	executing	 the	ps	command,	we	used
the	–e	 (everything)	 flag	 to	 show	 all	 processes.	 The	 results	were	 then	 piped	 to
grep	in	order	to	narrow	filter	them	to	only	the	processes	that	match	the	pattern
lookbusy.

This	 is	a	very	common	way	of	using	the	ps	command;	 in	 fact,	 it	 is	even	more
common	than	specifying	process	ID(s)	on	the	command	line.	In	addition	to	using
grep,	this	ps	command	example	introduces	a	few	new	formatting	options.

%mem:	This	is	the	percentage	of	system	memory	that	the	process	is	using.
rss:	 This	 is	 the	 amount	 of	 the	 resident	 site	 size	 of	 the	 process,	 which
essentially	means	 the	 amount	 of	memory	 used	 by	 the	 process	 that	 is	 not
swappable.
vsize:	This	is	the	amount	of	virtual	memory	size;	it	contains	the	amount	of
memory	 that	 the	 process	 is	 fully	 using	 irrespectively	 of	 whether	 this
memory	is	a	part	of	the	physical	memory	or	of	the	swap	memory.
comm:	 This	 option	 is	 similar	 to	 cmd	with	 the	 exception	 that	 it	 does	 not
display	the	command-line	arguments.

The	ps	example	shows	interesting	information,	particularly	the	following	lines:

vagrant			5383		5380	40.7	204812	212200	lookbusy
vagrant			5534		5531	34.0	170880	222440	lookbusy

It	seems	that	several	additional	lookbusy	processes	have	been	started	and	these
processes	are	utilizing	40%	and	34%	of	the	system	memory	(by	using	the	%mem
column).	 From	 the	 rss	 column,	we	 can	 see	 that	 these	 two	 processes	 are	 using
about	374	MB	of	the	total	490	MB	of	the	physical	memory.

It	 also	 seems	 that	 these	 processes	 started	 utilizing	 a	 large	 amount	 of	memory
after	we	started	our	investigation.	Originally,	our	free	output	stated	that	only	70
MB	of	memory	was	in	use;	however,	these	processes	seem	to	be	utilizing	much
more.	We	can	confirm	this	by	running	free	again.

$	free	-m
									total							used							free					shared				buffers					
cached
Mem:							490								453									37										0										0										
3
-/+	buffers/cache:								449									41
Swap:									1055								310								745

Our	system	is	in	fact	utilizing	almost	all	of	its	memory	now;	in	fact,	we	are	also
using	310	MB	of	swap	space.

vmstat	–	Monitoring	memory	allocation	and	swapping

Since	this	system	seems	to	have	fluctuating	memory	utilization,	there	is	one	very
useful	command	that	shows	memory	allocation	and	de-allocation	along	with	the
number	of	pages	swapped	in	and	out	at	regular	intervals.	This	command	is	called
vmstat.

$	vmstat	-n	10	5
procs	-----------memory----------	---swap--	-----io----	-system--	-
-----cpu-----
r		b			swpd			free			buff		cache			si			so				bi				bo			in			cs	us	
sy	id	wa	st
5		0	204608		31800						0			7676				8				6				12					6		101		131	44	
1	55		0		0
1		0	192704		35816						0			2096	1887		130		4162			130	2080	2538	53	
6	39		2		0
1		0	191340		32324						0			3632	1590			57		3340				57	2097	2533	54	

5	41		0		0
4		0	191272		32260						0			5400		536				2		2150					2	1943	2366	53	
4	43		0		0
3		0	191288		34140						0			4152		392				0			679					0	1896	2366	53	
3	44		0		0

In	 the	 above	 example,	 the	 vmstat	 command	 was	 executed	 with	 the	 -n	 (one-
header)	flag	followed	by	the	delay	in	seconds	(10)	and	the	number	of	reports	to
generate	 (5).	These	options	 tell	vmstat	 to	 only	output	 one	header	 line	 for	 this
execution	rather	than	a	new	header	line	for	each	report,	run	the	report	every	10
seconds,	and	limit	the	number	of	reports	to	5.	If	the	limitation	on	the	number	of
reports	 is	omitted	 than	vmstat	will	 simply	 run	continuously	until	 stopped	with
CTRL+C.

The	output	of	vmstat	can	be	a	bit	overwhelming	at	first,	but	if	we	break	down
the	output,	 it	will	be	easier	 to	understand.	The	output	of	vmstat	has	six	output
categories,	namely	Procs,	Memory,	Swap,	IO,	System,	and	CPU.	In	this	section,
we	will	focus	on	two	of	these	categories:	Memory	and	Swap.

Memory
swpd:	Amount	of	memory	written	to	swap
free:	Amount	of	unused	memory
buff:	Amount	of	memory	used	as	buffers
cache:	Amount	of	memory	used	as	cache
inact:	Amount	of	inactive	memory
active:	amount	of	active	memory

Swap
si:	Amount	of	memory	swapped	in	from	disk
so:	Amount	of	memory	swapped	to	disk

Now	 that	 we	 have	 a	 definition	 of	 these	 values,	 let's	 see	 what	 the	 output	 of
vmstat	tells	us	about	this	system's	memory	usage.

procs	-----------memory----------	---swap--	-----io----	-system--	-
-----cpu-----
	r		b			swpd			free			buff		cache			si			so				bi				bo			in			cs	
us	sy	id	wa	st
	5		0	204608		31800						0			7676				8				6				12					6		101		131	
44		1	55		0		0
	1		0	192704		35816						0			2096	1887		130		4162			130	2080	2538	
53		6	39		2		0

If	we	compare	the	first	and	the	second	line	from	vmstat's	output,	we	can	see	a
rather	large	disparity.	In	particular,	we	can	see	that	in	the	first	interval,	the	cache
memory	was	7676,	whereas	in	the	second	interval,	this	value	was	2096.	We	can
also	 see	 that	 the	si	 or	 swapped-in	 value	 in	 the	 first	 line	 is	 8	 but	 1887	 in	 the
second	line.

The	 reason	 for	 this	 disparity	 is	 that	 the	 first	 report	 of	 vmstat	 is	 always	 a
summary	 of	 statistics	 since	 the	 last	 reboot,	 whereas	 the	 second	 report	 is	 a
summary	of	statistics	since	the	previous	report.	Each	subsequent	report	will	be	a
summary	 of	 the	 previous	 one,	 meaning	 that	 the	 third	 report	 will	 summarize
statistics	 since	 the	 second	 report.	 This	 behavior	 of	 vmstat	 can	 often	 cause
confusion	 for	 new	 systems	 administrators	 and	 users;	 therefore,	 it	 is	 often
considered	an	advanced	troubleshooting	tool.

Because	 of	 the	method	 of	 how	vmstat	 generates	 the	 first	 report,	 the	 common
practice	 is	 to	 discard	 it	 and	 start	 from	 the	 second	 report.	We	will	 follow	 this
philosophy	and	specifically	look	at	the	second	and	the	third	reports.

procs	-----------memory----------	---swap--	-----io----	-system--	-
-----cpu-----
	r		b			swpd			free			buff		cache			si			so				bi				bo			in			cs	
us	sy	id	wa	st
	5		0	204608		31800						0			7676				8				6				12					6		101		131	
44		1	55		0		0
	1		0	192704		35816						0			2096	1887		130		4162			130	2080	2538	
53		6	39		2		0
	1		0	191340		32324						0			3632	1590			57		3340				57	2097	2533	
54		5	41		0		0

In	the	second	and	the	third	reports,	we	can	see	some	interesting	data.

The	 first	 thing	 that	 sticks	 out	 is	 the	 fact	 that	 from	 the	 first	 report's	 generation
time	to	the	second	report's	generation	time,	there	were	1,887	pages	swapped	in
and	130	pages	swapped	out.	The	second	report	also	shows	that	only	35	MB	of
the	memory	is	free	with	0	MB	of	the	memory	in	buffer	and	2	MB	of	the	memory
in	 cache.	 Based	 on	 how	 Linux	 utilizes	 memory,	 this	 means	 that	 there	 is
effectively	only	37	MB	of	available	memory	on	this	system.

This	low	amount	of	available	memory	explains	why	our	system	has	swapped	in
a	 large	 number	 of	 pages.	 We	 can	 see	 from	 the	 third	 line	 that	 the	 trend	 is

continuing,	we	continue	to	swap	in	quite	a	few	pages	and	our	available	memory
has	reduced	to	roughly	35	MB.

From	this	example	of	vmstat,	we	can	see	that	our	system	is	now	running	out	of
physical	memory.	Because	of	 this,	our	system	is	 taking	pages	of	memory	from
the	physical	RAM	and	writing	it	to	our	swap	device.

Putting	it	all	together

Now	 that	 we	 have	 explored	 the	 tools	 required	 for	 troubleshooting	 memory
utilization,	let's	put	all	of	them	together	to	troubleshoot	the	issue	of	slow	system
performance.

Taking	a	look	at	the	system's	memory	utilization	with	free

The	first	command	to	give	us	a	snapshot	of	the	systems	memory	utilization	is	the
free	command.	This	command	will	give	us	an	idea	of	where	to	look	further	for
any	memory	utilization	issues.

$	free	-m
									total							used							free					shared				buffers					
cached
Mem:							490								293								196										0										0									
18
-/+	buffers/cache:								275								215
Swap:									1055								183								872

From	the	output	of	free,	we	can	see	that	there	is	currently	215	MB	of	memory
available.	We	can	see	this	via	the	free	column	on	the	second	line.	We	can	also
see	 that	overall,	 this	system	has	183	MB	of	memory	 that	has	been	swapped	 to
our	swap	devices.

Watch	what	is	happening	with	vmstat

Since	 the	system	has	swapped	(or	 rather	paged)	at	 some	point,	we	can	use	 the
vmstat	command	to	see	whether	the	system	is	swapping	right	now.

When	 executing	 vmstat	 this	 time	 around,	 we	 will	 leave	 off	 the	 number	 of
reports	value,	which	will	cause	vmstat	to	continuously	report	memory	statistics,
similar	to	the	top	command's	output.

$	vmstat	-n	10

procs	-----------memory----------	---swap--	-----io----	-system--	-
-----cpu-----
	r		b			swpd			free			buff		cache			si			so				bi				bo			in			cs	
us	sy	id	wa	st
	4		0	188008	200320						0		19896			35				8				61					9		156				4	
44	1	55		0		0
	4		0	188008	200312						0		19896				0				0					0					0	1361	1314	
36	2	62		0		0
	2		0	188008	200312						0		19896				0				0					0					0	1430	1442	
37	2	61		0		0
	0		0	188008	200312						0		19896				0				0					0					0	1431	1418	
37	2	61		0		0
	0		0	188008	200280						0		19896				0				0					0					0	1414	1416	
37	2	61		0		0
	2		0	188008	200280						0		19896				0				0					0					0	1456	1480	
37	2	61		0		0

This	vmstat	output	is	different	from	our	earlier	execution.	From	this	output,	we
can	 see	 that	 while	 there	 is	 quite	 a	 bit	 of	memory	 swapped,	 the	 system	 is	 not
currently	swapping.	We	can	determine	this	by	the	0	values	in	both	the	si	(swap
in)	and	so	(swap	out)	columns.

In	 fact,	 the	memory	utilization	seems	steady	during	 this	vmstat	 run.	The	free
memory	 value	 is	 fairly	 consistent	 between	 each	 vmstat	 report,	 as	well	 as	 the
cache	and	buffer	memory	statistics.

Finding	the	processes	that	utilize	the	most	memory	with	ps

Our	system	has	490	MB	of	physical	memory,	and	both	free	and	vmstat	 show
that	 roughly,	215	MB	of	memory	available.	This	means	 that	more	 than	half	of
our	system	memory	is	currently	utilized;	with	this	level	of	use,	it	is	a	good	idea
to	 find	out	which	processes	are	utilizing	our	system's	memory.	 If	nothing	else,
this	data	will	be	useful	to	show	what	the	system's	current	state	is.

To	identify	the	process	using	the	highest	amount	of	memory,	we	can	use	the	ps
command	along	with	sort	and	tail.

#	ps	-eo	rss,vsize,user,pid,cmd	|	sort	-nk	1	|	tail	-n	5
	1004	115452	root						5073	-bash
	1328	123356	root						5953	ps	-eo	rss,vsize,user,pid,cmd
	2504	525652	root							555	/usr/sbin/NetworkManager	--no-daemon
	4124		50780	root									1	/usr/lib/systemd/systemd	--switched-
root	--system	--deserialize	23

204672	212200	vagrant		5383	lookbusy	-m	200MB	-c	10

The	above	example	uses	pipes	to	redirect	the	output	of	ps	to	the	sort	command.
The	sort	command	is	performing	a	numeric	(-n)	sort	of	the	first	column	(-k	1).
This	 will	 have	 the	 effect	 of	 sorting	 the	 output,	 putting	 the	 process	 with	 the
highest	rss	size	at	the	bottom.	After	the	sort	command,	the	output	is	also	piped
to	the	tail	command,	which	when	specified	with	the	-n	(number)	flag	followed
by	a	number	will	limit	the	output	to	only	include	the	specified	number	of	results.

Tip

If	the	concept	of	chaining	commands	together	with	pipes	is	new,	I	highly	suggest
practicing	this	as	it	is	extremely	useful	for	day-to-day	sysadmin	tasks	as	well	as
during	 troubleshooting.	 We	 will	 discuss	 this	 concept	 and	 provide	 examples
several	times	throughout	this	book.

204672	212200	vagrant		5383	lookbusy	-m	200MB	-c	10

From	the	output	of	ps,	we	can	see	that	process	5383	is	using	roughly	200	MB	of
memory.	We	can	also	 see	 that	 the	process	 is	 another	lookbusy	 process,	which
was	again	spawned	by	the	vagrant	user.

From	the	output	of	free,	vmstat,	and	ps,	we	can	determine	the	following:

The	system	currently	has	roughly	200	MB	of	available	memory
While	 the	 system	 is	 not	 currently	 swapping,	 it	 has	 in	 the	 past,	 and	 given
what	we	saw	earlier	from	vmstat,	we	know	that	it	was	swapping	recently
We	found	that	process	5383	is	utilizing	roughly	200	MB	of	memory
We	also	can	see	 that	process	5383	was	started	by	 the	vagrant	user	and	 is
running	the	lookbusy	process
Using	 the	 free	 command,	 we	 can	 see	 that	 this	 system	 has	 490	 MB	 of
physical	memory

Given	the	above	information,	it	seems	that	the	lookbusy	process	executed	by	the
vagrant	user	is	not	only	a	suspicious	user	of	the	CPU	but	also	a	suspicious	user
of	the	memory.

Disk
Disk	 utilization	 is	 another	 common	 performance	 bottleneck.	 In	 general,
performance	issues	are	rarely	due	to	the	amount	of	disk	space.	While	I	have	seen
performance	 issues	due	 to	 the	 large	number	of	 files	 or	 files	 of	 a	 large	 size,	 in
general,	disk	performance	is	 limited	by	how	much	is	being	written	to	and	read
from	 a	 disk.	 So,	 while	 it	 is	 important	 to	 know	 if	 a	 file	 system	 is	 full	 while
troubleshooting	 performance	 issues,	 file	 system	 usage	 alone	 does	 not	 always
indicate	whether	or	not	there	is	an	issue.

iostat	–	CPU	and	device	input/output	statistics

The	 iostat	 command	 is	 an	 essential	 command	 for	 troubleshooting	 disk
performance	 issues	and	 is	 similar	 to	vmstat	 in	 terms	of	both	 the	usage	and	 the
information	that	it	provides.	Like	vmstat,	iostat	when	executed	is	followed	by
two	numbers,	the	first	being	the	delay	in	report	generation	and	the	second	being
the	number	of	reports	to	generate.

$	iostat	-x	10	3
Linux	3.10.0-123.el7.x86_64	(blog.example.com)			02/08/2015	
_x86_64_		(2	CPU)

avg-cpu:		%user			%nice	%system	%iowait		%steal			%idle
										43.58				0.00				1.07				0.16				0.00			55.19

Device:									rrqm/s			wrqm/s					r/s					w/s				rkB/s				wkB/s	
avgrq-sz	avgqu-sz			await	r_await	w_await		svctm		%util
sda														12.63					3.88				8.47				3.47			418.80			347.40	
128.27					0.39			32.82				0.80		110.93			0.47			0.56
dm-0														0.00					0.00			16.37				3.96				65.47				15.82	
8.00					0.48			23.68				0.48		119.66			0.09			0.19
dm-1														0.00					0.00				4.73				3.21			353.28			331.71	
172.51					0.39			48.99				1.07		119.61			0.54			0.43

avg-cpu:		%user			%nice	%system	%iowait		%steal			%idle
										20.22				0.00			20.33			22.14				0.00			37.32

Device:									rrqm/s			wrqm/s					r/s					w/s				rkB/s				wkB/s	
avgrq-sz	avgqu-sz			await	r_await	w_await		svctm		%util
sda															0.10				13.67		764.97		808.68	71929.34	78534.73	
191.23				62.32			39.75				0.74			76.65			0.42		65.91
dm-0														0.00					0.00				0.00				0.10					0.00					0.40	
8.00					0.01			70.00				0.00			70.00		70.00			0.70

dm-1														0.00					0.00		765.27		769.76	71954.89	78713.17	
196.31				64.65			42.25				0.74			83.51			0.43		66.46

avg-cpu:		%user			%nice	%system	%iowait		%steal			%idle
										18.23				0.00			15.56			29.26				0.00			36.95

Device:									rrqm/s			wrqm/s					r/s					w/s				rkB/s				wkB/s	
avgrq-sz	avgqu-sz			await	r_await	w_await		svctm		%util
sda															0.10					7.10		697.50		440.10	74747.60	42641.75	
206.38				74.13			66.98				0.64		172.13			0.58		66.50
dm-0														0.00					0.00				0.00				0.00					0.00					0.00	
0.00					0.00				0.00				0.00				0.00			0.00			0.00
dm-1														0.00					0.00		697.40		405.00	74722.00	40888.65	
209.74				75.80			70.63				0.66		191.11			0.61		67.24

In	 the	 above	 example,	 the	 –x	 (extended	 statistics)	 flag	 was	 provided	 to	 print
extended	 statistics.	 The	 extended	 statistics	 are	 extremely	 useful	 and	 provide
additional	 information	 that	 can	 be	 essential	 for	 identifying	 performance
bottlenecks.

CPU	details

The	iostat	command	will	display	CPU	statistics	along	with	I/O	statistics.	This
is	yet	another	command	that	can	be	utilized	to	troubleshoot	CPU	utilization.	This
is	particularly	useful	when	the	CPU	utilization	indicates	high	I/O	wait	time.

avg-cpu:		%user			%nice	%system	%iowait		%steal			%idle
										20.22				0.00			20.33			22.14				0.00			37.32

The	above	 is	 the	 same	 information	displayed	 from	 the	top	 command;	 it	 is	not
uncommon	 with	 Linux	 to	 find	 multiple	 commands	 that	 output	 similar
information.	Since	 these	details	have	been	covered	 in	 the	CPU	troubleshooting
section,	we	will	focus	on	the	I/O	statistics	portion	of	the	iostat	command.

Reviewing	I/O	statistics

To	 start	 reviewing	 the	 I/O	 statistics,	 let's	 start	with	 the	 first	 two	 reports.	 I	 am
including	the	CPU	utilization	below	to	help	indicate	where	each	report	starts	as
it	is	the	first	item	in	each	statistics	report.

avg-cpu:		%user			%nice	%system	%iowait		%steal			%idle
										43.58				0.00				1.07				0.16				0.00			55.19

Device:									rrqm/s			wrqm/s					r/s					w/s				rkB/s				wkB/s	

avgrq-sz	avgqu-sz			await	r_await	w_await		svctm		%util
sda														12.63					3.88				8.47				3.47			418.80			347.40	
128.27					0.39			32.82				0.80		110.93			0.47			0.56
dm-0														0.00					0.00			16.37				3.96				65.47				15.82	
8.00					0.48			23.68				0.48		119.66			0.09			0.19
dm-1														0.00					0.00				4.73				3.21			353.28			331.71	
172.51					0.39			48.99				1.07		119.61			0.54			0.43

avg-cpu:		%user			%nice	%system	%iowait		%steal			%idle
										20.22				0.00			20.33			22.14				0.00			37.32

Device:									rrqm/s			wrqm/s					r/s					w/s				rkB/s				wkB/s	
avgrq-sz	avgqu-sz			await	r_await	w_await		svctm		%util
sda															0.10				13.67		764.97		808.68	71929.34	78534.73	
191.23				62.32			39.75				0.74			76.65			0.42		65.91
dm-0														0.00					0.00				0.00				0.10					0.00					0.40	
8.00					0.01			70.00				0.00			70.00		70.00			0.70
dm-1														0.00					0.00		765.27		769.76	71954.89	78713.17	
196.31				64.65			42.25				0.74			83.51			0.43		66.46

By	comparing	the	first	two	reports,	we	find	that	there	is	a	large	disparity	between
them.	 In	 the	 first	 report,	 the	%util	 value	 for	 the	sda	 device	 is	0.56,	 and	 it	 is
65.91	in	the	second	report.

The	reason	for	this	difference	is	that	as	in	the	case	of	vmstat,	the	statistics	from
the	first	execution	of	iostat	are	based	on	the	last	time	the	server	rebooted.	The
second	 report	 is	 based	 on	 the	 time	 since	 the	 first	 report.	 This	means	 that	 the
output	of	the	second	report	is	based	on	the	10	s	between	the	first	and	the	second
report	 generation.	This	 is	 the	 same	behavior	 seen	 in	vmstat	 and	 is	 a	 common
behavior	for	other	tools	that	gather	performance	statistics.

As	with	 vmstat,	 we	 will	 discard	 the	 first	 report	 and	 only	 look	 at	 the	 second
report.

avg-cpu:		%user			%nice	%system	%iowait		%steal			%idle
										20.22				0.00			20.33			22.14				0.00			37.32

Device:									rrqm/s			wrqm/s					r/s					w/s				rkB/s				wkB/s	
avgrq-sz	avgqu-sz			await	r_await	w_await		svctm		%util
sda															0.10				13.67		764.97		808.68	71929.34	78534.73	
191.23				62.32			39.75				0.74			76.65			0.42		65.91
dm-0														0.00					0.00				0.00				0.10					0.00					0.40	
8.00					0.01			70.00				0.00			70.00		70.00			0.70
dm-1														0.00					0.00		765.27		769.76	71954.89	78713.17	

196.31				64.65			42.25				0.74			83.51			0.43		66.46

From	the	above,	we	can	identify	several	things	about	this	system.	The	first	and
most	important	is	the	%iowait	value	in	the	CPU	line.

avg-cpu:		%user			%nice	%system	%iowait		%steal			%idle
										20.22				0.00			20.33			22.14				0.00			37.32

Earlier	when	executing	the	top	command,	 the	percentage	of	 time	spent	waiting
for	I/O	was	quite	minimal;	however,	when	running	iostat,	we	can	see	that	the
CPUs	are	actually	spending	a	 lot	of	 time	waiting	 for	 I/O.	While	 I/O	wait	does
not	necessarily	mean	waiting	for	the	disk,	the	rest	of	this	output	seems	to	suggest
that	there	is	quite	a	bit	of	disk	activity.

Device:									rrqm/s			wrqm/s					r/s					w/s				rkB/s				wkB/s	
avgrq-sz	avgqu-sz			await	r_await	w_await		svctm		%util
sda															0.10				13.67		764.97		808.68	71929.34	78534.73	
191.23				62.32			39.75				0.74			76.65			0.42		65.91
dm-0														0.00					0.00				0.00				0.10					0.00					0.40	
8.00					0.01			70.00				0.00			70.00		70.00			0.70
dm-1														0.00					0.00		765.27		769.76	71954.89	78713.17	
196.31				64.65			42.25				0.74			83.51			0.43		66.46

The	 extended	 statistics	 output	 has	many	 columns,	 to	make	 this	 output	 a	 little
easier	to	understand,	let's	break	down	what	these	columns	tell	us.

rrqm/s:	Number	of	read	requests	per	second	that	are	merged	and	queued
wrqm/s:	Number	of	write	requests	per	second	that	are	merged	and	queued
r/s:	Number	of	read	requests	per	second	completed
w/s:	Number	of	write	requests	per	second	completed
rkB/s:	Number	of	reads	in	kilobytes	per	second
wkB/s:	Number	of	writes	in	kilobytes	per	second
avgr-sz:	Average	size	(in	sectors)	of	requests	made	to	the	device
avgqu-sz:	Average	queue	length	of	requests	made	to	the	device
await:	Average	time	in	milliseconds	that	requests	wait	for	to	be	served
r_await:	 Average	 time	 in	 milliseconds	 that	 read	 requests	 wait	 for	 to	 be
serviced
w_await:	Average	 time	 in	milliseconds	 that	write	 requests	wait	 for	 to	 be
serviced
svctm:	This	 field	 is	 invalid	 and	 is	 slated	 to	 be	 removed;	 it	 should	not	 be
trusted	or	used

%util:	Percentage	of	CPU	time	spent	while	I/O	requests	are	being	serviced
by	this	device.	A	device	can	only	be	at	most	100%	utilized

For	our	example,	we	will	focus	solely	on	the	r/s,	w/s,	await,	and	%util	values,
since	these	values	will	tell	us	quite	a	bit	about	this	system's	disk	utilization	while
keeping	our	example	simple.

After	 reviewing	 the	 iostat	 output,	 we	 can	 see	 that	 both	 the	 sda	 and	 dm-1
devices	have	the	highest	%util	value,	meaning	that	they	are	the	closest	to	being
at	capacity.

Device:									rrqm/s			wrqm/s					r/s					w/s				rkB/s				wkB/s	
avgrq-sz	avgqu-sz			await	r_await	w_await		svctm		%util
sda															0.10				13.67		764.97		808.68	71929.34	78534.73	
191.23				62.32			39.75				0.74			76.65			0.42		65.91
dm-1														0.00					0.00		765.27		769.76	71954.89	78713.17	
196.31				64.65			42.25				0.74			83.51			0.43		66.46

From	 this	 report,	we	can	 see	 that	 the	sda	 device	had	completed	an	average	of
764	reads	(r/s)	and	808	writes	(w/s)	per	second.	We	can	also	identify	that	these
requests	 are	 taking	 an	 average	 of	 39	 ms	 (await)	 to	 complete.	 While	 these
numbers	 are	 interesting,	 they	do	not	 necessarily	mean	 that	 the	 system	 is	 in	 an
abnormal	state.	Since	we	are	unfamiliar	with	this	system,	we	do	not	necessarily
know	whether	the	level	of	reads	and	writes	are	unexpected	for	this	system.	The
information	 is	 however	 important	 to	 collect,	 as	 these	 statistics	 are	 important
pieces	of	data	for	the	data	collection	stage	of	the	troubleshooting	process.

Another	interesting	statistic	we	can	see	from	iostat	is	that	the	%util	values	for
both	 sda	 and	 dm-1	 devices	 are	 about	 66%.	 This	 means	 that	 during	 the	 10	 s
between	the	first	report	generation	and	the	second,	66%	of	the	CPU	time	spent
was	spent	waiting	for	either	the	sda	or	the	dm-1	device.

Identifying	devices

Having	66%	utilization	for	a	disk	device	is	generally	considered	high,	while	this
is	quite	useful	information,	it	does	not	tell	us	who	or	what	is	utilizing	the	disk.
To	answer	these	questions,	we	will	need	to	figure	out	what	exactly	sda	and	dm-1
are	being	used	for.

Since	devices	from	iostat	commands	output	are	generally	disk	devices,	the	first

step	to	identifying	these	devices	is	to	run	the	mount	command.

$	mount
proc	on	/proc	type	proc	(rw,nosuid,nodev,noexec,relatime)
sysfs	on	/sys	type	sysfs	(rw,nosuid,nodev,noexec,relatime,seclabel)
devtmpfs	on	/dev	type	devtmpfs	
(rw,nosuid,seclabel,size=244828k,nr_inodes=61207,mode=755)
securityfs	on	/sys/kernel/security	type	securityfs	
(rw,nosuid,nodev,noexec,relatime)
tmpfs	on	/dev/shm	type	tmpfs	(rw,nosuid,nodev,seclabel)
devpts	on	/dev/pts	type	devpts	
(rw,nosuid,noexec,relatime,seclabel,gid=5,mode=620,ptmxmode=000)
tmpfs	on	/run	type	tmpfs	(rw,nosuid,nodev,seclabel,mode=755)
tmpfs	on	/sys/fs/cgroup	type	tmpfs	
(rw,nosuid,nodev,noexec,seclabel,mode=755)
configfs	on	/sys/kernel/config	type	configfs	(rw,relatime)
/dev/mapper/root	on	/	type	xfs	
(rw,relatime,seclabel,attr2,inode64,noquota)
hugetlbfs	on	/dev/hugepages	type	hugetlbfs	(rw,relatime,seclabel)
mqueue	on	/dev/mqueue	type	mqueue	(rw,relatime,seclabel)
debugfs	on	/sys/kernel/debug	type	debugfs	(rw,relatime)
/dev/sda1	on	/boot	type	xfs	
(rw,relatime,seclabel,attr2,inode64,noquota)

The	 mount	 command,	 when	 run	 without	 any	 options,	 will	 display	 all	 of	 the
current	 mounted	 file	 systems.	 The	 first	 column	 in	 the	 output	 of	 mount	 is	 the
device	 that	 has	 been	 mounted.	 In	 the	 output	 above,	 we	 can	 see	 that	 the	 sda
device	 is	 in	 fact	 a	 disk	 device	 and	 that	 it	 has	 a	 partition	 called	 sda1	 that	 is
mounted	as	/boot.

What	we	don't	see	however	is	the	dm-1	device.	Since	this	device	is	not	listed	in
the	output	of	the	mount	command	another	way,	we	may	identify	the	dm-1	device
by	looking	within	the	/dev	folder.

All	devices	on	a	system	are	presented	as	a	file	within	the	/dev	folder	structure.
The	dm-1	device	is	no	different.

$	ls	-la	/dev/dm-1
brw-rw----.	1	root	disk	253,	1	Feb		1	18:47	/dev/dm-1

While	we	have	been	able	to	find	the	location	of	the	dm-1	device,	we	have	yet	to
identify	its	use.	One	thing	that	does	stick	out	about	this	device,	however,	is	the
name	dm-1.	When	devices	start	with	dm,	this	is	an	indication	that	the	device	is	a

logical	device	created	by	the	device	mapper.

Device	mapper	 is	 a	 Linux	 kernel	 framework	 that	 allows	 the	 system	 to	 create
virtual	 disk	 devices	 that	 "map"	 back	 to	 physical	 devices.	 This	 functionality	 is
used	 for	 many	 features	 including	 software	 raid,	 disk	 encryption,	 and	 logical
volumes.

A	common	practice	within	 the	device	mapper	 framework	 is	 to	create	 symlinks
for	these	features	that	link	back	to	a	single	logical	device.	Since	we	can	see	with
the	 ls	 command	 that	 dm-1	 is	 a	 block	 device	 via	 the	 "b"	 value	 in	 the	 first
column's	output	(brw-rw----.),	we	know	that	dm-1	is	not	a	symlink.	We	can	use
this	information	along	with	the	find	command	to	identify	any	symlinks	that	link
back	to	the	dm-1	block	device.

#	find	-L	/dev	-samefile	/dev/dm-1
/dev/dm-1
/dev/rhel/root
/dev/disk/by-uuid/beb5220d-5cab-4c43-85d7-8045f870ba7d
/dev/disk/by-id/dm-uuid-LVM-
qj3iMeektIlL3Z0g4WMPMJRbzacnpS9IVOCzB60GSHCEgbRKYW9ZKXR5prUPEE1e
/dev/disk/by-id/dm-name-root
/dev/block/253:1
/dev/mapper/root

In	the	earlier	chapters,	we	used	the	find	command	to	identify	configuration	and
log	files.	 In	 the	above	example,	we	use	 the	-L	 (follow	links)	 flag,	 followed	by
the	 /dev	 path	 and	 the	 --samefile	 flag	 to	 tell	 find	 to	 search	 the	 /dev	 folder
structure,	searching	any	symlinked	folders	to	identify	any	file	that	is	the	"same
file"	as	/dev/dm-1.

The	--samefile	flag	identifies	files	that	have	the	same	inode	number.	When	the
-L	flag	is	included	in	the	command,	the	output	includes	symlinks,	and	it	seems
that	this	example	has	returned	several	results.	The	symlink	file	that	sticks	out	the
most	is	/dev/mapper/root;	the	reason	that	this	file	sticks	out	is	that	it	was	also
present	in	the	output	of	the	mount	command.

/dev/mapper/root	on	/	type	xfs	
(rw,relatime,seclabel,attr2,inode64,noquota)

It	 seems	 that	 /dev/mapper/root	 appears	 to	 be	 a	 logical	 volume.	 A	 logical

volume	 within	 Linux	 is	 essentially	 storage	 virtualization.	 This	 functionality
allows	 you	 to	 create	 pseudo	 devices	 (as	 part	 of	 the	 device	mapper),	 which	 is
mapped	to	one	or	more	physical	devices.

For	example,	 it	 is	possible	 to	 take	 four	different	hard	disks	and	combine	 these
disks	into	one	logical	volume.	The	logical	volume	can	then	be	used	as	the	disk
for	a	single	file	system.	It	is	even	possible	to	add	another	hard	disk	at	a	later	time
by	using	logical	volumes.

To	confirm	that	the	/dev/mapper/root	device	is	in	fact	a	logical	volume,	we	can
execute	the	lvdisplay	command,	which	is	used	to	display	 the	 logical	volumes
on	the	system.

#	lvdisplay
		---	Logical	volume	---
		LV	Path																/dev/rhel/swap
		LV	Name																swap
		VG	Name																rhel
		LV	UUID																y1ICUQ-l3uA-Mxfc-JupS-c6PN-7jvw-W8wMV6
		LV	Write	Access								read/write
		LV	Creation	host,	time	localhost,	2014-07-21	23:35:55	+0000
		LV	Status														available
		#	open																	2
		LV	Size																1.03	GiB
		Current	LE													264
		Segments															1
		Allocation													inherit
		Read	ahead	sectors					auto
		-	currently	set	to					256
		Block	device											253:0

		---	Logical	volume	---
		LV	Path																/dev/rhel/root
		LV	Name																root
		VG	Name																rhel
		LV	UUID																VOCzB6-0GSH-CEgb-RKYW-9ZKX-R5pr-UPEE1e
		LV	Write	Access								read/write
		LV	Creation	host,	time	localhost,	2014-07-21	23:35:55	+0000
		LV	Status														available
		#	open																	1
		LV	Size																38.48	GiB
		Current	LE													9850
		Segments															1
		Allocation													inherit

		Read	ahead	sectors					auto
		-	currently	set	to					256
		Block	device											253:1

From	 the	 output	 of	 lvdisplay,	 we	 can	 see	 an	 interesting	 path	 called
/dev/rhel/root,	which	also	exists	with	the	output	of	our	find	command.	Let's
take	a	look	at	this	device	with	the	ls	command.

#	ls	-la	/dev/rhel/root
lrwxrwxrwx.	1	root	root	7	Aug		3	16:27	/dev/rhel/root	->	../dm-1

Here,	we	can	see	that	/dev/rhel/root	is	a	symlink	to	/dev/dm-1;	this	confirms
that	/dev/rhel/root	is	the	same	as	/dev/dm-1	and	that	these	are	in	fact	logical
volume	devices,	which	means	that	these	are	not	really	the	physical	device.

To	 display	 the	 physical	 device	 behind	 these	 logical	 volumes,	 we	 can	 use	 the
pvdisplay	command.

#	pvdisplay
		---	Physical	volume	---
		PV	Name															/dev/sda2
		VG	Name															rhel
		PV	Size															39.51	GiB	/	not	usable	3.00	MiB
		Allocatable											yes	(but	full)
		PE	Size															4.00	MiB
		Total	PE														10114
		Free	PE															0
		Allocated	PE										10114
		PV	UUID															n5xoxm-kvyI-Z7rR-MMcH-1iJI-D68w-NODMaJ

We	can	see	from	the	output	of	pvdisplay	that	the	dm-1	device	actually	maps	to
sda2,	which	explains	why	the	disk	utilizations	for	dm-1	and	sda	were	extremely
close,	as	any	activity	on	dm-1	is	actually	being	performed	on	sda.

Who	is	writing	to	these	devices?

Now	that	we	have	found	where	I/O	is	being	utilized,	we	need	to	find	out	who	is
utilizing	this	I/O.	The	easiest	method	to	find	out	which	processes	are	writing	to
disk	 the	 most	 is	 to	 use	 the	 iotop	 command.	 This	 tool	 is	 a	 relatively	 new
command	 and	 is	 now	 included	 by	 default	 with	 Red	 Hat	 Enterprise	 Linux	 7.
However,	 this	 command	 has	 not	 always	 been	 available	 in	 previous	 RHEL
versions.

Before	the	adoption	of	iotop,	the	method	for	finding	the	top	processes	that	are
using	 I/O	 involved	 using	 the	 ps	 command	 and	 looking	 through	 the	 /proc
filesystem.

ps	–	Using	ps	to	identify	processes	utilizing	I/O

While	collecting	data	related	to	the	CPU,	we	covered	the	state	field	in	the	output
of	the	ps	command.	What	we	didn't	cover	is	the	various	states	that	a	process	can
be	in.	The	following	list	contains	the	seven	possible	states	that	the	ps	command
will	show:

Uninterruptible	 sleep	 (D):	 Processes	 generally	 in	 a	 sleep	 state	 when
waiting	for	I/O
Running	or	Runnable	(R):	Processes	on	the	run	queue
Interruptible	sleep	(S):	Processes	waiting	for	an	event	to	complete	but	not
blocking	CPU	or	I/O
Stopped	(T):	Processes	that	are	stopped	by	a	job	control	system	such	as	the
jobs	command
Paging	(P):	Processes	that	are	current	paging;	however,	this	is	less	relevant
on	newer	kernels
Dead	 (X):	 Processes	 that	 are	 dead,	 this	 should	 never	 be	 seen,	 as	 dead
processes	should	not	show	up	when	running	ps
Defunct	 (Z):	 Zombie	 processes	 that	 are	 terminated	 but	 left	 in	 an	 undead
state

When	investigating	I/O	utilization,	it	is	important	to	identify	with	a	state	listed	as
D	Uninterruptible	Sleep.	As	these	processes	are	generally	waiting	for	I/O,	they
are	the	most	likely	processes	to	be	over	utilizing	disk	I/O.

To	 do	 this,	 we	 will	 use	 the	 ps	 command	 with	 the	 –e	 (everything),	 -l	 (long
format),	and	-f	 (full	 format)	flags.	We	will	also	use	pipes	again	 to	redirect	 the
output	to	the	grep	command	and	filter	the	output	to	only	show	processes	with	a
D	state.

#	ps	-elf	|	grep	"	D	"
1	D	root					13185					2		2		80			0	-					0	get_re	00:21	?	00:01:32	
[kworker/u4:1]
4	D	root					15639	15638	30		80			0	-		4233	balanc	01:26	pts/2	
00:00:02	bonnie++	-n	0	-u	0	-r	239	-s	478	-f	-b	-d	/tmp

With	 the	 above	 output,	 we	 see	 that	 there	 are	 two	 processes	 currently	 in	 an
uninterruptible	 sleep	 state.	 One	 process	 is	 kworker,	 which	 is	 a	 kernel	 system
process,	and	the	other	is	bonnie++,	a	process	launched	by	the	root	user.	As	the
kworker	 process	 is	 a	 generic	 kernel	 process,	 we	 will	 focus	 on	 the	 bonnie++
process	first.

To	 better	 understand	 this	 process,	we	will	 run	 the	ps	 command	 again	 but	 this
time	with	the	--forest	option.

#	ps	-elf	–forest
4	S	root						1007					1		0		80			0	-	20739	poll_s	Feb07	?	00:00:00	
/usr/sbin/sshd	-D
4	S	root					11239		1007		0		80			0	-	32881	poll_s	Feb08	?	00:00:00		
_	sshd:	vagrant	[priv]
5	S	vagrant		11242	11239		0		80			0	-	32881	poll_s	Feb08	?	00:00:02						
_	sshd:	vagrant@pts/2
0	S	vagrant		11243	11242		0		80			0	-	28838	wait			Feb08	pts/2	
00:00:01										_	-bash
4	S	root					16052	11243		0		80			0	-	47343	poll_s	01:39	pts/2	
00:00:00														_	sudo	bonnie++	-n	0	-u	0	-r	239	-s	478	-f	-
b	-d	/tmp
4	S	root					16053	16052	32		80			0	-	96398	hrtime	01:39	pts/2	
00:00:03																		_	bonnie++	-n	0	-u	0	-r	239	-s	478	-f	-b	
-d	/tmp

By	reviewing	the	above	output,	we	can	see	that	the	bonnie++	process	is	actually
a	child	process	of	process	16052,	which	is	another	child	process	of	11243,	which
is	the	bash	shell	for	the	vagrant	user.

The	preceding	ps	 command	 has	 shown	 us	 that	 the	bonnie++	 process	with	 the
process	id	of	16053	is	waiting	on	I/O	tasks.	However,	this	does	not	tell	us	how
much	I/O	this	process	is	using;	to	determine	this,	we	can	read	a	special	file	in	the
/proc	file	system	called	io.

#	cat	/proc/16053/io
rchar:	1002448848
wchar:	1002438751
syscr:	122383
syscw:	122375
read_bytes:	1002704896
write_bytes:	1002438656
cancelled_write_bytes:	0

Every	 running	 process	 has	 a	 subfolder	 in	 /proc	 with	 the	 same	 name	 as	 the
process	id;	 for	our	example,	 this	 is	/proc/16053.	This	 folder	 is	maintained	by
the	kernel	for	each	running	process,	and	within	these	folders	exist	many	files	that
contain	information	about	running	processes.

These	files	are	so	useful	 that	 they	are	actually	 the	source	of	 the	ps	command's
information.	One	of	these	useful	files	is	named	io;	the	io	file	contains	statistics
about	the	number	of	reads	and	writes	that	the	process	has	performed.

From	the	output	of	the	cat	command,	we	can	see	that	this	process	has	read	and
written	approximately	1	GB	of	data.	While	this	seems	like	a	lot,	it	could	be	over
a	 long	period	of	 time.	To	get	 a	picture	of	how	much	 this	process	 is	writing	 to
disk,	we	can	read	this	file	again	to	capture	the	differences.

#	cat	/proc/16053/io
cat:	/proc/16053/io:	No	such	file	or	directory

It	seems,	however,	 that	when	we	executed	the	cat	command	a	second	time,	we
received	an	error	that	the	io	file	is	no	longer	present.	If	we	run	the	ps	command
again	and	use	grep	 to	 search	 the	output	 for	 the	bonnie++	process,	we	 can	 see
that	 a	 bonnie++	 process	 is	 running;	 however,	 it	 is	 a	 new	 process	 with	 a	 new
process	ID.

#	ps	-elf	|	grep	bonnie
4	S	root					17891	11243		0		80			0	-	47343	poll_s	02:34	pts/2	
00:00:00	sudo	bonnie++	-n	0	-u	0	-r	239	-s	478	-f	-b	-d	/tmp
4	D	root					17892	17891	33		80			0	-		4233	sleep_	02:34	pts/2	
00:00:02	bonnie++	-n	0	-u	0	-r	239	-s	478	-f	-b	-d	/tmp

As	 it	 seems	 that	 the	 child	 bonnie++	 processes	 are	 short-lived	 processes,
following	the	I/O	statistics	by	reading	the	io	file	may	be	quite	difficult.

iotop	–	A	top	top-like	command	for	disk	i/o

Since	 these	 processes	 are	 starting	 and	 stopping	 so	 frequently,	 we	 can	 use	 the
iotop	command	to	identify	which	processes	are	utilizing	I/O	the	most.

#	iotop
Total	DISK	READ	:					102.60	M/s	|	Total	DISK	WRITE	:						26.96	
M/s
Actual	DISK	READ:					102.60	M/s	|	Actual	DISK	WRITE:						42.04	

M/s
		TID		PRIO		USER					DISK	READ		DISK	WRITE		SWAPIN					IO>	COMMAND
16395	be/4	root								0.00	B/s				0.00	B/s		0.00	%	45.59	%	
[kworker/u4:0]
18250	be/4	root						101.95	M/s			26.96	M/s		0.00	%	42.59	%	
bonnie++	-n	0	-u	0	-r	239	-s	478	-f	-b	-d	/tmp

In	the	preceding	output	from	iotop,	we	can	see	some	 interesting	I/O	statistics.
With	 iotop,	 we	 can	 see	 not	 only	 system-wide	 statistics	 such	 as	 Total	 Disk
Reads	 per	 second	 and	 Total	 Disk	 Writes	 per	 second	 but	 also	 quite	 a	 few
statistics	for	single	processes.

From	 the	 per-process	 perspective,	 we	 can	 see	 that	 the	 bonnie++	 process	 is
reading	 from	disk	at	 a	 rate	of	101.96	MBps	and	 is	writing	 to	disk	 at	 a	 rate	of
26.96	MBps.

16395	be/4	root								0.00	B/s				0.00	B/s		0.00	%	45.59	%	
[kworker/u4:0]
18250	be/4	root						101.95	M/s			26.96	M/s		0.00	%	42.59	%	
bonnie++	-n	0	-u	0	-r	239	-s	478	-f	-b	-d	/tmp

The	iotop	command	is	very	similar	to	the	top	command	in	that	it	will	refresh	the
reported	 results	 every	 few	 seconds.	 This	 has	 the	 effect	 of	 showing	 the	 I/O
statistics	"live."

Tip

Commands	such	as	top	and	iotop	are	very	difficult	to	show	in	a	book	format.	I
highly	suggest	executing	these	commands	on	a	system	that	has	them	available	to
get	a	feel	of	how	they	work.

Putting	it	all	together

Now	 that	 we	 have	 covered	 some	 of	 the	 tools	 for	 troubleshooting	 disk
performance	 and	 utilization,	 let's	 put	 it	 all	 together	 while	 troubleshooting	 our
reported	slowness.

Using	iostat	to	determine	whether	there	is	a	I/O	bandwidth	problem

The	first	command	 that	we	will	 run	 is	iostat,	 as	 this	will	 first	validate	 for	us
whether	there	is	in	fact	an	issue	or	not.

#	iostat	-x	10	3
Linux	3.10.0-123.el7.x86_64	(blog.example.com)			02/09/2015	
_x86_64_		(2	CPU)

avg-cpu:		%user			%nice	%system	%iowait		%steal			%idle
										38.58				0.00				3.22				5.46				0.00			52.75

Device:									rrqm/s			wrqm/s					r/s					w/s				rkB/s				wkB/s	
avgrq-sz	avgqu-sz			await	r_await	w_await		svctm		%util
sda														10.86					4.25		122.46		118.15	11968.97	12065.60	
199.78				13.27			55.18				0.67		111.67			0.51		12.21
dm-0														0.00					0.00			14.03				3.44				56.14				13.74	
8.00					0.42			24.24				0.51		121.15			0.46			0.80
dm-1														0.00					0.00		119.32		112.35	11912.79	12051.98	
206.89				13.52			58.33				0.68		119.55			0.52		12.16

avg-cpu:		%user			%nice	%system	%iowait		%steal			%idle
											7.96				0.00			14.60			29.31				0.00			48.12

Device:									rrqm/s			wrqm/s					r/s					w/s				rkB/s				wkB/s	
avgrq-sz	avgqu-sz			await	r_await	w_await		svctm		%util
sda															0.70					0.80		804.49		776.85	79041.12	76999.20	
197.35				64.26			41.41				0.54			83.73			0.42		66.38
dm-0														0.00					0.00				0.90				0.80					3.59					3.19	
8.00					0.08			50.00				0.00		106.25		19.00			3.22
dm-1														0.00					0.00		804.29		726.35	79037.52	76893.81	
203.75				64.68			43.03				0.53			90.08			0.44		66.75

avg-cpu:		%user			%nice	%system	%iowait		%steal			%idle
											5.22				0.00			11.21			36.21				0.00			47.36

Device:									rrqm/s			wrqm/s					r/s					w/s				rkB/s				wkB/s	
avgrq-sz	avgqu-sz			await	r_await	w_await		svctm		%util
sda															1.10					0.30		749.40		429.70	84589.20	43619.80	
217.47				76.31			66.49				0.43		181.69			0.58		68.32
dm-0														0.00					0.00				1.30				0.10					5.20					0.40	
8.00					0.00				2.21				1.00			18.00			1.43			0.20
dm-1														0.00					0.00		749.00		391.20	84558.40	41891.80	
221.80				76.85			69.23				0.43		200.95			0.60		68.97

From	the	output	of	iostat,	we	can	determine	the	following:

The	CPU	of	this	system	is	currently	spending	quite	a	bit	of	time	waiting	for
I/O,	30%–40%
It	appears	that	the	dm-1	and	sda	devices	are	the	most-utilized	devices
From	iostat,	it	appears	that	these	devices	are	at	68%	utilization,	a	number

that	seems	is	quite	high

On	 the	basis	of	 these	 data	 points,	we	 can	 identify	 that	 there	 is	 a	 potential	 I/O
utilization	issue,	unless	68%	utilization	is	expected.

Using	iotop	to	determine	which	processes	are	consuming	disk	bandwidth

Now	that	we	have	determined	that	a	sizeable	amount	of	CPU	time	is	being	spent
waiting	for	I/O,	we	should	now	focus	on	what	processes	are	utilizing	disks	the
most.	To	do	this,	we	will	use	the	iotop	command.

#	iotop
Total	DISK	READ	:					100.64	M/s	|	Total	DISK	WRITE	:						23.91	
M/s
Actual	DISK	READ:					100.67	M/s	|	Actual	DISK	WRITE:						38.04	
M/s
		TID		PRIO		USER					DISK	READ		DISK	WRITE		SWAPIN					IO>	COMMAND
19358	be/4	root								0.00	B/s				0.00	B/s		0.00	%	40.38	%	
[kworker/u4:1]
20262	be/4	root						100.35	M/s			23.91	M/s		0.00	%	33.65	%	
bonnie++	-n	0	-u	0	-r	239	-s	478	-f	-b	-d	/tmp
		363	be/4	root								0.00	B/s				0.00	B/s		0.00	%		2.51	%	
[xfsaild/dm-1]
			32	be/4	root								0.00	B/s				0.00	B/s		0.00	%		1.74	%	
[kswapd0]

From	the	iotop	command,	we	can	see	that	process	20262,	which	is	running	the
bonnie++	command,	has	a	high	utilization	along	with	large	disk	read	and	write
values.

From	iotop,	we	can	determine	the	following:

The	system's	total	disk	reads	per	second	is	100.64	MBps
The	system's	total	disk	writes	per	second	is	23.91	MBps
Process	20262	running	the	bonnie++	command	is	reading	100.35	MBps	and
writing	23.91	MBps
Comparing	the	totals,	we	find	that	process	20262	is	the	majority	contributor
of	disk	reads	and	writes

Given	the	above,	it	seems	that	we	will	need	to	identify	more	information	about
process	20262.

Using	ps	to	understand	more	about	processes

Now	that	we	have	identified	a	process	that	is	using	a	significant	amount	of	I/O,
we	can	investigate	the	details	of	this	process	with	the	ps	command.	We	will	once
again	use	the	ps	command	with	the	--forest	flag	to	show	the	parent	and	child
process	relationship.

#	ps	-elf	--forest
1007		0		80			0	-	32881	poll_s	Feb08	?								00:00:00		_	sshd:	
vagrant	[priv]
5	S	vagrant		11242	11239		0		80			0	-	32881	poll_s	Feb08	?	00:00:05						
_	sshd:	vagrant@pts/2
0	S	vagrant		11243	11242		0		80			0	-	28838	wait			Feb08	pts/2	
00:00:02										_	-bash
4	S	root					20753	11243		0		80			0	-	47343	poll_s	03:52	pts/2	
00:00:00														_	sudo	bonnie++	-n	0	-u	0	-r	239	-s	478	-f	-
b	-d	/tmp
4	D	root					20754	20753	52		80			0	-		4233	sleep_	03:52	pts/2	
00:00:01																		_	bonnie++	-n	0	-u	0	-r	239	-s	478	-f	-b	
-d	/tmp

Using	the	ps	command,	we	can	determine	the	following:

The	bonnie++	process	20262	identified	with	iotop	is	absent;	however,	other
bonnie++	processes	are	present
The	vagrant	 user	 has	 started	 the	parent	bonnie++	 processes	 by	 using	 the
sudo	command
The	vagrant	 user	 is	 the	 same	 user	 as	 the	 user	 in	 the	 earlier	 observations
discussed	in	the	CPU	and	memory	sections

Given	the	above	details,	it	seems	that	the	vagrant	user	is	a	likely	suspect	for	our
performance	issues.

Network
The	 final	 common	 resource	 for	 performance	 issues	 is	 the	 network.	 There	 are
many	 tools	 to	 troubleshoot	 networking	 issues;	 however,	 very	 few	 of	 these
commands	are	geared	solely	towards	network	performance.	Most	of	these	tools
are	designed	for	in-depth	network	troubleshooting.

Since	 Chapter	 5,	 Network	 Troubleshooting	 is	 dedicated	 to	 troubleshooting
network	issues,	this	section	will	focus	specifically	on	performance.

ifstat	–	Review	interface	statistics

When	 it	 comes	 to	 a	 network,	 there	 are	 about	 four	metrics	 that	 can	 be	 used	 to
measure	throughput.

Received	Packets:	Number	of	packets	received	by	the	interface
Sent	Packets:	Number	of	packets	sent	out	by	the	interface
Received	Data:	Amount	of	data	received	by	the	interface
Sent	Data:	Amount	of	data	sent	by	the	interface

There	 are	 many	 commands	 that	 can	 provide	 these	 metrics,	 everything	 from
ifconfig	or	ip	to	netstat.	A	very	useful	utility	 that	specifically	outputs	 these
metrics	is	the	ifstat	command.

#	ifstat
#21506.1804289383	sampling_interval=5	time_const=60
Interface			RX	Pkts/Rate			TX	Pkts/Rate			RX	Data/Rate			TX	
Data/Rate
												RX	Errs/Drop			TX	Errs/Drop			RX	Over/Rate			TX	
Coll/Rate
lo														47	0												47	0									4560	0										4560	0
																	0	0													0	0												0	0													0	0
enp0s3							70579	1									50636	0						17797K	65								5520K	96
																	0	0													0	0												0	0													0	0
enp0s8							23034	0												43	0							2951K	18										7035	0
																	0	0													0	0												0	0													0	0

Much	 like	vmstat	 or	iostat,	 the	 first	 report	 generated	by	ifstat	 is	 based	 on
statistics	since	the	server	last	rebooted.	What	this	means	is	that	the	above	report
indicates	 that	 the	 enp0s3	 interface	 has	 received	 70,579	 packets	 since	 the	 last
reboot.

When	 executing	 ifstat	 a	 second	 time,	 the	 results	 will	 show	 a	 very	 large
disparity	 from	 the	 first	 report.	 The	 reason	 for	 this	 is	 that	 the	 second	 report	 is
based	on	the	time	since	the	first	report.

#	ifstat
#21506.1804289383	sampling_interval=5	time_const=60
Interface			RX	Pkts/Rate				TX	Pkts/Rate			RX	Data/Rate		TX	
Data/Rate
												RX	Errs/Drop				TX	Errs/Drop			RX	Over/Rate		TX	
Coll/Rate
lo																0	0													0	0													0	0													0	
0
																		0	0													0	0													0	0													0	
0
enp0s3											23	0												18	0									1530	59									1780	
80
																		0	0													0	0													0	0													0	
0
enp0s8												1	0													0	0											86	10													0	
0
																		0	0													0	0													0	0													0	
0

In	the	example	above,	we	can	see	that	our	system	received	23	packets	(RX	Pkts)
and	transmitted	18	packets	(TX	Pkts)	over	the	enp0s3	interface.

From	the	ifstat	command,	we	can	determine	the	following	about	our	system:

The	network	utilization	at	the	moment	is	fairly	small	and	not	likely	to	cause
an	impact	on	this	system	as	a	whole
The	processes	from	the	vagrant	user	shown	earlier	are	not	likely	utilizing	a
significant	amount	of	network	resources

Based	on	the	statistics	seen	with	ifstat,	there	is	minimal	network	traffic	on	this
system,	and	is	not	likely	causing	the	perceived	slowness.

Quick	review	of	what	we	have	identified
Before	 going	 too	 far	 ahead,	 let's	 review	 what	 we	 have	 learned	 from	 the
performance	statistics	that	we	have	gathered	thus	far:

Note

The	 vagrant	 user	 has	 been	 launching	 processes	 that	 run	 the	 bonnie++	 and
lookbusy	applications.

The	 lookbusy	 application	 seems	 to	 either	 use	 up	 to	 20%–30%	 of	 the	 overall
system	CPU.

This	server	in	question	has	two	CPUs	and	lookbusy	seems	to	utilize	about	60%
of	one	CPU	consistently.

The	 lookbusy	 application	 also	 seems	 to	 use	 around	 200	 MB	 of	 memory
consistently;	however,	during	troubleshooting,	we	did	see	these	processes	using
almost	all	of	the	system's	memory	causing	the	system	to	swap.

While	 the	 vagrant	 user	 was	 launching	 the	 bonnie++	 process	 the	 system	 was
experiencing	a	high	I/O	wait	time.

When	running,	the	bonnie++	processes	were	utilizing	approximately	60%–70%
of	the	disk	throughput.

The	 activity	 being	 performed	 by	 the	 vagrant	 user	 seems	 to	 have	 little	 to	 no
effect	on	network	utilization.

Comparing	historical	metrics
Looking	at	all	of	the	facts	that	we	learned	about	this	system	so	far,	it	seems	that
our	next	best	course	of	action	would	be	 to	 recommend	contacting	 the	vagrant
user	 to	 identify	 whether	 the	 lookbusy	 and	 bonnie++	 applications	 should	 be
running	with	such	high	resource	utilization.

While	 the	previous	observations	 show	a	high	 resource	utilization,	 this	 level	 of
utilization	 may	 be	 expected	 for	 this	 environment.	 Before	 we	 start	 contacting
users,	we	should	first	review	the	historical	performance	metrics	of	this	server.	In
most	 environments,	 there	 is	 some	 sort	 of	 server	 performance	 monitoring
software	such	as	Munin,	Cacti,	or	one	of	the	many	cloud	SaaS	providers	in	place
that	collects	and	stores	system	statistics.

If	 your	 environment	 utilizes	 one	 of	 these	 services,	 you	 can	 use	 the	 collected
performance	 data	 to	 compare	 previous	 performance	 statistics	 with	 the
information	that	we	just	gathered.	If	for	instance	over	the	past	30	days,	the	CPU
performance	was	never	higher	 than	10%,	 it	 stands	 to	 reason	 that	 the	lookbusy
processes	may	not	have	been	running	at	that	time.

Even	 if	your	 environment	does	not	utilize	one	of	 these	 tools,	 you	 still	may	be
able	 to	perform	the	historical	comparisons.	To	do	so,	we	will	use	a	 tool	 that	 is
installed	by	default	on	most	Red	Hat	Enterprise	Linux	systems;	this	tool	is	called
sar.

sar	–	System	activity	report
In	Chapter	2,	Troubleshooting	Commands	and	Sources	of	Useful	Information	we
briefly	discussed	the	use	of	the	sar	command	 to	 review	historical	performance
statistics.

When	the	sysstat	package	that	deploys	the	sar	utility	is	installed,	it	will	deploy
the	 /etc/cron.d/sysstat	 file.	 Within	 this	 file	 are	 two	 cron	 jobs	 that	 run
sysstat	 commands	 with	 the	 sole	 purpose	 of	 collecting	 system	 performance
statistics	and	generating	reports	of	the	collected	information.

$	cat	/etc/cron.d/sysstat
#	Run	system	activity	accounting	tool	every	10	minutes
*/2	*	*	*	*	root	/usr/lib64/sa/sa1	1	1
#	0	*	*	*	*	root	/usr/lib64/sa/sa1	600	6	&
#	Generate	a	daily	summary	of	process	accounting	at	23:53
53	23	*	*	*	root	/usr/lib64/sa/sa2	-A

When	these	commands	are	executed,	the	information	collected	is	then	stored	in
the	/var/log/sa/	folder.

#	ls	-la	/var/log/sa/
total	1280
drwxr-xr-x.	2	root	root			4096	Feb		9	00:00	.
drwxr-xr-x.	9	root	root			4096	Feb		9	03:17	..
-rw-r--r--.	1	root	root		68508	Feb		1	23:20	sa01
-rw-r--r--.	1	root	root		40180	Feb		2	16:00	sa02
-rw-r--r--.	1	root	root		28868	Feb		3	05:30	sa03
-rw-r--r--.	1	root	root		91084	Feb		4	20:00	sa04
-rw-r--r--.	1	root	root		57148	Feb		5	23:50	sa05
-rw-r--r--.	1	root	root		34524	Feb		6	23:50	sa06
-rw-r--r--.	1	root	root	105224	Feb		7	23:50	sa07
-rw-r--r--.	1	root	root	235312	Feb		8	23:50	sa08
-rw-r--r--.	1	root	root	105224	Feb		9	06:00	sa09
-rw-r--r--.	1	root	root		56616	Jan	23	23:00	sa23
-rw-r--r--.	1	root	root		56616	Jan	24	20:10	sa24
-rw-r--r--.	1	root	root		24648	Jan	30	23:30	sa30
-rw-r--r--.	1	root	root		11948	Jan	31	23:20	sa31
-rw-r--r--.	1	root	root		44476	Feb		5	23:53	sar05
-rw-r--r--.	1	root	root		27244	Feb		6	23:53	sar06
-rw-r--r--.	1	root	root		81094	Feb		7	23:53	sar07
-rw-r--r--.	1	root	root	180299	Feb		8	23:53	sar08

The	data	files	that	the	sysstat	package	generates	use	a	filename	that	follows	the
"sa<two	digit	day>"	format.	For	example,	in	the	above	output,	we	can	see	that
the	"sa24"	file	was	generated	on	January	24th.	We	can	also	see	that	this	system
has	files	from	January	23rd	to	February	9th.

The	 sar	 command	 is	 a	 command	 that	 allows	 us	 to	 read	 these	 captured
performance	metrics.	This	section	will	show	you	how	to	use	the	sar	command	to
review	 the	 same	 statistics	 that	 we	 reviewed	 earlier	 with	 commands	 such	 as
iostat,	 top,	 and	 vmstat.	 This	 time,	 however,	 the	 sar	 command	will	 provide
both	recent	and	historical	information.

CPU

To	look	at	CPU	statistics	with	the	sar	command,	we	can	simply	use	the	–u	(CPU
Utilization)	flag.

#	sar	-u
Linux	3.10.0-123.el7.x86_64	(blog.example.com)			02/09/2015			
_x86_64_		(2	CPU)

12:00:01	AM					CPU					%user					%nice			%system			%iowait				
%steal	%idle
12:10:02	AM					all						7.42						0.00					13.46					37.51						
0.00	41.61
12:20:01	AM					all						7.59						0.00					13.61					38.55						
0.00	40.25
12:30:01	AM					all						7.44						0.00					13.46					38.50						
0.00	40.60
12:40:02	AM					all						8.62						0.00					15.71					31.42						
0.00	44.24
12:50:02	AM					all						8.77						0.00					16.13					29.66						
0.00	45.44
01:00:01	AM					all						8.88						0.00					16.20					29.43						
0.00	45.49
01:10:01	AM					all						7.46						0.00					13.64					37.29						
0.00	41.61
01:20:02	AM					all						7.35						0.00					13.52					37.79						
0.00	41.34
01:30:01	AM					all						7.40						0.00					13.36					38.60						
0.00	40.64
01:40:01	AM					all						7.42						0.00					13.53					37.86						
0.00	41.19
01:50:01	AM					all						7.44						0.00					13.58					38.38						
0.00	40.60

04:20:02	AM					all						7.51						0.00					13.72					37.56						
0.00	41.22
04:30:01	AM					all						7.34						0.00					13.36					38.56						
0.00	40.74
04:40:02	AM					all						7.40						0.00					13.41					37.94						
0.00	41.25
04:50:01	AM					all						7.45						0.00					13.81					37.73						
0.00	41.01
05:00:02	AM					all						7.49						0.00					13.75					37.72						
0.00	41.04
05:10:01	AM					all						7.43						0.00					13.30					39.28						
0.00	39.99
05:20:02	AM					all						7.24						0.00					13.17					38.52						
0.00	41.07
05:30:02	AM					all					13.47						0.00					11.10					31.12						
0.00	44.30
05:40:01	AM					all					67.05						0.00						1.92						0.00						
0.00	31.03
05:50:01	AM					all					68.32						0.00						1.85						0.00						
0.00	29.82
06:00:01	AM					all					69.36						0.00						1.76						0.01						
0.00	28.88
06:10:01	AM					all					70.53						0.00						1.71						0.01						
0.00	27.76
Average:								all					14.43						0.00					12.36					33.14						
0.00	40.07

If	 we	 look	 at	 the	 header	 information	 from	 above,	 we	 can	 see	 that	 the	 sar
command	with	the	-u	flag	matches	the	iostat	and	top	CPU	details.

12:00:01	AM					CPU					%user					%nice			%system			%iowait				
%steal	%idle

From	 the	 sar	 -u	 output,	 we	 can	 identify	 an	 interesting	 trend:	 from	 00:00	 to
05:30,	 there	was	 a	 constant	CPU	 I/O	wait	 time	 of	 30%–40%.	However,	 as	 of
05:40,	 the	 I/O	wait	 decreased,	 but	 the	 user-level	 CPU	 utilization	 increased	 to
65%–70%	utilization.

While	these	two	measurements	don't	specifically	point	to	any	one	process,	they
do	show	that	the	I/O	wait	time	has	decreased	recently	while	the	user	CPU	time
has	increased.

To	get	a	better	picture	of	historical	statistics,	we	will	need	to	look	at	the	previous
day's	CPU	utilization.	Luckily,	we	can	do	 just	 that	with	 the	–f	 (filename)	flag.

The	–f	flag	will	allow	us	to	specify	a	historical	file	for	the	sar	command.	This
will	allow	us	to	selectively	view	statistics	from	the	previous	day.

#	sar	-f	/var/log/sa/sa07	-u
Linux	3.10.0-123.el7.x86_64	(blog.example.com)			02/07/2015	
_x86_64_		(2	CPU)

12:00:01	AM					CPU					%user					%nice			%system			%iowait				
%steal	%idle
12:10:01	AM					all					24.63						0.00						0.71						0.00						
0.00	74.66
12:20:01	AM					all					25.31						0.00						0.70						0.00						
0.00	73.99
01:00:01	AM					all					27.59						0.00						0.68						0.00						
0.00	71.73
01:10:01	AM					all					29.64						0.00						0.71						0.00						
0.00	69.65
05:10:01	AM					all					44.09						0.00						0.63						0.00						
0.00	55.28
05:20:01	AM					all					60.94						0.00						0.58						0.00						
0.00	38.48
05:30:01	AM					all					62.32						0.00						0.56						0.00						
0.00	37.12
05:40:01	AM					all					63.74						0.00						0.56						0.00						
0.00	35.70
05:50:01	AM					all					65.08						0.00						0.56						0.00						
0.00	34.35
0.00					76.07
Average:								all					37.98						0.00						0.65						0.00						
0.00	61.38

In	 the	 report	 from	 February	 7th,	 we	 can	 see	 a	 drastic	 difference	 in	 CPU
utilization	 than	 what	 was	 identified	 during	 our	 previous	 troubleshooting.	 One
item	that	stands	out	is	that	in	the	report	from	the	7th,	no	CPU	time	was	spent	in
the	I/O	wait	state.

However,	 we	 do	 see	 that	 the	 user	 CPU	 time	 fluctuated	 from	 20%	 to	 65%
depending	on	 the	 time	of	 day.	This	may	 indicate	 that	 a	 higher	 user	CPU	 time
utilization	is	expected.

Memory

To	 display	 memory	 statistics,	 we	 can	 execute	 the	 sar	 command	 with	 the	 –r
(memory)	flag.

#	sar	-r
Linux	3.10.0-123.el7.x86_64	(blog.example.com)			02/09/2015	
_x86_64_		(2	CPU)

12:00:01	AM	kbmemfree	kbmemused		%memused	kbbuffers		kbcached	
kbcommit			%commit		kbactive			kbinact			kbdirty
12:10:02	AM					38228				463832					92.39									0				387152	
446108					28.17				196156				201128									0
12:20:01	AM					38724				463336					92.29									0				378440	
405128					25.59				194336				193216					73360
12:30:01	AM					38212				463848					92.39									0				377848	
405128					25.59						9108				379348					58996
12:40:02	AM					37748				464312					92.48									0				387500	
446108					28.17				196252				201684									0
12:50:02	AM					33028				469032					93.42									0				392240	
446108					28.17				196872				205884									0
01:00:01	AM					34716				467344					93.09									0				380616	
405128					25.59				195900				195676					69332
01:10:01	AM					31452				470608					93.74									0				384092	
396660					25.05				199100				196928					74372
05:20:02	AM					38756				463304					92.28									0				387120	
399996					25.26				197184				198456									4
05:30:02	AM				187652				314408					62.62									0					19988	
617000					38.97				222900					22524									0
05:40:01	AM				186896				315164					62.77									0					20116	
617064					38.97				223512					22300									0
05:50:01	AM				186824				315236					62.79									0					20148	
617064					38.97				223788					22220									0
06:00:01	AM				182956				319104					63.56									0					24652	
615888					38.90				226744					23288									0
06:10:01	AM				176992				325068					64.75									0					29232	
615880					38.90				229356					26500									0
06:20:01	AM				176756				325304					64.79									0					29480	
615884					38.90				229448					26588									0
06:30:01	AM				176636				325424					64.82									0					29616	
615888					38.90				229516					26820									0
Average:								77860				424200					84.49									0				303730	
450102					28.43				170545				182617					29888

Again,	if	we	look	at	the	header	from	the	memory	report	of	sar,	we	can	see	some
familiar	values.

12:00:01	AM	kbmemfree	kbmemused		%memused	kbbuffers		kbcached	
kbcommit			%commit		kbactive			kbinact			kbdirty

From	this	report,	we	can	see	from	the	kbmemused	column	that	as	of	05:40,	the

system	 suddenly	 freed	 up	 150	 MB	 of	 physical	 memory.	 It	 appears	 from	 the
kbcached	column	that	this	150	MB	of	memory	was	allocated	to	the	disk	cache.
This	is	based	on	the	fact	that	at	05:40,	the	cached	memory	went	from	196	MB	to
22	MB.

What	is	interesting	 is	 that	 this	aligns	with	 the	CPU	utilization	change	 that	also
occurred	 at	 05:40.	 If	 we	 wished	 to	 review	 historical	 memory	 utilization,	 we
could	also	use	the	-f	(filename)	flag	with	the	-r	(memory)	flag.	However,	since
we	can	see	a	rather	obvious	trend	at	05:40,	we	will	focus	on	this	time	for	now.

Disk

To	show	disk	statistics	for	today,	we	can	use	the	–d	(block	device)	flag.

#	sar	-d
Linux	3.10.0-123.el7.x86_64	(blog.example.com)			02/09/2015	
_x86_64_		(2	CPU)

12:00:01	AM							DEV							tps		rd_sec/s		wr_sec/s		avgrq-sz		
avgqu-sz					await					svctm					%util
12:10:02	AM				dev8-0			1442.64	150584.15	146120.49				205.67	82.17					
56.98						0.51					74.17
12:10:02	AM		dev253-0						1.63					11.11						1.96						8.00	0.06					
34.87					19.72						3.22
12:10:02	AM		dev253-1			1402.67	150572.19	146051.96				211.47	82.73					
58.98						0.53					74.68
04:20:02	AM				dev8-0			1479.72	152799.09	150240.77				204.80	81.27					
54.89						0.50					73.86
04:20:02	AM		dev253-0						1.74					10.98						2.96						8.00	0.06					
31.81					14.60						2.54
04:20:02	AM		dev253-1			1438.57	152788.11	150298.01				210.69	81.84					
56.83						0.52					74.38
05:30:02	AM		dev253-0						1.00						7.83						0.17						8.00	0.00						
3.81						2.76						0.28
05:30:02	AM		dev253-1			1170.61	123647.27	122655.72				210.41	69.12					
59.04						0.53					62.20
05:40:01	AM				dev8-0						0.08						1.00						0.34					16.10	0.00						
1.88						1.00						0.01
05:40:01	AM		dev253-0						0.11						0.89						0.00						8.00	0.00						
1.57						0.25						0.00
05:40:01	AM		dev253-1						0.05						0.11						0.34						8.97	0.00						
2.77						1.17						0.01
05:50:01	AM				dev8-0						0.07						0.49						0.28					11.10	0.00						
1.71						1.02						0.01

05:50:01	AM		dev253-0						0.06						0.49						0.00						8.00	0.00						
2.54						0.46						0.00
05:50:01	AM		dev253-1						0.05						0.00						0.28						6.07	0.00						
1.96						0.96						0.00

Average:										DEV							tps		rd_sec/s		wr_sec/s		avgrq-sz	
avgqu-sz					await					svctm					%util
Average:							dev8-0			1215.88	125807.06	123583.62				205.11	66.86					
55.01						0.50					60.82
Average:					dev253-0						2.13					12.48						4.53						8.00	0.10					
44.92					17.18						3.65
Average:					dev253-1			1181.94	125794.56	123577.42				210.99	67.31					
56.94						0.52					61.17

By	 default,	 the	 sar	 command	 will	 print	 the	 device	 name	 as	 "dev<major>-
<minor>,"	 which	 can	 be	 a	 bit	 confusing.	 If	 the	 -p	 (persistent	 names)	 flag	 is
added,	 the	 device	 names	 will	 use	 persistent	 names,	 which	 match	 the	 devices
from	the	mount	command.

#	sar	-d	-p
Linux	3.10.0-123.el7.x86_64	(blog.example.com)			08/16/2015	
_x86_64_		(4	CPU)

01:46:42	AM							DEV							tps		rd_sec/s		wr_sec/s		avgrq-sz		
avgqu-sz					await					svctm					%util
01:48:01	AM							sda						0.37						0.00						3.50						9.55	0.00						
1.86						0.48						0.02
01:48:01	AM	rhel-swap						0.00						0.00						0.00						0.00	0.00						
0.00						0.00						0.00
01:48:01	AM	rhel-root						0.37						0.00						3.50						9.55	0.00						
2.07						0.48						0.02

Even	with	 the	 names	 in	 an	 unrecognizable	 format,	 we	 can	 see	 that	 dev253-1
seems	 to	 have	 had	 quite	 a	 bit	 of	 activity	 up	 to	 05:40,	 where	 the	 disk	 tps
(transactions	per	seconds)	decreases	from	1170	to	0.11.	This	 large	drop	in	disk
I/O	 utilization	 seems	 to	 indicate	 that	 a	 rather	 large	 change	 occurred	 at	 05:40
today.

Network

To	show	network	statistics,	we	will	need	to	execute	the	sar	command	with	the	–
n	DEV	flag.

#	sar	-n	DEV

Linux	3.10.0-123.el7.x86_64	(blog.example.com)			02/09/2015	
_x86_64_		(2	CPU)

12:00:01	AM					IFACE			rxpck/s			txpck/s				rxkB/s				txkB/s	
rxcmp/s			txcmp/s		rxmcst/s
12:10:02	AM				enp0s3						1.51						1.18						0.10						0.12	0.00						
0.00						0.00
12:10:02	AM				enp0s8						0.14						0.00						0.02						0.00	0.00						
0.00						0.07
12:10:02	AM								lo						0.00						0.00						0.00						0.00	0.00						
0.00						0.00
12:20:01	AM				enp0s3						0.85						0.85						0.05						0.08	0.00						
0.00						0.00
12:20:01	AM				enp0s8						0.18						0.00						0.02						0.00	0.00						
0.00						0.08
12:20:01	AM								lo						0.00						0.00						0.00						0.00	0.00						
0.00						0.00
12:30:01	AM				enp0s3						1.45						1.16						0.10						0.11	0.00						
0.00						0.00
12:30:01	AM				enp0s8						0.18						0.00						0.03						0.00	0.00						
0.00						0.08
12:30:01	AM								lo						0.00						0.00						0.00						0.00	0.00						
0.00						0.00
05:20:02	AM								lo						0.00						0.00						0.00						0.00	0.00						
0.00						0.00
05:30:02	AM				enp0s3						1.23						1.02						0.08						0.11	0.00						
0.00						0.00
05:30:02	AM				enp0s8						0.15						0.00						0.02						0.00	0.00						
0.00						0.04
05:30:02	AM								lo						0.00						0.00						0.00						0.00	0.00						
0.00						0.00
05:40:01	AM				enp0s3						0.79						0.78						0.05						0.14	0.00						
0.00						0.00
05:40:01	AM				enp0s8						0.18						0.00						0.02						0.00	0.00						
0.00						0.08
05:40:01	AM								lo						0.00						0.00						0.00						0.00	0.00						
0.00						0.00
05:50:01	AM				enp0s3						0.76						0.75						0.05						0.13	0.00						
0.00						0.00
05:50:01	AM				enp0s8						0.16						0.00						0.02						0.00	0.00						
0.00						0.07
05:50:01	AM								lo						0.00						0.00						0.00						0.00	0.00						
0.00						0.00
06:00:01	AM				enp0s3						0.67						0.60						0.04						0.10	0.00						
0.00						0.00

In	 the	 network	 statistics	 report,	 we	 see	 no	 change	 throughout	 the	 day.	 This

suggests	that,	overall,	there	has	never	been	any	network	performance	bottlenecks
associated	with	this	server.

Review	 what	 we	 learned	 by	 comparing
historical	statistics
After	 looking	 through	 historical	 statistics	 with	 sar	 and	 recent	 statistics	 using
commands	such	as	ps,	iostat,	vmstat,	and	top,	we	can	come	to	 the	following
conclusions	regarding	our	"slow	performance."

Since	we	were	asked	by	one	of	our	peers	to	investigate	the	issue,	our	conclusions
will	be	formatted	in	the	form	of	an	e-mail	reply	to	this	peer.

Hi	Bob!

I	looked	into	that	one	server	where	the	user	said	the	server	was	"slow."	It	seems
that	 the	 user	 called	 vagrant	 has	 been	 running	multiple	 instances	 of	 two	main
programs.	The	first	being	the	lookbusy	application,	which	seems	to	use	roughly
20%–40%	 CPU	 at	 all	 times.	 However,	 in	 at	 least	 one	 instance,	 the	 lookbusy
application	also	used	a	great	deal	of	memory,	exhausting	the	system	of	physical
memory	and	 forcing	 the	 system	 to	 swap	heavily.	However,	 this	process	did	not
last	very	long.

The	second	program	was	the	bonnie++	application,	which	seems	to	utilize	a	lot
of	 disk	 I/O	 resources.	 While	 the	 vagrant	 user	 was	 running	 the	 bonnie++
application,	it	utilized	approximately	60%	of	the	dm-1	and	sda	disk	bandwidths,
causing	a	high	I/O	wait	of	around	30%.	Typically,	this	system	has	an	I/O	wait	of
0%	(confirmed	via	sar).

It	 seems	 that	 the	 vagrant	 user	 may	 be	 running	 applications	 that	 are	 using
resources	beyond	the	expected	levels,	causing	performance	degradation	for	the
other	users.

Summary
In	 this	 chapter,	 we	 started	 to	 use	 some	 advanced	 Linux	 commands	 that	 we
explored	 in	 Chapter	 2,	 Troubleshooting	 Commands	 and	 Sources	 of	 Useful
Information	 such	as	iostat	 and	vmstat.	We	also	became	very	 familiar	with	 a
fundamental	 utility	 within	 Linux,	 the	 ps	 command,	 while	 troubleshooting	 a
vague	performance	issue.

While	in	Chapter	3,	Troubleshooting	a	Web	Application	we	were	able	to	follow
the	full	troubleshooting	process	from	Data	Collection	to	Trial	and	Error,	in	this
chapter,	 our	 actions	 were	 primarily	 focused	 on	 the	 Data	 Collection	 and
Establishing	 a	 Hypothesis	 stages.	 It	 is	 quite	 common	 to	 find	 yourself	 only
troubleshooting	an	issue	and	not	performing	corrective	actions.	There	are	many
issues	 that	 should	 be	 resolved	 by	 a	 user	 of	 the	 system	 and	 not	 the	 systems
administrator,	but	 it	 is	still	 the	administrator's	 role	 to	 identify	 the	source	of	 the
issue.

In	Chapter	 5,	Network	 Troubleshooting	 we	will	 be	 troubleshooting	 some	 very
interesting	 network	 issues.	 Networking	 is	 critical	 to	 any	 system;	 issues	 can
sometimes	 be	 simple,	 and	 at	 other	 times,	 they	 are	 very	 complex.	 In	 the	 next
chapter,	we	will	explore	networking	and	how	to	troubleshoot	network	issues	by
using	tools	such	as	netstat	and	tcpdump.

Chapter	5.	Network	Troubleshooting
In	Chapter	3,	Troubleshooting	a	Web	Application,	we	 took	 an	 in-depth	 look	 at
troubleshooting	 web	 applications;	 while	 we	 walked	 through	 a	 complex
application	 error,	 we	 completely	 skipped	 the	 networking	 aspect	 of	 web
applications.	In	this	chapter,	we	will	investigate	a	reported	issue	that	will	walk	us
through	concepts	such	as	DNS,	routing,	and	of	course	network	configuration	for
RHEL	systems.

Networking	is	an	essential	skill	for	any	Linux	systems	administrator.	To	quote	a
past	instructor:

A	server	without	a	network	is	useless	to	everyone.

As	a	systems	administrator,	every	server	or	desktop	that	you	manage	will	have
some	sort	of	network	connection.	Whether	 this	network	connection	 is	within	a
segregated	corporate	network	or	directly	connected	to	the	Internet,	a	network	is
involved.

Since	networking	is	such	a	critical	topic,	this	chapter	will	cover	many	aspects	of
networking	 and	 network	 connectivity;	 however,	 it	 will	 not	 cover	 firewalls.
Firewall	troubleshooting	and	configuration	will	actually	be	covered	in	Chapter	6,
Diagnosing	and	Correcting	Firewall	Issues.

Database	connectivity	issues
In	Chapter	 3,	Troubleshooting	 a	 Web	 Application,	 we	 were	 troubleshooting	 a
problem	with	the	company	blog.	In	this	chapter,	we	will	once	again	troubleshoot
this	blog;	however,	today's	issue	is	a	bit	different.

After	 arriving	 for	 the	 day,	 we	 receive	 a	 call	 from	 a	 developer	 stating:	 The
WordPress	blog	is	returning	an	error	that	it	cannot	connect	to	the	database.

Data	collection
According	to	the	troubleshooting	process	that	we	have	been	following,	the	next
step	 is	 to	 gather	 as	 much	 data	 as	 possible	 around	 the	 issue.	 One	 of	 the	 best
sources	 of	 information	 is	 the	 person	 reporting	 the	 issue;	 for	 this	 situation,	we
will	ask	two	basic	questions:

How	can	I	duplicate	the	issue	and	see	the	error?
Has	anything	changed	recently	with	the	WordPress	application?

When	asked,	 the	developer	states	 that	we	can	see	 the	error	simply	by	going	 to
the	blog	in	the	web	browser.	On	the	second	question,	 the	developer	informs	us
that	 the	 database	 service	 was	 recently	 moved	 from	 the	 webserver	 to	 a	 new
dedicated	 database	 server.	 He	 also	 mentions	 that	 the	 move	 happened	 several
days	ago	and	that	the	application	was	working	until	today.

Since	the	database	service	was	moved	several	days	ago	and	the	application	was
working	up	until	this	morning,	it	is	not	likely	that	this	change	caused	the	issue.
However,	we	should	not	discount	this	as	a	possibility.

Duplicating	the	issue
As	discussed	in	the	previous	chapters,	a	key	data	collection	task	is	to	duplicate
the	issue.	We	do	this	to	not	only	verify	that	the	issue	being	reported	is	the	issue
occurring	but	also	to	find	any	additional	errors	that	may	not	have	been	reported.

Since	 the	 developer	 stated	 that	 we	 could	 duplicate	 this	 by	 going	 to	 the	 blog
directly,	we	will	do	that	from	our	web	browser.

It	seems	that	we	can	duplicate	the	issue	pretty	easily.	On	the	basis	of	this	error,	it
appears	that	the	application	is	simply	saying	that	it	is	having	issues	establishing
a	 database	 connection.	 While	 this	 in	 itself	 does	 not	 mean	 that	 the	 issue	 is
network-related,	 it	 could	 be.	The	 issue	 could	 also	 simply	 be	 an	 issue	with	 the
database	service	itself.

To	determine	whether	the	issue	is	a	network	issue	or	a	database	service	issue,	we
will	first	need	to	find	which	server	the	application	is	configured	to	connect	to.

Finding	the	database	server
As	with	the	previous	chapter,	we	will	determine	which	server	the	application	is
using	by	looking	through	the	application	configuration	files.	From	our	previous
troubleshooting	in	Chapter	3,	Troubleshooting	a	Web	Application,	we	know	that
the	WordPress	 application	 is	 hosted	 on	blog.example.com.	 To	 get	 started,	we
will	 first	 log	 into	 the	 blog's	 webserver	 and	 look	 through	 the	 WordPress
configuration	files.

$	ssh	blog.example.com	-l	vagrant
vagrant@blog.example.com's	password:
Last	login:	Sat	Feb	28	18:49:40	2015	from	10.0.2.2
[blog]$

Tip

As	we	will	 be	 executing	 commands	 against	multiple	 systems,	 the	 examples	 in
this	 chapter	will	 include	 a	 hostname	 such	 as	blog	 or	 db	 in	 the	 command-line
prompt.

We	learned	in	Chapter	3,	Troubleshooting	a	Web	Application,	that	the	WordPress
database	configuration	is	stored	within	the	/var/www/html/wp-config.php	 file.
To	 quickly	 search	 this	 file	 for	 database	 information,	 we	 can	 use	 the	 grep
command	to	search	for	the	string	DB	as	 this	string	was	present	for	 the	database
configuration	in	our	previous	incident.

[blog]$	grep	DB	wp-config.php
define('DB_NAME',	'wordpress');
define('DB_USER',	'wordpress');
define('DB_PASSWORD',	'password');
define('DB_HOST',	'db.example.com');
define('DB_CHARSET',	'utf8');
define('DB_COLLATE',	'');

With	 the	 above,	 we	 can	 see	 that	 the	 application	 is	 currently	 configured	 to
connect	 to	 db.example.com.	 A	 simple	 first	 troubleshooting	 step	 is	 to	 simply
attempt	to	connect	 to	the	database	manually.	A	simple	way	to	test	the	database
connectivity	manually	is	to	use	the	telnet	command.

Testing	connectivity
The	 telnet	 command	 is	 a	 very	 useful	 network	 and	 network	 service
troubleshooting	 tool	as	 it	 is	designed	 to	simply	establish	a	TCP-based	network
connection	 to	 the	specified	host	and	port.	For	our	example,	we	will	attempt	 to
connect	to	the	host	db.example.com	on	port	3306.

Port	3306	is	the	default	port	for	MySQL	and	MariaDB;	in	the	previous	chapter,
we	 already	 established	 that	 this	 web	 application	 requires	 one	 of	 these	 two
database	services.	As	we	do	not	see	a	specific	port	listed	in	the	wp-config.php
file's	configuration,	we	will	assume	that	 the	database	service	is	running	on	this
default	port.

Telnet	from	blog.example.com

To	get	started,	we	will	execute	the	telnet	command	from	the	blog	server	itself.
The	fact	that	we	are	testing	from	the	same	server	that	the	application	runs	on	is
important,	 as	 this	 allows	 us	 to	 test	 under	 the	 same	 network	 conditions	 as	 the
application	receiving	the	error.

To	 use	 telnet	 to	 connect	 to	 our	 database	 server,	 we	 will	 execute	 the	 telnet
command	followed	by	the	hostname	(db.example.com)	and	port	(3306)	that	we
wish	to	connect	to.

[blog]$	telnet	db.example.com	3306
Trying	192.168.33.12...
telnet:	connect	to	address	192.168.33.12:	No	route	to	host

It	seems	that	 the	telnet	connection	failed.	What	 is	 interesting	 is	 the	error	being
provided;	 the	 No	 route	 to	 host	 error	 seems	 to	 clearly	 indicate	 a	 potential
network	issue.

Telnet	from	our	laptop

Since	the	connection	attempt	from	the	blog	server	failed	with	an	error	indicating
there	was	 a	 network-related	 issue,	we	 can	 attempt	 the	 same	 connectivity	 from
our	 laptop	to	determine	whether	 the	 issue	 is	on	the	blog	server's	side	or	 the	db
server's	side.

To	 test	 this	 connectivity	 from	 our	 laptop,	 we	 can	 once	 again	 use	 the	 telnet
command.	We	can	use	this	command	even	though	our	laptop	is	not	necessarily
running	 a	 Linux	 operating	 system.	 The	 reason	 for	 this	 is	 that	 the	 telnet
command	 is	 a	 cross-platform	 utility;	 in	 this	 chapter,	 we	 will	 utilize	 several
commands	 that	 are	 cross-platform.	While	 there	may	 not	 be	many	 of	 them,	 in
general,	 there	 are	 several	 commands	 that	 work	 on	 most	 operating	 systems,
including	 those	 that	 do	 not	 traditionally	 have	 extensive	 command	 line
functionality.

While	 some	 operating	 systems	 have	 been	 removing	 the	 telnet	 client	 from
default	 installations,	 the	 software	 can	 still	 be	 installed.	 For	 our	 example,	 the
laptop	is	running	OS	X,	which	currently	deploys	the	telnet	client.

[laptop]$	telnet	db.example.com	3306
Trying	10.0.0.50...
Connected	to	10.0.0.50.
Escape	character	is	'^]'.
Connection	closed	by	foreign	host.

It	 seems	 that	 our	 laptop	 is	 also	 unable	 to	 connect	 to	 the	 database	 service;
however,	 the	error	 is	different	 this	 time.	This	 time	 it	 seems	 to	 suggest	 that	 the
connection	 attempt	 was	 closed	 by	 the	 remote	 service.	 We	 also	 do	 not	 see	 a
message	from	the	remote	service,	which	would	indicate	that	the	connection	was
never	fully	established.

One	caveat	to	using	the	telnet	command	to	establish	port	availability	is	that	the
telnet	 command	 will	 show	 a	 connection	 as	 Connected;	 however,	 the
connection	 may	 not	 necessarily	 be	 established	 at	 this	 point.	 The	 general	 rule
when	working	with	 telnet	 is	 to	 not	 assume	 that	 the	 connection	was	 successful
until	a	message	from	the	remote	service	is	received.	In	our	example,	we	did	not
receive	a	message	from	the	remote	service.

Ping
Since	telnet	from	both	the	blog	server	and	our	laptop	failed,	we	should	check
whether	 the	 issue	 is	 isolated	 to	 just	 the	database	 service	or	 connectivity	 to	 the
server	 as	 a	 whole.	 One	 tool	 to	 test	 server-to-server	 connectivity	 is	 the	 ping
command,	which	like	the	telnet	command	is	a	cross-platform	utility.

To	 test	 connectivity	 with	 the	 ping	 command,	 we	 can	 simply	 execute	 the
command	followed	by	the	host	that	we	wish	to	ping.

[blog]$	ping	db.example.com
PING	db.example.com	(192.168.33.12)	56(84)	bytes	of	data.
From	blog.example.com	(192.168.33.11)	icmp_seq=1	Destination	Host	
Unreachable
From	blog.example.com	(192.168.33.11)	icmp_seq=2	Destination	Host	
Unreachable
From	blog.example.com	(192.168.33.11)	icmp_seq=3	Destination	Host	
Unreachable
From	blog.example.com	(192.168.33.11)	icmp_seq=4	Destination	Host	
Unreachable
^C
---	db.example.com	ping	statistics	---
6	packets	transmitted,	0	received,	+4	errors,	100%	packet	loss,	
time	5008ms

The	error	from	the	ping	command	seems	to	be	very	similar	to	the	error	from	the
telnet	 command.	 To	 understand	 this	 error	 better,	 let's	 first	 get	 a	 better
understanding	of	how	the	ping	command	works.

First,	 before	 any	 other	 action,	 the	 ping	 command	 will	 try	 to	 resolve	 the
hostname	provided.	What	this	means	is	that	before	doing	anything	else,	our	ping
execution	tried	to	identify	the	IP	address	of	db.example.com.

PING	db.example.com	(192.168.33.12)	56(84)	bytes	of	data.

From	 the	 results,	 we	 can	 see	 that	 the	 ping	 command	 identified	 this	 host	 as
resolving	to	192.168.33.12.	Once	ping	has	the	IP	address,	it	will	send	an	ICMP
echo	request	network	packet	to	that	IP.	In	this	case,	this	means	that	it	is	sending
an	ICMP	echo	request	to	192.168.33.12.

ICMP	is	a	networking	protocol	that	is	used	as	a	control	system.	When	the	remote

host,	such	as	192.168.33.12	receives	an	ICMP	echo	request	network	packet,	it	is
supposed	to	send	an	ICMP	echo	reply	network	packet	back	to	the	requesting	host.
This	activity	allows	two	hosts	to	validate	network	connectivity	by	performing	a
simple	networking	version	of	ping	pong.

From	blog.example.com	(192.168.33.11)	icmp_seq=1	Destination	Host	
Unreachable

If	our	ICMP	echo	request	packet	had	never	made	it	to	the	192.168.33.12	server,
we	 simply	would	 have	 had	 no	 output	 from	 the	 ping	 command.	 However,	 we
received	an	error;	this	means	that	the	system	on	the	other	side	is	up,	but	there	is
an	 error	with	 the	 connectivity	 between	 the	 two	 hosts	 that	 is	 preventing	 a	 full
two-way	discussion.

One	 question	 that	 arises	 around	 this	 issue	 is	 whether	 the	 error	 is	 true	 for	 all
network	 connectivity	 from	 the	 blog	 server	 or	 isolated	 to	 the	 communication
between	 the	 blog	 and	 the	 db	 server.	 We	 can	 test	 this	 by	 performing	 a	 ping
request	to	another	generic	address.	Since	our	system	is	connected	to	the	Internet,
we	can	simply	use	a	common	Internet	domain.

#	ping	google.com
PING	google.com	(216.58.216.46)	56(84)	bytes	of	data.
64	bytes	from	lax02s22-in-f14.1e100.net	(216.58.216.46):	icmp_seq=1	
ttl=63	time=23.5	ms
64	bytes	from	lax02s22-in-f14.1e100.net	(216.58.216.46):	icmp_seq=2	
ttl=63	time=102	ms
64	bytes	from	lax02s22-in-f14.1e100.net	(216.58.216.46):	icmp_seq=3	
ttl=63	time=26.9	ms
64	bytes	from	lax02s22-in-f14.1e100.net	(216.58.216.46):	icmp_seq=4	
ttl=63	time=25.6	ms
64	bytes	from	lax02s22-in-f14.1e100.net	(216.58.216.46):	icmp_seq=5	
ttl=63	time=25.6	ms
^C
---	google.com	ping	statistics	---
5	packets	transmitted,	5	received,	0%	packet	loss,	time	4106ms
rtt	min/avg/max/mdev	=	23.598/40.799/102.156/30.697	ms

The	preceding	example	is	an	example	of	a	working	ping	request	and	reply.	Here,
we	 can	 see	 not	 only	 the	 IP	 that	Google.com	 resolves	 to	 but	 also	 the	 returned
ping	requests.	This	means	that,	as	our	blog	server	sends	an	ICMP	echo	request,
the	remote	server	216.58.216.46	sends	an	ICMP	echo	reply.

http://Google.com

Troubleshooting	DNS
Something	 interesting	 that	 both	 the	 ping	 and	 the	 telnet	 commands	 told	 us
beyond	network	connectivity	is	the	IP	address	of	the	db.example.com	hostname.
However,	 it	 seems	 that	our	 results	are	different	when	performing	 these	actions
from	our	laptop	as	opposed	to	from	the	blog	server.

From	the	blog	server,	our	telnet	 tried	 to	connect	 to	192.168.33.12,	 the	same
address	as	our	ping	command.

[blog]$	telnet	db.example.com	3306
Trying	192.168.33.12...
However,	from	the	laptop,	our	telnet	tried	to	connect	to	10.0.0.50,	
a	completely	different	IP	address.
[laptop]$	telnet	db.example.com	3306
Trying	10.0.0.50...

The	reason	for	this	is	simple;	it	seems	that	our	laptop	is	getting	a	different	DNS
result	as	our	blog	server.	If	that	is	the	case	however,	it	could	mean	that	our	issue
may	simply	be	related	to	a	DNS	issue.

Checking	DNS	with	dig

DNS	 is	 an	 important	 aspect	 of	 modern-day	 networks.	 Our	 current	 issue	 is	 a
perfect	 example	 of	 its	 importance.	 In	 the	 WordPress	 configuration	 file,	 our
database	server	is	set	to	db.example.com.	This	means	that	before	the	application
server	can	establish	a	database	connection,	it	must	first	look	up	the	IP	address.

In	many	cases,	it	is	fairly	safe	to	assume	that	the	IP	address	identified	by	ping	is
likely	 to	be	 the	 IP	address	presented	by	DNS.	However,	 this	 is	not	always	 the
case	as	we	may	soon	find	out	with	our	specific	issue.

The	dig	 command	 is	 a	 very	 useful	DNS	 troubleshooting	 command;	 it	 is	 very
flexible	and	can	be	used	 to	perform	many	different	 types	of	DNS	requests.	To
validate	the	DNS	for	db.example.com,	we	can	simply	execute	the	dig	command
followed	by	the	hostname	that	we	wish	to	query:	db.example.com.

[blog]$	dig	db.example.com

;	<<>>	DiG	9.9.4-RedHat-9.9.4-14.el7_0.1	<<>>	db.example.com

;;	global	options:	+cmd
;;	Got	answer:
;;	->>HEADER<<-	opcode:	QUERY,	status:	NOERROR,	id:	15857
;;	flags:	qr	rd	ra;	QUERY:	1,	ANSWER:	1,	AUTHORITY:	0,	ADDITIONAL:	
1

;;	OPT	PSEUDOSECTION:
;	EDNS:	version:	0,	flags:;	udp:	4096
;;	QUESTION	SECTION:
;db.example.com.						IN		A

;;	ANSWER	SECTION:
db.example.com.				15		IN		A		10.0.0.50

;;	Query	time:	39	msec
;;	SERVER:	10.0.2.3#53(10.0.2.3)
;;	WHEN:	Sun	Mar	01	20:51:22	UTC	2015
;;	MSG	SIZE		rcvd:	59

If	 we	 look	 at	 the	 returned	 data	 from	 dig,	 we	 can	 see	 that	 the	 DNS	 name
db.example.com	 does	 not	 resolve	 to	192.168.33.12,	 but	 rather	 to	 10.0.0.50.
We	can	see	this	in	the	ANSWER	SECTION	of	the	dig	command's	output.

;;	ANSWER	SECTION:
db.example.com.				15		IN		A		10.0.0.50

One	very	useful	option	with	dig	is	the	option	to	specify	a	server	to	query.	In	the
previous	execution	of	dig,	we	could	see	that	server	10.0.2.3	was	the	server	that
provided	the	10.0.0.50	address.

;;	Query	time:	39	msec
;;	SERVER:	10.0.2.3#53(10.0.2.3)

Since	 we	 are	 unfamiliar	 with	 this	 DNS	 server,	 we	 can	 validate	 the	 returned
results	 further	 by	 querying	 Google's	 public	 DNS	 servers.	 We	 can	 do	 this	 by
adding	@	followed	by	the	DNS	server	IP	or	hostname	that	we	wish	to	use.	In	the
following	 example,	 we	 are	 requesting	 8.8.8.8	 a	 DNS	 server	 that	 is	 part	 of
Google's	public	DNS	infrastructure.

[blog]$	dig	@8.8.8.8	db.example.com

;	<<>>	DiG	9.9.4-RedHat-9.9.4-14.el7_0.1	<<>>	@8.8.8.8	example.com
;	(1	server	found)
;;	global	options:	+cmd

;;	Got	answer:
;;	->>HEADER<<-	opcode:	QUERY,	status:	NOERROR,	id:	42743
;;	flags:	qr	rd	ra	ad;	QUERY:	1,	ANSWER:	1,	AUTHORITY:	0,	
ADDITIONAL:	1

;;	OPT	PSEUDOSECTION:
;	EDNS:	version:	0,	flags:;	udp:	512
;;	QUESTION	SECTION:
;db.example.com.						IN		A

;;	ANSWER	SECTION:
db.example.com.				18639		IN		A		10.0.0.50

;;	Query	time:	39	msec
;;	SERVER:	8.8.8.8#53(8.8.8.8)
;;	WHEN:	Sun	Mar	01	22:14:53	UTC	2015
;;	MSG	SIZE		rcvd:	56
It	seems	that	Google's	public	DNS	has	the	same	results	as	10.0.2.3.

Looking	up	DNS	with	nslookup

Another	 great	 tool	 for	 troubleshooting	 DNS	 is	 nslookup.	 The	 nslookup
command	is	a	command	that	has	been	around	for	quite	a	while.	In	fact,	it	is	yet
another	 cross-platform	 command	 that	 exists	 on	 practically	 all	major	 operating
systems.

To	 perform	 a	 simple	 DNS	 lookup	 with	 nslookup,	 we	 can	 simply	 run	 the
command	followed	by	the	DNS	name	to	query,	similar	to	dig.

[blog]$	nslookup	db.example.com
Server:				10.0.2.3
Address:		10.0.2.3#53

Non-authoritative	answer:
Name:		db.example.com
Address:	10.0.0.50

Like	dig,	the	nslookup	command	can	be	used	to	query	a	specific	DNS	server	as
well.	This	can	be	done	via	two	methods.	The	first	is	by	adding	the	server	address
at	the	end	of	the	command.

[blog]$	nslookup	db.example.com	8.8.8.8
Server:				8.8.8.8
Address:		8.8.8.8#53

Non-authoritative	answer:
Name:		db.example.com
Address:	10.0.0.50

The	second	method	 is	 to	use	nslookup	 in	 the	 interactive	mode.	To	go	 into	 the
interactive	mode,	simply	execute	nslookup	with	no	other	options.

#	nslookup
>

Once	in	the	interactive	mode,	specify	the	server	to	use	by	entering	server	<dns
server>.

#	nslookup
>	server	8.8.8.8
Default	server:	8.8.8.8
Address:	8.8.8.8#53
>

Finally,	to	lookup	the	DNS	name,	we	just	type	the	domain	to	query.

#	nslookup
>	server	8.8.8.8
Default	server:	8.8.8.8
Address:	8.8.8.8#53
>	db.example.com
Server:				8.8.8.8
Address:		8.8.8.8#53

Non-authoritative	answer:
Name:		db.example.com
Address:	10.0.0.50
>
To	leave	the	interactive	mode,	simply	type	exit.
>	exit

So	why	use	nslookup	rather	than	dig?	While	the	dig	command	is	very	useful,	it
is	not	a	cross-platform	command	and	has	only	traditionally	existed	on	Unix	and
Linux	systems.	The	nslookup	command	on	the	other	hand	is	cross-platform	and
can	be	found	in	most	environments	where	the	dig	command	may	be	unavailable.
It	 is	 important	as	a	systems	administrator	 to	be	familiar	with	many	commands,
and	 it	 is	very	useful	 to	be	able	 to	perform	a	 task	using	whichever	command	is
available.

What	did	dig	and	nslookup	tell	us?

Now	 that	 we	 have	 used	 dig	 and	 nslookup	 to	 query	 the	 DNS	 name
db.example.com,	let's	review	what	we	have	found.

The	domain	db.example.com	actually	resolves	to	10.0.0.50
The	 ping	 command	 returned	 192.168.33.12	 for	 the	 domain
db.example.com

How	 is	 the	ping	 command	 returning	 one	 address	while	DNS	 returns	 another?
One	possibility	is	a	configuration	in	the	/etc/hosts	file.	This	is	something	that
we	can	validate	very	quickly	with	a	simple	grep	command.

[blog]$	grep	example.com	/etc/hosts
192.168.33.11	blog.example.com
192.168.33.12	db.example.com

A	bit	about	/etc/hosts

Before	DNS	servers	such	as	Bind	were	created,	 local	hosts	 files	were	used	 to
manage	 the	domain-to-IP	mappings.	This	 file	 contained	a	 list	of	 every	domain
address	 that	 the	system	needed	to	connect	 to.	However,	over	 time,	 this	method
became	 complicated	 as	 networks	 grew	 from	 a	 few	 hosts	 to	 thousands	 and
millions	of	hosts.

On	Linux	and	most	Unix	distributions,	the	hosts	file	is	located	at	/etc/hosts.
By	default,	any	entry	in	the	/etc/hosts	file	will	supersede	DNS	requests.	This
means	that,	by	default,	if	there	is	a	domain-to-IP	mapping	in	the	/etc/hosts	file,
this	mapping	will	 be	used	and	 the	 system	will	 not	pull	 the	 same	domain	 from
another	DNS	system.

This	 is	 the	 default	 behavior	 for	 Linux;	 however,	 we	 can	 check	 whether	 this
server	 is	 using	 this	 default	 configuration	 by	 reading	 the	 /etc/nsswitch.conf
file.

[blog]$	grep	hosts	/etc/nsswitch.conf
hosts:						files	dns

The	 nsswitch.conf	 file	 is	 a	 configuration	 that	 allows	 administrators	 to
configure	which	backend	systems	to	use	in	order	to	look	up	items	such	as	users,

groups,	 netgroups,	 hostnames,	 and	 services.	 For	 example,	 if	 we	 wanted	 to
configure	 a	 system	 to	 use	 ldap	 to	 look	 up	 user	 groups,	 we	 could	 do	 that	 by
changing	the	values	in	the	/etc/nsswitch.conf	file.

[blog]$	grep	group	/etc/nsswitch.conf
group:						files	sss

Based	 on	 the	 output	 of	 the	 preceding	 grep	 command,	 the	 blog	 system	 is
configured	 to	use	 local	 group	 files	 and	 then	 the	SSSD	service	 to	 look	up	user
groups.	To	add	ldap	 to	 this	configuration,	simply	add	 it	 to	 the	 list	 in	 the	order
desired	(that	is,	ldap	files	sss).

For	 the	 DNS	 that	 is	 specified	 by	 the	 hosts	 configuration,	 it	 appears	 that	 our
server	is	configured	to	look	up	hosts	first	on	the	basis	of	files	and	then	the	DNS.
This	means	that	our	system	will	honor	the	/etc/hosts	file	before	looking	up	a
domain	via	DNS.

DNS	summary

Now	that	we	have	confirmed	both	DNS	and	the	/etc/hosts	file,	we	know	that
someone	 has	 configured	 this	 application	 server	 to	 think	 db.example.com
resolves	to	192.168.33.12.	Was	this	a	mistake	or	is	this	a	way	to	connect	to	the
database	server	without	using	DNS?

At	 this	 point,	 it	 is	 a	 bit	 too	 early	 to	 tell,	 but	 we	 do	 know	 that	 the	 host
192.168.33.12	 did	not	 send	an	ICMP	echo	reply	 to	 our	ICMP	echo	request
from	the	blog	server.

Pinging	from	another	location
Whenever	 dealing	with	 network	 issues,	 it	 is	 always	 best	 to	 try	 the	 connection
from	multiple	locations	or	servers.	This	may	seem	like	something	obvious	to	the
data	 collector	 type	 of	 troubleshooter,	 but	 the	 educated	 guesser	 troubleshooter
may	overlook	this	extremely	helpful	step.

For	our	example,	we	will	run	a	test	ping	from	our	laptop	to	192.168.33.12.

[laptop]$	ping	192.168.33.12
PING	192.168.33.12	(192.168.33.12):	56	data	bytes
64	bytes	from	192.168.33.12:	icmp_seq=0	ttl=64	time=0.573	ms
64	bytes	from	192.168.33.12:	icmp_seq=1	ttl=64	time=0.425	ms
64	bytes	from	192.168.33.12:	icmp_seq=2	ttl=64	time=0.461	ms
^C
---	192.168.33.12	ping	statistics	---
3	packets	transmitted,	3	packets	received,	0.0%	packet	loss
round-trip	min/avg/max/stddev	=	0.425/0.486/0.573/0.063	ms

From	the	results	of	the	ping	request,	it	seems	that	our	laptop	is	able	to	connect	to
192.168.33.12	without	any	issue.

What	does	this	tell	us?	Quite	a	bit	actually!	It	tells	us	that	the	server	in	question
is	 up;	 it	 also	 confirms	 that	 there	 is	 a	 connectivity	 issue,	 specifically	 between
blog.example.com	 and	 db.example.com.	 If	 the	 issue	 were	 due	 to	 the
db.example.com	server	being	down	or	misconfigured,	our	laptop	would	also	be
impacted.

However	 that	 is	 not	 the	 case.	 It	 is	 actually	 quite	 the	 opposite;	 it	 seems	 that
connectivity	from	our	laptop	to	the	server	works	as	expected.

Testing	port	connectivity	with	cURL
Earlier	when	testing	the	MariaDB	port	from	our	laptop	with	telnet,	the	telnet
command	was	testing	the	server	10.0.0.50.	However,	based	on	the	/etc/hosts
configuration,	it	seems	that	the	desired	database	server	is	192.168.33.12.

To	verify	 that	 the	database	service	 is	actually	up,	we	should	perform	 the	same
telnet	 test	 with	 the	 192.168.33.12	 address.	 However,	 this	 time	 rather	 than
using	telnet,	we	will	perform	this	test	with	curl.

I	have	 seen	many	environments	 (especially	 lately)	where	 installing	 the	telnet
client	is	forbidden	or	not	performed	by	default.	For	environments	such	as	these,
it	 is	 important	 to	have	some	tool	 that	can	 test	port	connectivity.	 If	 telnet	 is	not
available,	the	curl	command	can	be	used	as	an	alternative.

In	Chapter	3,	Troubleshooting	a	Web	Application,	we	used	the	curl	command	to
request	 a	 web	 page.	 The	 curl	 command	 can	 actually	 be	 used	 with	 many
different	 protocols;	 the	 protocol	 that	 we	 are	 interested	 in	 for	 this	 case	 is	 the
Telnet	protocol.

The	 following	 is	 an	 example	 of	 using	 curl	 from	 our	 laptop	 to	 establish	 a
connection	to	the	db.example.com	server	over	port	3306.

[laptop]$		curl	-v	telnet://192.168.33.12:3306
*	Rebuilt	URL	to:	telnet://192.168.33.12:3306/
*	Hostname	was	NOT	found	in	DNS	cache
*			Trying	192.168.33.12...
*	Connected	to	192.168.33.12	(192.168.33.12)	port	3306	(#0)
*	RCVD	IAC	106
^C

From	the	example,	 it	seems	that	not	only	was	the	laptop	able	to	connect	 to	the
server	on	port	3306,	 but	 the	curl	 command	 also	 received	 a	message	 from	 the
RCVD	IAC	106	service.

When	using	curl	for	Telnet	tests,	it	is	necessary	to	use	the	–v	(verbose)	flag	to
put	curl	into	the	verbose	mode.	Without	the	verbose	flag,	curl	will	simply	hide
the	 connectivity	 details,	 and	 the	 connectivity	 details	 are	 exactly	 what	 we	 are
looking	for.

In	 the	 previous	 example,	we	 can	 see	 that	 the	 connection	 from	 our	 laptop	was
successful;	for	comparison,	we	can	use	this	same	command	to	test	connectivity
from	the	blog	server.

[blog]$	curl	-v	telnet://192.168.33.12:3306
*	About	to	connect()	to	192.168.33.12	port	3306	(#0)
*			Trying	192.168.33.12...
*	No	route	to	host
*	Failed	connect	to	192.168.33.12:3306;	No	route	to	host
*	Closing	connection	0
curl:	(7)	Failed	connect	to	192.168.33.12:3306;	No	route	to	host

As	expected,	the	connection	attempt	failed.

From	 the	 above	 tests	with	curl,	 we	 can	 determine	 that	 the	 database	 server	 is
listening	 and	 accepting	 connections	 on	 port	 3306;	 however,	 the	 blog	 server
cannot	connect	to	the	database	server.	What	we	don't	know	is	if	the	issue	is	on
the	blog	server's	side	or	on	the	database	server's	side.	To	identify	which	side	of
the	 connection	 is	 having	 an	 issue,	 we	 will	 need	 to	 look	 at	 the	 details	 of	 the
network	 connections.	 To	 do	 this,	 we	 will	 use	 two	 commands,	 the	 first	 being
netstat	and	the	second	being	tcpdump.

Showing	 current	 network	 connections	 with
netstat
The	netstat	command	is	a	very	extensive	tool	and	can	be	used	to	troubleshoot
many	aspects	of	network	issues.	In	this	case,	we	will	use	two	of	the	basic	flags	to
print	the	existing	network	connections.

[blog]#	netstat	-na
Active	Internet	connections	(servers	and	established)
Proto	Recv-Q	Send-Q	Local	Address											Foreign	Address	State					
tcp								0						0	127.0.0.1:25												0.0.0.0:*	LISTEN				
tcp								0						0	0.0.0.0:52903											0.0.0.0:*	LISTEN				
tcp								0						0	0.0.0.0:3306												0.0.0.0:*	LISTEN				
tcp								0						0	0.0.0.0:111													0.0.0.0:*	LISTEN				
tcp								0						0	0.0.0.0:22														0.0.0.0:*	LISTEN				
tcp								0						0	10.0.2.16:22												10.0.2.2:50322	
ESTABLISHED
tcp								0						0	192.168.33.11:22								192.168.33.1:53359	
ESTABLISHED
tcp6							0						0	::1:25																		:::*	LISTEN				
tcp6							0						0	:::57504																:::*	LISTEN				
tcp6							0						0	:::111																		:::*	LISTEN				
tcp6							0						0	:::80																			:::*	LISTEN				
tcp6							0						0	:::22																			:::*	LISTEN				
udp								0						0	0.0.0.0:5353												0.0.0.0:*
udp								0						0	0.0.0.0:68														0.0.0.0:*
udp								0						0	0.0.0.0:111													0.0.0.0:*
udp								0						0	0.0.0.0:52594											0.0.0.0:*
udp								0						0	127.0.0.1:904											0.0.0.0:*
udp								0						0	0.0.0.0:49853											0.0.0.0:*
udp								0						0	0.0.0.0:53449											0.0.0.0:*
udp								0						0	0.0.0.0:719													0.0.0.0:*
udp6							0						0	:::54762																:::*
udp6							0						0	:::58674																:::*
udp6							0						0	:::111																		:::*
udp6							0						0	:::719																		:::*
raw6							0						0	:::58																			:::*

In	 the	preceding	example,	we	executed	 the	netstat	 command	with	 the	–n	 (no
dns)	 flag,	which	 tells	netstat	 to	not	 look	up	 the	DNS	hostname	of	 the	 IPs	or
translate	port	numbers	to	service	names,	and	the	–a	(all)	flag	that	tells	netstat	to
print	both	listening	and	non-listening	sockets.

These	 flags	 have	 the	 effect	 of	 netstat,	 showing	 all	 network	 connections	 and
ports	that	are	bound	by	applications.

The	example	netstat	command	shows	quite	a	bit	of	information.	To	get	a	better
understanding	of	this	information,	let's	examine	the	output	a	little	better.

Proto	Recv-Q	Send-Q	Local	Address									Foreign	Address						
State
tcp							0					0	127.0.0.1:25												0.0.0.0:*												
LISTEN

The	 output	 of	 netstat	 is	 split	 into	 six	 columns,	 the	 first	 being	Proto,	 which
shows	 the	 sockets	 protocol.	 In	 the	 snippet	 above,	 the	 socket	 is	 using	 the	TCP
protocol.

The	second	column	Recv-Q	 is	a	count	of	bytes	 received	but	not	copied	by	 the
application	by	using	 this	 socket.	This	 is	basically	 the	number	of	bytes	waiting
between	 the	 kernel	 receiving	 the	 data	 from	 the	 network	 and	 the	 application
accepting	it.

The	third	column	Send-Q	is	a	count	of	bytes	sent	but	not	acknowledged	by	the
remote	host.	Basically,	the	data	has	been	sent	to	a	remote	host,	but	the	local	host
has	not	received	the	remote	host's	acceptance	of	this	data.

The	fourth	column	is	Local	Address,	which	is	the	local	server's	address	used	for
the	socket.	Our	snippet	shows	the	local	host	address	as	127.0.0.1	and	the	port
as	25.

The	fifth	column	is	 the	Foreign	Address	 or	 remote	address.	This	 column	 lists
the	 remote	 server's	 IP	 and	 port.	 Because	 of	 the	 type	 of	 example	 that	we	 used
earlier,	 this	 is	 listed	 as	 IP	 0.0.0.0	 and	 port	 *,	 which	 is	 a	 wildcard,	 meaning
anything.

The	sixth	column,	our	final	column,	is	the	State	socket.	With	TCP	connections,
the	state	will	tell	us	the	current	state	of	the	TCP	connection.	For	our	preceding
example,	the	state	is	listed	as	LISTEN;	 this	 tells	us	that	 the	listed	socket	 is	used
for	accepting	TCP	connections.

If	we	put	all	of	 the	columns	 together,	 this	single	 line	 tells	us	 that	our	server	 is

listening	for	new	connections	on	port	25	via	the	IP	127.0.0.1	and	that	it	is	for
TCP-based	connections.

Using	netstat	to	watch	for	new	connections

Now	that	we	understand	the	output	of	netstat	a	bit	more,	we	can	use	it	to	look
for	new	connections	from	our	application	server	 to	our	database	server.	To	use
netstat	to	watch	for	new	connections,	we	will	use	an	often	overlooked	feature
of	netstat.

Similar	to	the	vmstat	command,	it	is	possible	to	put	netstat	into	a	continuous
mode,	which	prints	 the	same	output	every	 few	seconds.	To	do	 this,	 simply	put
the	interval	at	the	end	of	the	command.

In	the	following	example,	we	will	use	the	same	netstat	flags	with	an	interval	of
5	s;	however,	we	will	also	pipe	the	output	to	grep	and	use	grep	to	filter	for	port
3306.

[blog]#	netstat	-na	5	|	grep	3306
tcp								0						1	192.168.33.11:59492					192.168.33.12:3306	
SYN_SENT		
tcp								0						1	192.168.33.11:59493					192.168.33.12:3306	
SYN_SENT		
tcp								0						1	192.168.33.11:59494					192.168.33.12:3306	
SYN_SENT

In	 addition	 to	 running	 the	 netstat	 command,	 we	 also	 can	 navigate	 to	 the
blog.example.com	 address	 in	 our	 browser.	 We	 can	 do	 this	 to	 force	 the	 web
application	to	attempt	a	connection	to	the	database.

In	general,	web	applications	have	two	types	of	connections	to	a	database,	either
persistent	connections	where	they	always	stay	connected	to	the	database	or	non-
persistent	connections	where	they	are	established	only	when	required.	Since	we
don't	know	which	type	this	WordPress	installation	uses,	it	is	safer	for	this	type	of
troubleshooting	 to	assume	 they	are	non-persistent.	This	means	 that,	 in	order	 to
trigger	database	connections,	there	must	be	traffic	to	the	WordPress	application.

From	the	output	of	netstat,	we	can	see	connection	attempts	to	the	database,	and
not	 just	 any	 database	 but	 the	 database	 service	 at	 192.168.33.12.	 This
information	confirms	that,	when	the	web	application	is	attempting	to	establish	a

connection,	it	is	using	the	IP	from	the	hosts	file	and	not	from	DNS.	Up	until	this
point,	we	suspected	that	this	was	the	case	based	on	telnet	and	ping	but	had	no
proof	of	the	connection	from	the	application.

An	 interesting	 fact	 however	 is	 that	 the	 netstat	 output	 shows	 that	 the	 TCP
connection	is	in	a	SYN_SENT	state.	This	SYN_SENT	state	is	the	state	used	when	first
establishing	 a	 network	 connection.	 The	 netstat	 command	 can	 print	 many
different	connection	states;	each	one	tells	us	where	in	the	process	the	connection
is	 in.	 This	 information	 can	 be	 key	 to	 identifying	 the	 root	 cause	 of	 network
connectivity	issues.

Breakdown	of	netstat	states

Before	going	too	far,	we	should	take	a	quick	look	at	the	different	netstat	states
and	what	they	mean.	The	following	is	a	full	list	of	states	used	by	netstat:

ESTABLISHED:	The	connection	has	been	established	and	can	be	used	for	data
transfer
SYN_SENT:	 The	 TCP	 socket	 is	 attempting	 to	 establish	 a	 connection	 to	 the
remote	host
SYN_RECV:	 A	 TCP	 connection	 request	 has	 been	 received	 from	 the	 remote
host
FIN_WAIT1:	The	TCP	connection	is	closing
FIN_WAIT2:	The	TCP	connection	is	waiting	for	the	remote	host	to	close	the
connection
TIME_WAIT:	 The	 socket	 is	 waiting	 after	 being	 closed	 for	 any	 outstanding
network	packets
CLOSE:	The	socket	is	no	longer	being	used
CLOSE_WAIT:	The	remote	end	has	closed	its	connection,	and	the	local	socket
is	being	closed
LAST_ACK:	 The	 remote	 end	 has	 initiated	 closing	 the	 connection,	 and	 the
local	system	is	waiting	for	a	final	acknowledgement
LISTEN:	The	socket	is	being	used	to	listen	for	incoming	connections
CLOSING:	Both	the	local	and	the	remote	sockets	are	closed,	but	not	all	data
has	been	sent
UNKNOWN:	Used	for	sockets	in	an	unknown	state

From	the	above	list,	we	can	determine	that	the	connections	to	the	database	from

the	 application	 never	 become	 ESTABLISHED.	 This	 means	 that	 the	 application
server	starts	the	connection	in	the	SYN_SENT	state,	but	it	never	transitions	to	the
next	state.

Capturing	network	traffic	with	tcpdump
To	 get	 a	 better	 understanding	 of	 the	 network	 traffic,	 we	 will	 use	 a	 second
command	 that	allows	us	 to	 look	at	 the	network	 traffic	details—tcpdump.	 Here,
the	 netstat	 command	 is	 used	 to	 print	 the	 status	 of	 sockets;	 the	 tcpdump
command	is	used	to	create	"dumps"	or	"traces"	of	network	traffic.	These	dumps
allow	users	to	see	all	aspects	of	the	network	traffic	captured.

With	 tcpdump,	 it	 is	 possible	 to	 look	 at	 the	 full	 TCP	 packet	 details,	 from	 the
packet	headers	to	the	actual	data	being	transmitted.	Not	only	can	it	capture	this
data,	 but	 tcpdump	 can	 also	write	 the	 captured	 data	 to	 a	 file.	 After	 the	 data	 is
written	 to	 the	 file,	 it	 can	 be	 saved	 or	moved	 and	 later	 read	with	 the	 tcpdump
command	or	other	network	packet	analysis	tools	(for	example,	wireshark).

The	 following	 is	 a	 simple	example	of	 running	tcpdump	 to	capture	 the	network
traffic.

[blog]#	tcpdump	-nvvv
tcpdump:	listening	on	enp0s3,	link-type	EN10MB	(Ethernet),	capture	
size	65535	bytes
16:18:04.125881	IP	(tos	0x10,	ttl	64,	id	20361,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	156)
				10.0.2.16.ssh	>	10.0.2.2.52618:	Flags	[P.],	cksum	0x189f	
(incorrect	->	0x62a4),	seq	3643405490:3643405606,	ack	245510335,	
win	26280,	length	116
16:18:04.126203	IP	(tos	0x0,	ttl	64,	id	9942,	offset	0,	flags	
[none],	proto	TCP	(6),	length	40)
				10.0.2.2.52618	>	10.0.2.16.ssh:	Flags	[.],	cksum	0xbc71	
(correct),	seq	1,	ack	116,	win	65535,	length	0
16:18:05.128497	IP	(tos	0x10,	ttl	64,	id	20362,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	332)
				10.0.2.16.ssh	>	10.0.2.2.52618:	Flags	[P.],	cksum	0x194f	
(incorrect	->	0xecc9),	seq	116:408,	ack	1,	win	26280,	length	292
16:18:05.128784	IP	(tos	0x0,	ttl	64,	id	9943,	offset	0,	flags	
[none],	proto	TCP	(6),	length	40)
				10.0.2.2.52618	>	10.0.2.16.ssh:	Flags	[.],	cksum	0xbb4d	
(correct),	seq	1,	ack	408,	win	65535,	length	0
16:18:06.129934	IP	(tos	0x10,	ttl	64,	id	20363,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	156)
				10.0.2.16.ssh	>	10.0.2.2.52618:	Flags	[P.],	cksum	0x189f	
(incorrect	->	0x41d5),	seq	408:524,	ack	1,	win	26280,	length	116
16:18:06.130441	IP	(tos	0x0,	ttl	64,	id	9944,	offset	0,	flags	

[none],	proto	TCP	(6),	length	40)
				10.0.2.2.52618	>	10.0.2.16.ssh:	Flags	[.],	cksum	0xbad9	
(correct),	seq	1,	ack	524,	win	65535,	length	0
16:18:07.131131	IP	(tos	0x10,	ttl	64,	id	20364,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	140)

In	 the	 preceding	 example,	 I	 have	 provided	 several	 flags	 to	 the	 tcpdump
command.	The	first	flag	–n	(no	dns)	tells	tcpdump	to	not	look	up	the	hostname	of
any	IPs	that	it	finds.	The	rest	of	the	flags	–vvv	(verbose)	tell	tcpdump	to	be	very
"very"	 verbose.	 The	 tcpdump	 command	 has	 three	 levels	 of	 verbosity;	 each	 –v
that	 is	 added	 to	 the	 command	 line	 increases	 the	 verbosity	 level	 used.	 In	 the
preceding	example,	tcpdump	is	in	its	most	verbose	mode.

The	preceding	example	is	one	of	the	simplest	ways	to	run	tcpdump;	however,	it
does	not	capture	the	traffic	that	we	require.

Taking	a	look	at	the	server's	network	interfaces

When	tcpdump	is	executed	on	systems	with	multiple	network	interfaces,	unless
an	interface	is	defined	the	command	will	pick	the	lowest	numbered	interface	to
attach	to.	In	the	preceding	example,	the	interface	chosen	was	enp0s3;	however,
this	may	not	be	the	interface	used	for	database	connectivity.

Before	 using	 tcpdump	 to	 investigate	 our	 network	 connectivity	 issue,	 we	 first
need	to	identify	which	network	interface	is	used	for	this	connectivity;	to	do	this,
we	will	use	the	ip	command.

[blog]#	ip	link	show
1:	lo:	<LOOPBACK,UP,LOWER_UP>	mtu	65536	qdisc	noqueue	state	UNKNOWN	
mode	DEFAULT
				link/loopback	00:00:00:00:00:00	brd	00:00:00:00:00:00
2:	enp0s3:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	
pfifo_fast	state	UP	mode	DEFAULT	qlen	1000
				link/ether	08:00:27:20:5d:4b	brd	ff:ff:ff:ff:ff:ff
3:	enp0s8:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	
pfifo_fast	state	UP	mode	DEFAULT	qlen	1000
				link/ether	08:00:27:7f:fd:54	brd	ff:ff:ff:ff:ff:ff

At	a	high	level,	the	ip	command	allows	users	to	print,	modify,	and	add	network
configurations.	In	the	example	above,	we	are	telling	the	ip	command	to	"show"
us	 all	 of	 the	 available	 "links"	 by	 using	 the	show	 links	 parameters.	 The	 links

being	shown	are	actually	the	defined	network	interfaces	for	this	server.

What	is	a	network	interface?

When	 talking	 about	 a	 physical	 server,	 the	 network	 interface	 is	 generally	 a
representation	of	a	physical	Ethernet	port.	If	we	assume	that	the	machine	used	in
the	preceding	example	is	a	physical	machine,	we	can	assume	that	the	enp0s3	and
enp0s8	 links	 are	 physical	 devices.	 In	 reality,	 however,	 the	 abovementioned
machine	is	a	virtual	machine.	This	means	that	the	devices	are	logically	attached
to	 this	 virtual	machine;	 the	 kernel	 of	 this	machine	 however	 does	 not	 know	or
even	need	to	know	the	difference.

For	 example,	 in	 this	 book	 most	 interfaces,	 with	 the	 exception	 of	 the	 "lo"	 or
loopback	 interface,	 are	 directly	 related	 to	 physical	 (or	 virtually	 physical)
network	 devices.	 It	 is	 possible,	 however,	 to	 create	 virtual	 interfaces,	 which
allows	 you	 to	 create	 multiple	 interfaces	 that	 link	 back	 to	 a	 single	 physical
interface.	 In	general,	 these	 interfaces	 are	 seen	with	 a	 ":"	or	"."	 as	 a	 separator
from	the	original	device	name.	If	we	were	to	make	a	virtual	interface	for	enp0s8,
it	would	look	something	along	the	lines	of	enp0s8:1.

Viewing	device	configuration

From	 the	 ip	 command's	 output,	 we	 can	 see	 that	 there	 are	 three	 network
interfaces	 defined.	 Before	 knowing	 which	 one	 is	 used	 for	 our	 database
connectivity,	we	will	first	need	to	understand	these	interfaces	better.

1:	lo:	<LOOPBACK,UP,LOWER_UP>	mtu	65536	qdisc	noqueue	state	UNKNOWN	
mode	DEFAULT

The	lo	or	loopback	interface	is	the	first	one	in	the	list.	Anyone	who	has	worked
on	Linux	or	Unix	 long	 enough	will	 be	very	 familiar	with	 loopback	 interfaces.
The	 loopback	interface	 is	designed	to	give	users	of	 the	system	a	 local	network
address	that	can	only	be	used	to	connect	back	to	the	local	system.

This	special	interface	allows	applications	located	on	the	same	server	to	interact
via	TCP/IP	without	having	 to	expose	 their	connectivity	externally	 to	 the	wider
network.	 It	 also	 allows	 these	 applications	 to	 interact	without	 a	 network	packet
leaving	the	local	server,	thus	making	it	a	very	fast	networking	connection.

Traditionally,	 the	 loopback	 interface	IP	 is	well	known	as	127.0.0.1.	However,

just	 like	 everything	 else	 in	 this	 book,	 we	 will	 first	 validate	 this	 information
before	assuming	it	to	be	true.	We	can	do	this	by	using	the	ip	command	to	show
the	loopback	interface's	defined	address.

[blog]#	ip	addr	show	lo
1:	lo:	<LOOPBACK,UP,LOWER_UP>	mtu	65536	qdisc	noqueue	state	UNKNOWN
				link/loopback	00:00:00:00:00:00	brd	00:00:00:00:00:00
				inet	127.0.0.1/8	scope	host	lo
							valid_lft	forever	preferred_lft	forever
				inet6	::1/128	scope	host
							valid_lft	forever	preferred_lft	forever

In	the	previous	example	that	shows	available	interfaces,	the	"link	show"	options
were	used;	in	order	to	show	IP	addresses,	the	"addr	show"	options	can	be	used.
The	 syntax	 for	 the	 ip	 command	 to	 print	 items	 follows	 this	 same	 scheme
throughout.

The	preceding	example	also	specifies	 the	name	of	 the	device	we	are	 interested
in;	 this	 limits	 the	output	 to	 the	specified	device.	 If	we	were	 to	omit	 the	device
name	from	the	preceding	command,	it	would	simply	print	the	IP	addresses	for	all
devices.

So,	what	does	the	above	tell	us	about	the	lo	interface?	Well	one	thing	that	it	tells
us	is	 that	 the	lo	 interface	is	 listening	on	the	IPv4	address	of	127.0.0.1;	we	can
see	this	on	the	following	line.

				inet	127.0.0.1/8	scope	host	lo

This	means	that,	if	we	want	to	connect	to	this	host	via	the	loopback	interface,	we
can	 do	 so	 by	 targeting	 127.0.0.1.	 The	 ip	 command,	 however,	 also	 shows	 a
second	IP	defined	on	this	interface.

				inet6	::1/128	scope	host

This	shows	us	that	the	IPv6	address	of	::1	is	also	bound	to	the	lo	interface.	This
address	 serves	 the	 same	 purpose	 as	 127.0.0.1,	 but	 it	 is	 designed	 for	 IPv6
communication.

With	 the	 above	 information	 from	 the	ip	 command,	we	 can	 see	 that	 the	 lo	 or
loopback	interface	is	defined	as	expected.

The	second	interface	defined	on	this	server	 is	enp0s3;	 this	device,	unlike	lo,	 is
either	 a	 physical	 device	 or	 a	 virtualized	 physical	 interface.	 The	 ip	 link	 show
command	executed	earlier	has	already	told	us	quite	a	bit	about	this	interface.

2:	enp0s3:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	
pfifo_fast	state	UP	mode	DEFAULT	qlen	1000
				link/ether	08:00:27:20:5d:4b	brd	ff:ff:ff:ff:ff:ff

From	the	preceding	snippet,	we	can	identify	the	following:

The	device	is	in	an	up	state:	state	UP
The	MTU	size	is	1500:	mtu	1500
The	MAC	address	is	08:00:27:20:5d:4b:	link/ether	08:00:27:20:5d:4b

From	this	information,	we	know	that	the	interface	is	up	and	able	to	be	utilized.
We	also	know	that	the	MTU	size	is	set	to	the	default	of	1500,	and	we	can	easily
identify	the	MAC	address.	While	the	MTU	size	and	the	MAC	address	may	not
be	extremely	pertinent	to	this	issue,	they	can	be	very	useful	in	other	situations.

However,	for	our	current	task	of	identifying	which	interface	is	used	for	database
connectivity,	we	will	need	to	identify	which	IPs	are	bound	to	this	interface.

[blog]#	ip	addr	show	enp0s3
2:	enp0s3:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	
pfifo_fast	state	UP	qlen	1000
				link/ether	08:00:27:20:5d:4b	brd	ff:ff:ff:ff:ff:ff
				inet	10.0.2.15/24	brd	10.0.2.255	scope	global	dynamic	enp0s3
							valid_lft	49655sec	preferred_lft	49655sec
				inet6	fe80::a00:27ff:fe20:5d4b/64	scope	link
							valid_lft	forever	preferred_lft	forever

From	the	preceding	output,	we	can	see	 that	 the	enp0s3	 interface	 is	 listening	 to
the	 IPv4	 IP	 of	 10.0.2.15	 (inet	 10.0.2.15/24)	 as	 well	 as	 the	 IPv6	 IP	 of
f380::a00:27ff:fe20:5d4b	 (inet6	 fe80::a00:27ff:fe20:5d4b/64).	 Does
this	tell	us	that	connections	to	192.168.33.12	go	through	this	interface?	No,	but
it	also	doesn't	mean	that	they	don't.

What	 this	 does	 tell	 us	 is	 that	 the	 enp0s3	 interface	 is	 used	 to	 connect	 to	 the
10.0.2.15/24	 network.	 This	 network	may	 or	may	 not	 be	 able	 to	 route	 to	 the
address	 of	 192.168.33.12;	 before	 making	 this	 determination,	 we	 should	 first
review	the	next	interface's	configuration.

The	 third	 interface	 on	 this	 system	 is	 enp0s8;	 it	 is	 also	 a	 physical	 or	 virtual
network	 device,	 and	 from	 the	 information	 provided	 by	 the	 ip	 link	 show
command,	we	can	see	that	it	has	a	similar	configuration	to	enp0s3.

3:	enp0s8:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	
pfifo_fast	state	UP	mode	DEFAULT	qlen	1000
				link/ether	08:00:27:7f:fd:54	brd	ff:ff:ff:ff:ff:ff

From	this	output,	we	can	see	that	the	interface	of	enp0s8	is	also	in	an	"UP"	state
and	has	the	default	MTU	size	of	1500.	We	can	also	determine	the	MAC	address
of	this	interface,	which	at	this	time	is	not	specifically	required;	however,	it	may
become	useful	later.

If	 we	 look	 at	 the	 IPs	 defined	 on	 this	 server,	 however,	 there	 is	 a	 significant
difference	from	those	of	the	enp0s3	device.

[blog]#	ip	addr	show	enp0s8
3:	enp0s8:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	
pfifo_fast	state	UP	qlen	1000
				link/ether	08:00:27:7f:fd:54	brd	ff:ff:ff:ff:ff:ff
				inet	192.168.33.11/24	brd	192.168.33.255	scope	global	enp0s8
							valid_lft	forever	preferred_lft	forever
				inet6	fe80::a00:27ff:fe7f:fd54/64	scope	link
							valid_lft	forever	preferred_lft	forever

We	 can	 see	 that	 the	 enp0s8	 interface	 is	 listening	 on	 the	 IPv4	 address	 of
192.168.33.11	 (inet	 192.168.33.11/24)	 and	 the	 IPv6	 address	 of
fe80::a00:27ff:fe7f:fd54	(inet6	fe80::a00:27ff:fe7f:fd54/64).

Does	this	mean	that	the	enp0s8	interface	is	used	to	connect	to	192.168.33.12?
Well,	actually,	it	may.

The	 subnet	 defined	 for	 enp0s8	 is	 192.168.33.11/24,	 which	 means	 that	 this
interface	 is	 connected	 to	 a	 network	 of	 devices	 that	 span	 the	 IP	 range	 of
192.168.33.0	 to	 192.168.33.255.	 Since	 the	 database	 server's	 IP
192.168.33.12	 is	within	this	range,	 it	 is	very	likely	that	 the	communication	to
this	address	is	over	the	enp0s8	interface.

At	 this	 point,	 we	 can	 "suspect"	 that	 the	 interface	 of	 enp0s8	 is	 used	 for
communication	to	the	database	server.	While	this	interface	may	be	configured	to

talk	 to	 the	 subnet	 that	 contains	192.168.33.12,	 it	 is	 entirely	 possible	 to	 force
communication	through	another	interface	by	using	defined	routes.

To	 check	 whether	 there	 is	 a	 route	 defined	 and	 forcing	 communication	 out
through	 another	 interface,	 we	 will	 again	 use	 the	 ip	 command.	 For	 this	 task,
however,	we	will	use	the	"route	get"	options	for	the	ip	command.

[blog]#	ip	route	get	192.168.33.12
192.168.33.12	dev	enp0s8		src	192.168.33.11
				cache

When	 executed	 with	 the	 "route	 get"	 arguments,	 the	 ip	 command	 will
specifically	output	which	interface	is	used	to	route	to	the	specified	IP.

From	the	preceding	output,	we	can	see	 that	 the	blog.example.com	 server	 is	 in
fact	using	the	enp0s8	 interface	 to	 route	 to	 the	192.168.33.12	address,	 the	IP	of
db.example.com.

At	this	point,	not	only	have	we	used	the	ip	command	to	determine	what	network
interfaces	 exist	 on	 this	 server,	 but	 we	 have	 also	 used	 it	 to	 determine	 which
interface	a	network	packet	would	take	to	get	to	our	target	host.

The	ip	 command	 is	 a	 very	 useful	 tool	 and	 has	 recently	 been	 slated	 to	 replace
older	commands	such	as	ifconfig	and	route.	If	you	are	generally	familiar	with
using	commands	such	as	ifconfig	but	not	as	familiar	with	the	ip	command,	it	is
a	 good	 idea	 to	 review	 the	 usage	 covered	 above,	 as	 eventually,	 the	 ifconfig
command	will	be	deprecated.

Specifying	the	interface	with	tcpdump

Now	 that	 we	 have	 identified	 the	 interface	 used	 for	 communication	 with
db.example.com	we	can	start	our	network	trace	by	using	tcpdump.	As	mentioned
earlier,	we	will	 use	 the	 -nvvv	 flags	 to	 put	tcpdump	 in	 the	 very	 "very"	 verbose
mode	 without	 hostname	 resolution.	 This	 time,	 however,	 we	 will	 specify	 that
tcpdump	captures	network	traffic	from	the	enp0s8	interface;	we	can	do	this	with
the	-i	(interface)	flag.	We	will	also	use	the	-w	(write)	flag	to	write	the	captured
data	to	a	file.

[blog]#	tcpdump	-nvvv	-i	enp0s8	-w	/var/tmp/chapter5.pcap
tcpdump:	listening	on	enp0s8,	link-type	EN10MB	(Ethernet),	capture	

size	65535	bytes
48	packets	captured

When	we	first	executed	the	tcpdump	command,	we	received	quite	a	bit	of	output
to	the	screen.	When	told	to	save	its	output	to	a	file,	tcpdump	will	not	output	the
captured	data	 to	 the	screen	but	 rather	continuously	show	a	counter	of	captured
packets.

Once	we	have	tcpdump	saving	its	captured	data	to	a	file,	we	need	to	duplicate	the
issue	 to	 try	 to	 generate	 database	 traffic.	 We	 will	 do	 this	 by	 using	 the	 same
method	 as	 we	 did	 with	 the	 netstat	 command:	 by	 simply	 navigating	 to
blog.example.com	in	a	web	browser.

As	 we	 navigate	 to	 the	WordPress	 site,	 we	 should	 see	 the	 packets	 captured
counter	increasing;	this	indicates	that	tcpdump	has	seen	traffic	and	has	captured
it.	 Once	 the	 counter	 reaches	 a	 reasonable	 number,	 we	 can	 stop	 the	 tcpdump
capture.	To	do	this,	simply	press	Ctrl	+	C	on	 the	command	 line;	once	stopped,
we	should	see	a	message	similar	to	the	following:

^C48	packets	captured
48	packets	received	by	filter
0	packets	dropped	by	kernel

Reading	the	captured	data

Now	that	we	have	the	captured	the	network	trace	 saved	 to	a	 file,	we	can	use
this	file	to	investigate	the	database	traffic.	The	benefit	of	having	this	data	saved
within	 a	 file	 is	 that	 we	 can	 read	 this	 data	 multiple	 times	 and	 iterate	 through
filters	 to	 reduce	 the	 output.	 Further,	 when	 running	 tcpdump	 against	 the	 live
network	stream,	we	may	catch	traffic	once	but	never	again.

In	 order	 to	 read	 the	 saved	 data,	 we	 can	 run	 tcpdump	 with	 the	 –r	 (read)	 flag
followed	by	the	filename	to	read.

We	 could	 start	 by	 using	 the	 following	 command	 to	 print	 the	 packet	 header
information	for	all	48	packets	that	we	captured.

[blog]#	tcpdump	-nvvv	-r	/var/tmp/chapter5.pcap

The	output	of	this	command,	however,	can	be	quite	overwhelming;	to	get	to	the

heart	of	 the	 issue,	we	will	need	 to	narrow	down	 the	output	of	tcpdump.	To	do
this,	 we	 will	 use	 tcpdump's	 ability	 to	 apply	 filters	 to	 the	 captured	 data.	 In
particular,	we	will	 be	 filtering	 the	output	 to	 a	 specific	 IP	 address	by	using	 the
"host"	filter.

[blog]#	tcpdump	-nvvv	-r	/var/tmp/chapter5.pcap	host	192.168.33.12
reading	from	file	/var/tmp/chapter5.pcap,	link-type	EN10MB	
(Ethernet)
03:33:05.569739	IP	(tos	0x0,	ttl	64,	id	26591,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	60)
				192.168.33.11.37785	>	192.168.33.12.mysql:	Flags	[S],	cksum	
0xc396	(incorrect	->	0x3543),	seq	3937874058,	win	14600,	options	
[mss	1460,sackOK,TS	val	53696341	ecr	0,nop,wscale	6],	length	0
03:33:06.573145	IP	(tos	0x0,	ttl	64,	id	26592,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	60)
				192.168.33.11.37785	>	192.168.33.12.mysql:	Flags	[S],	cksum	
0xc396	(incorrect	->	0x3157),	seq	3937874058,	win	14600,	options	
[mss	1460,sackOK,TS	val	53697345	ecr	0,nop,wscale	6],	length	0
03:33:08.580122	IP	(tos	0x0,	ttl	64,	id	26593,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	60)
				192.168.33.11.37785	>	192.168.33.12.mysql:	Flags	[S],	cksum	
0xc396	(incorrect	->	0x2980),	seq	3937874058,	win	14600,	options	
[mss	1460,sackOK,TS	val	53699352	ecr	0,nop,wscale	6],	length	0

By	adding	host	192.168.33.12	to	the	end	of	the	tcpdump	command,	the	output
is	 filtered	 to	 traffic	 that	 only	 relates	 to	 the	 host	 192.168.33.12.	 This	 is	 made
possible	 by	 the	host	 filter.	 The	tcpdump	 command	 has	many	 available	 filters;
however,	in	this	chapter,	we	will	mainly	utilize	the	host	filter.	I	would	strongly
suggest	 becoming	 familiar	 with	 tcpdump	 filters	 for	 anyone	 troubleshooting
network	issues	regularly.

When	running	tcpdump	 (in	 the	same	fashion	as	above),	 it	 is	 important	 to	know
that	 each	 line	 is	 a	 packet	 being	 either	 sent	 or	 received	 through	 the	 specified
interface.	The	below	example	is	one	complete	tcpdump	line,	which	is	essentially
one	packet	that	has	passed	through	the	enp0s8	interface.

03:33:05.569739	IP	(tos	0x0,	ttl	64,	id	26591,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	60)
				192.168.33.11.37785	>	192.168.33.12.mysql:	Flags	[S],	cksum	
0xc396	(incorrect	->	0x3543),	seq	3937874058,	win	14600,	options	
[mss	1460,sackOK,TS	val	53696341	ecr	0,nop,wscale	6],	length	0

If	we	take	a	look	at	the	preceding	line,	we	can	see	that	this	packet	is	being	sent

from	 192.168.33.11	 to	 192.168.33.12.	 We	 can	 see	 this	 from	 the	 following
section:

192.168.33.11.37785	>	192.168.33.12.mysql:	Flags	[S]

In	fact,	out	of	the	whole	line,	the	details	in	the	above	snippet	are	everything	we
need	to	start	understanding	the	issue.	We	can	identify	from	the	preceding	snippet
that	this	particular	packet	was	sent	from	192.168.33.11	to	192.168.33.12.	We
can	 identify	 this	 by	 the	 first	 and	 the	 second	 IPs	 in	 this	 snippet.	 Since
192.168.33.11	 is	 the	 first	 IP,	 it	 is	 the	 source	of	 the	packet,	 and	 the	 second	 IP
(192.168.33.12)	is	then	the	destination.

192.168.33.11.37785	>	192.168.33.12.mysql

We	can	also	see	from	this	snippet	that	the	connection	from	192.168.33.11	was
from	the	local	port	37785	to	a	remote	port	of	3306.	We	can	infer	this	as	the	fifth
dot	 in	 the	 source	 address	 is	 37785	 and	 "mysql"	 is	 in	 the	 target	 address.	 The
reason	that	tcpdump	has	printed	"mysql"	is	 that	by	default	 it	will	map	common
service	ports	to	their	common	name.	In	this	case,	it	mapped	port	3306	to	mysql
and	simply	printed	mysql.	This	can	be	turned	off	on	the	command	line	by	using
two	–n	flags	(i.e.	-nn)	to	the	tcpdump	command.

The	third	important	item	that	this	section	tells	us	is	that	the	packet	being	sent	is	a
SYN	packet.	We	can	identify	this	via	the	Flags	[S]	section	of	the	snippet.	Each
line	 in	tcpdump	 output	will	 have	 a	 section	 for	flags.	When	 the	 flags	 set	 on	 a
packet	are	only	S,	this	means	that	the	packet	is	the	initial	SYN	packet.

The	 fact	 that	 this	 packet	 is	 a	SYN	 packet	 actually	 tells	 us	 quite	 a	 bit	 about	 the
packet.

A	quick	primer	on	TCP

Transmission	Control	Protocol	(TCP)	is	one	of	the	most	utilized	protocols	for
Internet-based	 communications.	 It	 is	 the	 protocol	 of	 choice	 for	 many	 of	 the
services	 that	we	 rely	 on	 every	 day.	 From	 the	HTTP	 protocol	 for	 loading	web
pages	to	the	favorite	of	all	Linux	systems	administrators,	SSH,	these	protocols	are
implemented	on	top	of	the	TCP	protocol.

While	TCP	is	highly	used,	 it	 is	also	a	rather	advanced	topic,	a	 topic	that	every

systems	 administrator	 should	 have	 at	 least	 a	 basic	 understanding	 of.	 In	 this
section,	we	are	going	to	quickly	cover	some	TCP	basics;	this	will	by	no	means
be	an	extensive	guide	but	is	just	enough	to	understand	the	root	of	our	issue.

To	 understand	 our	 issue,	 we	 must	 first	 understand	 how	 TCP	 connections	 are
established.	 With	 TCP	 communications,	 there	 are	 generally	 two	 important
parties,	 namely	 the	 client	 and	 the	 server.	 The	 client	 is	 the	 initiator	 of	 the
connection	 and	will	 send	 a	 SYN	 packet	 as	 the	 first	 step	 to	 establishing	 a	 TCP
connection.

When	the	server	receives	a	SYN	packet	and	is	willing	to	accept	the	connection,	it
will	 send	 a	Synchronize	Acknowledgement	 (SYN-ACK)	 packet	 back	 to	 the
client.	 This	 is	 designed	 for	 the	 server	 to	 acknowledge	 that	 it	 has	 received	 the
original	SYN	packet.

When	the	client	receives	this	SYN-ACK	packet,	it	then	replies	to	the	server	with	an
ACK,	sometimes	referred	to	as	a	SYN-ACK-ACK.	The	idea	behind	this	packet	is	for
the	client	to	acknowledge	that	it	has	received	the	server's	acknowledgement.

This	 process	 is	 known	 as	 the	 Three-Way	Handshake	 and	 is	 the	 foundation	 of
TCP.	 The	 benefit	 of	 this	method	 is	 that,	with	 each	 system	 acknowledging	 the
packets	 that	 it	 receives,	 there	 is	 no	 question	 as	 to	 whether	 the	 client	 and	 the
server	are	able	to	communicate	back	and	forth.	Once	a	three-way	handshake	has
been	performed,	the	connection	is	moved	to	an	established	state.	This	is	where
other	types	of	packets	can	be	used,	such	as	Push	(PSH)	packets,	which	are	used
to	transfer	information	from	the	client	to	the	server	or	vice	versa.

Types	of	TCP	packet

Speaking	 of	 additional	 types	 of	 packets,	 it	 is	 important	 to	 know	 that	 the
component	 that	 defines	whether	 a	 packet	 is	 a	 SYN	 packet	 or	 an	 ACK	 packet	 is
simply	a	flag	being	set	in	the	packet	header.

On	the	first	packet	from	our	captured	data,	only	the	SYN	flag	is	set;	this	is	why
we	will	 see	 output	 such	 as	Flags	[S].	 This	 is	 an	 example	 of	 the	 first	 packet
being	sent	and	that	packet	having	only	the	SYN	flag	set.

An	SYN-ACK	packet	is	a	packet	where	the	SYN	and	the	ACK	 flags	are	set.	This	 is

commonly	seen	as	[S.]	in	tcpdump.

The	following	is	a	table	of	packet	flags	commonly	seen	during	troubleshooting
activities	with	tcpdump.	This	is	by	no	means	a	full	list,	but	it	does	give	a	general
idea	of	the	common	packet	types.

SYN-	[S]:	This	is	a	Synchronize	packet,	the	first	packet	sent	from	the	client
to	the	server.
SYN-ACK-	 [S.]:	 This	 is	 a	 Synchronize	 Acknowledgement	 packet;	 these
packet	 flags	 are	 used	 to	 indicate	 that	 the	 server	 received	 the	 client's	 SYN
requests.
ACK-	[.]:	The	Acknowledgement	packet	is	used	by	both	the	server	and	the
client	 to	acknowledge	 the	 received	packets.	After	 the	 initial	SYN	 packet	 is
sent,	all	subsequent	packets	should	have	the	acknowledgement	flag	set.
PSH-	[P]:	This	is	a	Push	packet.	It	is	designed	to	push	the	buffered	network
data	 to	 the	 receiver.	 This	 is	 the	 type	 of	 packet	 where	 data	 is	 actually
transferred.
PSH-ACK-	 [P.]:	 The	 Push	 Acknowledgement	 packet	 is	 used	 to	 both
acknowledge	a	previous	packet	and	send	data	to	the	recipient.
FIN-	[F]:	The	FIN	or	Finish	packet	is	used	to	tell	the	server	that	there	is	no
more	data	and	that	it	can	close	the	established	connection.
FIN-ACK-	 [F.]:	 The	 Finish	 Acknowledgement	 packet	 is	 used	 to
acknowledge	that	the	previous	Finish	packet	was	received.
RST-	[R]:	The	Reset	packet	is	used	when	the	source	system	wishes	to	Reset
the	connection.	 In	general,	 this	 is	due	 to	 an	error	or	 the	 target	port	 is	not
actually	in	the	listening	status.
RST-ACK	 -[R.]:	 The	 Reset	 Acknowledgement	 packet	 is	 used	 to
acknowledge	that	the	previous	Reset	packet	was	received.

Now	that	we	have	explored	the	different	types	of	packets,	let's	tie	it	all	together
and	take	a	quick	look	back	at	the	data	captured	earlier.

[blog]#	tcpdump	-nvvv	-r	/var/tmp/chapter5.pcap	host	192.168.33.12
reading	from	file	/var/tmp/chapter5.pcap,	link-type	EN10MB	
(Ethernet)
03:33:05.569739	IP	(tos	0x0,	ttl	64,	id	26591,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	60)
				192.168.33.11.37785	>	192.168.33.12.mysql:	Flags	[S],	cksum	
0xc396	(incorrect	->	0x3543),	seq	3937874058,	win	14600,	options	

[mss	1460,sackOK,TS	val	53696341	ecr	0,nop,wscale	6],	length	0
03:33:06.573145	IP	(tos	0x0,	ttl	64,	id	26592,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	60)
				192.168.33.11.37785	>	192.168.33.12.mysql:	Flags	[S],	cksum	
0xc396	(incorrect	->	0x3157),	seq	3937874058,	win	14600,	options	
[mss	1460,sackOK,TS	val	53697345	ecr	0,nop,wscale	6],	length	0
03:33:08.580122	IP	(tos	0x0,	ttl	64,	id	26593,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	60)
				192.168.33.11.37785	>	192.168.33.12.mysql:	Flags	[S],	cksum	
0xc396	(incorrect	->	0x2980),	seq	3937874058,	win	14600,	options	
[mss	1460,sackOK,TS	val	53699352	ecr	0,nop,wscale	6],	length	0
If	we	look	at	just	the	IP	addresses	and	the	flags	from	the	captured	
data,	from	each	line,	it	becomes	very	clear	what	the	issue	is.
192.168.33.11.37785	>	192.168.33.12.mysql:	Flags	[S],
192.168.33.11.37785	>	192.168.33.12.mysql:	Flags	[S],
192.168.33.11.37785	>	192.168.33.12.mysql:	Flags	[S],

If	we	break	down	these	three	packets,	we	can	see	that	all	three	of	them	are	from
the	source	port	of	37785,	targeting	the	destination	port	of	3306.	We	can	also	see
that	these	packets	are	SYN	packets.	What	this	means	is	that	our	system	sent	3	SYN
packets	 and	 never	 received	 an	 SYN-ACK	 from	 the	 destination,	 in	 this	 case
192.168.33.12.

What	 does	 this	 tell	 us	 about	 our	 network	 connectivity	 to	 the	 host
192.168.33.12?	It	tells	us	that	either	the	remote	server	192.168.33.12	is	never
receiving	our	packets	or	it	is	receiving	them	and	we	are	never	able	to	receive	the
SYN-ACK	 replies.	 If	 the	 issue	were	due	 to	 the	database	server	not	accepting	our
packet,	we	would	expect	to	see	an	RST	or	Reset	packet.

Reviewing	collected	data
At	this	point,	it	is	a	good	time	to	take	an	inventory	of	what	information	we	have
collected	and	what	we	know	so	far.

The	 first	 bit	 of	 key	 information	 that	we	have	 identified	 is	 that	 the	 blog	 server
(blog.example.com)	 is	 unable	 to	 connect	 to	 the	 database	 server
(db.example.com).	The	second	bit	of	key	information	that	we	have	identified	is
that	 the	DNS	name	db.example.com	 resolves	 to	10.0.0.50.	However,	 there	 is
also	an	/etc/hosts	file	entry	overriding	DNS	on	the	blog.example.com	server.
Because	 of	 the	 hosts	 file,	 when	 the	 web	 application	 tries	 to	 connect	 to
db.example.com,	it	is	connecting	to	192.168.33.12.

We	 have	 also	 identified	 that	 the	 host	 192.168.33.11	 (blog.example.com)	 is
sending	 the	 initial	 SYN	 packets	 to	 192.168.33.12	 when	 the	 WordPress
application	 is	 accessed.	 However,	 the	 server	 192.168.33.12	 is	 either	 not
receiving	or	not	replying	to	these	packets.

Throughout	 our	 investigation,	 we	 reviewed	 the	 blog	 server's	 network
configuration	and	we	determined	 that	 it	appears	 to	be	set	up	correctly.	We	can
perform	additional	validation	of	this	by	simply	using	the	ping	command	to	send
an	ICMP	echo	to	an	IP	within	each	network	interface's	subnet.

[blog]#	ip	addr	show	enp0s3
2:	enp0s3:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	
pfifo_fast	state	UP	qlen	1000
				link/ether	08:00:27:20:5d:4b	brd	ff:ff:ff:ff:ff:ff
				inet	10.0.2.16/24	brd	10.0.2.255	scope	global	dynamic	enp0s3
							valid_lft	62208sec	preferred_lft	62208sec
				inet6	fe80::a00:27ff:fe20:5d4b/64	scope	link
							valid_lft	forever	preferred_lft	forever

For	the	enp0s3	interface,	we	can	see	that	the	IP	address	bound	is	10.0.2.16	with
a	 subnet	 of	 /24	 or	 255.255.255.0.	 With	 this	 setup,	 we	 should	 be	 able	 to
communicate	with	another	IP	within	this	subnet.	The	following	is	the	output	of
using	the	ping	command	to	test	connectivity	to	10.0.2.2.

[blog]#	ping	10.0.2.2
PING	10.0.2.2	(10.0.2.2)	56(84)	bytes	of	data.
64	bytes	from	10.0.2.2:	icmp_seq=1	ttl=63	time=0.250	ms

64	bytes	from	10.0.2.2:	icmp_seq=2	ttl=63	time=0.196	ms
64	bytes	from	10.0.2.2:	icmp_seq=3	ttl=63	time=0.197	ms
^C
---	10.0.2.2	ping	statistics	---
3	packets	transmitted,	3	received,	0%	packet	loss,	time	2001ms
rtt	min/avg/max/mdev	=	0.196/0.214/0.250/0.027	ms

This	shows	that	the	enp0s3	interface	can	at	least	connect	to	other	IPs	within	its
subnet.	With	enp0s8,	we	can	perform	the	same	test	with	another	IP.

[blog]#	ip	addr	show	enp0s8
3:	enp0s8:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	
pfifo_fast	state	UP	qlen	1000
				link/ether	08:00:27:7f:fd:54	brd	ff:ff:ff:ff:ff:ff
				inet	192.168.33.11/24	brd	192.168.33.255	scope	global	enp0s8
							valid_lft	forever	preferred_lft	forever
				inet6	fe80::a00:27ff:fe7f:fd54/64	scope	link
							valid_lft	forever	preferred_lft	forever

From	the	preceding	command,	we	can	see	that	enp0s8	has	the	IP	192.168.33.11
bound	 to	 it	 with	 a	 subnet	 of	 /24	 or	 255.255.255.0.	 If	 we	 can	 use	 the	 ping
command	 to	 communicate	with	 any	other	 IP	 in	 the	192.168.33.11/24	 subnet,
then	we	can	validate	that	this	interface	is	also	configured	correctly.

#	ping	192.168.33.1
PING	192.168.33.1	(192.168.33.1)	56(84)	bytes	of	data.
64	bytes	from	192.168.33.1:	icmp_seq=1	ttl=64	time=0.287	ms
64	bytes	from	192.168.33.1:	icmp_seq=2	ttl=64	time=0.249	ms
64	bytes	from	192.168.33.1:	icmp_seq=3	ttl=64	time=0.260	ms
64	bytes	from	192.168.33.1:	icmp_seq=4	ttl=64	time=0.192	ms
^C
---	192.168.33.1	ping	statistics	---
4	packets	transmitted,	4	received,	0%	packet	loss,	time	3028ms
rtt	min/avg/max/mdev	=	0.192/0.247/0.287/0.034	ms

From	the	results,	we	can	see	that	connectivity	to	the	IP	192.168.33.1	is	working
as	expected.	Therefore,	 this	means	 that,	 in	 at	 least	 a	basic	manner,	 the	enp0s8
interface	is	configured	correctly.

With	all	of	this	information,	we	can	assume	that	the	blog.example.com	server	is
configured	 correctly	 and	 can	 connect	 to	 the	 networks	 that	 it	 is	 configured	 for.
From	this	point	 forward,	 if	we	want	any	more	 information	about	our	 issue,	we
will	need	to	obtain	it	from	the	db.example.com	(192.168.33.12)	server.

Taking	a	look	on	the	other	side
While	it	may	not	always	be	possible,	when	dealing	with	networking	issues	it	is
always	best	 to	 troubleshoot	 from	both	 sides	of	 the	 conversation.	 In	our	 earlier
examples,	we	had	two	systems	that	make	up	our	network	conversation,	namely
the	client	and	 the	server.	So	far	we	have	 looked	at	everything	from	the	client's
perspective;	in	this	section,	we	are	going	to	take	a	look	at	the	other	side	of	this
conversation,	from	the	server's	perspective.

Identifying	the	network	configuration

In	the	previous	section,	we	went	through	several	steps	before	looking	at	the	blog
server's	 network	 configuration.	 In	 the	 case	 of	 the	 database	 server,	 we	 already
know	 that	 the	 issue	 is	 related	 to	 networking	 and	 specifically	 the	 IP	 of
192.168.33.12.	Since	we	already	know	which	IP	the	issue	is	related	to,	the	first
thing	that	we	should	do	is	identify	which	interface	this	IP	is	bound	to.

One	 again,	 we	 will	 do	 this	 by	 using	 the	 ip	 command	 with	 the	 addr	 show
options.

[db]#	ip	addr	show
1:	lo:	<LOOPBACK,UP,LOWER_UP>	mtu	65536	qdisc	noqueue	state	UNKNOWN
				link/loopback	00:00:00:00:00:00	brd	00:00:00:00:00:00
				inet	127.0.0.1/8	scope	host	lo
							valid_lft	forever	preferred_lft	forever
				inet6	::1/128	scope	host
							valid_lft	forever	preferred_lft	forever
2:	enp0s3:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	
pfifo_fast	state	UP	qlen	1000
				link/ether	08:00:27:20:5d:4b	brd	ff:ff:ff:ff:ff:ff
				inet	10.0.2.16/24	brd	10.0.2.255	scope	global	dynamic	enp0s3
							valid_lft	86304sec	preferred_lft	86304sec
				inet6	fe80::a00:27ff:fe20:5d4b/64	scope	link
							valid_lft	forever	preferred_lft	forever
3:	enp0s8:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	
pfifo_fast	state	UP	qlen	1000
				link/ether	08:00:27:c9:d3:65	brd	ff:ff:ff:ff:ff:ff
				inet	192.168.33.12/24	brd	192.168.33.255	scope	global	enp0s8
							valid_lft	forever	preferred_lft	forever
				inet6	fe80::a00:27ff:fec9:d365/64	scope	link
							valid_lft	forever	preferred_lft	forever

In	the	earlier	example,	we	used	the	addr	show	options	to	show	the	IPs	associated
with	a	single	interface.	This	time,	however,	by	omitting	the	interface	name,	the
ip	command	shows	all	IPs	and	the	interface	that	these	IPs	are	bound	to.	This	is	a
quick	and	simple	way	to	show	both	the	IP	addresses	and	the	interfaces	associated
with	this	server.

We	can	see	from	the	preceding	command	that	the	database	server	has	a	similar
configuration	 to	 the	 application	 server	 in	 that	 it	 has	 three	 interfaces.	 Before
going	 too	 far,	 let's	 understand	 the	 server's	 interfaces	 better	 and	 see	 what
information	we	can	identify	from	them.

1:	lo:	<LOOPBACK,UP,LOWER_UP>	mtu	65536	qdisc	noqueue	state	UNKNOWN
				link/loopback	00:00:00:00:00:00	brd	00:00:00:00:00:00
				inet	127.0.0.1/8	scope	host	lo
							valid_lft	forever	preferred_lft	forever
				inet6	::1/128	scope	host
							valid_lft	forever	preferred_lft	forever

The	 first	 interface	 on	 this	 server	 is	 the	 loopback	 interface	 lo.	 As	 discussed
previously,	 this	 interface	 is	 common	 for	 every	 server	 and	 is	 only	 used	 for	 the
local	network	traffic.	This	interface	is	not	likely	to	be	related	to	our	issue.

2:	enp0s3:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	
pfifo_fast	state	UP	qlen	1000
				link/ether	08:00:27:20:5d:4b	brd	ff:ff:ff:ff:ff:ff
				inet	10.0.2.16/24	brd	10.0.2.255	scope	global	dynamic	enp0s3
							valid_lft	86304sec	preferred_lft	86304sec
				inet6	fe80::a00:27ff:fe20:5d4b/64	scope	link
							valid_lft	forever	preferred_lft	forever

It	 seems	 that,	 for	 the	 second	 interface,	 enp0s3,	 the	 database	 server's
configuration	is	very	similar	to	the	blog	server's.	On	the	web	application	server,
we	 also	 had	 an	 interface	 named	 enp0s3	 and	 this	 interface	 was	 also	 on	 the
10.0.2.0/24	network.

Since	 the	 connectivity	 between	 the	 blog	 and	 database	 servers	 seems	 to	 be
targeting	 the	 IP	 of	192.168.33.12,	 it	 seems	 that	enp0s3	 is	 not	 an	 interface	 to
focus	on	as	the	enp0s3	interface	has	the	IP	10.0.2.16	bound	to	it.

3:	enp0s8:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	
pfifo_fast	state	UP	qlen	1000
				link/ether	08:00:27:c9:d3:65	brd	ff:ff:ff:ff:ff:ff

				inet	192.168.33.12/24	brd	192.168.33.255	scope	global	enp0s8
							valid_lft	forever	preferred_lft	forever
				inet6	fe80::a00:27ff:fec9:d365/64	scope	link
							valid_lft	forever	preferred_lft	forever

The	 third	 network	 device	 enp0s8,	 on	 the	 other	 hand,	 does	 have	 the	 IP
192.168.33.12	 bound	 to	 it.	 The	 enp0s8	 device	 is	 also	 set	 up	 similar	 to	 the
enp0s8	device	on	the	blog	server,	as	it	seems	that	the	two	devices	are	both	on	the
192.168.33.0/24	network.

From	 the	 previous	 troubleshooting,	 we	 know	 that	 the	 IP	 that	 our	 web
application's	 targeting	 is	 IP	 192.168.33.12.	 With	 the	 ip	 command,	 we	 have
confirmed	that	192.168.33.12	is	bound	to	this	server	via	the	enp0s8	interface.

Testing	connectivity	from	db.example.com

Now	 that	 we	 know	 that	 the	 database	 server	 has	 an	 expected	 network
configuration,	we	need	to	establish	whether	this	server	is	correctly	connected	to
the	192.168.33.0/24	 network.	The	 simplest	way	 is	 to	 perform	 a	 task	 that	we
performed	earlier	on	the	blog	server;	using	ping	to	connect	to	another	IP	on	that
subnet.

[db]#	ping	192.168.33.1
PING	192.168.33.1	(192.168.33.1)	56(84)	bytes	of	data.
64	bytes	from	192.168.33.1:	icmp_seq=1	ttl=64	time=0.438	ms
64	bytes	from	192.168.33.1:	icmp_seq=2	ttl=64	time=0.208	ms
64	bytes	from	192.168.33.1:	icmp_seq=3	ttl=64	time=0.209	ms
^C
---	192.168.33.1	ping	statistics	---
3	packets	transmitted,	3	received,	0%	packet	loss,	time	2001ms
rtt	min/avg/max/mdev	=	0.208/0.285/0.438/0.108	ms

With	 the	 above	 output,	 we	 can	 see	 that	 the	 database	 server	 is	 able	 to	 contact
another	 IP	 on	 the	 192.168.33.0/24	 subnet.	 Earlier	 while	 troubleshooting,	 we
tried	to	connect	to	the	database	server	from	the	blog	server	and	that	test	failed.
An	interesting	test	would	be	to	validate	that	the	connectivity	fails	the	other	way
around	as	well	when	the	database	server	initiates	a	connection	to	the	blog	server.

[db]#	ping	192.168.33.11
PING	192.168.33.11	(192.168.33.11)	56(84)	bytes	of	data.
From	10.0.2.16	icmp_seq=1	Destination	Host	Unreachable
From	10.0.2.16	icmp_seq=2	Destination	Host	Unreachable

From	10.0.2.16	icmp_seq=3	Destination	Host	Unreachable
From	10.0.2.16	icmp_seq=4	Destination	Host	Unreachable
^C
---	192.168.33.11	ping	statistics	---
6	packets	transmitted,	0	received,	+4	errors,	100%	packet	loss,	
time	5005ms

When	running	the	ping	command	from	the	database	server	to	the	IP	of	the	blog
server	(192.168.33.11),	we	can	see	that	ping	has	replied	with	Destination	Host
Unreachable.	This	is	the	same	error	that	we	saw	when	attempting	connectivity
from	the	blog	server	as	well.

As	 mentioned	 earlier,	 there	 are	 a	 number	 of	 reasons	 other	 than	 network
connectivity	 issues	 that	 a	 ping	will	 fail;	 to	 ensure	 that	 there	 is	 a	 connectivity
issue,	 we	 should	 also	 test	 connectivity	 with	 telnet.	 We	 know	 that	 the	 blog
server	 is	 accepting	 connections	 to	 the	 web	 server,	 so	 a	 simple	 telnet	 to	 the
webserver's	port	should	tell	us	definitively	if	there	is	any	connectivity	from	the
database	server	to	the	web	server.

When	running	telnet,	we	need	to	specify	a	port	to	connect	to.	We	know	that	the
web	server	is	running	and,	when	we	navigate	to	http://blog.example.com,	we
get	 a	 web	 page.	 On	 the	 basis	 of	 this	 information,	 we	 can	 determine	 that	 the
default	HTTP	port	is	used	and	is	listening.	With	this	information,	we	also	know
that	we	 can	 simply	 use	 telnet	 to	 connect	 to	 port	 80,	 the	 default	 port	 for	 HTTP
communication.

[db]#	telnet	192.168.33.11	80
-bash:	telnet:	command	not	found

However,	on	this	server,	telnet	is	not	installed.	That's	OK	because	we	can	use
the	curl	command	as	we	did	in	our	previous	examples.

[db]#	curl	telnet://192.168.33.11:80	-v
*	About	to	connect()	to	192.168.33.11	port	80	(#0)
*			Trying	192.168.33.11...
*	No	route	to	host
*	Failed	connect	to	192.168.33.11:80;	No	route	to	host
*	Closing	connection	0
curl:	(7)	Failed	connect	to	192.168.33.11:80;	No	route	to	host

From	the	curl	 command's	output,	we	can	 see	 that	 the	 communication	 issue	 is

present	 irrespective	 of	 whether	 the	 blog	 or	 the	 database	 server	 initiates	 the
connection.

Looking	for	connections	with	netstat

In	 the	 previous	 section,	 when	 troubleshooting	 from	 the	 blog	 server	 we	 used
netstat	to	view	the	open	TCP	connections	to	the	database	server.	Now	that	we
are	 logged	 into	 the	 database	 server,	we	 can	use	 the	 same	 command	 to	 see	 the
status	of	the	connections	from	the	database	server's	perspective.	To	do	this,	we
will	run	netstat	with	an	interval	specified;	this	causes	netstat	to	print	network
connection	statistics	every	5	s	similar	to	the	vmstat	or	top	commands.

While	the	netstat	command	is	running,	we	will	simply	refresh	our	browser	to
cause	the	WordPress	application	to	attempt	a	database	connection	again.

[db]#	netstat	-na	5	|	grep	192.168.33.11

After	 running	netstat	 in	what	 I	 like	 to	 call	 the	continuous	 mode,	 and	 using
grep	to	filter	for	the	blog	server's	IP	(192.168.33.11),	we	could	not	see	any	TCP
connections	or	connection	attempts.

In	 many	 cases,	 this	 would	 seem	 to	 indicate	 that	 the	 database	 server	 is	 never
receiving	a	TCP	packet	from	the	blog	server.	We	can	confirm	whether	this	is	the
case	by	using	the	tcpdump	command	to	capture	all	network	traffic	on	the	enp0s8
interface.

Tracing	network	connections	with	tcpdump

Earlier	when	learning	about	tcpdump,	we	learned	that	it	defaults	to	the	interface
with	 the	 lowest	 number.	 This	 means	 that,	 in	 order	 to	 capture	 the	 connection
attempts,	 we	 must	 use	 the	 -i	 (interface)	 flag	 to	 trace	 the	 correct	 interface,
enp0s8.	In	addition	to	telling	tcpdump	to	watch	the	enp0s8	interface,	we	are	also
going	to	have	tcpdump	write	its	output	into	a	file.	We	will	do	this	so	that	we	can
capture	as	much	data	as	possible	and	later	use	the	tcpdump	command	to	analyze
the	data	as	many	times	as	we	need	to.

[db]#	tcpdump	-i	enp0s8	-w	/var/tmp/db-capture.pcap
tcpdump:	listening	on	enp0s8,	link-type	EN10MB	(Ethernet),	capture	
size	65535	bytes

Now	that	tcpdump	is	running,	we	simply	need	to	refresh	our	browser	again.

^C110	packets	captured
110	packets	received	by	filter
0	packets	dropped	by	kernel

After	refreshing	the	browser	and	seeing	the	packets	captured	counter	increase,
we	can	stop	tcpdump	by	pressing	Ctrl	+	C	on	the	keyboard.

Once	tcpdump	has	stopped,	we	can	read	the	captured	data	with	the	–r	(read)	flag;
however,	 this	 will	 print	 all	 of	 the	 packets	 that	 tcpdump	 captured.	 In	 some
environments,	this	may	be	quite	a	lot	of	data.	So,	to	trim	the	output	to	only	the
data	that	is	useful,	we	will	use	the	port	filter	to	tell	tcpdump	to	only	output	the
captured	traffic	that	is	initiated	from	or	targeting	port	3306,	the	default	MySQL
port.

We	can	do	this	by	adding	port	3306	to	the	end	of	the	tcpdump	command.

[db]#	tcpdump	-nnvvv	-r	/var/tmp/db-capture.pcap	port	3306
reading	from	file	/var/tmp/db-capture.pcap,	link-type	EN10MB	
(Ethernet)
03:11:03.697543	IP	(tos	0x10,	ttl	64,	id	43196,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	64)
				192.168.33.1.59510	>	192.168.33.12.3306:	Flags	[S],	cksum	
0xc125	(correct),	seq	2335155468,	win	65535,	options	[mss	
1460,nop,wscale	5,nop,nop,TS	val	1314733695	ecr	0,sackOK,eol],	
length	0
03:11:03.697576	IP	(tos	0x0,	ttl	64,	id	0,	offset	0,	flags	[DF],	
proto	TCP	(6),	length	60)
				192.168.33.12.3306	>	192.168.33.1.59510:	Flags	[S.],	cksum	
0xc38c	(incorrect	->	0x5d87),	seq	2658328059,	ack	2335155469,	win	
14480,	options	[mss	1460,sackOK,TS	val	1884022	ecr	
1314733695,nop,wscale	6],	length	0
03:11:03.697712	IP	(tos	0x10,	ttl	64,	id	61120,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	52)
				192.168.33.1.59510	>	192.168.33.12.3306:	Flags	[.],	cksum	
0xb4cd	(correct),	seq	1,	ack	1,	win	4117,	options	[nop,nop,TS	val	
1314733695	ecr	1884022],	length	0
03:11:03.712018	IP	(tos	0x8,	ttl	64,	id	25226,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	127)

While	using	 the	preceding	 filter,	 however,	 it	 seems	 that	 this	database	 server	 is
used	by	more	than	just	the	WordPress	application.	From	the	tcpdump	output,	we

can	see	more	traffic	on	port	3306	than	just	the	blog	server.

To	 clean	 up	 this	 output	 further,	 we	 can	 add	 the	 host	 filter	 to	 the	 tcpdump
command	to	filter	out	only	the	traffic	that	we	are	interested	in:	traffic	from	the
host	192.168.33.11.

[db]#	tcpdump	-nnvvv	-r	/var/tmp/db-capture.pcap	port	3306	and	host	
192.168.33.11
reading	from	file	/var/tmp/db-capture.pcap,	link-type	EN10MB	
(Ethernet)
04:04:09.167121	IP	(tos	0x0,	ttl	64,	id	60173,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	60)
				192.168.33.11.51149	>	192.168.33.12.3306:	Flags	[S],	cksum	
0x4111	(correct),	seq	558685560,	win	14600,	options	[mss	
1460,sackOK,TS	val	9320053	ecr	0,nop,wscale	6],	length	0
04:04:10.171104	IP	(tos	0x0,	ttl	64,	id	60174,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	60)
				192.168.33.11.51149	>	192.168.33.12.3306:	Flags	[S],	cksum	
0x3d26	(correct),	seq	558685560,	win	14600,	options	[mss	
1460,sackOK,TS	val	9321056	ecr	0,nop,wscale	6],	length	0
04:04:12.175107	IP	(tos	0x0,	ttl	64,	id	60175,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	60)
				192.168.33.11.51149	>	192.168.33.12.3306:	Flags	[S],	cksum	
0x3552	(correct),	seq	558685560,	win	14600,	options	[mss	
1460,sackOK,TS	val	9323060	ecr	0,nop,wscale	6],	length	0
04:04:16.187731	IP	(tos	0x0,	ttl	64,	id	60176,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	60)
				192.168.33.11.51149	>	192.168.33.12.3306:	Flags	[S],	cksum	
0x25a5	(correct),	seq	558685560,	win	14600,	options	[mss	
1460,sackOK,TS	val	9327073	ecr	0,nop,wscale	6],	length	0

Here,	 we	 used	 the	 "and"	 operator	 to	 tell	 tcpdump	 to	 only	 print	 traffic	 that	 is
to/from	port	3306	and	to/from	host	192.168.33.11.

The	tcpdump	command	has	many	possible	filters	and	operators;	however,	out	of
all	of	them,	I	would	recommend	becoming	familiar	with	filtering	based	on	port
and	host	as	these	will	suffice	for	most	occasions.

If	 we	 break	 down	 the	 preceding	 captured	 network	 trace,	 we	 can	 see	 some
interesting	information;	to	make	it	a	bit	easier	to	spot,	let's	trim	the	output	down
to	show	just	the	IPs	and	flags	being	used.

04:04:09.167121	IP
				192.168.33.11.51149	>	192.168.33.12.3306:	Flags	[S],

04:04:10.171104	IP
				192.168.33.11.51149	>	192.168.33.12.3306:	Flags	[S],
04:04:12.175107	IP
				192.168.33.11.51149	>	192.168.33.12.3306:	Flags	[S],
04:04:16.187731	IP
				192.168.33.11.51149	>	192.168.33.12.3306:	Flags	[S],

From	 this	 information,	 we	 can	 see	 the	 SYN	 packets	 being	 sent	 from
blog.example.com	 (192.168.33.11)	 and	 arriving	 on	 db.example.com
(192.168.33.12).	What	we	don't	see,	however,	are	the	returned	SYN-ACKS.

This	tells	us	that	we	have	at	least	found	the	source	of	the	networking	issue;	the
server	 db.example.com	 is	 not	 correctly	 replying	 to	 packets	 received	 from	 the
blog	server.

Now	 the	 question	 is:	 What	 can	 cause	 this	 type	 of	 problem?	 There	 are	 many
reasons	 for	 this	 issue	 to	 occur;	 in	 general,	 however,	 such	 an	 issue	 is	 due	 to	 a
misconfiguration	 in	 the	 network	 configuration	 settings.	 Given	 the	 information
that	 we	 have	 gathered,	 we	 can	 hypothesize	 that	 the	 database	 server	 is	 simply
misconfigured.

There	 are,	 however,	 several	 ways	 to	 cause	 this	 type	 of	 problem	 with
misconfigurations.	 In	 order	 to	 identify	 the	 possible	misconfigurations,	 we	 can
use	the	tcpdump	command	to	capture	all	the	network	traffic	on	this	server.

In	the	previous	examples	of	tcpdump,	we	always	specified	a	single	 interface	 to
watch.	In	most	cases,	this	is	appropriate	for	the	issue	as	it	reduces	the	volume	of
data	 being	 captured	 by	 tcpdump.	 On	 very	 active	 servers,	 a	 few	 minutes	 of
tcpdump	data	can	be	very	 large,	 so	 it	 is	always	best	 to	 reduce	 the	data	 to	only
what	is	required.

In	 some	 occasions,	 however,	 such	 as	 this	 issue,	 it	 is	 useful	 to	 tell	 tcpdump	 to
capture	the	network	traffic	from	all	interfaces.	To	do	this,	we	simply	specify	any
as	the	interface	to	watch.

[db]#	tcpdump	-i	any	-w	/var/tmp/alltraffic.pcap
tcpdump:	listening	on	any,	link-type	LINUX_SLL	(Linux	cooked),	
capture	size	65535	bytes

Now	that	we	have	tcpdump	capturing	and	saving	all	traffic	on	all	interfaces,	we

will	 need	 to	 refresh	 our	 browser	 again	 to	 force	 the	WordPress	 application	 to
attempt	database	connections.

^C440	packets	captured
443	packets	received	by	filter
0	packets	dropped	by	kernel

After	a	few	tries,	we	can	stop	the	tcpdump	again	by	pressing	Ctrl	+	C.	With	the
captured	 network	 data	 saved	 to	 a	 file,	 we	 can	 start	 to	 investigate	 what	 is
happening	with	these	connection	attempts.

Since	 the	tcpdump	captured	a	 large	number	of	packets,	we	will	once	again	use
the	host	filter	to	limit	results	to	the	network	traffic	to	and	from	192.168.33.11.

[db]#	tcpdump	-nnvvv	-r	/var/tmp/alltraffic.pcap	host	192.168.33.11
reading	from	file	/var/tmp/alltraffic.pcap,	link-type	LINUX_SLL	
(Linux	cooked)
15:37:51.616621	IP	(tos	0x0,	ttl	64,	id	8389,	offset	0,	flags	[DF],	
proto	TCP	(6),	length	60)
				192.168.33.11.47339	>	192.168.33.12.3306:	Flags	[S],	cksum	
0x34dd	(correct),	seq	4225047048,	win	14600,	options	[mss	
1460,sackOK,TS	val	3357389	ecr	0,nop,wscale	6],	length	0
15:37:51.616665	IP	(tos	0x0,	ttl	64,	id	0,	offset	0,	flags	[DF],	
proto	TCP	(6),	length	60)
				192.168.33.12.3306	>	192.168.33.11.47339:	Flags	[S.],	cksum	
0xc396	(incorrect	->	0x3609),	seq	1637731271,	ack	4225047049,	win	
14480,	options	[mss	1460,sackOK,TS	val	3330467	ecr	
3357389,nop,wscale	6],	length	0
15:37:51.616891	IP	(tos	0x0,	ttl	255,	id	2947,	offset	0,	flags	
[none],	proto	TCP	(6),	length	40)
				192.168.33.11.47339	>	192.168.33.12.3306:	Flags	[R],	cksum	
0x10c4	(correct),	seq	4225047049,	win	0,	length	0
15:37:52.619386	IP	(tos	0x0,	ttl	64,	id	8390,	offset	0,	flags	[DF],	
proto	TCP	(6),	length	60)
				192.168.33.11.47339	>	192.168.33.12.3306:	Flags	[S],	cksum	
0x30f2	(correct),	seq	4225047048,	win	14600,	options	[mss	
1460,sackOK,TS	val	3358392	ecr	0,nop,wscale	6],	length	0
15:37:52.619428	IP	(tos	0x0,	ttl	64,	id	0,	offset	0,	flags	[DF],	
proto	TCP	(6),	length	60)
				192.168.33.12.3306	>	192.168.33.11.47339:	Flags	[S.],	cksum	
0xc396	(incorrect	->	0x1987),	seq	1653399428,	ack	4225047049,	win	
14480,	options	[mss	1460,sackOK,TS	val	3331470	ecr	
3358392,nop,wscale	6],	length	0
15:37:52.619600	IP	(tos	0x0,	ttl	255,	id	2948,	offset	0,	flags	
[none],	proto	TCP	(6),	length	40)

				192.168.33.11.47339	>	192.168.33.12.3306:	Flags	[R],	cksum	
0x10c4	(correct),	seq	4225047049,	win	0,	length	0

With	 the	captured	data,	 it	 seems	 that	we	have	 found	 the	expected	SYN-ACK.	To
show	this	in	a	clearer	fashion,	let's	trim	the	output	to	just	the	IPs	and	flags	in	use.

15:37:51.616621	IP
				192.168.33.11.47339	>	192.168.33.12.3306:	Flags	[S],
15:37:51.616665	IP
				192.168.33.12.3306	>	192.168.33.11.47339:	Flags	[S.],
15:37:51.616891	IP
				192.168.33.11.47339	>	192.168.33.12.3306:	Flags	[R],
15:37:52.619386	IP
				192.168.33.11.47339	>	192.168.33.12.3306:	Flags	[S],
15:37:52.619428	IP
				192.168.33.12.3306	>	192.168.33.11.47339:	Flags	[S.],
15:37:52.619600	IP
				192.168.33.11.47339	>	192.168.33.12.3306:	Flags	[R],

With	a	clearer	picture,	we	can	see	an	interesting	series	of	network	packets	being
transmitted.

15:37:51.616621	IP
				192.168.33.11.47339	>	192.168.33.12.3306:	Flags	[S],

The	first	packet	is	an	SYN	packet	from	192.168.33.11	to	192.168.33.12	on	port
3306.	 This	 is	 the	 same	 type	 of	 packet	 that	 we	 have	 captured	 with	 the	 earlier
tcpdump	executions.

15:37:51.616665	IP
				192.168.33.12.3306	>	192.168.33.11.47339:	Flags	[S.],

However,	we	have	not	seen	the	second	packet	before.	In	the	second	packet,	we
see	that	it	is	an	SYN-ACK	(identified	by	Flags	[S.]).	The	SYN-ACK	 is	being	sent
from	192.168.33.12	on	port	3306	to	192.168.33.11	on	port	47339	(the	port	that
sent	the	original	SYN	packet).

At	the	first	glance,	this	seems	to	be	a	normal	SYN	and	SYN-ACK	handshake.

15:37:51.616891	IP
				192.168.33.11.47339	>	192.168.33.12.3306:	Flags	[R],

The	 third	packet,	 however,	 is	 interesting	 as	 it	 is	 a	 clear	 indication	of	 an	 issue.

The	 third	 packet	 is	 a	 RESET	 packet	 (identified	 by	 Flags	 [R])	 sent	 from
192.168.33.11,	 the	 blog	 server.	 The	 interesting	 thing	 about	 this	 is	 that,	when
executing	tcpdump	on	the	blog	server,	we	never	captured	a	RESET	packet.	If	we
execute	tcpdump	again	on	the	blog	server,	we	can	see	this	one	more	time.

[blog]#	tcpdump	-i	any	port	3306
tcpdump:	verbose	output	suppressed,	use	-v	or	-vv	for	full	protocol	
decode
listening	on	any,	link-type	LINUX_SLL	(Linux	cooked),	capture	size	
65535	bytes
15:24:25.646731	IP	blog.example.com.47336	>	db.example.com.mysql:	
Flags	[S],	seq	3286710391,	win	14600,	options	[mss	1460,sackOK,TS	
val	2551514	ecr	0,nop,wscale	6],	length	0
15:24:26.648706	IP	blog.example.com.47336	>	db.example.com.mysql:	
Flags	[S],	seq	3286710391,	win	14600,	options	[mss	1460,sackOK,TS	
val	2552516	ecr	0,nop,wscale	6],	length	0
15:24:28.652763	IP	blog.example.com.47336	>	db.example.com.mysql:	
Flags	[S],	seq	3286710391,	win	14600,	options	[mss	1460,sackOK,TS	
val	2554520	ecr	0,nop,wscale	6],	length	0
15:24:32.660123	IP	blog.example.com.47336	>	db.example.com.mysql:	
Flags	[S],	seq	3286710391,	win	14600,	options	[mss	1460,sackOK,TS	
val	2558528	ecr	0,nop,wscale	6],	length	0
15:24:40.676112	IP	blog.example.com.47336	>	db.example.com.mysql:	
Flags	[S],	seq	3286710391,	win	14600,	options	[mss	1460,sackOK,TS	
val	2566544	ecr	0,nop,wscale	6],	length	0
15:24:56.724102	IP	blog.example.com.47336	>	db.example.com.mysql:	
Flags	[S],	seq	3286710391,	win	14600,	options	[mss	1460,sackOK,TS	
val	2582592	ecr	0,nop,wscale	6],	length	0

From	 the	 preceding	 tcpdump	 output,	 we	 never	 see	 either	 the	 SYN-ACK	 or	 the
RESET	packets	on	the	blog	server.	This	either	means	that	the	RESET	is	being	sent
by	another	system	or	 the	SYN-ACK	packet	 is	being	 rejected	by	 the	blog	server's
kernel	before	tcpdump	can	capture	it.

When	the	tcpdump	command	captures	network	traffic,	it	does	so	after	the	kernel
has	processed	this	network	traffic.	This	means	that	if,	for	any	reason,	the	kernel
is	rejecting	the	packet,	it	will	not	be	seen	via	the	tcpdump	command.	Thus,	it	is
possible	 that	 the	 blog	 server's	 kernel	 is	 rejecting	 the	 return	 packets	 from	 the
database	server	before	tcpdump	is	able	to	capture	them.

An	 additional	 interesting	 point	 revealed	 by	 performing	 a	 tcpdump	 on	 the
database	is	that,	if	we	look	at	the	tcpdump	performed	on	enp0s8,	we	do	not	see

the	SYN-ACK	packet.	However,	if	we	tell	tcpdump	to	look	at	all	the	interfaces	we
use,	tcpdump	also	shows	the	SYN-ACK	packet	to	be	coming	from	192.168.33.12.
This	suggests	that	the	SYN-ACK	is	being	sent	from	another	interface.

To	confirm	this,	we	can	run	a	tcpdump	again,	limiting	the	capture	to	packets	that
traverse	the	enp0s8	interface.

[db]#	tcpdump	-nnvvv	-i	enp0s8	port	3306	and	host	192.168.33.11
04:04:09.167121	IP	(tos	0x0,	ttl	64,	id	60173,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	60)
				192.168.33.11.51149	>	192.168.33.12.3306:	Flags	[S],	cksum	
0x4111	(correct),	seq	558685560,	win	14600,	options	[mss	
1460,sackOK,TS	val	9320053	ecr	0,nop,wscale	6],	length	0
04:04:10.171104	IP	(tos	0x0,	ttl	64,	id	60174,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	60)
				192.168.33.11.51149	>	192.168.33.12.3306:	Flags	[S],	cksum	
0x3d26	(correct),	seq	558685560,	win	14600,	options	[mss	
1460,sackOK,TS	val	9321056	ecr	0,nop,wscale	6],	length	0

From	this	execution	of	tcpdump,	we	can	yet	again	only	see	the	SYN	packets	from
the	blog	server.	However,	if	we	run	the	same	tcpdump	against	all	interfaces,	we
should	see	not	only	the	SYN	packets	but	also	the	SYN-ACK	packets.

[db]#	tcpdump	-nnvvv	-i	any	port	3306	and	host	192.168.33.11
15:37:51.616621	IP	(tos	0x0,	ttl	64,	id	8389,	offset	0,	flags	[DF],	
proto	TCP	(6),	length	60)
				192.168.33.11.47339	>	192.168.33.12.3306:	Flags	[S],	cksum	
0x34dd	(correct),	seq	4225047048,	win	14600,	options	[mss	
1460,sackOK,TS	val	3357389	ecr	0,nop,wscale	6],	length	0
15:37:51.616665	IP	(tos	0x0,	ttl	64,	id	0,	offset	0,	flags	[DF],	
proto	TCP	(6),	length	60)
				192.168.33.12.3306	>	192.168.33.11.47339:	Flags	[S.],	cksum	
0xc396	(incorrect	->	0x3609),	seq	1637731271,	ack	4225047049,	win	
14480,	options	[mss	1460,sackOK,TS	val	3330467	ecr	
3357389,nop,wscale	6],	length	0

The	 SYN-ACK	 packet	 being	 returned	 to	 192.168.33.11	 is	 sourced	 from
192.168.33.12.	Earlier,	we	identified	that	this	IP	is	bound	to	the	network	device
enp0s8.	However,	when	we	use	tcpdump	to	look	at	all	of	the	packets	being	sent,
the	SYN-ACK	 is	not	captured	going	out	of	enp0s8.	This	means	 that	 the	SYN-ACK
packet	is	being	sent	from	a	different	interface.

Routing
How	does	 an	SYN	 packet	 arrive	 on	 one	 interface	 and	 an	 SYN-ACK	 get	 returned
from	another?	One	possible	answer	is	that	this	is	due	to	a	misconfiguration	in	the
routing	definitions	on	the	database	server.

Every	operating	system	 that	 supports	networking	maintains	something	called	a
routing	table.	This	routing	table	is	a	collection	of	defined	network	routes	that	a
packet	should	take.	To	give	a	bit	of	context	around	this	concept,	let's	use	the	two
interfaces	enp0s3	and	enp0s8	as	examples.

#	ip	addr	show	enp0s8
3:	enp0s8:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	
pfifo_fast	state	UP	qlen	1000
				link/ether	08:00:27:c9:d3:65	brd	ff:ff:ff:ff:ff:ff
				inet	192.168.33.12/24	brd	192.168.33.255	scope	global	enp0s8
							valid_lft	forever	preferred_lft	forever
				inet6	fe80::a00:27ff:fec9:d365/64	scope	link
							valid_lft	forever	preferred_lft	forever
#	ip	addr	show	enp0s3
2:	enp0s3:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	
pfifo_fast	state	UP	qlen	1000
				link/ether	08:00:27:20:5d:4b	brd	ff:ff:ff:ff:ff:ff
				inet	10.0.2.16/24	brd	10.0.2.255	scope	global	dynamic	enp0s3
							valid_lft	65115sec	preferred_lft	65115sec
				inet6	fe80::a00:27ff:fe20:5d4b/64	scope	link
							valid_lft	forever	preferred_lft	forever

If	 we	 look	 at	 these	 two	 interfaces,	 we	 know	 that	 the	 enp0s8	 interface	 is
connected	 to	 the	192.168.33.0/24	 (inet	192.168.33.12/24)	network	and	 the
enp0s3	 interface	 is	 connected	 to	 the	 10.0.2.0/24	 (inet	 10.0.2.16/24)
network.

If	we	were	to	connect	 to	 the	IP	10.0.2.19,	 the	packets	should	not	go	out	of	 the
enp0s8	 interface,	 as	 the	 optimal	 route	 for	 these	 packets	 would	 be	 to	 route
through	 the	enp0s3	 interface.	The	 reason	 that	 this	 is	 the	most	 optimal	 route	 is
that	 the	 enp0s3	 interface	 is	 already	 part	 of	 the	 10.0.2.0/24	 network,	 which
contains	the	IP	10.0.2.19.

The	 enp0s8	 interface	 is	 part	 of	 a	 different	 network	 (192.168.33.0/24)	 and

therefore,	is	the	less	optimal	route.	In	fact,	the	enp0s8	interface	may	not	even	be
able	to	route	to	the	10.0.2.0/24	network.

Even	though	enp0s8	may	be	a	less	optimal	route,	the	kernel	does	not	know	this
without	a	corresponding	entry	in	the	routing	table.	To	dig	deeper	into	our	issue,
we	will	need	to	view	the	routing	table	on	this	database	server.

Viewing	the	routing	table

In	Linux,	there	are	a	few	ways	to	see	the	current	routing	table;	in	this	section,	I
am	going	to	cover	two.	The	first	method	will	utilize	the	netstat	command.

To	use	the	netstat	command	to	view	the	routing	table,	simply	run	it	with	the	–r
(route)	or	--route	flag.	In	the	following	example,	we	will	also	use	the	-n	flag	to
prevent	netstat	from	performing	DNS	lookups.

[db]#	netstat	-rn
Kernel	IP	routing	table
Destination					Gateway									Genmask									Flags			MSS	Window	
irtt	Iface
0.0.0.0									10.0.2.2								0.0.0.0									UG								0	0	0	
enp0s3
10.0.2.0								0.0.0.0									255.255.255.0			U									0	0	0	
enp0s3
169.254.0.0					0.0.0.0									255.255.0.0					U									0	0	0	
enp0s8
192.168.33.0				0.0.0.0									255.255.255.0			U									0	0	0	
enp0s8
192.168.33.11			10.0.2.1								255.255.255.255	UGH							0	0	0	
enp0s3

While	netstat	might	not	be	the	best	Linux	command	to	print	the	routing	table,
there	is	a	very	specific	reason	for	using	it	in	this	example.	As	I	mentioned	earlier
in	this	chapter	and	book,	the	netstat	command	is	a	universal	tool	that	exists	on
almost	every	modern	server,	router,	or	desktop.	By	knowing	how	to	look	at	the
routing	 table	with	netstat,	you	can	perform	basic	network	 troubleshooting	on
any	operating	system	that	has	netstat	installed.

In	general,	it	is	a	safe	bet	that	the	netstat	command	would	be	available	and	can
provide	you	with	at	least	the	basic	details	of	the	system's	networking	status	and
configurations.

The	format	of	netstat	can	be	a	bit	cryptic	compared	with	the	other	utilities	such
as	the	ip	command.	However,	the	preceding	routing	table	shows	us	quite	a	bit	of
information.	To	get	a	better	understanding,	let's	break	down	the	output	route	by
route.

Destination					Gateway									Genmask									Flags			MSS	Window	
irtt	Iface
0.0.0.0									10.0.2.2								0.0.0.0									UG								0	0	0	
enp0s3

As	you	can	see,	the	output	of	the	netstat	command	has	multiple	columns,	eight
to	be	precise.	The	first	column	is	the	Destination	column.	This	is	used	to	define
what	destination	address	is	in	scope	for	the	route.	In	the	preceding	example,	the
destination	 is	0.0.0.0,	which	 is	 essentially	 a	wildcard	value	meaning	 that	 any
and	everything	should	be	routed	via	this	table	entry.

The	 second	 column	 is	Gateway.	 The	 gateway	 address	 is	 the	 next	 hop	 that	 the
network	packets	utilizing	this	route	should	be	sent	to.	For	this	example,	the	next
hop	or	 gateway	 address	 is	 set	 to	10.0.2.2;	 this	means	 that	 any	 packets	 being
routed	via	this	table	entry	will	be	sent	to	10.0.2.2,	which	should	then	route	the
packets	to	the	next	system	until	they	reach	their	destination.

The	 third	 column	 is	 Genmask,	 which	 is	 essentially	 a	 way	 of	 stating	 the
"generality"	of	 the	 route.	Another	way	of	 thinking	about	 this	 column	 is	 as	 a
netmask;	in	the	preceding	example,	the	"genmask"	is	set	to	0.0.0.0,	which	is	an
open	 scope.	This	means	 that	packets	 to	 anywhere	 should	be	 routed	out	of	 this
routing	table	entry.

The	 fourth	 column	 is	 the	 Flag	 column,	 which	 is	 used	 to	 provide	 specific
information	about	this	route.	The	U	value	in	the	example	means	that	the	interface
to	use	for	this	route	is	in	an	up	state.	The	G	value	is	used	to	show	that	the	route
utilizes	a	gateway	address.	In	the	preceding	example,	we	can	see	that	our	route
utilizes	a	gateway	address;	however,	not	all	of	this	system's	routes	do.

The	fifth,	sixth,	and	seventh	columns	are	not	frequently	used	on	Linux	servers.
The	MSS	column	is	used	to	show	the	maximum	segment	size	 specified	for	 this
route.	The	value	of	0	means	that	this	value	is	set	to	the	default	and	not	altered.

The	 Window	 column	 is	 the	 TCP	 window	 size,	 which	 denotes	 the	 maximum

amount	of	data	that	will	be	accepted	in	a	single	burst.	Again,	when	the	value	is
set	to	0,	the	default	size	will	be	used.

The	 seventh	 column	 is	irtt,	 which	 is	 used	 to	 specify	 the	 Initial	Round-trip
Time	for	this	route.	The	kernel	will	resend	packets	that	are	never	responded	to
by	setting	an	initial	round-trip	time;	you	can	increase	or	decrease	the	time	after
which	 the	 kernel	 considers	 packets	 lost.	 As	 in	 the	 case	 of	 the	 previous	 two
columns,	 the	 value	 of	 0	means	 that	 the	 default	 value	will	 be	 used	 for	 packets
using	this	route.

The	eighth	and	the	last	column,	the	IFace	column,	is	the	network	interface	that
the	packets	utilizing	this	route	should	use.	In	the	preceding	example,	this	is	the
enp0s3	interface.

The	default	route

The	first	route	in	our	example	is	actually	a	very	special	route	for	our	system.

Destination					Gateway									Genmask									Flags			MSS	Window	
irtt	Iface
0.0.0.0									10.0.2.2								0.0.0.0									UG								0	0	0	
enp0s3

If	we	look	at	the	details	of	this	route	and	the	definition	of	each	column,	we	can
determine	that	this	route	is	the	default	route	for	the	server.	The	default	route	is	a
special	route	that	is	used	"by	default"	when	no	other	route	supersedes	it.	To	put	it
simply,	if	we	have	packets	that	are	to	be	sent	to	an	address	such	as	172.0.0.10,
these	packets	would	go	through	the	default	route.

The	reason	for	this	is	that	there	is	no	other	route	in	our	database	server's	routing
table	that	specifies	the	IP	172.0.0.10.	As	such,	the	system	simply	sends	packets
to	this	IP	through	the	default	route,	a	catchall	route.

We	 can	 identify	 that	 the	 first	 route	 is	 the	 server's	 default	 route	 because	 of	 the
destination	address	of	0.0.0.0,	which	 essentially	means	 anything.	The	 second
indication	is	the	Genmask	of	0.0.0.0,	which	together	with	the	destination	means
any	IPv4	address.

It	is	also	typical	of	the	default	route	to	use	a	gateway	address,	so	the	fact	that	the
gateway	is	set	with	wildcards	for	destination	and	genmask	is	a	clear	indication

that	the	abovementioned	route	is	the	default	route.

A	non-default	route	will	commonly	look	like	the	following:

10.0.2.0								0.0.0.0									255.255.255.0			U									0	0	0	
enp0s3

The	 abovementioned	 route	 has	 a	 destination	 of	 10.0.2.0	 and	 a	 genmask	 of
255.255.255.0;	this	is	essentially	saying	that	anything	in	the	10.0.2.0/24	network
would	match	this	route.

Since	the	range	of	this	route	is	10.0.2.0/24,	it	is	likely	that	this	route	was	added
by	the	enp0s3	interface	configuration.	We	can	determine	this	on	the	basis	of	the
enp0s3	 interface	 configuration,	 as	 it	 is	 attached	 to	 the	 10.0.2.0/24	 network,
which	is	the	target	of	this	route.	By	default,	Linux	will	automatically	add	routes
on	the	basis	of	the	network	interface's	configuration.

10.0.2.0								0.0.0.0									255.255.255.0			U									0	0	0	
enp0s3

This	 route	 is	 a	 way	 for	 the	 kernel	 to	 ensure	 that	 communication	 for	 the
10.0.2.0/24	 network	 goes	 out	 of	 the	 enp0s3	 interface,	 as	 this	 route	 will
supersede	 the	default	 route.	With	network	 routing,	 the	most	 specific	 route	will
always	be	used.	Since	the	default	route	is	a	wildcard	and	this	route	is	specific	to
the	 10.0.2.0/24	 network,	 this	 route	 will	 be	 used	 for	 anything	 within	 the
network.

Utilizing	IP	to	show	the	routing	table

Another	 tool	 for	 reviewing	 the	 routing	 table	 is	 the	 ip	 command.	 The	 ip
command,	 as	we	 can	 see	 from	 its	 use	within	 this	 chapter,	 is	 a	 very	 extensive
utility	and	can	be	used	 for	practically	everything	network-related	on	a	modern
Linux	system.

One	 use	 for	 the	 ip	 command	 is	 to	 add,	 remove,	 or	 show	 network	 routing
configurations.	 To	 display	 the	 current	 routing	 table,	 simply	 execute	 the	 ip
command	with	the	route	show	options.

[db]#	ip	route	show
default	via	10.0.2.2	dev	enp0s3		proto	static		metric	1024
10.0.2.0/24	dev	enp0s3		proto	kernel		scope	link		src	10.0.2.16

169.254.0.0/16	dev	enp0s8		scope	link		metric	1003
192.168.33.0/24	dev	enp0s8		proto	kernel		scope	link		src	
192.168.33.12
192.168.33.11	via	10.0.2.1	dev	enp0s3		proto	static		metric	1

While	 learning	 to	 use	 the	 netstat	 command	 is	 important	 for	 non-Linux
operating	systems,	 the	ip	 command	 is	an	essential	 tool	 for	any	Linux	network
troubleshooting	or	configuration.

As	 we	 use	 the	 ip	 command	 for	 troubleshooting	 routes,	 we	 may	 even	 find	 it
easier	 than	 the	 netstat	 command.	 One	 example	 is	 finding	 the	 default	 route.
When	the	ip	command	displays	the	default	route,	it	uses	the	word	default	as	the
destination	 rather	 than	 0.0.0.0,	 a	 method	 that	 is	 much	 easier	 to	 understand
especially	for	newer	system	administrators.

It	is	also	easier	to	read	other	routes	as	well.	For	instance,	earlier	while	looking	at
routes	via	netstat,	our	example	route	looked	like	the	following:

10.0.2.0								0.0.0.0									255.255.255.0			U									0	0	0	
enp0s3

With	the	ip	command,	the	same	route	is	shown	in	the	following	format:

10.0.2.0/24	dev	enp0s3		proto	kernel		scope	link		src	10.0.2.16

In	my	opinion,	 the	format	of	ip	 route	show	 is	a	much	simpler	 format	 than	 the
format	of	the	netstat	-rn	command.

Looking	for	routing	misconfigurations

Now	that	we	know	how	to	look	at	the	routing	table	on	the	server,	we	can	use	the
ip	 command	 to	 find	 any	 routes	 that	 may	 cause	 issues	 with	 our	 database
connectivity.

[db]#	ip	route	show
default	via	10.0.2.2	dev	enp0s3		proto	static		metric	1024
10.0.2.0/24	dev	enp0s3		proto	kernel		scope	link		src	10.0.2.16
169.254.0.0/16	dev	enp0s8		scope	link		metric	1003
192.168.33.0/24	dev	enp0s8		proto	kernel		scope	link		src	
192.168.33.12
192.168.33.11	via	10.0.2.1	dev	enp0s3		proto	static		metric	1

Here,	 we	 can	 see	 five	 routes	 defined	 on	 our	 system.	 Let's	 break	 down	 these
routes	to	get	a	better	understanding	of	them.

default	via	10.0.2.2	dev	enp0s3		proto	static		metric	1024
10.0.2.0/24	dev	enp0s3		proto	kernel		scope	link		src	10.0.2.16

The	first	two	routes	we	have	already	covered	and	will	not	review	again.

169.254.0.0/16	dev	enp0s8		scope	link		metric	1003

The	 third	 route	 defines	 that	 all	 traffic	 from	 169.254.0.0/16	 (169.254.0.0	 to
169.254.255.255)	is	sent	via	the	enp0s8	device.	This	route	is	a	very	broad	route
but	most	likely	does	not	impact	our	routing	to	the	IP	192.168.33.11.

192.168.33.0/24	dev	enp0s8		proto	kernel		scope	link		src	
192.168.33.12
192.168.33.11	via	10.0.2.1	dev	enp0s3		proto	static		metric	1

The	 fourth	 and	 fifth	 route,	 however,	 will	 change	 how	 network	 packets	 to
192.168.33.11	are	routed.

192.168.33.0/24	dev	enp0s8		proto	kernel		scope	link		src	
192.168.33.12

The	 fourth	 route	 defines	 that	 all	 the	 traffic	 to	 the	 192.168.33.0/24
(192.168.33.0	 to	 192.168.33.255)	 network	 is	 routed	 out	 of	 the	 enp0s8
interface	and	sourced	from	192.168.33.12.	This	route	appears	to	also	be	added
automatically	by	the	enp0s8	interface's	configuration;	this	is	similar	to	the	earlier
route	added	by	enp0s3.

Since	the	enp0s8	device	is	defined	to	be	a	part	of	the	192.168.33.0/24	network,
it	only	makes	sense	to	route	traffic	for	this	network	out	of	this	interface.

192.168.33.11	via	10.0.2.1	dev	enp0s3		proto	static		metric	1

The	fifth	route,	however,	defines	that	all	traffic	to	the	specific	IP	192.168.33.11
(the	blog	server's	IP)	is	sent	to	the	gateway	of	10.0.2.1	via	the	enp0s3	device.
This	 is	 interesting	 because	 the	 fifth	 route	 and	 the	 fourth	 route	 have	 a	 very
conflicting	 configuration,	 as	 they	 both	 define	 what	 to	 do	 with	 IPs	 in	 the
192.168.33.0/24	network.

More	specific	routes	win

As	mentioned	earlier,	the	golden	rule	of	routing	network	packets	is	that	the	more
specific	route	always	wins.	If	we	look	at	the	routing	configuration,	we	have	one
route	 that	 says	 all	 traffic	 in	 the	 192.168.33.0/24	 subnet	 should	 go	 out	 the
enp0s8	device.	There	is	also	a	second	route	that	says	specifically	192.168.33.11
should	go	out	through	the	enp0s3	device.	The	IP	192.168.33.11	applies	to	both
of	these	rules	but	which	route	should	the	system	send	packets	through?

The	answer	is	always	the	more	specific	route.

Since	the	second	route	specifically	defines	that	all	traffic	to	192.168.33.11	goes
out	of	the	enp0s3	 interface,	 the	kernel	will	 route	all	 return	packets	 through	 the
enp0s3	 interface.	 This	 is	 the	 case	 irrespective	 of	 the	 route	 defined	 for
192.168.33.0/24	or	even	the	default	route.

We	can	see	all	of	 this	 in	action	by	using	 the	ip	command	with	 the	route	get
options.

[db]#	ip	route	get	192.168.33.11
192.168.33.11	via	10.0.2.1	dev	enp0s3		src	10.0.2.16
				cache

The	 ip	 command	 with	 the	 route	 get	 options	 will	 take	 the	 IP	 provided	 and
output	which	route	the	packets	will	take.

When	we	use	this	command	with	192.168.33.11,	we	can	see	that	ip	specifically
shows	 that	 the	 route	 will	 be	 through	 the	 enp0s3	 device.	 If	 we	 use	 the	 same
command	 with	 the	 other	 IPs,	 we	 can	 see	 how	 the	 default	 route	 and	 the
192.168.33.0/24	routes	are	used.

[db]#	ip	route	get	192.168.33.15
192.168.33.15	dev	enp0s8		src	192.168.33.12
				cache
[db]#	ip	route	get	4.4.4.4
4.4.4.4	via	10.0.2.2	dev	enp0s3		src	10.0.2.16
				cache
[db]#	ip	route	get	192.168.33.200
192.168.33.200	dev	enp0s8		src	192.168.33.12
				cache
[db]#	ip	route	get	169.254.3.5
169.254.3.5	dev	enp0s8		src	192.168.33.12
				cache

We	can	see	here	that	when	an	IP	address	that	is	within	a	subnet	with	a	specific
route	defined	is	provided,	this	specific	route	is	taken.	However,	when	an	IP	is	not
defined	by	a	specific	route,	the	default	route	is	taken.

Hypothesis
Now	that	we	understand	how	packets	 to	192.168.33.11	 are	 routed,	we	should
adjust	 our	 previous	 hypothesis	 to	 reflect	 that	 the	 route	 of	 192.168.33.11	 to
enp0s3	is	not	correct	and	is	causing	our	issue.

Essentially,	what	 is	happening	 (and	we	 see	 this	via	tcpdump)	 is	 that,	when	 the
database	server	(192.168.33.12)	receives	a	network	packet	from	the	blog	server
(192.168.33.11),	 it	arrives	on	the	enp0s8	device.	However,	when	the	database
server	 is	 sending	 reply	 packets	 (SYN-ACK)	 to	 the	 web	 application	 server,	 the
packets	are	being	sent	out	via	the	enp0s3	interface.

Since	the	enp0s3	device	is	connected	to	the	10.0.2.0/24	network,	it	seems	that
the	 packet	 is	 being	 rejected	 (RESET)	 by	 another	 system	 or	 device	 on	 the
10.0.2.0/24	 network.	Most	 likely,	 this	 is	 due	 to	 the	 fact	 that	 this	 is	 a	 prime
example	of	asynchronous	routing.

Asynchronous	routing	is	where	a	packet	arrives	on	one	interface	but	is	replied	to
on	another.	In	most	network	configurations,	this	is	denied	by	default,	but	in	some
cases,	can	be	enabled;	however,	these	cases	are	not	extremely	common.

In	our	case,	since	the	enp0s8	interface	is	part	of	the	192.168.33.0/24	subnet,	it
does	 not	 make	 sense	 to	 enable	 asynchronous	 routing.	 Our	 packets	 to
192.168.33.11	should	simply	be	routed	via	the	enp0s8	interface.

Trial	and	error
Now	 that	 we	 have	 identified	 our	 issue	 with	 data	 collection	 and	 established	 a
possible	cause	with	our	hypothesis,	we	can	start	our	next	 troubleshooting	step:
using	trial	and	error	to	correct	the	issue.

Removing	the	invalid	route
To	correct	our	issue,	we	need	to	remove	the	invalid	route	for	192.168.33.11.	To
do	 this,	we	will	 yet	 again	use	 the	ip	 command,	 this	 time	with	 the	route	 del
options.

[db]#	ip	route	del	192.168.33.11
[db]#	ip	route	show
default	via	10.0.2.2	dev	enp0s3		proto	static		metric	1024
10.0.2.0/24	dev	enp0s3		proto	kernel		scope	link		src	10.0.2.16
169.254.0.0/16	dev	enp0s8		scope	link		metric	1003
192.168.33.0/24	dev	enp0s8		proto	kernel		scope	link		src	
192.168.33.12

In	the	preceding	example,	we	used	the	ip	command	with	the	route	del	options
to	 remove	a	 route	 that	 targets	 a	 single	 IP.	We	can	use	 the	 same	command	and
options	 to	 remove	 routes	 that	 are	 defined	 for	 subnets.	 The	 following	 example
will	remove	the	route	for	the	169.254.0.0/16	network:

[db]#	ip	route	del	169.254.0.0/16
[db]#	ip	route	show
default	via	10.0.2.2	dev	enp0s3		proto	static		metric	1024
10.0.2.0/24	dev	enp0s3		proto	kernel		scope	link		src	10.0.2.16
192.168.33.0/24	dev	enp0s8		proto	kernel		scope	link		src	
192.168.33.12

From	 the	 ip	 route	 show	 execution,	 we	 can	 see	 that	 there	 is	 no	 longer	 a
conflicting	route	for	192.168.33.11.	The	question	is:	Did	this	fix	our	issue?	The
only	way	to	know	for	sure	is	to	test	it	and	to	do	this	we	can	simply	refresh	our
browser	that	has	the	blog's	error	page	loaded.

It	seems	that	we	were	successful	at	correcting	the	issue.	If	we	perform	a	tcpdump
now,	we	can	validate	that	the	blog	and	database	servers	are	able	to	communicate.

[db]#	tcpdump	-nnvvv	-i	enp0s8	port	3306
tcpdump:	listening	on	enp0s8,	link-type	EN10MB	(Ethernet),	capture	
size	65535	bytes
16:14:05.958507	IP	(tos	0x0,	ttl	64,	id	7605,	offset	0,	flags	[DF],	
proto	TCP	(6),	length	60)
				192.168.33.11.47350	>	192.168.33.12.3306:	Flags	[S],	cksum	
0xa9a7	(correct),	seq	4211276877,	win	14600,	options	[mss	
1460,sackOK,TS	val	46129656	ecr	0,nop,wscale	6],	length	0
16:14:05.958603	IP	(tos	0x0,	ttl	64,	id	0,	offset	0,	flags	[DF],	
proto	TCP	(6),	length	60)
				192.168.33.12.3306	>	192.168.33.11.47350:	Flags	[S.],	cksum	
0xc396	(incorrect	->	0x786b),	seq	2378639726,	ack	4211276878,	win	
14480,	options	[mss	1460,sackOK,TS	val	46102446	ecr	
46129656,nop,wscale	6],	length	0
16:14:05.959103	IP	(tos	0x0,	ttl	64,	id	7606,	offset	0,	flags	[DF],	
proto	TCP	(6),	length	52)
				192.168.33.11.47350	>	192.168.33.12.3306:	Flags	[.],	cksum	

0xdee0	(correct),	seq	1,	ack	1,	win	229,	options	[nop,nop,TS	val	
46129657	ecr	46102446],	length	0
16:14:05.959336	IP	(tos	0x8,	ttl	64,	id	24256,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	138)
				192.168.33.12.3306	>	192.168.33.11.47350:	Flags	[P.],	cksum	
0xc3e4	(incorrect	->	0x99c9),	seq	1:87,	ack	1,	win	227,	options	
[nop,nop,TS	val	46102447	ecr	46129657],	length	86
16:14:05.959663	IP	(tos	0x0,	ttl	64,	id	7607,	offset	0,	flags	[DF],	
proto	TCP	(6),	length	52)

The	preceding	output	is	what	we	would	expect	to	see	from	a	healthy	connection.

Here,	 we	 see	 four	 packets,	 the	 first	 is	 an	 SYN	 (Flags	 [S],)	 from
blog.example.com	 (192.168.33.11),	 followed	 by	 an	 SYN-ACK	 (Flags	 [S.],)
from	 db.example.com	 (192.168.33.12)	 and	 an	 ACK	 (or	 SYN-ACK-ACK)	 (Flags
[.],)	 from	 blog.example.com	 (192.168.33.12).	 These	 three	 packets	 are	 the
completed	 TCP	 three-way	 handshake.	 The	 fourth	 packet	 is	 a	 PUSH	 (Flags
[P.],)	 packet,	which	 is	 the	 actual	 transfer	 of	 data.	All	 of	 these	 are	 signs	 of	 a
good	working	network	connection.

Configuration	files
Now	that	we	have	removed	the	invalid	route	from	the	routing	table,	we	can	see
the	blog	is	working;	this	means	we	have	finished,	right?	No,	not	yet	at	least.

When	we	 removed	 the	 route	by	using	 the	ip	 command,	we	 removed	 the	 route
from	the	active	routing	table,	but	we	did	not	remove	the	route	from	the	system	as
a	 whole.	 If	 we	 were	 to	 restart	 networking,	 or	 simply	 reboot	 the	 server,	 this
invalid	route	would	reappear.

[db]#	service	network	restart
Restarting	network	(via	systemctl):																								[OK]
[db]#	ip	route	show
default	via	10.0.2.2	dev	enp0s3		proto	static		metric	1024
10.0.2.0/24	dev	enp0s3		proto	kernel		scope	link		src	10.0.2.16
169.254.0.0/16	dev	enp0s8		scope	link		metric	1003
192.168.33.0/24	dev	enp0s8		proto	kernel		scope	link		src	
192.168.33.12
192.168.33.11	via	10.0.2.1	dev	enp0s3		proto	static		metric	1

This	is	because,	when	the	system	boots,	it	configures	the	network	on	the	basis	of
the	configurations	within	a	set	of	files.	The	ip	command	is	used	to	manipulate
the	live	network	configuration,	but	not	these	network	configuration	files.	So,	any
change	 made	 with	 the	 ip	 command	 is	 not	 made	 permanently,	 but	 is	 only
temporarily	 until	 the	 next	 time	 the	 system	 reads	 and	 applies	 the	 network
configuration.

In	order	to	fully	remove	this	route	from	the	network	configuration,	we	will	need
to	modify	the	networking	configuration	files.

[db]#	cd	/etc/sysconfig/network-scripts/

On	Red	Hat	Enterprise	Linux-based	systems,	the	networking	configuration	files
are	mostly	 stored	within	 the	/etc/sysconfig/network-scripts	 folder.	 To	 get
started,	we	can	first	switch	to	this	folder	and	execute	ls	–la	to	identify	the	current
network	configuration	files.

[db]#	ls	-la
total	228
drwxr-xr-x.	2	root	root		4096	Mar	14	14:37	.
drwxr-xr-x.	6	root	root		4096	Mar	14	23:42	..

-rw-r--r--.	1	root	root			195	Jul	22		2014	ifcfg-enp0s3
-rw-r--r--.	1	root	root			217	Mar	14	14:37	ifcfg-enp0s8
-rw-r--r--.	1	root	root			254	Apr		2		2014	ifcfg-lo
lrwxrwxrwx.	1	root	root				24	Jul	22		2014	ifdown	->	
../../../usr/sbin/ifdown
-rwxr-xr-x.	1	root	root			627	Apr		2		2014	ifdown-bnep
-rwxr-xr-x.	1	root	root		5553	Apr		2		2014	ifdown-eth
-rwxr-xr-x.	1	root	root			781	Apr		2		2014	ifdown-ippp
-rwxr-xr-x.	1	root	root		4141	Apr		2		2014	ifdown-ipv6
lrwxrwxrwx.	1	root	root				11	Jul	22		2014	ifdown-isdn	->	ifdown-
ippp
-rwxr-xr-x.	1	root	root		1642	Apr		2		2014	ifdown-post
-rwxr-xr-x.	1	root	root		1068	Apr		2		2014	ifdown-ppp
-rwxr-xr-x.	1	root	root			837	Apr		2		2014	ifdown-routes
-rwxr-xr-x.	1	root	root		1444	Apr		2		2014	ifdown-sit
-rwxr-xr-x.	1	root	root		1468	Jun		9		2014	ifdown-Team
-rwxr-xr-x.	1	root	root		1532	Jun		9		2014	ifdown-TeamPort
-rwxr-xr-x.	1	root	root		1462	Apr		2		2014	ifdown-tunnel
lrwxrwxrwx.	1	root	root				22	Jul	22		2014	ifup	->	
../../../usr/sbin/ifup
-rwxr-xr-x.	1	root	root	12449	Apr		2		2014	ifup-aliases
-rwxr-xr-x.	1	root	root			859	Apr		2		2014	ifup-bnep
-rwxr-xr-x.	1	root	root	10223	Apr		2		2014	ifup-eth
-rwxr-xr-x.	1	root	root	12039	Apr		2		2014	ifup-ippp
-rwxr-xr-x.	1	root	root	10430	Apr		2		2014	ifup-ipv6
lrwxrwxrwx.	1	root	root					9	Jul	22		2014	ifup-isdn	->	ifup-ippp
-rwxr-xr-x.	1	root	root			642	Apr		2		2014	ifup-plip
-rwxr-xr-x.	1	root	root		1043	Apr		2		2014	ifup-plusb
-rwxr-xr-x.	1	root	root		2609	Apr		2		2014	ifup-post
-rwxr-xr-x.	1	root	root		4154	Apr		2		2014	ifup-ppp
-rwxr-xr-x.	1	root	root		1925	Apr		2		2014	ifup-routes
-rwxr-xr-x.	1	root	root		3263	Apr		2		2014	ifup-sit
-rwxr-xr-x.	1	root	root		1628	Oct	31		2013	ifup-Team
-rwxr-xr-x.	1	root	root		1856	Jun		9		2014	ifup-TeamPort
-rwxr-xr-x.	1	root	root		2607	Apr		2		2014	ifup-tunnel
-rwxr-xr-x.	1	root	root		1621	Apr		2		2014	ifup-wireless
-rwxr-xr-x.	1	root	root		4623	Apr		2		2014	init.ipv6-global
-rw-r--r--.	1	root	root	14238	Apr		2		2014	network-functions
-rw-r--r--.	1	root	root	26134	Apr		2		2014	network-functions-ipv6
-rw-r--r--.	1	root	root				30	Mar	13	02:20	route-enp0s3

From	 the	 directory	 listing,	 we	 can	 see	 several	 configuration	 files.	 In	 general,
however,	we	will	mostly	only	be	interested	in	files	that	begin	with	"ifcfg-"	and
files	that	begin	with	"route-."

The	 files	 that	 begin	 with	 "ifcfg-"	 are	 used	 to	 define	 network	 interfaces;	 the

naming	convention	of	these	files	is	"ifcfg-<device	name>";	for	example,	to	see
enp0s8's	configuration,	we	could	read	the	ifcfg-enp0s8	file.

[db]#	cat	ifcfg-enp0s8
NM_CONTROLLED=no
BOOTPROTO=none
ONBOOT=yes
IPADDR=192.168.33.12
NETMASK=255.255.255.0
DEVICE=enp0s8
PEERDNS=no

We	can	see	that	this	configuration	file	defines	the	IP	address	and	Netmask	used
for	this	interface.

The	 "route-"	 files	 are	 used	 to	 define	 the	 system's	 routing	 configuration.	 The
convention	for	 this	 file	 is	similar	 to	 that	of	 the	 interface	files,	"route-<device
name>."	In	the	folder	listing,	there	was	only	one	route	file,	route-enp0s3.	This	is
the	most	likely	location	for	the	incorrect	route	to	be	defined.

[db]#	cat	route-enp0s3
192.168.33.11/32	via	10.0.2.1

In	general,	unless	a	static	route	(routes	that	are	statically	defined)	is	defined,	the
"route-*"	 files	do	not	exist.	We	can	see	here	 that	only	one	route	 is	defined	 in
this	 file,	which	means	 that	 all	 the	other	 routes	defined	 in	 the	 routing	 table	 are
dynamically	configured	on	the	basis	of	the	interface	configurations.

In	 the	preceding	example,	 the	 route	defined	 in	 the	route-enp0s3	 file	does	not
specify	an	interface.	Because	of	this,	the	interface	will	be	defined	on	the	basis	of
the	 filename;	 if	 this	 same	 entry	 were	 in	 the	 route-enp0s8	 file,	 the	 network
service	would	attempt	to	define	the	route	on	the	enp0s8	interface.

To	 ensure	 that	 this	 route	 no	 longer	 appears	 in	 the	 routing	 table,	 we	 need	 to
remove	it	from	this	file;	alternatively,	in	this	case,	since	it	is	the	only	route,	we
should	remove	the	file	in	its	entirety.

[db]#	rm	route-enp0s3
rm:	remove	regular	file	'route-enp0s3'?	y

The	decision	 to	remove	the	file	and	 the	route	 is	dependent	on	 the	environment

being	supported;	 if	you	are	ever	unsure	if	 this	 is	 the	correct	action,	you	should
ask	someone	who	can	tell	you	if	 it	 is	or	isn't	beforehand.	For	this	example,	we
will	assume	that	it	is	OK	to	remove	this	network	configuration	file.

After	restarting	the	network	service,	we	should	see	the	route	disappear.

[db]#	service	network	restart
Restarting	network	(via	systemctl):																								[OK]
[db]#	ip	route	show
default	via	10.0.2.2	dev	enp0s3		proto	static		metric	1024
10.0.2.0/24	dev	enp0s3		proto	kernel		scope	link		src	10.0.2.16
169.254.0.0/16	dev	enp0s8		scope	link		metric	1003
192.168.33.0/24	dev	enp0s8		proto	kernel		scope	link		src	
192.168.33.12

Now	that	the	route	is	gone	and	the	network	configurations	have	been	reloaded,
we	can	safely	say	that	we	have	corrected	the	issue.	We	can	validate	this	by	once
again	loading	the	webpage	to	ensure	that	the	blog	is	working.

Summary
If	 we	 look	 back	 at	 this	 chapter,	 we	 learned	 quite	 a	 bit	 about	 troubleshooting
network	connectivity	 issues	on	Linux.	We	learned	how	to	use	 the	netstat	and
tcpdump	 tools	 to	 look	 at	 the	 incoming	 and	 outgoing	 connections.	We	 learned
about	the	TCP	three-way	handshake	and	how	the	/etc/hosts	file	can	supersede
the	DNS	settings.

In	this	chapter,	we	covered	many	commands,	and	while	we	gave	a	pretty	good
overview	 of	 each	 command	 and	 what	 it	 does,	 there	 are	 some	 that	 we	 barely
scratched	the	surface	on.

Commands	such	as	tcpdump	are	a	prime	example	of	this.	In	this	chapter,	we	used
tcpdump	quite	a	bit,	but	this	tool	is	capable	of	far	more	than	we	used	it	for.	Of	all
of	the	commands	that	we	covered	in	this	book,	I	personally	feel	that	tcpdump	is
one	to	spend	time	learning,	as	it	is	a	very	useful	and	powerful	tool.	I	have	used	it
to	solve	many	issues,	and	sometimes,	these	issues	were	not	network-specific	but
application-specific.

In	 this	 next	 chapter,	 we	 will	 keep	 this	 networking	 momentum	 going	 with
troubleshooting	 firewalls.	We	 will	 probably	 see	 some	 of	 the	 same	 commands
that	we	used	in	this	chapter	reappear	in	the	next	chapter,	but	this	is	OK;	it	 just
shows	how	important	it	is	to	understand	networking	and	the	tools	to	troubleshoot
it.

Chapter	 6.	 Diagnosing	 and
Correcting	Firewall	Issues
In	 the	previous	chapter,	we	discovered	how	 to	 troubleshoot	networking-related
issues	with	commands	such	as	telnet,	ping,	curl,	netstat,	tcpdump,	 and	 ip.
You	 also	 learned	 how	 the	TCP	protocol	 works,	 as	 well	 as	 how	 domains	 are
translated	to	IPs	using	DNS.

In	this	chapter,	we	will	once	again	troubleshoot	network-related	issues;	however,
this	 time	we	will	 discover	 how	Linux's	 software	 firewall	iptables	works	 and
how	to	troubleshoot	network	issues	generated	by	a	firewall.

Diagnosing	firewalls
Chapter	 5,	 Network	 Troubleshooting,	 was	 all	 about	 networking	 and	 how	 to
troubleshoot	 a	misconfigured	 network.	 In	 this	 chapter,	we	 are	 going	 to	 extend
that	discussion	to	firewalls.	While	troubleshooting	firewalls	we	are	likely	to	use
some	of	the	same	commands	as	Chapter	5,	Network	Troubleshooting,	and	repeat
a	 lot	 of	 the	 same	process.	This	 is	 because	 anytime	you	 are	using	 a	 firewall	 to
protect	 a	 system,	 you	 are	 blocking	 certain	 types	 of	 network	 traffic,	 a
misconfiguration	of	the	firewall	can	impact	any	network	traffic	for	a	system.

We	 will	 start	 this	 chapter	 in	 the	 same	 way	 we	 did	 the	 other	 chapters,	 by
troubleshooting	a	reported	issue.

Déjà	vu
In	 Chapter	 5,	 Network	 Troubleshooting,	 our	 troubleshooting	 started	 after	 a
developer	 called	 in	 and	 reported	 that	 the	 company's	 blog	 was	 reporting	 a
database	connectivity	error.	After	 troubleshooting,	we	found	that	 this	error	was
due	 to	 a	 misconfigured	 static	 route	 on	 the	 database	 server.	 Yet	 again,	 today
(several	 days	 later),	 we	 receive	 a	 call	 from	 the	 same	 developer	 reporting	 the
same	issue.

When	 the	 developer	 goes	 to	 http://blog.example.com,	 he	 receives	 an	 error
stating	there	is	a	database	connectivity	issue.	Not	again!

Since	the	first	step	in	data	collection	is	to	duplicate	the	issue,	the	first	thing	we
should	do	is	to	pull	up	the	company	blog	on	our	own	browser.

It	seems,	in	fact,	that	the	same	error	is	showing	yet	again;	now	to	figure	out	why.

Troubleshooting	from	historic	issues
The	first	instinct	for	a	Data	Collector	would	be	to	simply	run	through	the	same
troubleshooting	 steps	 from	Chapter	5,	Network	 Troubleshooting.	 The	Adaptor
and	Educated	Gusser	 troubleshooters,	however,	knowing	 the	 issue	a	 few	days
ago	was	due	to	a	static	route	would	simply	log	in	to	the	database	server	first	and
check	for	the	same	static	route.

Maybe	 someone	 simply	 re-added	 it	 by	 mistake,	 or	 the	 route	 was	 not	 fully
removed	from	the	system's	configuration	files:

[db]#	ip	route	show
default	via	10.0.2.2	dev	enp0s3		proto	static		metric	1024
10.0.2.0/24	dev	enp0s3		proto	kernel		scope	link		src	10.0.2.15
169.254.0.0/16	dev	enp0s8		scope	link		metric	1003
192.168.33.0/24	dev	enp0s8		proto	kernel		scope	link		src	
192.168.33.12

Unfortunately,	 however,	 our	 luck	 is	 not	 that	 good;	 from	 the	 results	 of	 the	 ip
command,	 we	 can	 see	 that	 the	 static	 route	 from	 Chapter	 5,	 Network
Troubleshooting,	is	not	present.

Since	the	route	is	not	present,	we	will	need	to	start	again	at	step	one	by	checking
whether	the	blog	server	is	able	to	connect	to	the	database	server.

Basic	troubleshooting
The	 first	 test	we	 should	 perform	 is	 a	 simple	 ping	 from	 the	 blog	 server	 to	 the
database	 server.	 This	will	 quickly	 answer	whether	 the	 two	 servers	 are	 able	 to
communicate	at	all:

[blog]$	ping	db.example.com
PING	db.example.com	(192.168.33.12)	56(84)	bytes	of	data.
64	bytes	from	db.example.com	(192.168.33.12):	icmp_seq=1	ttl=64	
time=0.420	ms
64	bytes	from	db.example.com	(192.168.33.12):	icmp_seq=2	ttl=64	
time=0.564	ms
64	bytes	from	db.example.com	(192.168.33.12):	icmp_seq=3	ttl=64	
time=0.562	ms
64	bytes	from	db.example.com	(192.168.33.12):	icmp_seq=4	ttl=64	
time=0.479	ms
^C
---	db.example.com	ping	statistics	---
4	packets	transmitted,	4	received,	0%	packet	loss,	time	3006ms
rtt	min/avg/max/mdev	=	0.420/0.506/0.564/0.062	ms

From	 the	 ping	 command's	 results	 we	 can	 see	 that	 the	 blog	 server	 can
communicate	with	the	database	server,	or	rather,	the	blog	server	sent	an	ICMP
echo	request	and	received	an	ICMP	echo	reply	 from	the	database	server.	The
next	connectivity	we	can	test	is	connectivity	to	port	3306,	the	MySQL	port.

We	will	test	this	connectivity	with	the	telnet	command:

[blog]$	telnet	db.example.com	3306
Trying	192.168.33.12...
telnet:	connect	to	address	192.168.33.12:	No	route	to	host

The	telnet	however,	failed.	This	shows	that	there	is	in	fact	a	problem	with	the
blog	server	connecting	to	the	database	service	on	the	database	server.

Validating	the	MariaDB	service
Now	that	we	have	established	that	the	blog	server	cannot	communicate	with	the
database	 server,	 we	 need	 to	 identify	 the	 cause.	 Before	 assuming	 the	 issue	 is
strictly	network-related,	we	should	first	validate	 that	 the	database	service	 is	up
and	running.	To	do	this,	we	will	simply	log	in	to	the	database	server	and	check
for	the	running	database	process.

We	can	use	multiple	methods	to	validate	that	the	database	processes	are	running.
In	the	following	example,	we	will	use	the	ps	command	once	again:

[db]$	ps	-elf	|	grep	maria
0	S	mysql					1529		1123		0		80			0	-	226863	poll_s	12:21	?	
00:00:04	/usr/libexec/mysqld	--basedir=/usr	--
datadir=/var/lib/mysql	--plugin-dir=/usr/lib64/mysql/plugin	--log-
error=/var/log/mariadb/mariadb.log	--pid-
file=/var/run/mariadb/mariadb.pid	--
socket=/var/lib/mysql/mysql.sock

With	the	ps	command,	we	are	able	to	see	the	running	MariaDB	process.	In	the
preceding	example,	we	used	the	ps	-elf	command	to	show	all	processes	and	the
grep	command	to	filter	that	output	to	find	the	MariaDB	service.

From	the	results,	it	appears	that	the	database	service	is	in	fact	running;	but	this
does	not	tell	us	for	sure	that	this	process	is	accepting	connections	on	port	3306.
To	validate	 this,	we	can	use	 the	netstat	command	 to	 identify	which	ports	are
listening	on	this	server:

[db]$	netstat	-na	|	grep	LISTEN
tcp						0					0	127.0.0.1:25										0.0.0.0:*													LISTEN
tcp						0					0	0.0.0.0:46788									0.0.0.0:*													LISTEN
tcp						0					0	0.0.0.0:3306										0.0.0.0:*													LISTEN
tcp						0					0	0.0.0.0:111											0.0.0.0:*													LISTEN
tcp						0					0	0.0.0.0:22												0.0.0.0:*													LISTEN
tcp6					0					0	::1:25																					:::*													LISTEN
tcp6					0					0	:::111																					:::*													LISTEN
tcp6					0					0	:::22																						:::*													LISTEN
tcp6					0					0	:::49464																			:::*													LISTEN

From	the	netstat	command,	we	can	see	that	there	are	quite	a	few	ports	open	on
this	system	and	port	3306	is	one	of	them.

Since	we	know	 that	 the	blog	 server	 is	unable	 to	establish	a	connection	 to	port
3306,	 we	 can	 once	 again	 test	 the	 connectivity	 from	multiple	 places.	 The	 first
place	being	the	database	server	itself	and	the	second	being	our	laptop	just	as	we
did	in	Chapter	5,	Network	Troubleshooting.

Since	the	database	server	does	not	have	the	telnet	client	installed,	we	can	use
the	curl	command	to	perform	this	test:

[blog]$	curl	-v	telnet://localhost:3306
*	About	to	connect()	to	localhost	port	3306	(#0)
*			Trying	127.0.0.1...
*	Connected	to	localhost	(127.0.0.1)	port	3306	(#0)
R
*	RCVD	IAC	EC

Tip

One	thing	I	will	say	repeatedly	in	this	book	is	that	it	is	important	to	know	more
than	 one	 way	 to	 perform	 a	 task.	 telnet	 is	 a	 very	 simple	 example	 but	 this
concept	applies	to	every	task	you	perform	as	a	system	administrator.

Since	we	have	established	 that	 the	database	 server	 is	 accessible	 from	 the	 local
server,	we	can	now	test	this	from	our	laptop:

[laptop]$	telnet	192.168.33.12	3306
Trying	192.168.33.12...
telnet:	connect	to	address	192.168.33.12:	Connection	refused
telnet:	Unable	to	connect	to	remote	host

It	 seems	 that	 from	 our	 laptop,	 the	 connection	 to	 the	 database	 service	 is
unavailable,	but	what	happens	if	we	test	another	port	such	as	22?

[laptop]$	telnet	192.168.33.12	22
Trying	192.168.33.12...
Connected	to	192.168.33.12.
Escape	character	is	'^]'.
SSH-2.0-OpenSSH_6.4
^]
telnet>

This	 is	an	 interesting	result;	 from	the	 laptop,	we	are	able	 to	connect	 to	port	22
but	not	port	3306.	Since	port	22	is	available	on	the	laptop,	what	about	from	the
blog	server?

[blog]$	telnet	db.example.com	22
Trying	192.168.33.12...
Connected	to	db.example.com.
Escape	character	is	'^]'.
SSH-2.0-OpenSSH_6.4
^]

These	 results	 are	 quite	 interesting.	 In	 the	 previous	 chapter,	 when	 our
connectivity	 issue	was	 due	 to	 a	misconfigured	 static	 route,	 all	 communication
between	the	blog	server	and	the	database	server	was	broken.

In	 the	case	of	 this	 issue,	however,	 the	blog	server	 is	 unable	 to	 connect	 to	 port
3306,	 but	 it	 is	 able	 to	 talk	 to	 the	database	 server	on	port	22.	What	makes	 this
issue	 more	 interesting	 is	 that	 locally,	 on	 the	 database	 server,	 port	 3306	 is
available	and	accepting	connections.

These	 key	 pieces	 of	 information	 are	 the	 first	 signs	 to	 indicate	 that	 our	 issue
might	in	fact	be	due	to	a	firewall.	It	might	be	a	little	early	for	a	Data	Collector,
but	an	Adaptor	or	Educated	Guesser	troubleshooter	might	already,	at	this	point,
form	an	hypothesis	that	this	issue	is	due	to	a	firewall.

Troubleshooting	with	tcpdump
In	Chapter	5,	Network	 Troubleshooting,	 we	 used	 tcpdump	 quite	 extensively	 to
identify	 our	 issue;	 can	 we	 tell	 if	 the	 issue	 is	 a	 firewall	 issue	 with	 tcpdump?
Maybe,	we	can	certainly	use	tcpdump	to	get	a	better	view	of	the	issue.

To	start	with,	we	will	first	capture	connectivity	to	port	22	from	the	blog	server	(a
connection	 that	 we	 know	 is	 working).	 The	 tcpdump	 will	 run	 on	 the	 database
server	filtering	for	port	22;	we	will	also	use	the	-i	(interface)	flag	with	the	any
option	to	cause	tcpdump	to	capture	traffic	on	all	network	interfaces:

[db]#	tcpdump	-nnnvvv	-i	any	port	22
tcpdump:	listening	on	any,	link-type	LINUX_SLL	(Linux	cooked),	
capture	size	65535	bytes

Once	tcpdump	is	running,	we	can	initiate	a	connection	to	port	22	from	the	blog
server	to	see	what	a	full	healthy	connection	looks	like:

03:03:15.670771	IP	(tos	0x10,	ttl	64,	id	17278,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	60)
				192.168.33.11.34133	>	192.168.33.12.22:	Flags	[S],	cksum	0x977b	
(correct),	seq	2193487479,	win	14600,	options	[mss	1460,sackOK,TS	
val	7058697	ecr	0,nop,wscale	6],	length	0
03:03:15.670847	IP	(tos	0x0,	ttl	64,	id	0,	offset	0,	flags	[DF],	
proto	TCP	(6),	length	60)
				192.168.33.12.22	>	192.168.33.11.34133:	Flags	[S.],	cksum	
0xc396	(correct),	seq	3659372781,	ack	2193487480,	win	14480,	
options	[mss	1460,sackOK,TS	val	7018839	ecr	7058697,nop,wscale	6],	
length	0
03:03:15.671295	IP	(tos	0x10,	ttl	64,	id	17279,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	52)
				192.168.33.11.34133	>	192.168.33.12.22:	Flags	[.],	cksum	0x718b	
(correct),	seq	1,	ack	1,	win	229,	options	[nop,nop,TS	val	7058697	
ecr	7018839],	length	0

From	the	captured	data,	we	can	see	a	standard	healthy	connection.	We	can	see
that	 the	connection	is	coming	from	the	IP	192.168.33.11,	 the	blog	server's	 IP.
We	can	also	see	that	the	connection	arrived	on	the	IP	192.168.33.12	via	port	22.
We	can	see	all	of	this	from	the	following	line:

192.168.33.11.34133	>	192.168.33.12.22:	Flags	[S],	cksum	0x977b	
(correct),	seq	2193487479,	win	14600,	options	[mss	1460,sackOK,TS	

val	7058697	ecr	0,nop,wscale	6],	length	0

From	 the	 second	 captured	 packet,	 we	 can	 see	 the	 SYN-ACK	 reply	 from	 the
database	server	to	the	blog	server:

				192.168.33.12.22	>	192.168.33.11.34133:	Flags	[S.],	cksum	
0x0b15	(correct),	seq	3659372781,	ack	2193487480,	win	14480,	
options	[mss	1460,sackOK,TS	val	7018839	ecr	7058697,nop,wscale	6],	
length	0

We	can	see	that	the	SYN-ACK	reply	was	from	the	192.168.33.12	IP	address	to	the
192.168.33.11	IP	address.	So	far,	 the	TCP	connection	seems	normal,	 the	 third
captured	packet	confirms	this	for	sure:

				192.168.33.11.34133	>	192.168.33.12.22:	Flags	[.],	cksum	0x718b	
(correct),	seq	1,	ack	1,	win	229,	options	[nop,nop,TS	val	7058697	
ecr	7018839],	length	0

The	third	packet	is	a	SYN-ACK-ACK	from	the	blog	server.	This	means	that	not
only	did	the	blog	servers	SYN	packet	arrive	and	get	replied	to	with	a	SYN-ACK,	the
database	servers	SYN-ACK	packet	was	received	by	the	blog	server	and	replied	to
with	a	SYN-ACK-ACK.	This	is	a	full	three-way	handshake	for	port	22.

Now,	 let's	 take	a	 look	at	connectivity	 to	port	3306.	To	do	 this,	we	will	use	 the
same	tcpdump	command,	this	time	changing	the	port	to	3306:

[db]#	tcpdump	-nnnvvv	-i	any	port	3306
tcpdump:	listening	on	any,	link-type	LINUX_SLL	(Linux	cooked),	
capture	size	65535	bytes

With	tcpdump	 running,	we	 can	 use	telnet	 from	 the	 blog	 server	 to	 establish	 a
connection:

[blog]$	telnet	db.example.com	3306
Trying	192.168.33.12...
telnet:	connect	to	address	192.168.33.12:	No	route	to	host

As	 expected,	 the	 telnet	 command	 has	 failed	 to	 connect;	 let's	 see	 if	 tcpdump
captured	any	packets	during	this	time:

06:04:25.488396	IP	(tos	0x10,	ttl	64,	id	44350,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	60)
				192.168.33.11.55002	>	192.168.33.12.3306:	Flags	[S],	cksum	

0x7699	(correct),	seq	3266396266,	win	14600,	options	[mss	
1460,sackOK,TS	val	12774740	ecr	0,nop,wscale	6],	length	0

It	seems	in	fact	that	tcpdump	did	capture	a	packet,	but	only	one.

The	 packet	 captured	 was	 a	 SYN	 packet	 sent	 from	 192.168.33.11	 (the	 blog
server)	to	192.168.33.12	(the	database	server).	This	shows	that	the	packet	from
the	blog	server	arrives	on	the	database	server;	but	what	we	don't	see	 is	a	reply
packet.

As	you	 learned	 in	 the	previous	 chapter,	when	we	 apply	 filters	 to	tcpdump,	 we
often	miss	things.	In	this	case,	we	are	filtering	tcpdump	to	look	for	traffic	either
from	 or	 to	 port	 3306.	 Since	 we	 know	 that	 the	 server	 in	 question	 is	 the	 blog
server,	we	 can	 change	 our	 filter	 to	 capture	 all	 traffic	 from	 the	 blog	 server	 IP;
192.168.33.11.	We	can	do	this	by	using	the	host	filter	of	tcpdump:

[db]#	tcpdump	-nnnvvv	-i	any	host	192.168.33.11
tcpdump:	listening	on	any,	link-type	LINUX_SLL	(Linux	cooked),	
capture	size	65535	bytes

With	 tcpdump	 running	 again,	 we	 can	 once	 again	 initiate	 a	 connection	 with	 a
telnet	from	the	blog	server:

[blog]$	telnet	db.example.com	3306
Trying	192.168.33.12...
telnet:	connect	to	address	192.168.33.12:	No	route	to	host

Again,	the	telnet	connection	was	expectedly	unsuccessful;	however,	this	time	we
can	see	quite	a	bit	more	from	tcpdump:

06:16:49.729134	IP	(tos	0x10,	ttl	64,	id	23760,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	60)
				192.168.33.11.55003	>	192.168.33.12.3306:	Flags	[S],	cksum	
0x9be6	(correct),	seq	1849431125,	win	14600,	options	[mss	
1460,sackOK,TS	val	13518981	ecr	0,nop,wscale	6],	length	0
06:16:49.729199	IP	(tos	0xd0,	ttl	64,	id	40207,	offset	0,	flags	
[none],	proto	ICMP	(1),	length	88)
				192.168.33.12	>	192.168.33.11:	ICMP	host	192.168.33.12	
unreachable	-	admin	prohibited,	length	68

This	 time	 we	 can	 actually	 see	 quite	 a	 bit	 of	 useful	 information	 that	 directly
indicates	that	our	issue	is	due	to	the	system	firewall.

It	looks	like	tcpdump	was	able	to	capture	two	packets.	Let's	break	down	what	it
was	able	to	capture	to	get	a	better	understanding	of	what	is	going	on:

06:16:49.729134	IP	(tos	0x10,	ttl	64,	id	23760,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	60)
				192.168.33.11.55003	>	192.168.33.12.3306:	Flags	[S],	cksum	
0x9be6	(correct),	seq	1849431125,	win	14600,	options	[mss	
1460,sackOK,TS	val	13518981	ecr	0,nop,wscale	6],	length	0

The	first	packet	is	the	same	as	we	saw	before,	a	simple	SYN	request	from	the	blog
server	to	the	database	server	on	port	3306.	The	second	packet,	however,	is	quite
interesting:

06:16:49.729199	IP	(tos	0xd0,	ttl	64,	id	40207,	offset	0,	flags	
[none],	proto	ICMP	(1),	length	88)
				192.168.33.12	>	192.168.33.11:	ICMP	host	192.168.33.12	
unreachable	-	admin	prohibited,	length	68

The	 second	packet	 isn't	 even	 a	TCP	based	packet	but	 rather	 an	 ICMP	 packet.
Earlier	 in	 Chapter	 5,	Network	 Troubleshooting,	 we	 talked	 about	 ICMP	 echo
request	 and	 reply	 packets	 and	 how	 they	 are	 used	 by	 the	 ping	 command	 to
identify	whether	a	host	 is	available.	 ICMP,	however,	 is	used	 for	more	 than	 the
ping	command.

Understanding	ICMP
The	 ICMP	protocol	 is	 used	 as	 a	 control	 protocol	 for	 sending	messages	 across
networks.	The	echo	request	and	echo	reply	messages	are	just	one	example	of	this
protocol.	This	protocol	is	also	frequently	used	to	notify	other	systems	of	errors.

In	 this	case,	 the	database	server	 is	 sending	an	 ICMP	packet	 to	 the	blog	server,
notifying	it	that	the	IP	host	192.168.33.12	is	unreachable:

proto	ICMP	(1),	length	88)
				192.168.33.12	>	192.168.33.11:	ICMP	host	192.168.33.12	
unreachable	-	admin	prohibited,	length	68

Not	only	is	the	database	server	saying	it	is	unreachable,	it	is	also	telling	the	blog
server	 that	 the	 reason	 for	 the	 unreachable	 state	 is	 because	 the	 connection	 is
administratively	 prohibited.	 This	 type	 of	 reply	 is	 a	 telltale	 sign	 of	 a	 firewall
being	the	source	of	the	connectivity	issue,	as	often	administratively	prohibited	is
the	type	of	message	firewalls	will	utilize.

Understanding	connection	rejections

When	a	TCP	connection	is	made	to	a	service	that	is	unavailable	or	to	a	port	that
is	not	being	listened	to,	the	Linux	kernel	will	send	a	reply.	The	reply,	however,	is
a	TCP	Reset,	which	tells	the	remote	system	to	reset	the	connection.

We	 can	 see	 this	 in	 action	 by	 connecting	 to	 an	 invalid	 port	 while	 running
tcpdump.	On	 the	blog	server,	port	5000	 is	not	currently	being	used	 if	we	 run	a
tcpdump.	Using	the	port	filter,	we	will	see	all	of	the	traffic	to	and	from	that	port:

[blog]#	tcpdump	-vvvnnn	-i	any	port	5000
tcpdump:	listening	on	any,	link-type	LINUX_SLL	(Linux	cooked),	
capture	size	65535	bytes

With	 tcpdump,	 capturing	 all	 traffic	 on	 port	 5000,	 we	 can	 now	 use	 telnet	 to
attempt	a	connection:

[laptop]$	telnet	192.168.33.11	5000
Trying	192.168.33.11...
telnet:	connect	to	address	192.168.33.11:	Connection	refused
telnet:	Unable	to	connect	to	remote	host

We	actually	can	already	see	something	different.	Earlier,	when	we	performed	a
telnet	 to	 port	 3306	 on	 the	 database	 server,	 the	 telnet	 command	 printed	 a
different	message:

telnet:	connect	to	address	192.168.33.12:	No	route	to	host

The	 reason	 for	 this	 is	 because	 previously,	 when	 the	 telnet	 connection	 was
performed,	the	server	received	an	ICMP	destination	unavailable	packet.

This	 time,	 however,	 a	 different	 reply	 was	 sent.	 We	 can	 see	 this	 reply	 in	 the
captured	packets	by	tcpdump:

06:57:42.954091	IP	(tos	0x10,	ttl	64,	id	47368,	offset	0,	flags	
[DF],	proto	TCP	(6),	length	64)
				192.168.33.1.53198	>	192.168.33.11.5000:	Flags	[S],	cksum	
0xca34	(correct),	seq	1134882056,	win	65535,	options	[mss	
1460,nop,wscale	5,nop,nop,TS	val	511014642	ecr	0,sackOK,eol],	
length	0
06:57:42.954121	IP	(tos	0x10,	ttl	64,	id	0,	offset	0,	flags	[DF],	
proto	TCP	(6),	length	40)
				192.168.33.11.5000	>	192.168.33.1.53198:	Flags	[R.],	cksum	
0xd86e	(correct),	seq	0,	ack	1134882057,	win	0,	length	0

This	time,	the	packet	being	sent	back	was	a	TCP	Reset:

192.168.33.11.5000	>	192.168.33.1.53198:	Flags	[R.],

A	RESET	packet	is,	typically,	what	one	would	expect	when	the	issue	is	due	to
simple	 connectivity	 errors,	 as	 this	 is	 the	 standard	 TCP	 response	 for	 situations
where	the	client	is	attempting	to	connect	to	a	port	which	is	no	longer	available.

The	 RESET	 packet	 can	 also	 be	 sent	 by	 applications	 that	 are	 rejecting	 a
connection.	The	 ICMP	destination	unreachable,	however,	 is	 typically	 the	 reply
you	will	 receive	when	 the	packet	 is	being	 rejected	by	a	 firewall;	 that	 is,	 if	 the
firewall	service	is	configured	to	reply	at	all.

A	 quick	 summary	 of	 what	 you	 have
learned	so	far
From	our	troubleshooting	so	far,	we	have	identified	that	the	blog	server	is	able	to
establish	 a	 connection	 to	 the	 database	 server	 over	 port	 22.	 This	 connection	 is
actually	able	to	perform	a	full	three-way	handshake	unlike	our	previous	chapter.
However,	the	blog	server	is	not	able	to	perform	a	three-way	handshake	with	the
database	server	over	port	3306,	the	database	port.

When	 the	blog	server	attempts	 to	establish	a	connection	 to	 the	database	server
over	port	3306,	the	database	server	is	sending	an	ICMP	destination	unreachable
packet	back	to	the	blog	server.	This	packet	is	essentially	telling	the	blog	server
that	 the	connection	attempt	 to	 the	database	 is	being	 rejected.	Yet,	 the	database
service	is	up	and	listening	on	port	3306	(verified	with	netstat).	 In	addition	 to
the	port	being	listened	to,	 if	we	telnet	 to	port	3306	locally,	from	the	database
server	itself	the	connection	is	established.

Given	all	of	these	data	points,	it	is	possible	that	the	database	server	might	have
the	firewall	service	enabled	and	blocking	connections	to	port	3306.

Managing	 the	 Linux	 firewall	 with
iptables
When	 it	 comes	 to	managing	 the	 firewall	 service	within	Linux,	 there	 are	many
options,	the	most	popular	being	iptables	and	ufw.	For	Ubuntu	distributions,	ufw
is	the	default	firewall	management	tool;	however,	overall,	iptables	is	by	far	the
most	 popular	 across	 multiple	 Linux	 distributions.	 Both	 of	 these,	 however,	 in
themselves,	are	simply	user	interfaces	to	Netfilter.

Netfilter	is	a	framework	within	the	Linux	kernel	that	allows	for	packet	filtering
as	well	 as	network	and	port	 translation.	Tools	 such	as	 the	iptables	command
are	simply	interacting	with	the	netfilter	framework	to	apply	these	rules.

For	 this	 book,	 we	 will	 concentrate	 on	 utilizing	 the	 iptables	 command	 and
service	to	manage	our	firewall	rules.	Not	only	is	it	the	most	popular	firewall	tool,
it	has	also	been	the	default	firewall	service	for	Red	Hat	based	operating	systems
for	quite	a	while.	Even	with	 the	newer	firewalld	 service	 arriving	 in	Red	Hat
Enterprise	Linux	7,	this	is	simply	a	service	to	manage	iptables.

Verify	that	iptables	is	running
Since	we	suspect	that	our	issue	is	due	to	the	system's	firewall	configuration,	we
should	 first	 check	 to	 see	 whether	 the	 firewall	 is	 running	 and	 what	 rules	 are
defined.	Since	iptables	runs	as	a	service,	the	first	step	is	to	simply	check	 that
service's	status:

[db]#	ps	-elf	|	grep	iptables
0	R	root						4189		3220		0		80			0	-	28160	-						16:31	pts/0	
00:00:00	grep	--color=auto	iptables

Previously,	 when	 we	 went	 to	 check	 whether	 a	 service	 is	 running,	 we	 would
simply	use	the	ps	command.	This	works	great	for	services	such	as	MariaDB	or
Apache;	iptables,	however,	is	different.	Since	iptables	 is	simply	a	command
that	interacts	with	netfilter,	the	iptables	service	is	not	a	daemon	process	like
most	other	services.	In	fact,	when	you	start	the	iptables	service	you	are	simply
applying	saved	netfilter	rules,	and	when	you	stop	the	service,	you	are	simply
flushing	those	rules.	We	will	explore	this	concept	a	little	later	in	the	chapter	but
for	now	we	will	simply	check	whether	the	iptables	service	is	running	using	the
service	command:

[db]#	service	iptables	status
Redirecting	to	/bin/systemctl	status		iptables.service
iptables.service	-	IPv4	firewall	with	iptables
			Loaded:	loaded	(/usr/lib/systemd/system/iptables.service;	
enabled)
			Active:	active	(exited)	since	Wed	2015-04-01	16:36:16	UTC;	4min	
56s	ago
		Process:	4202	ExecStop=/usr/libexec/iptables/iptables.init	stop	
(code=exited,	status=0/SUCCESS)
		Process:	4332	ExecStart=/usr/libexec/iptables/iptables.init	start	
(code=exited,	status=0/SUCCESS)
	Main	PID:	4332	(code=exited,	status=0/SUCCESS)

Apr	01	16:36:16	db.example.com	systemd[1]:	Starting	IPv4	firewall	
with	iptables...
Apr	01	16:36:16	db.example.com	iptables.init[4332]:	iptables:	
Applying	firewall	rules:	[OK]
Apr	01	16:36:16	db.example.com	systemd[1]:	Started	IPv4	firewall	
with	iptables.

With	the	Red	Hat	Enterprise	Linux	7	release,	Red	Hat	has	migrated	to	systemd,

which	 replaces	 the	 standard	 init	 system.	 With	 this	 migration,	 the	 service
command	 is	 no	 longer	 the	 preferred	 command	 to	 manage	 services.	 This
functionality	 has	 moved	 the	 control	 command	 for	 systemd	 to	 the	 systemctl
command.

For	 RHEL	 7,	 at	 least	 the	 service	 command	 is	 still	 executable;	 however,	 this
command	is	simply	a	wrapper	to	systemctl.	Here	is	the	command	to	check	the
status	of	the	iptables	service	with	the	systemctl	command.	For	this	book,	we
will	utilize	the	systemctl	commands	rather	than	the	legacy	service	command:

[db]#	systemctl	status	iptables.service
iptables.service	-	IPv4	firewall	with	iptables
			Loaded:	loaded	(/usr/lib/systemd/system/iptables.service;	
enabled)
			Active:	active	(exited)	since	Wed	2015-04-01	16:36:16	UTC;	26min	
ago
		Process:	4202	ExecStop=/usr/libexec/iptables/iptables.init	stop	
(code=exited,	status=0/SUCCESS)
		Process:	4332	ExecStart=/usr/libexec/iptables/iptables.init	start	
(code=exited,	status=0/SUCCESS)
	Main	PID:	4332	(code=exited,	status=0/SUCCESS)

Apr	01	16:36:16	db.example.com	systemd[1]:	Starting	IPv4	firewall	
with	iptables...
Apr	01	16:36:16	db.example.com	iptables.init[4332]:	iptables:	
Applying	firewall	rules:	[OK]
Apr	01	16:36:16	db.example.com	systemd[1]:	Started	IPv4	firewall	
with	iptables.

From	the	preceding	output	of	systemctl,	we	can	see	that	currently	the	iptables
service	is	active.	We	can	identify	this	from	the	3rd	line	of	the	systemctl	output:

			Active:	active	(exited)	since	Wed	2015-04-01	16:36:16	UTC;	26min	
ago

When	the	iptables	service	is	not	running,	things	look	quite	a	bit	different:

[db]#	systemctl	status	iptables.service
iptables.service	-	IPv4	firewall	with	iptables
			Loaded:	loaded	(/usr/lib/systemd/system/iptables.service;	
enabled)
			Active:	inactive	(dead)	since	Thu	2015-04-02	02:55:26	UTC;	1s	
ago
		Process:	4489	ExecStop=/usr/libexec/iptables/iptables.init	stop	

(code=exited,	status=0/SUCCESS)
		Process:	4332	ExecStart=/usr/libexec/iptables/iptables.init	start	
(code=exited,	status=0/SUCCESS)
	Main	PID:	4332	(code=exited,	status=0/SUCCESS)

Apr	01	16:36:16	db.example.com	systemd[1]:	Starting	IPv4	firewall	
with	iptables...
Apr	01	16:36:16	db.example.com	iptables.init[4332]:	iptables:	
Applying	firewall	rules:	[OK]
Apr	01	16:36:16	db.example.com	systemd[1]:	Started	IPv4	firewall	
with	iptables.
Apr	02	02:55:26	db.example.com	systemd[1]:	Stopping	IPv4	firewall	
with	iptables...
Apr	02	02:55:26	db.example.com	iptables.init[4489]:	iptables:	
Setting	chains	to	policy	ACCEPT:	nat	filter	[OK]
Apr	02	02:55:26	db.example.com	iptables.init[4489]:	iptables:	
Flushing	firewall	rules:	[OK]
Apr	02	02:55:26	db.example.com	iptables.init[4489]:	iptables:	
Unloading	modules:	[OK]
Apr	02	02:55:26	db.example.com	systemd[1]:	Stopped	IPv4	firewall	
with	iptables.

From	the	preceding	example,	systemctl	shows	the	iptables	service	as	inactive:

			Active:	inactive	(dead)	since	Thu	2015-04-02	02:55:26	UTC;	1s	
ago

One	 of	 the	 nice	 things	 about	 systemctl	 is	 that	 when	 running	 with	 the	 status
option,	the	output	includes	log	messages	from	the	service:

Apr	02	02:55:26	db.example.com	systemd[1]:	Stopping	IPv4	firewall	
with	iptables...
Apr	02	02:55:26	db.example.com	iptables.init[4489]:	iptables:	
Setting	chains	to	policy	ACCEPT:	nat	filter	[OK]
Apr	02	02:55:26	db.example.com	iptables.init[4489]:	iptables:	
Flushing	firewall	rules:	[OK]
Apr	02	02:55:26	db.example.com	iptables.init[4489]:	iptables:	
Unloading	modules:	[OK]
Apr	02	02:55:26	db.example.com	systemd[1]:	Stopped	IPv4	firewall	
with	iptables.

From	the	preceding	code,	we	can	see	all	of	the	status	messages	used	by	the	stop
process	for	the	iptables	service.

Show	iptables	rules	being	enforced
Now	that	we	know	that	 the	iptables	service	is	Active	and	running,	we	should
also	look	at	the	iptables	rules	that	are	defined	and	being	enforced.	To	do	this,
we	will	use	the	iptables	command	with	the	–L	(list)	and	–n	(numeric)	flags:

[db]#	iptables	-L	-n
Chain	INPUT	(policy	ACCEPT)
target					prot	opt	source															destination
ACCEPT					all		--		0.0.0.0/0												0.0.0.0/0												state	
RELATED,ESTABLISHED
ACCEPT					icmp	--		0.0.0.0/0												0.0.0.0/0
ACCEPT					all		--		0.0.0.0/0												0.0.0.0/0
ACCEPT					tcp		--		0.0.0.0/0												0.0.0.0/0												state	
NEW	tcp	dpt:22
REJECT					all		--		0.0.0.0/0												0.0.0.0/0												
reject-	with	icmp-host-prohibited
ACCEPT					tcp		--		192.168.0.0/16							0.0.0.0/0												state	
NEW	tcp	dpt:3306

Chain	FORWARD	(policy	ACCEPT)
target					prot	opt	source															destination
REJECT					all		--		0.0.0.0/0												0.0.0.0/0												
reject-	with	icmp-host-prohibited

Chain	OUTPUT	(policy	ACCEPT)
target					prot	opt	source															destination

When	executing	iptables,	 the	 flags	–L	and	–n	 are	not	combined.	Unlike	most
other	commands,	iptables	has	a	specific	format	that	requires	some	flags	to	be
separated	from	others.	In	this	case,	the	–L	 flag	is	separated	from	the	rest	of	the
options.	We	could	add	the	–v	 (verbose)	option	to	the	–n	but	not	 to	 the	–L.	The
following	is	an	example	of	executing	with	the	verbose	option:

[db]#	iptables	-L	-nv

It	seems	from	the	output	of	iptables	-L	-n	that	there	are	quite	a	few	iptables
rules	in	place	on	this	server.	Let's	break	down	these	rules	in	order	to	understand
them	better.

Understanding	iptables	rules
Before	we	get	into	the	individual	rules,	we	should	first	cover	a	few	general	rules
of	iptables	and	firewalls.

Ordering	matters

The	first	important	rule	to	know	is	that	ordering	matters.	If	we	look	at	the	data
returned	 by	 iptables	 -L	 -n,	 we	 could	 see	 that	 there	 are	 multiple	 rules,	 the
order	of	which	those	rules	are	in	determines	how	that	rule	is	interpreted.

I	 like	 to	 think	of	iptables	 as	a	checklist;	when	a	packet	 is	 received	iptables
will	 go	 through	 the	 checklist	 from	 top	 to	 bottom.	 When	 it	 finds	 a	 rule	 that
matches	the	condition,	it	applies	that	rule.

This	 is	one	of	 the	most	common	mistakes	people	make	when	using	iptables,
putting	rules	outside	of	the	top	to	bottom	order.

Default	policies

In	 general,	iptables	 is	 used	 in	 two	ways,	 either	 all	 traffic	 unless	 specifically
blocked	 is	 allowed,	 or	 all	 traffic	 unless	 specifically	 allowed	 is	 blocked.	These
methodologies	are	called	a	default	allow	and	default	deny	policy.

It	 is	 acceptable	 to	use	either	policy	depending	on	 the	desired	use	of	 the	Linux
firewall.	 In	 general	 however,	 the	 default	 deny	 policy	 is	 often	 considered	 the
more	secure	approach,	as	this	policy	requires	a	rule	to	be	added	for	each	type	of
access	required	for	the	server	in	question.

Breaking	down	the	iptables	rules

Since	iptables	processes	rules	from	the	top	down,	to	better	understand	the	rules
in	place	we	are	going	to	take	a	look	at	the	iptables	rules	from	the	bottom	up:

Chain	FORWARD	(policy	ACCEPT)
target					prot	opt	source															destination
REJECT					all		--		0.0.0.0/0												0.0.0.0/0												
reject-	with	icmp-host-prohibited

The	 first	 rule	 we	 see	 says	 REJECT	 all	 protocols	 from	 any	 source	 to	 any

destination	 for	 the	 FORWARD	 chain.	 Does	 this	 mean	 that	 iptables	 is	 going	 to
block	everything?	Yes,	but	only	for	packets	that	are	being	forwarded.

The	iptables	command	categorizes	network	traffic	types	into	tables	and	chains.
Tables	 consist	 of	 the	 high-level	 operations	 being	 performed	 such	 as	 filtering,
network	address	translation,	or	altering	packets.

Within	each	table,	there	are	also	several	"chains".	The	chains	are	used	to	define
the	 type	 of	 traffic	 to	 apply	 the	 rule	 to.	 In	 the	 case	 of	 the	 FORWARD	 chain,	 this
matches	traffic	that	is	being	forwarded,	which	is	commonly	used	for	routing.

The	next	chain	with	rules	applied	is	the	INPUT	chain:

Chain	INPUT	(policy	ACCEPT)
target					prot	opt	source															destination
ACCEPT					all		--		0.0.0.0/0												0.0.0.0/0												state	
RELATED,ESTABLISHED
ACCEPT					icmp	--		0.0.0.0/0												0.0.0.0/0
ACCEPT					all		--		0.0.0.0/0												0.0.0.0/0
ACCEPT					tcp		--		0.0.0.0/0												0.0.0.0/0												state	
NEW	tcp	dpt:22
REJECT					all		--		0.0.0.0/0												0.0.0.0/0												
reject-	with	icmp-host-prohibited
ACCEPT					tcp		--		192.168.0.0/16							0.0.0.0/0												state	
NEW	tcp	dpt:3306

This	 chain	 applies	 to	 traffic	 that	 is	 incoming	 to	 the	 local	 system;	 essentially,
these	rules	are	only	applied	to	traffic	that	is	arriving	on	the	system:

ACCEPT					tcp		--		192.168.0.0/16							0.0.0.0/0												state	
NEW	tcp	dpt:3306

If	we	look	at	the	last	rule	in	the	chain,	we	can	see	that	it	specifically	defines	that
the	 system	 should	 ACCEPT	 TCP	 traffic	 with	 a	 source	 IP	 within	 the
192.168.0.0/16	 network	 and	 a	 destination	 IP	 of	 0.0.0.0/0,	 which	 like	 with
netstat	is	a	wildcard.	The	last	part	of	this	rule	defines	that	this	rule	applies	only
to	new	connections	with	a	destination	port	of	3306.

To	put	 it	 simply,	 this	 rule	would	have	 the	effect	of	 allowing	any	 IP	within	 the
192.168.0.0/16	network	to	access	port	3306	on	any	of	the	database	servers	local
IPs.

This	rule	in	particular	should	allow	traffic	from	our	blog	server	(192.168.33.11),
but	what	about	the	rule	above	it?

REJECT					all		--		0.0.0.0/0												0.0.0.0/0												
reject-	with	icmp-host-prohibited

The	preceding	rule	specifically	states	that	the	system	should	REJECT	all	protocols
from	a	source	IP	of	0.0.0.0/0	 to	a	destination	IP	of	0.0.0.0/0	and	reply	with
an	 ICMP	 packet	 that	 says	 the	 host	 is	 prohibited.	 From	 our	 earlier	 network
troubleshooting,	 we	 know	 that	 the	 0.0.0.0/0	 network	 is	 a	 wildcard	 for	 all
networks.

This	means	that	this	rule	will	REJECT	all	traffic	to	the	system,	effectively	making
our	 system	use	 a	 "default	 deny"	policy.	However,	 this	 isn't	 really	 the	 common
method	of	defining	a	"default	deny"	policy.

If	we	look	at	the	top	of	this	chain's	ruleset,	we	will	see	the	following:

Chain	INPUT	(policy	ACCEPT)

This	is	essentially	saying	that	the	INPUT	chain	itself	has	an	ACCEPT	policy,	which
means	the	chain	itself	is	using	a	"default	allow"	policy.	However,	there	is	a	rule
in	this	chain	that	will	REJECT	all	traffic.

This	means	that	while	the	chain's	policy	is	not	technically	default	deny,	this	rule
effectively	 accomplishes	 the	 same	 thing.	 Unless	 traffic	 is	 specifically	 allowed
before	this	rule,	the	traffic	will	be	denied,	effectively	making	the	chain	a	"default
deny"	policy.

At	 this	point,	we	have	an	 interesting	problem;	 the	 last	 rule	 in	 the	INPUT	 chain
specifically	 allows	 traffic	 to	 port	 3306	 (the	 MariaDB	 port)	 from	 the	 source
network	of	192.168.0.0/16.	However,	the	rule	above	that	denies	all	traffic	from
anywhere	to	anywhere.	If	we	take	a	second	to	remember	that	iptables	is	order
based,	then	we	can	easily	see	that	this	might	be	a	problem.

The	issue	might	simply	be	that	the	rule	to	allow	port	3306	is	defined	after	a	rule
that	 blocks	 all	 traffic;	 essentially,	 the	 database	 traffic	 is	 being	 blocked	 by	 the
default	deny	rule.

Before	we	start	acting	on	this	information,	however,	we	should	continue	looking
at	the	iptables	rules	as	there	could	be	another	rule	defined	that	counters	the	two
bottom	rules:

ACCEPT					tcp		--		0.0.0.0/0												0.0.0.0/0												state	
NEW	tcp	dpt:22

The	third	from	the	last	rule	in	the	INPUT	chain	does	explain	why	SSH	traffic	is
working	as	expected.	This	rule	specifically	states	that	the	system	should	ACCEPT
all	TCP	protocol	traffic	from	any	source	to	any	destination	when	the	connection
is	a	new	connection	destined	for	port	22.

This	rule	essentially	defines	that	all	new	TCP	connections	to	port	22	are	allowed.
Since	it	is	before	the	default	deny	rule,	this	means	that	in	no	circumstance	would
new	connections	to	port	22	be	blocked	by	that	rule.

If	 we	 look	 at	 the	 fourth	 from	 the	 last	 rule	 in	 the	 INPUT	 chain,	 we	 see	 a	 very
interesting	rule:

ACCEPT					all		--		0.0.0.0/0												0.0.0.0/0

This	 rule	 appears	 to	 tell	 the	 system	 to	 ACCEPT	 all	 protocols	 from	 any	 IP
(0.0.0.0/0)	 to	any	IP	(0.0.0.0/0).	 If	we	 look	at	 this	 rule	and	apply	 the	 logic
that	ordering	matters;	then	this	rule	should	allow	our	database	traffic.

Unfortunately,	the	iptables	output	can	sometimes	be	misleading,	as	this	rule	is
not	showing	a	critical	piece	of	the	rule;	the	interface:

[db]#	iptables	-L	-nv
Chain	INPUT	(policy	ACCEPT	0	packets,	0	bytes)
	pkts	bytes	target					prot	opt	in					out					source	destination
			36		2016	ACCEPT					all		--		*						*							0.0.0.0/0	0.0.0.0/0												
state	RELATED,ESTABLISHED
				0					0	ACCEPT					icmp	--		*						*							0.0.0.0/0	0.0.0.0/0
				0					0	ACCEPT					all		--		lo					*							0.0.0.0/0	0.0.0.0/0
				0					0	ACCEPT					tcp		--		*						*							0.0.0.0/0	0.0.0.0/0												
state	NEW	tcp	dpt:22
		394	52363	REJECT					all		--		*						*							0.0.0.0/0	0.0.0.0/0												
reject-with	icmp-host-prohibited
				0					0	ACCEPT					tcp		--		*						*							192.168.0.0/16	
0.0.0.0/0												state	NEW	tcp	dpt:3306

If	we	add	the	–v	(verbose)	flag	to	the	iptables	command,	we	can	see	quite	a	bit
more	 information.	 In	 particular,	we	 can	 see	 a	 new	 column	 named	 "in",	which
stands	for	interface:

				0					0	ACCEPT					all		--		lo					*							0.0.0.0/0	0.0.0.0/0

If	we	take	a	second	look	at	this	same	rule,	we	can	see	that	the	interface	column
shows	that	this	rule	only	applies	to	traffic	on	the	loopback	 interface.	Since	our
database	 traffic	 is	 on	 the	enp0s8	 interface,	 the	database	 traffic	does	not	match
this	rule:

				0					0	ACCEPT					icmp	--		*						*							0.0.0.0/0	0.0.0.0/0

The	fifth	from	the	last	rule	 is	very	similar,	except	 that	 it	specifically	allows	all
ICMP	 traffic	 from	 any	 IP	 to	 any	 IP.	 This	 explains	why	 our	ping	 requests	 are
working	as	 this	 rule	will	allow	 the	 ICMP	echo	 request	and	echo	 reply	 through
the	firewall.

The	sixth	from	the	last	rule,	however,	is	quite	a	bit	different	from	the	others:

			36		2016	ACCEPT					all		--		*						*							0.0.0.0/0	0.0.0.0/0												
state	RELATED,ESTABLISHED

This	 rule	 does	 state	 that	 the	 system	 should	 ACCEPT	 all	 protocols	 from	 any	 IP
(0.0.0.0/0)	 to	 any	 IP	 (0.0.0.0/0);	 but	 the	 rule	 is	 limited	 to	 only	 RELATED	 and
ESTABLISHED	packets.

Earlier,	while	reviewing	the	iptables	rule	for	port	22,	we	could	see	that	the	rule
is	limited	to	NEW	connections.	This	essentially	means	that	packets	that	are	used	to
start	a	new	connection	to	port	22	such	as	a	SYN	and	SYN-ACK-ACK	are	allowed.

When	the	rule	states	that	the	ESTABLISHED	state	is	allowed,	iptables	will	allow
packets	that	are	part	of	an	established	TCP	connection:

This	means	that	new	SSH	connections	are	allowed	by	the	rule	for	port	22.

				0					0	ACCEPT					tcp		--		*						*							0.0.0.0/0	0.0.0.0/0												
state	NEW	tcp	dpt:22

Then,	once	the	TCP	connection	is	established	it	is	allowed	by	the	following	rule:

			36		2016	ACCEPT					all		--		*						*							0.0.0.0/0	0.0.0.0/0												
state	RELATED,ESTABLISHED

Putting	the	rules	together

Now	that	we	have	looked	at	all	of	the	iptables	rules,	we	can	make	an	educated
guess	as	to	why	our	database	traffic	is	not	working.

In	 the	iptables	 ruleset,	we	can	 see	 that	 the	 rule	 to	 reject	 all	 traffic	 is	defined
before	the	rule	to	allow	database	connectivity	on	port	3306:

		394	52363	REJECT					all		--		*						*							0.0.0.0/0	0.0.0.0/0												
reject-with	icmp-host-prohibited
				0					0	ACCEPT					tcp		--		*						*							192.168.0.0/16	
0.0.0.0/0												state	NEW	tcp	dpt:3306

Since	systems	are	unable	to	start	new	connections,	they	are	not	able	to	become
established,	which	would	be	allowed	by	the	following	rule:

			36		2016	ACCEPT					all		--		*						*							0.0.0.0/0	0.0.0.0/0												
state	RELATED,ESTABLISHED

We	can	determine	all	of	this	by	looking	at	the	rules	defined,	but	this	also	requires
a	pretty	versed	knowledge	of	iptables.

There	is	another	somewhat	easier	way	to	determine	which	rules	are	blocking	or
allowing	traffic.

Viewing	iptables	counters

With	 the	 verbose	 output	 of	 iptables,	 we	 not	 only	 see	 the	 interface	 the	 rule
applies	 to,	but	we	also	 see	 two	additional	 columns	 that	 are	very	useful.	Those
two	columns	are	pkts	and	bytes:

[db]#	iptables	-L	-nv
Chain	INPUT	(policy	ACCEPT	0	packets,	0	bytes)
	pkts	bytes	target					prot	opt	in					out					source	destination
			41		2360	ACCEPT					all		--		*						*							0.0.0.0/0	0.0.0.0/0												
state	RELATED,ESTABLISHED

The	 pkts	 column	 is	 the	 first	 column	 in	 the	 verbose	 output	 of	 iptables,	 this
column	contains	the	number	of	packets	the	rule	has	been	applied	to.	If	we	look	at
the	preceding	rule,	we	can	see	that	this	rule	has	been	applied	to	41	packets.	The

bytes	column	is	 the	second	column	and	is	used	to	denote	 the	number	of	bytes
that	the	rule	has	been	applied	to.	For	our	preceding	example,	the	rule	has	been
applied	to	2,360	bytes.

We	can	use	the	packet	and	byte	counters	in	iptables	to	identify	which	rules	are
being	 applied	 to	 our	 database	 traffic.	 To	 do	 this,	 we	 simply	 need	 to	 trigger
database	 activity	 by	 refreshing	 our	 browser	 and	 running	 iptables	 –L	 –nv	 to
identify	which	rules	had	their	counters	increased.	We	can	even	make	this	easier
by	clearing	out	the	current	values	with	the	iptables	command	followed	by	the	–
Z	(zero)	flag:

[db]#	iptables	–Z

If	we	re-execute	the	verbose	listing	for	iptables,	we	can	see	 that	 the	counters
are	0	for	everything	except	the	ESTABLISHED	and	RELATED	rule	(a	rule	that	every
connection	will	match,	including	our	SSH	session):

[db]#	iptables	-L	-nv
Chain	INPUT	(policy	ACCEPT	0	packets,	0	bytes)
	pkts	bytes	target					prot	opt	in					out					source	destination
				7			388	ACCEPT					all		--		*						*							0.0.0.0/0	0.0.0.0/0												
state	RELATED,ESTABLISHED
				0					0	ACCEPT					icmp	--		*						*							0.0.0.0/0	0.0.0.0/0
				0					0	ACCEPT					all		--		lo					*							0.0.0.0/0	0.0.0.0/0
				0					0	ACCEPT					tcp		--		*						*							0.0.0.0/0	0.0.0.0/0												
state	NEW	tcp	dpt:22
				0					0	REJECT					all		--		*						*							0.0.0.0/0	0.0.0.0/0												
reject-with	icmp-host-prohibited
				0					0	ACCEPT					tcp		--		*						*							192.168.0.0/16	
0.0.0.0/0												state	NEW	tcp	dpt:3306

After	 clearing	 these	 values,	we	 can	 now	 refresh	 our	web	 browser	 and	 initiate
some	database	traffic:

[db]#	iptables	-L	-nv
Chain	INPUT	(policy	ACCEPT	0	packets,	0	bytes)
	pkts	bytes	target					prot	opt	in					out					source	destination
			53		3056	ACCEPT					all		--		*						*							0.0.0.0/0	0.0.0.0/0												
state	RELATED,ESTABLISHED
				0					0	ACCEPT					icmp	--		*						*							0.0.0.0/0	0.0.0.0/0
				0					0	ACCEPT					all		--		lo					*							0.0.0.0/0	0.0.0.0/0
				0					0	ACCEPT					tcp		--		*						*							0.0.0.0/0	0.0.0.0/0												
state	NEW	tcp	dpt:22

			45		4467	REJECT					all		--		*						*							0.0.0.0/0	0.0.0.0/0												
reject-with	icmp-host-prohibited
				0					0	ACCEPT					tcp		--		*						*							192.168.0.0/16	
0.0.0.0/0												state	NEW	tcp	dpt:3306

If	we	run	iptables	–L	in	the	verbose	mode	again,	we	can	see	that	in	fact	as	we
suspected	the	packets	are	being	rejected	by	the	default	deny	rule.	We	can	see	this
by	the	fact	that	this	rule	has	now	rejected	45	packets	since	we	used	the	–Z	flag	to
zero	the	counters.

Using	 the	-Z	 flag	and	counters	 is	 a	very	useful	method;	however,	 it	might	not
work	 in	 all	 cases.	On	 busy	 systems	 and	 systems	with	many	 rules,	 it	might	 be
difficult	to	solely	use	counters	to	show	which	rules	are	being	matched.	For	this
reason,	 it	 is	 important	 to	build	an	experience	with	iptables,	 understanding	 its
intricacies.

Correcting	the	iptables	rule	ordering

Changing	iptables	can	be	a	bit	tricky,	not	because	it	is	difficult	to	use	(though
the	 command	 syntax	 is	 a	 bit	 complex),	 but	 because	 there	 are	 two	 steps	 for
modifying	iptables	 rules.	 If	one	step	 is	 forgotten	 (which	 it	often	 is),	 then	 the
issue	can	persist	unexpectedly.

How	iptables	rules	are	applied

When	the	iptables	service	is	started,	the	start	script	doesn't	start	a	daemon	like
other	services	on	the	system.	What	the	iptables	service	does	is	simply	apply	the
rules	that	are	defined	within	a	saved	rules	file	(/etc/sysconfig/iptables).

These	rules	are	then	loaded	in	the	memory,	and	they	become	active	rules.	This
means	that	if	we	were	to	simply	reorder	the	rules	in	memory	but	not	modify	the
saved	file,	the	next	time	the	server	rebooted,	our	changes	would	be	lost.

On	 the	 flip	 side,	 if	 we	 only	 modified	 the	 saved	 file	 but	 did	 not	 reorder	 the
iptables	 rules	 in	memory,	our	changes	will	not	 take	effect	until	 the	next	 time
the	iptables	service	is	restarted.

I've	 seen	 both	 of	 these	 situations	 occur	 somewhat	 frequently,	 where	 someone
simply	 forgot	 one	 or	 the	 other	 step.	 This	 situation	 caused	 even	 more
complication	for	the	issue	they	were	working.

Modifying	iptables	rules

For	 this	 scenario,	 we	 will	 choose	 a	 simple	 method	 to	 both	 execute	 and
remember.	We	will	first	edit	the	/etc/sysconfig/iptables	file,	which	holds	all
of	 the	 defined	 iptables	 rules.	 Then	 restart	 the	 iptables	 service,	 which	 will
cause	 the	 current	 rules	 to	 be	 flushed	 and	 the	 new	 rules	 in	 the
/etc/sysconfig/iptables	file	to	be	applied.

To	edit	the	iptables	file,	we	can	simply	use	vi:

[db]#	vi	/etc/sysconfig/iptables
#	Generated	by	iptables-save	v1.4.21	on	Mon	Mar	30	02:27:35	2015
*nat
:PREROUTING	ACCEPT	[10:994]
:INPUT	ACCEPT	[0:0]
:OUTPUT	ACCEPT	[0:0]
:POSTROUTING	ACCEPT	[0:0]
COMMIT
#	Completed	on	Mon	Mar	30	02:27:35	2015
#	Generated	by	iptables-save	v1.4.21	on	Mon	Mar	30	02:27:35	2015
*filter
:INPUT	ACCEPT	[0:0]
:FORWARD	ACCEPT	[0:0]
:OUTPUT	ACCEPT	[140:11432]
-A	INPUT	-m	state	--state	RELATED,ESTABLISHED	-j	ACCEPT
-A	INPUT	-p	icmp	-j	ACCEPT
-A	INPUT	-i	lo	-j	ACCEPT
-A	INPUT	-p	tcp	-m	state	--state	NEW	-m	tcp	--dport	22	-j	ACCEPT
-A	INPUT	-j	REJECT	--reject-with	icmp-host-prohibited
-A	INPUT	-p	tcp	-m	state	--state	NEW	-m	tcp	--src	192.168.0.0/16	--	
dport	3306	-j	ACCEPT
-A	FORWARD	-j	REJECT	--reject-with	icmp-host-prohibited
COMMIT
#	Completed	on	Mon	Mar	30	02:27:35	2015

The	contents	of	this	file	are	a	bit	different	than	the	output	of	iptables	-L.	The
preceding	 rules	are	actually	 just	options	 that	can	be	appended	 to	 the	iptables
command.	For	example,	if	we	wanted	to	add	a	rule	that	allows	traffic	to	port	22,
we	 can	 simply	 copy	 and	 paste	 the	 preceding	 rule	 with	 -dport	 22	 with	 the
iptables	 command	 prepended.	 The	 following	 is	 an	 example	 of	 what	 that
command	would	look	like:

iptables	-A	INPUT	-p	tcp	-m	state	--state	NEW	-m	tcp	--dport	22	-j	

ACCEPT

When	 the	 iptables	 service	 scripts	 are	 adding	 the	 iptables	 rules,	 they	 also
simply	append	these	rules	to	the	iptables	command.

From	the	contents	of	the	iptables	file,	we	can	see	the	two	rules	that	need	to	be
reordered:

-A	INPUT	-j	REJECT	--reject-with	icmp-host-prohibited
-A	INPUT	-p	tcp	-m	state	--state	NEW	-m	tcp	--src	192.168.0.0/16	--	
dport	3306	-j	ACCEPT

In	order	to	resolve	our	issue,	we	can	simply	change	these	two	rules	to	match	the
following:

-A	INPUT	-p	tcp	-m	state	--state	NEW	-m	tcp	--src	192.168.0.0/16	--	
dport	3306	-j	ACCEPT
-A	INPUT	-j	REJECT	--reject-with	icmp-host-prohibited

Once	the	change	is	made,	we	can	save	and	quit	the	file	by	pressing	Esc	then	:wq
in	vi.

Testing	our	changes

Now	 that	 the	 file	 is	 saved,	 we	 should	 be	 able	 to	 simply	 restart	 the	 iptables
service	and	the	rules	will	be	applied.	The	only	problem	is,	what	if	we	didn't	edit
our	iptables	file	correctly?

Our	current	iptables	 configuration	has	a	 rule	 that	blocks	all	 traffic	except	 for
connections	that	are	allowed	by	the	rules	above	it.	What	if	we	accidently	placed
that	 rule	 before	 the	 rule	 that	 allows	 port	 22?	 This	would	mean	 that	 when	we
restart	 the	 iptables	 service,	 we	 will	 no	 longer	 be	 able	 to	 establish	 SSH
connections,	 and	 since	 that	 is	 our	 only	method	 for	 managing	 this	 server,	 that
simple	mistake	could	have	serious	consequences.

Caution	 should	 always	 be	 exercised	when	making	 changes	 to	iptables.	 Even
when	simply	 restarting	 the	iptables	 service,	 it	 is	 always	best	 to	 look	 through
the	 saved	 rules	 in	 /etc/sysconfig/iptables	 to	 ensure	 that	 there	 are	 no
unexpected	 changes	 that	 will	 lock	 users	 and	 yourself	 out	 of	 managing	 the
system.

To	 help	 avoid	 this	 situation,	 we	 can	 use	 the	 screen	 command.	 The	 screen
command	is	used	to	open	up	pseudo	terminals	that	will	continue	even	if	our	SSH
session	is	disconnected.	This	is	true	even	if	the	disconnection	is	due	to	firewall
changes.

To	start	the	screen,	we	will	simply	execute	the	command	screen:

[db]#	screen

Once	 we	 are	 within	 the	 screen	 session,	 we	 are	 going	 to	 do	 a	 bit	 more	 than
simply	restart	iptables.	We	are	actually	going	to	write	out	a	bash	one-liner	that
restarts	iptables,	prints	the	output	to	the	screen	to	let	us	know	our	session	still
works,	waits	for	two	minutes,	then	finally	stops	the	iptables	service:

[db]#	systemctl	restart	iptables;	echo	"still	here?";	sleep	120;	
systemctl	stop	iptables

When	we	run	this	command,	we	will	see	either	one	of	two	things,	either	our	SSH
session	will	close,	which	likely	means	we	have	an	error	in	our	iptables	rules,	or
we	will	see	a	message	on	our	screen	that	says	still	here?.

If	we	see	the	still	here?	message,	this	means	our	iptables	rules	did	not	lock	out
our	SSH	session:

[db]#	systemctl	restart	iptables.service;	echo	"still	here?";	sleep	
120;	systemctl	stop	iptables.service
still	here?

Since	the	command	finished	and	our	SSH	session	did	not	terminate,	we	can	now
simply	restart	iptables	with	the	comfort	of	knowing	that	we	will	not	be	locked
out.

Tip

It	 is	 always	 a	good	 idea	 to	 establish	 a	new	SSH	session	when	 the	 rules	 are	 in
place	without	ending	the	previous	SSH	session.	This	verifies	that	you	can	initiate
new	SSH	sessions,	and	 if	 it	does	not	work,	you	still	have	 the	old	SSH	session
alive	to	resolve	the	issue.

When	we	restart	iptables	this	time,	our	new	rules	will	be	in	place:

#	systemctl	restart	iptables.service
#	iptables	-L	-nv
Chain	INPUT	(policy	ACCEPT	0	packets,	0	bytes)
	pkts	bytes	target					prot	opt	in					out					source	destination
			15			852	ACCEPT					all		--		*						*							0.0.0.0/0	0.0.0.0/0												
state	RELATED,ESTABLISHED
				0					0	ACCEPT					icmp	--		*						*							0.0.0.0/0	0.0.0.0/0
				0					0	ACCEPT					all		--		lo					*							0.0.0.0/0	0.0.0.0/0
				0					0	ACCEPT					tcp		--		*						*							0.0.0.0/0	0.0.0.0/0												
state	NEW	tcp	dpt:22
				0					0	ACCEPT					tcp		--		*						*							192.168.0.0/16	
0.0.0.0/0												state	NEW	tcp	dpt:3306
				0					0	REJECT					all		--		*						*							0.0.0.0/0	0.0.0.0/0												
reject-with	icmp-host-prohibited

Now,	we	can	see	that	the	rule	to	accept	port	3306	traffic	is	in	front	of	the	default
deny	 rule.	 If	 we	 refresh	 our	 browser,	 we	 can	 also	 validate	 that	 the	 iptables
change	corrected	the	issue.

Which	it	seems,	it	has!

If	we	take	another	look	at	the	iptables	listing	in	the	verbose	mode,	we	can	also
see	how	well	our	rule	is	being	matched:

#	iptables	-L	-nv
Chain	INPUT	(policy	ACCEPT	0	packets,	0	bytes)
	pkts	bytes	target					prot	opt	in					out					source	destination
		119	19352	ACCEPT					all		--		*						*							0.0.0.0/0	0.0.0.0/0												
state	RELATED,ESTABLISHED
				0					0	ACCEPT					icmp	--		*						*							0.0.0.0/0	0.0.0.0/0
				0					0	ACCEPT					all		--		lo					*							0.0.0.0/0	0.0.0.0/0
				0					0	ACCEPT					tcp		--		*						*							0.0.0.0/0	0.0.0.0/0												
state	NEW	tcp	dpt:22
				2			120	ACCEPT					tcp		--		*						*							192.168.0.0/16	
0.0.0.0/0												state	NEW	tcp	dpt:3306
			39		4254	REJECT					all		--		*						*							0.0.0.0/0	0.0.0.0/0												
reject-with	icmp-host-prohibited

From	the	statistics	in	iptables,	we	can	see	that	 two	packets	have	matched	our
rule	 now.	 This	 combined	 with	 the	 working	 website	 means	 that	 our	 minor
correction	 on	 ordering	 made	 a	 huge	 difference	 on	 what	 iptables	 allows	 or
denies.

Summary
In	this	chapter,	we	experienced	what	seemed	like	a	simple	networking	issue	with
our	blog	application	connecting	to	its	database.	In	our	data	collection	phase,	we
used	 commands	 such	 as	 netstat	 and	 tcpdump	 to	 inspect	 the	 network	 packets
and	 quickly	 discovered	 that	 the	 blog	 server	 was	 receiving	 an	 ICMP	 packet
indicating	that	the	database	server	is	rejecting	the	blog	server's	TCP	packets.

From	 that	 point,	 we	 suspected	 the	 issue	 was	 a	 firewall	 issue,	 which	 after
investigating	 with	 the	 iptables	 command	 we	 noticed	 that	 the	 firewall	 rules
were	out	of	order.

Afterwards,	we	were	able	 to	use	 the	 trial	and	error	 stage	 to	 resolve	 the	 issue.
This	 specific	 issue	 is	 a	 very	 common	 issue,	 something	 that	 I	 personally	 have
seen	 in	many	different	environments.	This	 is	mostly	due	 to	 lack	of	knowledge
around	 how	 iptables	 works	 and	 how	 to	 define	 rules	 properly.	 While	 this
chapter	only	covered	one	type	of	misconfiguration	within	iptables,	the	general
troubleshooting	methods	used	within	this	chapter	can	be	applied	to	most	cases.

In	 Chapter	 7,	 FileSystem	 Errors	 and	 Recovery,	 we	 will	 start	 exploring	 file
system	errors	and	how	to	 recover	 from	them—a	tricky	 topic	where	one	wrong
command	 could	mean	 data	 loss,	 something	 no	 systems	 administrator	wants	 to
see.

Chapter	 7.	 Filesystem	 Errors	 and
Recovery
In	 Chapter	 5,	 Network	 Troubleshooting,	 and	 Chapter	 6,	 Diagnosing	 and
Correcting	Firewall	 Issues,	we	used	quite	 a	 few	 tools	 to	 troubleshoot	 network
connectivity	 issues	due	 to	misconfigured	 routes	 and	 firewalls.	Network	 related
issues	are	very	common	and	the	two	example	issues	are	also	frequent	scenarios.
In	this	chapter,	we	will	be	focusing	on	hardware-related	issues	and	start	that	with
troubleshooting	filesystem	errors.

Much	 like	 the	 other	 chapters,	 we	 will	 start	 with	 a	 discovered	 error	 and
troubleshoot	 the	 issue	until	we	find	 the	cause	and	solution.	Along	 the	way,	we
will	 discover	 many	 of	 the	 different	 commands	 and	 logs	 necessary	 for
troubleshooting	filesystem	issues.

Diagnosing	filesystem	errors
Unlike	earlier	chapters	where	end	users	were	reporting	the	issue	to	us,	this	time
around	we	have	found	an	issue	for	ourselves.	While	performing	some	daily	tasks
on	the	database	server	we	attempted	to	create	a	database	backup	and	received	the
following	error:

[db]#	mysqldump	wordpress	>	/data/backups/wordpress.sql
-bash:	/data/backups/wordpress.sql:	Read-only	file	system

This	 error	 is	 interesting	 because	 it	 is	 not	 necessarily	 from	 the	 mysqldump
command,	 but	 rather	 from	 the	 bash	 redirect	 that	 writes	 to	 the
/data/backups/wordpress.sql	file.

If	we	look	at	 the	error	 it	 is	very	specific,	 the	filesystem	we	were	attempting	to
write	the	backup	to,	is	Read-only.	What	does	Read-only	mean?

Read-only	filesystems
When	defining	and	mounting	filesystems	on	Linux	you	have	many	options,	but
there	 are	 two	 options	 that	 define	 the	 filesystem's	 accessibility	 best.	Those	 two
options	 are	rw	 for	 read	 and	write,	 and	 ro	 for	 read-only.	When	 a	 filesystem	 is
mounted	 with	 the	 read	 and	 write	 option,	 this	 means	 that	 the	 contents	 of	 the
filesystem	can	be	read	and	the	users	with	appropriate	permissions	can	write	new
files/directories	to	the	filesystem.

When	the	filesystem	is	mounted	in	the	read-only	mode,	it	means	that	while	users
can	read	the	filesystem,	new	write	requests	will	be	denied.

Using	 the	 mount	 command	 to	 list	 mounted
filesystems
Since	 the	 error	we	 received	 specifically	 states	 that	 the	 filesystem	 is	 read-only,
our	next	logical	step	is	to	look	at	the	filesystems	mounted	on	this	server.	To	do
this,	we	will	use	the	mount	command:

[db]#	mount
proc	on	/proc	type	proc	(rw,nosuid,nodev,noexec,relatime)
sysfs	on	/sys	type	sysfs	(rw,nosuid,nodev,noexec,relatime,seclabel)
devtmpfs	on	/dev	type	devtmpfs	
(rw,nosuid,seclabel,size=228500k,nr_inodes=57125,mode=755)
securityfs	on	/sys/kernel/security	type	securityfs	
(rw,nosuid,nodev,noexec,relatime)
tmpfs	on	/dev/shm	type	tmpfs	(rw,nosuid,nodev,seclabel)
devpts	on	/dev/pts	type	devpts	
(rw,nosuid,noexec,relatime,seclabel,gid=5,mode=620,ptmxmode=000)
tmpfs	on	/run	type	tmpfs	(rw,nosuid,nodev,seclabel,mode=755)
tmpfs	on	/sys/fs/cgroup	type	tmpfs	
(rw,nosuid,nodev,noexec,seclabel,mode=755)
selinuxfs	on	/sys/fs/selinux	type	selinuxfs	(rw,relatime)
systemd-1	on	/proc/sys/fs/binfmt_misc	type	autofs	
(rw,relatime,fd=33,pgrp=1,timeout=300,minproto=5,maxproto=5,direct)
mqueue	on	/dev/mqueue	type	mqueue	(rw,relatime,seclabel)
hugetlbfs	on	/dev/hugepages	type	hugetlbfs	(rw,relatime,seclabel)
debugfs	on	/sys/kernel/debug	type	debugfs	(rw,relatime)
sunrpc	on	/var/lib/nfs/rpc_pipefs	type	rpc_pipefs	(rw,relatime)
nfsd	on	/proc/fs/nfsd	type	nfsd	(rw,relatime)
/dev/sda1	on	/boot	type	xfs	
(rw,relatime,seclabel,attr2,inode64,noquota)
192.168.33.13:/nfs	on	/data	type	nfs4	
(rw,relatime,vers=4.0,rsize=65536,wsize=65536,namlen=255,hard,proto
=tcp,port=0,timeo=600,retrans=2,sec=sys,clientaddr=192.168.33.12,lo
cal_lock=none,addr=192.168.33.13)

The	mount	command	is	a	very	useful	command	when	dealing	with	filesystems.
Not	 only	 can	 it	 be	 used	 to	 display	 the	 mounted	 filesystems	 (as	 seen	 in	 the
preceding	command),	but	it	can	also	be	used	to	attach	(or	mount)	and	un-attach
(unmount)	filesystems.

A	mounted	filesystem

Calling	a	filesystem	a	mounted	filesystem	is	a	common	way	of	saying	 that	 the

filesystem	is	attached	 to	 the	 server.	With	 filesystems,	 they	generally	 have	 two
statuses,	 either	 they	 are	 attached	 (mounted)	 and	 the	 contents	 are	 accessible	 to
users,	or	they	are	un-attached	(unmounted)	and	inaccessible	to	the	users.	Later	in
this	chapter,	we	will	cover	mounting	and	unmounting	filesystems	with	the	mount
command.

The	mount	command	is	not	the	only	way	to	see	what	filesystems	are	mounted	or
not	mounted.	Another	way	to	do	this	is	to	simply	read	the	/proc/mounts	file:

[db]#	cat	/proc/mounts	
rootfs	/	rootfs	rw	0	0
proc	/proc	proc	rw,nosuid,nodev,noexec,relatime	0	0
sysfs	/sys	sysfs	rw,seclabel,nosuid,nodev,noexec,relatime	0	0
devtmpfs	/dev	devtmpfs	
rw,seclabel,nosuid,size=228500k,nr_inodes=57125,mode=755	0	0
securityfs	/sys/kernel/security	securityfs	
rw,nosuid,nodev,noexec,relatime	0	0
tmpfs	/dev/shm	tmpfs	rw,seclabel,nosuid,nodev	0	0
devpts	/dev/pts	devpts	
rw,seclabel,nosuid,noexec,relatime,gid=5,mode=620,ptmxmode=000	0	0
tmpfs	/run	tmpfs	rw,seclabel,nosuid,nodev,mode=755	0	0
tmpfs	/sys/fs/cgroup	tmpfs	rw,seclabel,nosuid,nodev,noexec,mode=755	
0	0
selinuxfs	/sys/fs/selinux	selinuxfs	rw,relatime	0	0
systemd-1	/proc/sys/fs/binfmt_misc	autofs	
rw,relatime,fd=33,pgrp=1,timeout=300,minproto=5,maxproto=5,direct	0	
0
mqueue	/dev/mqueue	mqueue	rw,seclabel,relatime	0	0
hugetlbfs	/dev/hugepages	hugetlbfs	rw,seclabel,relatime	0	0
debugfs	/sys/kernel/debug	debugfs	rw,relatime	0	0
sunrpc	/var/lib/nfs/rpc_pipefs	rpc_pipefs	rw,relatime	0	0
nfsd	/proc/fs/nfsd	nfsd	rw,relatime	0	0
/dev/sda1	/boot	xfs	rw,seclabel,relatime,attr2,inode64,noquota	0	0
192.168.33.13:/nfs	/data	nfs4	
rw,relatime,vers=4.0,rsize=65536,wsize=65536,namlen=255,hard,proto=
tcp,port=0,timeo=600,retrans=2,sec=sys,clientaddr=192.168.33.12,loc
al_lock=none,addr=192.168.33.13	0	0

In	fact,	the	contents	of	the	/proc/mounts	file	are	extremely	close	to	the	output	of
the	mount	command,	with	the	main	difference	being	the	two	numbered	columns
at	the	end	of	each	line.	To	get	a	better	understanding	of	this	file	and	the	output	of
the	mount	command,	let's	take	a	better	look	at	the	/boot	filesystem's	entry	within
/proc/mounts:

/dev/sda1	/boot	xfs	rw,seclabel,relatime,attr2,inode64,noquota	0	0

The	 /proc/mounts	 file	 has	 data	 in	 six	 columns—device,	 mount	 point,
filesystem	 type,	 options,	 and	 two	 unused	 columns	 that	 exist	 for	 backwards
compatibility.	 For	 a	 better	 understanding	 of	 these	 values,	 let's	 get	 a	 better
understanding	of	the	columns.

The	 first	 column	device,	 specifies	 the	 device	 to	 use	 for	 the	 filesystem.	 In	 the
preceding	example,	the	device	that	the	/boot	filesystem	lives	on	is	/dev/sda1.

From	 the	 name	 of	 the	 device	 (sda1),	 we	 can	 identify	 a	 critical	 piece	 of
information.	This	device	is	a	partition	of	another	device,	which	we	can	identify
by	the	fact	that	the	device	name	has	a	number	at	the	end.

The	device,	which	by	 the	name	appears	 to	be	a	physical	drive	 (assuming	 it's	a
hard	drive)	and	is	named	/dev/sda;	 this	drive	has	at	 least	one	partition,	which
has	 a	 device	 name	 of	 /dev/sda1.	 Whenever	 a	 drive	 has	 partitions	 on	 it,	 the
partitions	 are	 created	 as	 their	 own	 device,	 each	 device	 getting	 assigned	 a
number;	in	this	case	1,	which	means	that	it	is	the	first	partition.

Using	fdisk	to	list	available	partitions

We	 can	 verify	 this	 by	 looking	 at	 the	 /dev/sda	 device	 that	 is	 using	 the	 fdisk
command:

[db]#	fdisk	-l	/dev/sda

Disk	/dev/sda:	42.9	GB,	42949672960	bytes,	83886080	sectors
Units	=	sectors	of	1	*	512	=	512	bytes
Sector	size	(logical/physical):	512	bytes	/	512	bytes
I/O	size	(minimum/optimal):	512	bytes	/	512	bytes
Disk	label	type:	dos
Disk	identifier:	0x0009c844

			Device	Boot						Start									End						Blocks			Id		System
/dev/sda1			*								2048					1026047						512000			83		Linux
/dev/sda2									1026048				83886079				41430016			8e		Linux	LVM

The	fdisk	command	might	be	familiar	because	it	is	a	cross-platform	command
used	to	create	disk	partitions.	It	can	however	also	be	used	to	list	partitions.

In	 the	 preceding	 command,	 we	 used	 the	 –l	 (list)	 flag	 to	 list	 the	 partitions
followed	by	 the	 device	we	wanted	 to	 look	 at—/dev/sda.	However,	 the	fdisk
command	shows	us	much	more	than	the	partitions	available	on	this	drive.	It	also
shows	us	how	large	the	disk	is:

Disk	/dev/sda:	42.9	GB,	42949672960	bytes,	83886080	sectors

We	 can	 see	 this	 in	 the	 first	 line	 being	 printed	 from	 the	 fdisk	 command,
according	to	this	line	our	device	/dev/sda	is	42.9	GB	in	size.	If	we	look	towards
the	bottom	of	the	output,	we	can	also	see	the	partitions	created	on	this	disk:

			Device	Boot						Start									End						Blocks			Id		System
/dev/sda1			*								2048					1026047						512000			83		Linux
/dev/sda2									1026048				83886079				41430016			8e		Linux	LVM

From	the	preceding	list,	it	appears	that	/dev/sda	has	two	partitions,	/dev/sda1
and	/dev/sda2.	Using	fdisk,	we	have	been	able	 to	 identify	quite	a	few	details
about	this	filesystem's	physical	device.	If	we	continue	to	look	at	the	details	from
/proc/mounts,	we	should	be	able	to	identify	some	other	very	useful	information,
as	follows:

/dev/sda1	/boot	xfs	rw,seclabel,relatime,attr2,inode64,noquota	0	0

The	second	column	mount	point	 in	 the	preceding	 line	notates	 the	path	 that	 this
filesystem	 is	 mounted	 to.	 In	 this	 case,	 the	 path	 is	 /boot;	 /boot	 by	 itself	 is
nothing	 more	 than	 a	 directory	 on	 the	 /	 (root)	 filesystem.	 However,	 once	 the
filesystem	that	exists	on	the	device	/dev/sda1	is	mounted	/boot	is	now	its	own
filesystem.

To	better	understand	this	concept,	we	will	use	the	mount	and	umount	commands
to	attach	and	detach	the	/boot	filesystem:

[db]#	ls	/boot/
config-3.10.0-123.el7.x86_64
grub
grub2
initramfs-0-rescue-dee83c8c69394b688b9c2a55de9e29e4.img
initramfs-3.10.0-123.el7.x86_64.img
initramfs-3.10.0-123.el7.x86_64kdump.img
initrd-plymouth.img
symvers-3.10.0-123.el7.x86_64.gz
System.map-3.10.0-123.el7.x86_64

vmlinuz-0-rescue-dee83c8c69394b688b9c2a55de9e29e4
vmlinuz-3.10.0-123.el7.x86_64

If	we	perform	a	simple	ls	command	on	the	/boot	path,	we	can	see	quite	a	few
files	within	this	directory.	From	the	/proc/mounts	file	and	the	mount	command,
we	know	that	there	is	a	filesystem	attached	to	/boot:

[db]#	mount	|	grep	/boot
/dev/sda1	on	/boot	type	xfs	
(rw,relatime,seclabel,attr2,inode64,noquota)

In	 order	 to	 un-attach	 or	 unmount	 this	 filesystem,	 we	 can	 use	 the	 umount
command:

[db]#	umount	/boot
[db]#	mount	|	grep	/boot

The	 umount	 command	 has	 a	 pretty	 simple	 task,	 it	 unmounts	 mounted
filesystems.

Tip

The	 preceding	 commands	 are	 examples	 that	 unmounting	 a	 filesystem	 can	 be
dangerous.	In	general,	you	should	first	verify	that	the	filesystem	is	not	actively
being	accessed	before	unmounting	it.

Since	the	/boot	filesystem	is	now	unmounted,	what	happens	when	we	perform
our	ls	command?

#	ls	/boot

The	path	/boot	is	still	valid.	However,	it	is	now	just	an	empty	directory.	This	is
due	to	the	fact	 that	 the	filesystem	on	/dev/sda1	 is	not	mounted;	therefore,	any
files	that	existed	on	that	filesystem	are	not	currently	accessible	on	this	system.

If	we	use	 the	mount	 command	 to	 remount	 the	 filesystem,	we	will	 see	 the	 files
reappear:

[db]#	mount	/boot
[db]#	ls	/boot
config-3.10.0-123.el7.x86_64
grub

grub2
initramfs-0-rescue-dee83c8c69394b688b9c2a55de9e29e4.img
initramfs-3.10.0-123.el7.x86_64.img
initramfs-3.10.0-123.el7.x86_64kdump.img
initrd-plymouth.img
symvers-3.10.0-123.el7.x86_64.gz
System.map-3.10.0-123.el7.x86_64
vmlinuz-0-rescue-dee83c8c69394b688b9c2a55de9e29e4
vmlinuz-3.10.0-123.el7.x86_64

As	 we	 can	 see,	 when	 the	 mount	 command	 is	 given	 a	 path	 argument,	 the
command	 will	 attempt	 to	 mount	 that	 filesystem.	 However,	 when	 given	 no
arguments	 the	 mount	 command	 will	 simply	 display	 what	 filesystems	 are
currently	mounted.

Later	in	this	chapter,	we	will	explore	using	mount	and	how	it	understands	where
and	how	 filesystems	 should	be	mounted;	 for	 now,	 let's	 take	 a	 look	 at	 the	next
column	in	the	/proc/mounts	output:

/dev/sda1	/boot	xfs	rw,seclabel,relatime,attr2,inode64,noquota	0	0

The	third	column	filesystem	type	denotes	 the	 type	of	filesystem	being	used.	 In
many	operating	systems,	especially	Linux,	there	is	often	more	than	one	type	of
filesystem	that	can	be	used.	In	the	preceding	case,	our	boot	filesystem	is	set	 to
xfs,	which	as	of	Red	Hat	Enterprise	Linux	7,	is	the	new	default	file	system.

Prior	 to	 xfs,	 older	 versions	 of	 Red	 Hat	 defaulted	 to	 either	 the	 ext3	 or	 ext4
filesystems.	The	ext3/4	filesystems	and	others	are	still	supported	by	Red	Hat,	so
there	could	be	a	number	of	different	filesystem	types	listed	in	the	/proc/mounts
file.

For	the	/boot	filesystem,	knowing	the	filesystem	type	is	not	immediately	useful;
however,	knowing	 how	 to	 look	 up	 the	 underlying	 type	 of	 filesystem	might	 be
required	as	we	dig	deeper	into	this	issue:

/dev/sda1	/boot	xfs	rw,seclabel,relatime,attr2,inode64,noquota	0	0

The	fourth	column	options	shows	the	options	 the	filesystem	has	been	mounted
with.

When	a	filesystem	is	mounted,	 that	 filesystem	can	be	given	specific	options	 in

order	to	change	the	default	behavior	of	the	filesystem.	In	the	preceding	example,
there	 are	 quite	 a	 few	 options	 provided;	 let's	 break	 down	 this	 list	 to	 better
understand	what	is	being	specified:

rw:	This	mounts	the	filesystem	in	the	read	and	write	mode
seclabel:	 This	 option	 is	 added	 by	 SELinux	 to	 show	 that	 this	 filesystem
supports	extra	attributes	for	labels
relatime:	This	 tells	 the	 filesystem	 to	 only	modify	 the	 access	 time	 if	 it	 is
earlier	compared	to	the	modify	or	change	time	values	of	a	file/directory
attr2:	This	enables	 an	 improvement	 in	 how	 inline	 extended	 attributes	 are
stored	on-disk
inode64:	This	enables	 the	filesystem	to	create	 inode	numbers	greater	 than
32	bits	in	length
noquota:	This	disables	disk	quotas	and	enforcement	for	this	filesystem

As	we	can	see	from	the	descriptions,	 these	options	can	greatly	change	the	way
the	 filesystem	 behaves.	 They	 are	 also	 very	 important	 to	 look	 at	 when
troubleshooting	any	filesystem	issues:

/dev/sda1	/boot	xfs	rw,seclabel,relatime,attr2,inode64,noquota	0	0

The	last	two	columns	of	the	/proc/mounts	output,	which	are	represented	as	0	0
are	actually	not	used	in	/proc/mounts.	These	columns	are	in	fact	only	added	for
backwards	 capability	 with	 /etc/mtab,	 which	 is	 a	 similar	 file,	 however	 is	 not
considered	up-to-date	like	/proc/mounts.

The	 difference	 between	 these	 two	 files	 is	 specifically	 in	 their	 usage.	 The
/etc/mtab	file	is	designed	for	users	or	applications	to	read	and	utilize	where	the
/proc/mounts	file	is	used	by	the	kernel	itself.	For	this	reason,	the	/proc/mounts
file	is	considered	the	most	authoritative	version.

Back	to	troubleshooting

If	we	go	back	to	our	issue	at	hand,	we	received	an	error	when	writing	a	backup
to	 the	 /data/backups	 directory.	 Using	 the	 mount	 command,	 we	 can	 identify
which	filesystem	that	directory	exists	on:

#	mount	|	grep	"data"
192.168.33.13:/nfs	on	/data	type	nfs4	
(rw,relatime,vers=4.0,rsize=65536,wsize=65536,namlen=255,hard,proto

=tcp,port=0,timeo=600,retrans=2,sec=sys,clientaddr=192.168.33.12,lo
cal_lock=none,addr=192.168.33.13)

Now	 that	 we	 understand	 the	 format	 of	 the	 mount	 command	 better,	 we	 can
identify	 some	 key	 information	 from	 the	 preceding	 command	 line.	We	 can	 see
that	 the	 device	 for	 this	 filesystem	 is	 set	 to	 (192.168.33.13:/nfs),	 the	 mount
point	(path	 to	attach	as)	 is	set	 to	(/data),	 the	 filesystem	type	of	 is	 (nfs4),	and
the	filesystem	has	quite	a	few	options	set.

NFS	–	Network	Filesystem
Looking	 at	 the	 /data	 filesystem	we	 can	 see	 that	 the	 filesystem	 type	 is	 set	 to
nfs4.	This	 filesystem	 type	means	 that	 the	 filesystem	 is	 a	Network	Filesystem
(NFS).

NFS	 is	a	service	 that	allows	a	server	 to	share	an	exported	directory	with	other
remote	servers.	The	nfs4	filesystem	type	is	a	special	filesystem	that	allows	the
remote	servers	to	access	this	service	as	if	it	was	a	standard	filesystem.

The	4	in	the	filesystem	type	denotes	the	version	to	use,	which	means	the	remote
server	is	to	use	Version	4	of	the	NFS	protocol.

Tip

Currently,	the	most	popular	versions	for	NFS	are	versions	3	and	4,	with	4	being
the	 default	 for	 Red	 Hat	 Enterprise	 Linux	 6	 and	 7.	 There	 are	 quite	 a	 few
differences	between	version	3	and	version	4;	however,	none	of	those	differences
are	enough	to	make	a	difference	in	our	troubleshooting	methodology.	If	you	find
yourself	running	into	issues	with	NFS	Version	3,	then	you	can	most	likely	follow
the	same	types	of	steps	that	we	will	follow	in	this	chapter.

Now	that	we	have	identified	that	the	filesystem	is	an	NFS	filesystem,	let's	take	a
look	at	the	options	it	is	mounted	with:

192.168.33.13:/nfs	on	/data	type	nfs4	
(rw,relatime,vers=4.0,rsize=65536,wsize=65536,namlen=255,hard,proto
=tcp,port=0,timeo=600,retrans=2,sec=sys,clientaddr=192.168.33.12,lo
cal_lock=none,addr=192.168.33.13)

From	the	error	we	received,	 the	 filesystem	appears	 to	be	Read-Only,	but	 if	we
look	 at	 the	 options	 the	 first	 option	 listed	 is	 rw.	 This	 means	 that	 the	 NFS
filesystem	itself	has	been	mounted	as	Read-Write;	which	should	allow	writes	to
this	filesystem.

To	 test	 whether	 the	 issue	 is	 with	 the	 path	 /data/backups	 or	 the	 mounted
filesystem	/data,	we	can	use	 the	touch	command	 to	 test	creating	a	 file	within
this	filesystem:

#	touch	/data/file.txt
touch:	cannot	touch	'/data/file.txt':	Read-only	file	system

Even	the	touch	command	is	not	able	to	create	a	new	file	on	this	filesystem.	This
is	a	clear	indication	that	there	is	a	problem	with	the	filesystem;	the	only	question
is	what	is	causing	the	issue.

If	we	 look	at	 the	options	 this	 filesystem	 is	mounted	with,	 there	 is	nothing	 that
would	cause	 the	 filesystem	 to	be	Read-Only;	 this	means	 that	 the	 issue	 is	most
likely	not	with	how	the	filesystem	is	mounted,	but	with	something	else.

Since	 the	 issue	 does	 not	 appear	 to	 be	 related	 to	 how	 the	 NFS	 filesystem	 is
mounted	 and	 this	 filesystem	 is	 network	 based,	 a	 valid	 next	 step	 would	 be	 to
verify	network	connectivity	to	the	NFS	server.

NFS	and	network	connectivity
Just	as	with	the	network	troubleshooting,	our	 first	 test	will	be	 to	ping	 the	NFS
server	 to	 see	 if	we	get	 a	 response;	 but	 the	question	 is:	What	 server	 should	we
ping?

The	 answer	 is	 in	 the	 device	 name	 that	 the	 filesystem	 is	 mounted	 with
(192.168.33.13:/nfs).	When	mounting	an	NFS	filesystem,	the	device	is	in	the
format	of	<nfs	server>:<shared	directory>.	For	our	example,	this	means	that
our	 /data	 filesystem	 is	 mounting	 the	 /nfs	 directory	 from	 the	 server
192.168.33.13.	To	test	connectivity,	we	can	simply	ping	the	IP	192.168.33.13:

[db]#	ping	192.168.33.13
PING	192.168.33.13	(192.168.33.13)	56(84)	bytes	of	data.
64	bytes	from	192.168.33.13:	icmp_seq=1	ttl=64	time=0.495	ms
64	bytes	from	192.168.33.13:	icmp_seq=2	ttl=64	time=0.372	ms
64	bytes	from	192.168.33.13:	icmp_seq=3	ttl=64	time=0.364	ms
64	bytes	from	192.168.33.13:	icmp_seq=4	ttl=64	time=0.337	ms
^C
---	192.168.33.13	ping	statistics	---
4	packets	transmitted,	4	received,	0%	packet	loss,	time	3001ms
rtt	min/avg/max/mdev	=	0.337/0.392/0.495/0.060	ms

From	the	ping	 results,	 it	appears	 that	 the	NFS	server	 is	up;	but	what	about	 the
NFS	service?	We	can	validate	connectivity	to	the	NFS	service	by	using	the	curl
command	to	telnet	to	the	NFS	port.	First,	however,	we	need	to	identify	which
port	we	should	connect	to.

While	 troubleshooting	 the	 database	 connectivity	 in	 earlier	 chapters,	 we	 were
mostly	using	well-known	ports;	since	NFS	uses	several	ports,	which	are	a	little
less	common;	we	will	need	to	identify	which	port	to	connect	to:

The	easiest	way	to	do	this	is	to	search	for	the	ports	in	the	/etc/services	file:

[db]#	grep	nfs	/etc/services	
nfs													2049/tcp								nfsd	shilp						#	Network	File	
System
nfs													2049/udp								nfsd	shilp						#	Network	File	
System
nfs													2049/sctp							nfsd	shilp						#	Network	File	
System

netconfsoaphttp	832/tcp																	#	NETCONF	for	SOAP	over	
HTTPS
netconfsoaphttp	832/udp																	#	NETCONF	for	SOAP	over	
HTTPS
netconfsoapbeep	833/tcp																	#	NETCONF	for	SOAP	over	
BEEP
netconfsoapbeep	833/udp																	#	NETCONF	for	SOAP	over	
BEEP
nfsd-keepalive		1110/udp																#	Client	status	info
picknfs									1598/tcp																#	picknfs
picknfs									1598/udp																#	picknfs
shiva_confsrvr		1651/tcp			shiva-confsrvr			#	shiva_confsrvr
shiva_confsrvr		1651/udp			shiva-confsrvr			#	shiva_confsrvr
3d-nfsd									2323/tcp																#	3d-nfsd
3d-nfsd									2323/udp																#	3d-nfsd
mediacntrlnfsd		2363/tcp																#	Media	Central	NFSD
mediacntrlnfsd		2363/udp																#	Media	Central	NFSD
winfs											5009/tcp																#	Microsoft	Windows	
Filesystem
winfs											5009/udp																#	Microsoft	Windows	
Filesystem
enfs												5233/tcp																#	Etinnae	Network	File	
Service
nfsrdma									20049/tcp															#	Network	File	System	(NFS)	
over	RDMA
nfsrdma									20049/udp															#	Network	File	System	(NFS)	
over	RDMA
nfsrdma									20049/sctp														#	Network	File	System	(NFS)	
over	RDMA

The	 /etc/services	 file	 is	 a	 static	 file	 that	 is	 included	 with	 many	 Linux
distributions.	 It	 is	 used	 as	 a	 lookup	 to	map	 network	 ports	 to	 a	 simple	 human
readable	 name.	 From	 the	 preceding	 output,	 we	 can	 see	 that	 the	 nfs	 name	 is
mapped	to	TCP	port	2049;	 this	 is	 the	default	port	 for	 the	NFS	service.	We	can
utilize	this	port	to	test	connectivity,	as	follows:

[db]#	curl	-vk	telnet://192.168.33.13:2049
*	About	to	connect()	to	192.168.33.13	port	2049	(#0)
*			Trying	192.168.33.13...
*	Connected	to	192.168.33.13	(192.168.33.13)	port	2049	(#0)

Our	telnet	 seems	 successful;	we	 can	 further	 validate	 it	 by	using	 the	 netstat
command:

[db]#	netstat	-na	|	grep	192.168.33.13

tcp								0						0	192.168.33.12:756							192.168.33.13:2049						
ESTABLISHED

It	 seems	 that	 connectivity	 is	 not	 an	 issue,	 and	 if	 our	 issue	 is	 not	 connectivity
related,	maybe	it	is	in	how	the	NFS	share	is	configured.

We	 can	 actually	 validate	 the	NFS	 share's	 settings	 and	 network	 connectivity	 in
one	command—showmount.

Using	the	showmount	command
The	showmount	command	can	be	used	to	display	 the	directories	being	exported
via	the	-e	(that	shows	exports)	flag.	This	command	works	by	querying	the	NFS
service	on	the	specified	host.

For	our	issue,	we	will	be	querying	the	NFS	service	at	192.168.33.13:

[db]#	showmount	-e	192.168.33.13
Export	list	for	192.168.33.13:
/nfs	192.168.33.0/24

The	format	of	 the	showmount	 command	uses	 two	columns.	The	 first	column	 is
the	directory	being	shared.	The	second	is	the	network	or	hostnames	the	directory
is	being	shared	with.

In	 the	preceding	example,	we	can	see	 that	 the	directory	being	shared	from	this
host	is	the	/nfs	directory.	This	matches	the	directory	listed	in	the	device	name
192.168.33.13:/nfs	as	well.

The	network	that	the	/nfs	directory	is	being	shared	with	is	the	192.166.33.0/24
network,	 which,	 as	 we	 learned	 in	 our	 networking	 chapter,	 is	 short	 for
192.168.33.0	 through	 192.168.33.255.	 We	 already	 know	 from	 previous
troubleshooting	that	the	database	server	we	are	on	is	within	that	network.

We	can	also	see	 this	hasn't	changed	since	 the	netstat	command	was	executed
earlier:

[db]#	netstat	-na	|	grep	192.168.33.13
tcp								0						0	192.168.33.12:756							192.168.33.13:2049						
ESTABLISHED

The	 fourth	column	of	 the	netstat	 command	 shows	 the	 local	 IP	 address	being
used	in	the	ESTABLISHED	TCP	connection.	With	the	preceding	output,	we	can	see
the	192.168.33.12	address	is	the	IP	of	our	database	server	(as	seen	in	previous
chapters).

So	far	everything	about	this	NFS	share	looks	correct,	from	here	we	will	need	to
log	in	to	the	NFS	server	to	continue	troubleshooting.

NFS	server	configuration
Once	logged	into	the	NFS	server,	the	first	thing	we	should	check	is	whether	or
not	the	NFS	service	is	running:

[db]#	systemctl	status	nfs
nfs-server.service	-	NFS	server	and	services
			Loaded:	loaded	(/usr/lib/systemd/system/nfs-server.service;	
enabled)
			Active:	active	(exited)	since	Sat	2015-04-25	14:01:13	MST;	17h	
ago
		Process:	2226	ExecStart=/usr/sbin/rpc.nfsd	$RPCNFSDARGS	
(code=exited,	status=0/SUCCESS)
		Process:	2225	ExecStartPre=/usr/sbin/exportfs	-r	(code=exited,	
status=0/SUCCESS)
	Main	PID:	2226	(code=exited,	status=0/SUCCESS)
			CGroup:	/system.slice/nfs-server.service

Using	 systemctl,	 we	 can	 simply	 look	 at	 the	 service	 status;	 which	 from	 the
preceding	output	looks	normal.	This	is	to	be	expected	since	we	were	able	to	both
telnet	to	the	NFS	service	and	use	the	showmount	command	to	query	it.

Exploring	/etc/exports

Since	 the	 NFS	 service	 is	 running	 and	 healthy,	 the	 next	 step	 is	 to	 check	 the
configuration	 that	 defines	 which	 directories	 are	 exported	 and	 how	 they	 are
exported;	the	/etc/exports	file:

[nfs]#	ls	-la	/etc/exports
-rw-r--r--.	1	root	root	40	Apr	26	08:28	/etc/exports
[nfs]#	cat	/etc/exports
/nfs		192.168.33.0/24(rw,no_root_squash)

The	 format	 of	 this	 file	 is	 actually	 similar	 to	 the	 output	 of	 the	 showmount
command.

The	 first	 column	 is	 the	 directory	 to	 be	 shared	 and	 the	 second	 column	 is	 the
network	 to	 share	 it	 with.	 However,	 in	 this	 file	 there	 is	 additional	 information
after	the	network	definition.

The	network/subnet	column	is	followed	by	a	set	of	parenthesis	with	various	NFS
options	within	it.	These	options	work	very	similar	to	the	mount	options	we	saw

in	the	/proc/mounts	file.

Could	 these	 options	 be	 the	 root	 cause	 of	 our	 Read-Only	 file	 system?	 Quite
possibly.	Let's	break	down	these	two	options	to	get	a	better	understanding:

rw:	 This	 allows	 both	 reads	 and	 writes	 to	 be	 performed	 on	 the	 shared
directory
no_root_squash:	This	disables	root_squash;	root_squash	is	a	system	that
maps	the	root	user	to	an	anonymous	user

Unfortunately,	neither	 of	 these	 options	would	 force	 the	 filesystem	 to	 be	 in	 the
Read-Only	mode.	In	fact,	based	on	the	description	of	these	options	they	seem	to
suggest	this	NFS	share	should	be	in	the	Read-Write	mode.

One	interesting	fact	has	surfaced	while	performing	an	ls	on	 the	/etc/exports
file:

[nfs]#	ls	-la	/etc/exports
-rw-r--r--.	1	root	root	40	Apr	26	08:28	/etc/exports

The	/etc/exports	 file	has	been	modified	recently.	Could	 it	be	 that	our	shared
filesystem	is	actually	shared	as	Read-Only	but	someone	has	recently	changed	the
/etc/exports	file	to	export	the	filesystem	as	Read-Write.

This	 scenario	 is	 entirely	possible,	 and	 in	 fact	 is	 actually	 a	 common	 issue	with
NFS.	The	NFS	service	is	not	constantly	reading	the	/etc/exports	 file	 looking
for	changes.	In	fact,	this	file	is	only	read	when	the	service	is	starting.

Any	changes	 to	 the	/etc/exports	 file	will	not	 take	effect	until	after	either	 the
service	 is	 reloaded	or	 the	exported	 filesystems	 is	 refreshed	using	 the	exportfs
command.

Identifying	the	current	exports

A	 very	 common	 scenario	 is	 where	 someone	 makes	 a	 change	 to	 this	 file	 and
simply	forgets	to	run	the	commands	to	refresh	the	exported	filesystems.	We	can
identify	whether	this	is	the	case	by	using	the	exportfs	command:

[nfs]#	exportfs	-s
/nfs		

192.168.33.0/24(rw,wdelay,no_root_squash,no_subtree_check,sec=sys,r
w,secure,no_root_squash,no_all_squash)

When	 given	 the	 –s	 (show	 current	 exports)	 flag,	 the	 exportfs	 command	 will
simply	 list	 the	 existing	 shared	 directories,	 including	 the	 options	 that	 the
directories	are	shared	with.

Looking	at	 the	preceding	output,	we	can	see	that	 this	filesystem	is	shared	with
quite	 a	 few	options	 that	 are	not	 listed	 in	/etc/exports.	The	 reason	 for	 this	 is
because	 all	 directories	 shared	 through	NFS	 have	 a	 default	 list	 of	 options	 that
govern	how	the	directory	is	shared.	The	options	specified	in	/etc/exports	are
essentially	used	to	override	the	default	settings.

To	get	a	better	understanding	of	these	options,	let's	break	them	down:

rw:	 This	 allows	 both	 reads	 and	 writes	 to	 be	 performed	 on	 the	 shared
directory.
wdelay:	This	causes	NFS	to	hold	a	write	request	if	it	suspects	another	write
is	incoming	from	another	client.	This	is	designed	to	reduce	write	conflicts
when	multiple	clients	are	connected.
no_root_squash:	This	disables	root_squash,	which	is	a	system	that	maps
the	root	user	to	an	anonymous	user.
no_subtree_check:	 This	 disables	 subtree	 checking;	 subtree	 checking
essentially	ensures	that	requests	to	a	directory	where	a	subdirectory	is	also
exported	will	honor	the	subdirectory's	more	restrictive	policy.
sec=sys:	 This	 tells	 NFS	 to	 use	 the	 user	 ID	 and	 group	 ID	 values	 for
permissions	and	authorization	of	file	access.
secure:	This	ensures	that	NFS	only	honors	requests	where	the	clients	port
is	 lower	 than	 1024,	 essentially	 requiring	 it	 to	 be	 from	 a	 privileged	 NFS
mount.
no_all_squash:	 This	 disables	 all_squash,	 which	 is	 used	 to	 force	 all
permissions	to	be	mapped	to	the	anonymous	user	and	group.

It	seems	that	these	options	also	do	not	explain	the	Read-Only	file	system.	This	is
an	 issue	 that	seems	to	be	very	 tricky	 to	 troubleshoot,	especially	when	the	NFS
service	seems	to	be	configured	correctly.

Testing	NFS	from	another	client

Since	 the	 NFS	 server's	 configuration	 seems	 correct	 and	 the	 client	 (database
server)	also	appears	correct,	we	will	need	to	narrow	down	whether	the	issue	is	at
the	client	side	or	the	server	side.

One	way	we	 can	 do	 this	 is	 by	mounting	 the	 filesystem	 on	 another	 client	 and
attempting	the	same	write	request.	From	the	configuration,	it	appears	we	simply
need	 another	 server	 in	 the	 192.168.33.0/24	 network	 to	 perform	 this	 test.
Perhaps	our	blog	server	from	earlier	chapters	is	a	good	client	to	use?

Tip

In	some	environments,	the	answer	to	this	question	would	be	no,	as	a	web	server
is	 often	 considered	 less	 secure	 than	 a	 database	 server.	 However,	 since	 this	 is
simply	a	test	environment	for	this	book,	it	will	be	OK.

Once	we	have	 logged	 into	 the	blog	 server,	we	can	 test	whether	or	not	we	can
even	see	the	mount	with	the	showmount	command:

[blog]#	showmount	-e	192.168.33.13
Export	list	for	192.168.33.13:
/nfs	192.168.33.0/24

This	 answers	 two	 questions.	 The	 first	 is	 whether	 the	 NFS	 client	 software	 is
installed;	since	the	showmount	command	is	present,	the	answer	is	likely	yes.

The	second	is	whether	the	NFS	service	is	accessible	from	the	blog	server,	which
also	appears	to	be	yes.

To	test	the	mount,	we	will	simply	use	the	mount	command:

[blog]#	mount	-t	nfs	192.168.33.13:/nfs	/mnt

To	 use	 the	 mount	 command	 to	 mount	 a	 filesystem	 the	 syntax	 is:	 mount	 –t
<filesystem	 type>	 <device>	 <mount	 point>.	 In	 the	 example	 above	 we
simply	mounted	the	192.168.33.13:/nfs	device	to	the	/mnt	directory	with	the
filesystem	type	as	nfs.

While	running	the	command,	we	did	not	receive	any	errors	but	to	ensure	that	the
filesystem	is	mounted	properly,	we	can	use	 the	mount	command	just	as	we	did
before:

[blog]#	mount	|	grep	/mnt
192.168.33.13:/nfs	on	/mnt	type	nfs4	
(rw,relatime,vers=4.0,rsize=65536,wsize=65536,namlen=255,hard,proto
=tcp,port=0,timeo=600,retrans=2,sec=sys,clientaddr=192.168.33.11,lo
cal_lock=none,addr=192.168.33.13)

From	 the	output	of	 the	mount	 command,	 it	 appears	 that	 the	mount	 request	was
successful	 and	 in	 the	 Read-Write	 mode,	 which	 means	 the	 mount	 options	 are
similar	to	the	options	used	on	the	database	server.

Now	we	 can	 test	 the	 filesystem	 by	 attempting	 to	 create	 a	 file	with	 the	 touch
command:

#	touch	/mnt/testfile.txt		
touch:	cannot	touch	'/mnt/testfile.txt':	Read-only	file	system

It	appears	 that	 the	 issue	 is	not	with	 the	client's	configuration,	as	even	our	new
client	is	having	issues	writing	to	this	filesystem.

Tip

As	a	tip,	in	the	preceding	example,	I	mounted	the	/nfs	share	to	/mnt.	The	/mnt
directory	 is	used	as	a	generic	mount	point	 and	 is	generally	considered	OK	for
use.	However,	 it	 is	always	a	best	practice	 to	ensure	nothing	else	 is	mounted	 to
/mnt	before	hand.

Making	mounts	permanent
Currently,	 even	 though	we	mounted	 the	NFS	 share	with	 the	 mount	 command,
this	mounted	filesystem	is	not	considered	persistent.	The	next	 time	this	system
reboots,	the	NFS	mount	will	not	be	remounted.

That	 is	 because	 as	 a	 system	 boots	 up,	 part	 of	 the	 boot	 process	 is	 to	 read	 the
/etc/fstab	file	and	mount	any	filesystems	defined	within	it.

To	 better	 understand	 how	 this	 works,	 let's	 look	 at	 the	 /etc/fstab	 file	 on	 the
database	server:

[db]#	cat	/etc/fstab

#
#	/etc/fstab
#	Created	by	anaconda	on	Mon	Jul	21	23:35:56	2014
#
#	Accessible	filesystems,	by	reference,	are	maintained	under	
'/dev/disk'
#	See	man	pages	fstab(5),	findfs(8),	mount(8)	and/or	blkid(8)	for	
more	info
#
/dev/mapper/os-root	/																							xfs					defaults								
1	1
UUID=be76ec1d-686d-44a0-9411-b36931ee239b	/boot																			
xfs					defaults								1	2
/dev/mapper/os-swap	swap																				swap				defaults								
0	0
192.168.33.13:/nfs		/data						nfs		defaults		0	0

The	contents	of	the	/etc/fstab	file	are	actually	very	similar	to	the	contents	of
the	/proc/mounts	file.	The	first	column	in	the	/etc/fstab	file	is	used	to	specify
the	device	to	be	mounted,	the	second	column	is	the	path	or	mount	point	to	mount
to,	the	third	column	is	simply	the	filesystem	type,	and	the	fourth	column	is	the
options	to	mount	the	filesystem	with.

The	 last	 two	 columns,	 however,	 are	 where	 these	 files	 differ,	 within	 the
/etc/fstab	 file.	 These	 last	 two	 columns	 actually	 have	 a	meaning.	Within	 the
fstab	file,	the	fifth	column	is	used	by	the	dump	command.

The	dump	 command	 is	 a	 simple	 backup	 utility	which	 reads	 the	/etc/fstab	 to
determine	which	 filesystems	 to	backup.	Any	filesystem	with	a	0	value	set	will
not	be	in	scope	for	a	backup,	when	the	dump	utility	is	executed.

While	this	utility	is	not	heavily	used	these	days,	this	column	in	the	/etc/fstab
file	is	maintained	for	backwards	capability.

The	 sixth	 and	 final	 column	 in	 the	 /etc/fstab	 file	 is	 very	 relevant	 to	 today's
systems.	This	column	is	used	to	denote	the	order	in	which	a	filesystem	check	or
fsck	is	performed	during	the	boot	process	(generally	after	a	failure).

A	 filesystem	 check	 or	 fsck	 is	 a	 process	 that	 runs	 periodically,	 checking	 the
filesystem	 for	 errors	 and	 attempts	 to	 correct	 them.	 This	 is	 a	 process	 we	 will
cover	a	bit	further	in	this	chapter.

Unmounting	the	/mnt	filesystem
Since	we	do	not	want	 the	NFS	shared	 filesystem	 to	 stay	mounted	on	 the	/mnt
path	of	the	blog	server,	we	will	need	to	unmount	the	filesystem.

We	can	do	this	in	the	same	way	we	did	with	the	/boot	filesystem	earlier;	with
the	umount	command:

[blog]#	umount	/mnt
[blog]#	mount	|	grep	/mnt

From	 the	 blog	 server,	we	 simply	 used	umount	 followed	 by	 the	mount	 point	 of
/mnt	to	unmount	 the	NFS	mount	 from	the	client.	Now	that	we	have,	we	can	go
back	to	the	NFS	server	to	continue	troubleshooting.

Troubleshooting	 the	 NFS	 server,
again
Since	we	identified	that	even	new	clients	cannot	write	to	the	/nfs	share,	we	have
at	this	point	narrowed	down	that	the	issue	is	likely	on	the	server	side	and	not	the
client.

Earlier,	 while	 troubleshooting	 the	 NFS	 server,	 we	 checked	 almost	 everything
that	there	is	to	check	about	NFS.	We	validated	that	the	service	is	in	fact	running,
accessible	by	 the	clients,	 that	 the	data	 in	/etc/exports	 is	correct,	and	 that	 the
currently	 exported	 directories	 match	 what	 is	 in	 /etc/exports.	 At	 this	 point,
there	is	only	one	place	left	to	check:	the	log	files.

By	 default,	 the	 NFS	 service	 does	 not	 have	 its	 own	 log	 file	 like	 Apache	 or
MariaDB.	Instead,	this	service	on	the	RHEL	systems	utilizes	the	syslog	facility;
which	means	our	logs	will	be	within	/var/log/messages.

The	messages	log	is	a	very	frequently	used	log	file	for	Red	Hat	Enterprise	Linux
based	 Linux	 distributions.	 In	 fact,	 by	 default,	 outside	 of	 cron	 jobs	 and
authentication,	 every	 syslog	 message	 above	 the	 info	 log	 level	 is	 sent	 to
/var/log/messages	on	RHEL	based	systems.

Since	 the	 NFS	 service	 sends	 its	 log	messages	 to	 the	 local	 syslog	 service,	 its
messages	are	also	included	in	the	messages	log.

Finding	the	NFS	log	messages
What	if	we	didn't	know	that	NFS	logs	were	sent	to	the	/var/log/messages	log
file?	There	 is	a	pretty	 simple	 trick	 to	 identify	which	 log	 file	contains	NFS	 log
messages.

In	 general,	 on	 Linux	 systems,	 all	 system	 services	 have	 their	 log	 files	 located
within	/var/log.	Since	we	know	the	default	location	of	majority	of	logs	on	the
system,	we	can	 simply	 take	 a	quick	 look	 through	 those	 files	 to	 identify	which
ones	might	have	the	NFS	log	messages:

[nfs]#	cd	/var/log
[nfs]#	grep	-rc	nfs	./*
./anaconda/anaconda.log:14
./anaconda/syslog:44
./anaconda/anaconda.xlog:0
./anaconda/anaconda.program.log:7
./anaconda/anaconda.packaging.log:16
./anaconda/anaconda.storage.log:56
./anaconda/anaconda.ifcfg.log:0
./anaconda/ks-script-Sr69bV.log:0
./anaconda/ks-script-lfU6U2.log:0
./audit/audit.log:60
./boot.log:4
./btmp:0
./cron:470
./cron-20150420:662
./dmesg:26
./dmesg.old:26
./grubby:0
./lastlog:0
./maillog:112386
./maillog-20150420:17
./messages:3253
./messages-20150420:11804
./sa/sa15:1
./sa/sar15:1
./sa/sa16:1
./sa/sar16:1
./sa/sa17:1
./sa/sa19:1
./sa/sar19:1
./sa/sa20:1
./sa/sa25:1

./sa/sa26:1

./secure:14

./secure-20150420:63

./spooler:0

./tallylog:0

./tuned/tuned.log:0

./wtmp:0

./yum.log:0

The	grep	command	recursively	(-r)	searches	each	file	 for	 the	string	"nfs"	and
outputs	 the	 filename	along	with	a	count	 (-c)	of	 the	number	of	 lines	where	 the
string	is	found.

In	the	preceding	output,	there	are	two	log	files	that	contain	the	highest	amount	of
instances	of	the	string	"nfs".	The	first	is	the	maillog,	which	is	the	system	log	for
e-mail	messages;	this	is	not	likely	related	to	the	NFS	service.

The	second	is	the	messages	log	file	which,	as	we	know,	is	the	system	default	log
file.

Even	without	prior	knowledge	of	a	specific	system's	logging	methods,	if	you	are
familiar	with	Linux	in	general	and	tricks	as	 in	 the	preceding	example,	you	can
often	find	which	logs	contain	the	data	required.

Now	that	we	know	the	log	file	we	are	looking	for,	let's	take	a	look	through	the
/var/log/messages	log.

Reading	/var/log/messages
Since	 this	log	 file	can	be	quite	 large,	we	will	use	 the	tail	 command	with	 the
-100	flag,	which	causes	the	tail	to	only	display	the	last	100	lines	of	the	specified
file.	By	 limiting	 the	output	 to	100	 lines,	we	 should	only	 see	 the	most	 relevant
data:

[nfs]#	tail	-100	/var/log/messages
Apr	26	10:25:44	nfs	kernel:	md/raid1:md127:	Disk	failure	on	sdb1,	
disabling	device.
md/raid1:md127:	Operation	continuing	on	1	devices.
Apr	26	10:25:55	nfs	kernel:	md:	unbind<sdb1>
Apr	26	10:25:55	nfs	kernel:	md:	export_rdev(sdb1)
Apr	26	10:27:20	nfs	kernel:	md:	bind<sdb1>
Apr	26	10:27:20	nfs	kernel:	md:	recovery	of	RAID	array	md127
Apr	26	10:27:20	nfs	kernel:	md:	minimum	_guaranteed_		speed:	1000	
KB/sec/disk.
Apr	26	10:27:20	nfs	kernel:	md:	using	maximum	available	idle	IO	
bandwidth	(but	not	more	than	200000	KB/sec)	for	recovery.
Apr	26	10:27:20	nfs	kernel:	md:	using	128k	window,	over	a	total	of	
511936k.
Apr	26	10:27:20	nfs	kernel:	md:	md127:	recovery	done.
Apr	26	10:27:41	nfs	nfsdcltrack[4373]:	sqlite_remove_client:	
unexpected	return	code	from	delete:	8
Apr	26	10:27:59	nfs	nfsdcltrack[4375]:	sqlite_remove_client:	
unexpected	return	code	from	delete:	8
Apr	26	10:55:06	nfs	dhclient[3528]:	can't	create	
/var/lib/NetworkManager/dhclient-05be239d-0ec7-4f2e-a68d-
b64eec03fcb2-enp0s3.lease:	Read-only	file	system
Apr	26	11:03:43	nfs	chronyd[744]:	Could	not	open	temporary	
driftfile	/var/lib/chrony/drift.tmp	for	writing
Apr	26	11:55:03	nfs	rpc.mountd[4552]:	could	not	open	
/var/lib/nfs/.xtab.lock	for	locking:	errno	30	(Read-only	file	
system)
Apr	26	11:55:03	nfs	rpc.mountd[4552]:	can't	lock	/var/lib/nfs/xtab	
for	writing

Since	 even	100	 lines	 can	 be	 quite	 tedious	 to	 go	 through,	 I	 have	 truncated	 the
output	to	only	the	relevant	lines.	This	shows	quite	a	few	messages	with	the	string
"nfs";	 however,	 not	 every	 one	 of	 these	 are	 messages	 from	 the	 NFS	 service.
Since	our	NFS	server's	hostname	is	set	to	nfs,	each	log	entry	from	this	system
has	the	string	"nfs".

However,	 even	 with	 that,	 we	 do	 still	 see	 a	 few	 messages	 related	 to	 the	 NFS
service,	specifically	the	following	lines:

Apr	26	10:27:41	nfs	nfsdcltrack[4373]:	sqlite_remove_client:	
unexpected	return	code	from	delete:	8
Apr	26	10:27:59	nfs	nfsdcltrack[4375]:	sqlite_remove_client:	
unexpected	return	code	from	delete:	8
Apr	26	11:55:03	nfs	rpc.mountd[4552]:	could	not	open	
/var/lib/nfs/.xtab.lock	for	locking:	errno	30	(Read-only	file	
system)
Apr	26	11:55:03	nfs	rpc.mountd[4552]:	can't	lock	/var/lib/nfs/xtab	
for	writing

The	 interesting	 thing	 about	 these	 log	 entries	 is	 that	 one	 of	 them	 specifically
states	 that	 the	 service	 rpc.mountd	 was	 not	 able	 to	 open	 a	 file	 due	 to	 the
filesystem	 being	 Read-only.	 However,	 the	 file	 it	 was	 trying	 to	 open
/var/lib/nfs/.xtab.lock	is	not	part	of	our	NFS	share.

Since	 this	 filesystem	 is	 not	 part	 of	 our	 NFS,	 let's	 take	 a	 quick	 look	 at	 the
mounted	 filesystems	 on	 this	 server.	 We	 can	 do	 this	 again,	 with	 the	 mount
command:

[nfs]#	mount
proc	on	/proc	type	proc	(rw,nosuid,nodev,noexec,relatime)
sysfs	on	/sys	type	sysfs	(rw,nosuid,nodev,noexec,relatime,seclabel)
devtmpfs	on	/dev	type	devtmpfs	
(rw,nosuid,seclabel,size=241112k,nr_inodes=60278,mode=755)
securityfs	on	/sys/kernel/security	type	securityfs	
(rw,nosuid,nodev,noexec,relatime)
selinuxfs	on	/sys/fs/selinux	type	selinuxfs	(rw,relatime)
systemd-1	on	/proc/sys/fs/binfmt_misc	type	autofs	
(rw,relatime,fd=33,pgrp=1,timeout=300,minproto=5,maxproto=5,direct)
mqueue	on	/dev/mqueue	type	mqueue	(rw,relatime,seclabel)
debugfs	on	/sys/kernel/debug	type	debugfs	(rw,relatime)
hugetlbfs	on	/dev/hugepages	type	hugetlbfs	(rw,relatime,seclabel)
sunrpc	on	/var/lib/nfs/rpc_pipefs	type	rpc_pipefs	(rw,relatime)
nfsd	on	/proc/fs/nfsd	type	nfsd	(rw,relatime)
/dev/mapper/md0-root	on	/	type	xfs	
(ro,relatime,seclabel,attr2,inode64,noquota)
/dev/md127	on	/boot	type	xfs	
(ro,relatime,seclabel,attr2,inode64,noquota)
/dev/mapper/md0-nfs	on	/nfs	type	xfs	
(ro,relatime,seclabel,attr2,inode64,noquota)

Like	 the	other	server	 there	are	quite	a	bit	of	mounted	filesystems,	we	however
are	not	interested	in	all	of	them;	only	a	small	subset.

/dev/mapper/md0-root	on	/	type	xfs	
(ro,relatime,seclabel,attr2,inode64,noquota)
/dev/md127	on	/boot	type	xfs	
(ro,relatime,seclabel,attr2,inode64,noquota)
/dev/mapper/md0-nfs	on	/nfs	type	xfs	
(ro,relatime,seclabel,attr2,inode64,noquota)

The	 preceding	 three	 lines	 are	 the	 lines	 that	we	 should	 be	 interested	 in.	 These
three	mounted	 filesystems	 are	 persistent	 filesystems	defined	 for	 our	 system.	 If
we	 look	 at	 these	 three	 persistent	 filesystems,	we	 can	 identify	 some	 interesting
information.

The	 /	 or	 root	 filesystem	 exists	 on	 the	 device	 /dev/mapper/md0-root.	 This
filesystem	is	actually	 incredibly	important	 to	our	system,	as	 it	appears	 that	 this
server	is	configured	to	have	the	entire	operating	system	installed	under	the	root
filesystem	(/),	 a	 somewhat	 common	 setup.	This	 filesystem	 includes	 the	 file	 in
question,	the	/var/lib/nfs/.xtab.lock	file.

The	 /boot	 filesystem	 exists	 on	 the	 device	 /dev/md127	 which	 judging	 by	 the
name	 is	 most	 likely	 a	 raided	 device	 using	 Linux's	 software	 raid	 system.	 The
/boot	filesystem	is	just	as	important	as	the	root	filesystem	as	/boot	contains	all
of	the	necessary	files	for	the	server	to	boot	up.	Without	the	/boot	filesystem,	this
system	would	most	likely	not	restart	and	would	simply	kernel	panic	on	the	next
system	restart.

The	last	filesystem	/nfs	uses	the	/dev/mapper/md0-nfs	device.	From	our	earlier
troubleshooting,	we	 identified	 this	 filesystem	as	an	exported	 filesystem	via	 the
NFS	service.

Read-only	filesystems
If	we	 look	back	 at	 the	 error	 and	 the	output	 of	mount,	we	will	 start	 to	 identify
some	interesting	errors	on	this	system:

Apr	26	11:55:03	nfs	rpc.mountd[4552]:	could	not	open	
/var/lib/nfs/.xtab.lock	for	locking:	errno	30	(Read-only	file	
system)

The	error	is	reporting	that	the	filesystem	where	the	.xtab.lock	file	is	located	is
Read-Only:

/dev/mapper/md0-root	on	/	type	xfs	
(ro,relatime,seclabel,attr2,inode64,noquota)

From	 the	mount	 command,	we	 can	 see	 that	 the	 filesystem	 in	 question	 is	 the	/
filesystem.	After	 looking	at	 the	options	for	 the	/	or	root	filesystem	we	can	see
that	this	filesystem	is	in	fact	mounted	with	the	ro	option.

In	fact,	if	we	look	at	the	three	filesystems'	options,	we	can	see	that	/,	/boot,	and
/nfs	are	all	mounted	with	the	ro	option.	Where	rw	mounts	a	filesystem	as	Read-
Write,	 the	 ro	 option	 mounts	 a	 filesystem	 as	 Read-Only.	 This	 means	 that
currently,	these	filesystems	cannot	be	written	to	by	any	user.

For	all	three	of	the	defined	filesystems	to	be	mounted	in	the	Read-Only	mode	is
quite	an	unusual	configuration.	To	see	whether	this	is	the	desired	configuration,
we	 can	 check	 the	 /etc/fstab	 file,	 which	 is	 the	 same	 file	 that	 was	 used	 to
identify	persistent	filesystems	earlier:

[nfs]#	cat	/etc/fstab
#
#	/etc/fstab
#	Created	by	anaconda	on	Wed	Apr	15	09:39:23	2015
#
#	Accessible	filesystems,	by	reference,	are	maintained	under	
'/dev/disk'
#	See	man	pages	fstab(5),	findfs(8),	mount(8)	and/or	blkid(8)	for	
more	info
#
/dev/mapper/md0-root				/																							xfs					defaults								
0	0
UUID=7873e886-78d5-46cc-b4d9-0c385995d915	/boot																			

xfs					defaults								0	0
/dev/mapper/md0-nfs					/nfs																				xfs					defaults								
0	0
/dev/mapper/md0-swap				swap																				swap				defaults								
0	0

From	the	contents	of	 the	/etc/fstab	 file,	 it	 appears	 that	 these	 filesystems	 are
not	configured	to	be	mounted	in	the	Read-Only	mode.	Rather,	these	filesystems
are	mounted	with	"default"	options.

On	Linux,	 the	"default"	option	 for	 the	xfs	 filesystem	mounts	 the	filesystem	in
the	Read-Write	mode,	not	Read-Only.	We	validate	this	behavior	if	we	look	at	the
/etc/fstab	file	on	the	database	server:

[db]#	cat	/etc/fstab	
#
#	/etc/fstab
#	Created	by	anaconda	on	Mon	Jul	21	23:35:56	2014
#
#	Accessible	filesystems,	by	reference,	are	maintained	under	
'/dev/disk'
#	See	man	pages	fstab(5),	findfs(8),	mount(8)	and/or	blkid(8)	for	
more	info
#
/dev/mapper/os-root	/																							xfs					defaults								
1	1
UUID=be76ec1d-686d-44a0-9411-b36931ee239b	/boot																			
xfs					defaults								1	2
/dev/mapper/os-swap	swap																				swap				defaults								
0	0
192.168.33.13:/nfs		/data						nfs		defaults		0	0

On	 the	 database	 server,	 we	 can	 see	 the	 /	 or	 root	 filesystem	 also	 has	 the
filesystem	options	set	to	"defaults".	However,	when	we	use	the	mount	command
to	look	at	the	filesystem	options,	we	can	see	the	rw	option	as	well	as	some	others
default	options	being	applied:

[db]#	mount	|	grep	root
/dev/mapper/os-root	on	/	type	xfs	
(rw,relatime,seclabel,attr2,inode64,noquota)

This	confirms	that	the	Read-Only	status	of	the	three	persistent	filesystems	is	not
the	desired	configuration.

Identifying	disk	issues

If	 the	 /etc/fstab	 filesystem	 is	 specifically	 configured	 so	 that	 a	 filesystem	 is
mounted	as	Read-Write	and	the	mount	command	is	showing	that	the	filesystem
is	mounted	in	Read-Only	mode.	This	is	a	clear	indication	that	the	filesystems	in
question	might	have	been	remounted	after	they	were	initially	mounted	as	part	of
the	boot	process.

As	we	discussed	earlier,	when	a	Linux	system	boots,	it	reads	the	/etc/fstab	file
and	mounts	 all	 of	 the	 defined	 filesystems.	 However,	 the	 process	 of	 mounting
filesystems	 stops	 there.	 There	 is	 no	 process	 that	 continuously	 monitors	 the
/etc/fstab	file	for	changes	and	mounts	or	unmounts	the	modified	filesystems,
at	least	not	by	default.

In	 fact	 it	 is	 quite	 common	 to	 see	 a	 newly	 created	 filesystem	 not	mounted	 but
specified	in	the	/etc/fstab	file	because	someone	simply	forgot	to	mount	it	with
the	mount	command	after	editing	the	/etc/fstab	file.

It	is	not	very	common	however	to	see	a	filesystem	be	mounted	as	Read-Only	but
for	the	fstab	to	be	changed	afterwards.

In	 fact	 for	 our	 scenario,	 that	 would	 not	 be	 very	 easy	 to	 accomplish	 as
/etc/fstab	would	not	be	accessible	since	the	/	filesystem	is	Read-Only:

[nfs]#	touch	/etc/fstab
touch:	cannot	touch	'/etc/fstab':	Read-only	file	system

This	 means	 that	 our	 filesystems	 being	 Read-Only,	 was	 performed	 after	 these
filesystems	were	mounted	initially.

The	 culprit	 of	 this	 state	 is	 actually	 in	 the	 log	messages	 that	we	were	 looking
through	earlier:

Apr	26	10:25:44	nfs	kernel:	md/raid1:md127:	Disk	failure	on	sdb1,	
disabling	device.
md/raid1:md127:	Operation	continuing	on	1	devices.
Apr	26	10:25:55	nfs	kernel:	md:	unbind<sdb1>
Apr	26	10:25:55	nfs	kernel:	md:	export_rdev(sdb1)
Apr	26	10:27:20	nfs	kernel:	md:	bind<sdb1>
Apr	26	10:27:20	nfs	kernel:	md:	recovery	of	RAID	array	md127

Apr	26	10:27:20	nfs	kernel:	md:	minimum	_guaranteed_		speed:	1000	
KB/sec/disk.
Apr	26	10:27:20	nfs	kernel:	md:	using	maximum	available	idle	IO	
bandwidth	(but	not	more	than	200000	KB/sec)	for	recovery.
Apr	26	10:27:20	nfs	kernel:	md:	using	128k	window,	over	a	total	of	
511936k.
Apr	26	10:27:20	nfs	kernel:	md:	md127:	recovery	done.

From	the	/var/log/messages	 log	 file,	we	 can	 actually	 see	 that	 at	 some	point,
there	was	an	issue	with	the	software	raid	(md)	that	marked	the	disk	/dev/sdb1	as
failed.

By	 default	 with	 Linux	 if	 a	 physical	 disk	 drive	 fails	 or	 otherwise	 becomes
unavailable	to	the	kernel,	the	Linux	kernel	will	remount	the	filesystems	that	live
on	that	physical	disk	in	the	Read-Only	mode.	As	in	the	preceding	error	message,
it	 seems	 likely	 that	 the	 failure	 of	 the	 sdb1	 physical	 disk	 and	 the	 md127	 raid
device	are	the	root	cause	of	the	filesystems	being	Read-Only.

Since	 software	 raid	 and	hardware	 issues	 are	 the	 topic	 for	 the	next	 chapter,	we
will	 defer	 troubleshooting	 the	 raid	 and	 disk	 issues	 for	 Chapter	 8,	 Hardware
Troubleshooting.

Recovering	the	filesystem
Now	that	we	know	why	the	filesystem	is	in	the	Read-Only	mode,	we	can	resolve
it.	Forcing	the	filesystem	to	go	from	Read-Only	to	Read-Write	is	actually	pretty
easy.	 However,	 because	 we	 don't	 know	 all	 of	 the	 circumstances	 around	 the
failure	 that	 caused	 the	 filesystem	 to	 go	 into	 the	Read-Only	mode,	we	must	 be
careful.

Recovering	from	filesystem	errors	can	be	extremely	tricky;	if	not	done	properly,
we	 could	 easily	 find	 ourselves	 in	 a	 situation	 where	 we	 have	 corrupted	 the
filesystem	or	in	other	ways	caused	partial	or	even	full	data	loss.

Since	we	have	multiple	 filesystems	 in	 the	Read-Only	mode,	we	will	 first	 start
with	the	/boot	filesystem.	The	reason	we	are	starting	with	the	/boot	filesystem
is	because	 this	 is	 technically	 the	best	 filesystem	 to	 experience	data	 loss.	Since
the	/boot	filesystem	is	only	used	during	the	server	boot	process,	we	can	simply
ensure	 that	 we	 do	 not	 reboot	 this	 server	 before	 the	 /boot	 filesystem	 can	 be
recovered.

Whenever	possible,	it	is	always	best	to	back	up	the	data	before	taking	any	action.
In	the	next	steps,	we	are	going	to	assume	that	the	/boot	filesystem	is	backed	up
periodically.

Unmounting	the	filesystem
To	recover	this	filesystem,	we	will	perform	three	steps.	In	the	first	step,	we	will
unmount	the	/boot	filesystem.	By	unmounting	the	filesystem	before	taking	any
additional	steps,	we	will	ensure	that	the	filesystem	is	not	being	actively	written
to.	This	step	will	greatly	reduce	the	chances	of	filesystem	corruption	during	this
recovery	process.

However,	 before	 unmounting	 the	 filesystem,	 we	 need	 to	 make	 sure	 that	 no
applications	or	services	are	trying	to	write	to	the	filesystem	we	are	attempting	to
recover.

To	ensure	this,	we	can	use	the	lsof	command.	The	lsof	command	is	used	to	list
open	 files;	 we	 can	 look	 through	 this	 list	 to	 identify	 if	 any	 files	 in	 the	 /boot
filesystem	are	open.

If	we	simply	run	lsof	with	no	options,	it	will	print	all	of	the	current	open	files:

[nfs]#	lsof
COMMAND				PID	TID											USER			FD						TYPE													DEVICE	
SIZE/OFF							NODE	NAME
systemd						1															root		cwd							DIR														253,1	
4096								128	/

By	 adding	 the	–r	 (repeat)	 flag	 to	lsof,	we	 are	 telling	 it	 to	 run	 in	 a	 repetitive
mode.	We	can	then	pipe	this	output	to	the	grep	command	where	we	can	filter	the
output	for	files	that	are	open	on	the	/boot	filesystem:

[nfs]#	lsof	-r	|	grep	/boot

If	the	preceding	command	does	not	produce	any	output	for	a	while,	it	is	safe	to
proceed	with	 unmounting	 the	 filesystem.	 If	 the	 command	does	 print	 any	 open
files,	it	is	best	to	find	the	appropriate	processes	reading/writing	to	the	filesystem
and	stop	them	before	unmounting	the	filesystem.

Since	our	 example	has	no	open	 files	 on	 the	/boot	 filesystem,	we	 can	proceed
with	 unmounting	 the	 /boot	 filesystem.	 To	 do	 this,	 we	 will	 use	 the	 umount
command:

[nfs]#	umount	/boot

Luckily	the	umount	command	finished	with	no	errors.	If	files	were	actively	being
written	we	might	have	received	an	error	when	unmounting.	Generally,	this	error
consists	 of	 a	message	 that	 states	 that	 the	device	 is	 busy.	 To	 validate	 that	 the
filesystem	was	successfully	unmounted,	we	can	use	the	mount	command	again:

[nfs]#	mount	|	grep	/boot

Now	that	the	/boot	filesystem	is	unmounted,	we	can	perform	the	second	step	in
our	recovery	process.	We	can	now	check	and	repair	the	filesystem.

Filesystem	checks	with	fsck
Linux	has	a	very	useful	filesystem	check	command	that	can	be	used	to	check	and
repair	filesystems.	This	command	is	called	fsck.

The	fsck	command,	however,	is	not	actually	just	one	command.	Each	filesystem
type	has	its	own	methods	of	checking	consistency	and	repairing	issues.	The	fsck
command	 is	 simply	 a	 wrapper	 that	 calls	 the	 appropriate	 commands	 for	 the
filesystem	in	question.

For	 example,	 when	 the	 fsck	 command	 is	 run	 against	 an	 ext4	 filesystem,	 the
command	being	executed	is	actually	e2fsck.	The	e2fsck	command	 is	used	for
the	ext2	through	ext4	filesystem	types.

We	 can	 call	 e2fsck	 in	 two	 ways,	 either	 directly	 or	 indirectly	 via	 the	 fsck
command.	In	this	example,	we	will	use	the	fsck	method,	as	this	can	be	used	for
almost	all	filesystems	supported	by	Linux.

To	use	the	fsck	command	to	simply	check	the	filesystem	for	consistency,	we	can
run	it	with	no	flags	and	specify	the	disk	device	to	be	checked:

[nfs]#	fsck	/dev/sda1
fsck	from	util-linux	2.20.1
e2fsck	1.42.9	(4-Feb-2014)
cloudimg-rootfs:	clean,	85858/2621440	files,	1976768/10485504	
blocks

In	 the	 preceding	 example,	we	 can	 see	 that	 the	 filesystem	 did	 not	 identify	 any
errors.	 If	 it	 did,	we	would	have	been	asked	 if	we	wanted	 the	e2fsck	 utility	 to
correct	those	errors.

If	we	wanted	 to,	we	 could	have	fsck	 automatically	 repair	 the	 issues	 found	by
passing	it	the	–y	(yes)	flag:

[nfs]#	fsck	-y	/dev/sda1
fsck	from	util-linux	2.20.1
e2fsck	1.42	(29-Nov-2011)
/dev/sda1	contains	a	file	system	with	errors,	check	forced.
Pass	1:	Checking	inodes,	blocks,	and	sizes
Inode	2051351	is	a	unknown	file	type	with	mode	0137642	but	it	looks	

like	it	is	really	a	directory.
Fix?	yes

Pass	2:	Checking	directory	structure
Entry	'test'	in	/	(2)	has	deleted/unused	inode	49159.		Clear?	yes

Pass	3:	Checking	directory	connectivity
Pass	4:	Checking	reference	counts
Pass	5:	Checking	group	summary	information

/dev/sda1:	*****	FILE	SYSTEM	WAS	MODIFIED	*****
/dev/sda1:	96/2240224	files	(7.3%	non-contiguous),	3793508/4476416	
blocks

At	 this	 point,	 the	e2fsck	 command	will	 attempt	 to	 correct	 any	 errors	 it	 finds.
Luckily	from	our	example,	the	errors	were	able	to	be	corrected;	however,	there
are	occasions	where	this	is	not	the	case.

The	fsck	and	xfs	filesystems

When	 the	 fsck	 command	 is	 run	 against	 an	 xfs	 filesystem;	 the	 outcome	 is
actually	quite	different:

[nfs]#	fsck	/dev/md127	
fsck	from	util-linux	2.23.2
If	you	wish	to	check	the	consistency	of	an	XFS	filesystem	or
repair	a	damaged	filesystem,	see	xfs_repair(8).

The	xfs	filesystem	is	different	from	the	ext2/3/4	family	of	filesystems,	in	that	a
consistency	check	is	performed	each	time	the	filesystem	is	mounted.	This	does
not	mean	that	you	cannot	check	and	repair	the	filesystem	manually.	To	check	an
xfs	filesystem,	we	can	use	the	xfs_repair	utility:

[nfs]#	xfs_repair	-n	/dev/md127
Phase	1	-	find	and	verify	superblock...
Phase	2	-	using	internal	log
								-	scan	filesystem	freespace	and	inode	maps...
								-	found	root	inode	chunk
Phase	3	-	for	each	AG...
								-	scan	(but	don't	clear)	agi	unlinked	lists...
								-	process	known	inodes	and	perform	inode	discovery...
								-	agno	=	0
								-	agno	=	1
								-	agno	=	2
								-	agno	=	3

								-	process	newly	discovered	inodes...
Phase	4	-	check	for	duplicate	blocks...
								-	setting	up	duplicate	extent	list...
								-	check	for	inodes	claiming	duplicate	blocks...
								-	agno	=	0
								-	agno	=	1
								-	agno	=	2
								-	agno	=	3
No	modify	flag	set,	skipping	phase	5
Phase	6	-	check	inode	connectivity...
								-	traversing	filesystem	...
								-	traversal	finished	...
								-	moving	disconnected	inodes	to	lost+found	...
Phase	7	-	verify	link	counts...
No	modify	flag	set,	skipping	filesystem	flush	and	exiting.

When	executed	with	the	–n	(no	modify)	flag	followed	by	the	device	to	check,	the
xfs_repair	utility	will	only	validate	the	consistency	of	the	filesystem.	When	run
in	this	mode	it	simply	will	not	attempt	to	repair	the	filesystem.

To	run	xfs_repair	in	a	mode	that	will	repair	the	filesystem	simply	omit	the	–n
flag,	as	follows:

[nfs]#	xfs_repair	/dev/md127
Phase	1	-	find	and	verify	superblock...
Phase	2	-	using	internal	log
								-	zero	log...
								-	scan	filesystem	freespace	and	inode	maps...
								-	found	root	inode	chunk
Phase	3	-	for	each	AG...
								-	scan	and	clear	agi	unlinked	lists...
								-	process	known	inodes	and	perform	inode	discovery...
								-	agno	=	0
								-	agno	=	1
								-	agno	=	2
								-	agno	=	3
								-	process	newly	discovered	inodes...
Phase	4	-	check	for	duplicate	blocks...
								-	setting	up	duplicate	extent	list...
								-	check	for	inodes	claiming	duplicate	blocks...
								-	agno	=	0
								-	agno	=	1
								-	agno	=	2
								-	agno	=	3
Phase	5	-	rebuild	AG	headers	and	trees...

								-	reset	superblock...
Phase	6	-	check	inode	connectivity...
								-	resetting	contents	of	realtime	bitmap	and	summary	inodes
								-	traversing	filesystem	...
								-	traversal	finished	...
								-	moving	disconnected	inodes	to	lost+found	...
Phase	7	-	verify	and	correct	link	counts...
Done

From	 the	 output	 of	 the	 preceding	 xfs_repair	 command	 it	 seems	 our	 /boot
filesystem	did	not	require	any	repair	process.

How	do	these	tools	repair	a	filesystem?

You	might	think	that	it	was	quite	easy	to	repair	this	filesystem	with	tools	such	as
fsck	 and	 xfs_repair.	 The	 reason	 for	 that	 is	 simply	 due	 to	 the	 design	 of
filesystems	 such	 as	xfs	 and	ext2/3/4.	Both	xfs	 and	 the	 ext2/3/4	 family	 are
journaling	 filesystems;	what	 this	means	 is	 that	 these	 types	 of	 filesystems	will
keep	a	log	of	changes	being	made	to	filesystem	objects	(such	as	files,	directories,
and	so	on).

These	 changes	will	 be	 kept	 in	 this	 log	 until	 the	 changes	 are	 committed	 to	 the
main	 filesystem.	 The	 xfs_repair	 utility	 simply	 looks	 through	 this	 log	 and
replays	the	last	changes	that	were	not	committed	to	the	main	filesystem.	These
filesystem	 journals	 allow	 the	 filesystem	 to	 be	 very	 resilient	 in	 cases	 such	 as
unexpected	power	loss	or	a	reboot	of	the	system.

Unfortunately,	sometimes	the	filesystem's	journal	and	tools	such	as	xfs_repair
are	not	enough	to	correct	the	situation.

In	cases	like	these,	there	are	some	more	options	such	as	running	the	repair	in	a
forceful	mode.	However,	these	options	should	always	be	reserved	for	a	last	ditch
effort	as	they	can	sometimes	in	themselves	cause	filesystem	corruption.

If	 you	 do	 find	 yourself	with	 a	 corrupted	 and	 unrepairable	 filesystem,	 it	might
simply	 be	 best	 to	 recreate	 the	 filesystem	 and	 restore	 backups,	 if	 you	 have
backups	that	is...

Mounting	the	filesystem
Now	 that	 the	/boot	 filesystem	has	 been	 checked	 and	 repaired,	we	 can	 simply
remount	it	to	validate	that	the	data	is	correct.	To	do	this,	we	can	simply	run	the
mount	command	followed	by	/boot:

[nfs]#	mount	/boot
[nfs]#	mount	|	grep	/boot
/dev/md127	on	/boot	type	xfs	
(rw,relatime,seclabel,attr2,inode64,noquota)

When	 a	 filesystem	 is	 defined	 in	 the	 /etc/fstab	 file,	 the	 mount	 and	 umount
commands	 can	 be	 called	with	 just	 the	 mount	 point.	 This	will	 cause	 these	 two
commands	to	mount	or	unmount	the	filesystem	according	to	it's	definition	within
the	/etc/fstab	file.

It	appears	from	the	output	of	mount	that	our	/boot	filesystem	is	now	Read-Write
rather	than	Read-Only.	 If	we	perform	an	ls	command,	we	should	also	still	 see
our	original	data:

[nfs]#	ls	/boot
config-3.10.0-229.1.2.el7.x86_64																									initrd-
plymouth.img
config-3.10.0-229.el7.x86_64																													symvers-
3.10.0-229.1.2.el7.x86_64.gz
grub																																																					symvers-
3.10.0-229.el7.x86_64.gz
grub2																																																				
System.map-3.10.0-229.1.2.el7.x86_64
initramfs-0-rescue-3f370097c831473a8cfec737ff1d6c55.img		
System.map-3.10.0-229.el7.x86_64
initramfs-3.10.0-229.1.2.el7.x86_64.img																		vmlinuz-0-
rescue-3f370097c831473a8cfec737ff1d6c55
initramfs-3.10.0-229.1.2.el7.x86_64kdump.img													vmlinuz-
3.10.0-229.1.2.el7.x86_64
initramfs-3.10.0-229.el7.x86_64.img																						vmlinuz-
3.10.0-229.el7.x86_64
initramfs-3.10.0-229.el7.x86_64kdump.img

It	appears	that	our	recovery	steps	were	a	success!	Now	that	we	have	tested	them
with	the	/boot	filesystem,	we	can	move	to	repairing	the	/nfs	filesystem.

Repairing	the	other	filesystems
The	steps	to	repair	the	/nfs	filesystem	are	actually	going	to	be	the	same	as	the
/boot	filesystem	with	only	one	major	difference,	as	follows:

[nfs]#	lsof	-r	|	grep	/nfs
rpc.statd	1075												rpcuser		cwd							DIR														253,1	
40					592302	/var/lib/nfs/statd
rpc.mount	2282															root		cwd							DIR														253,1	
4096				9125499	/var/lib/nfs
rpc.mount	2282															root				4u						REG																0,3	
0	4026532125	/proc/2280/net/rpc/nfd.export/channel
rpc.mount	2282															root				5u						REG																0,3	
0	4026532129	/proc/2280/net/rpc/nfd.fh/channel

When	checking	 for	open	 files	on	 the	/nfs	 filesystem	with	lsof,	we	might	not
see	the	NFS	service	processes.	However,	there	is	a	high	likelihood	that	the	NFS
service	will	 attempt	 to	access	 files	within	 this	 shared	 filesystem	after	 the	lsof
command	is	stopped.	To	prevent	this	scenario,	it	is	always	best	(when	possible)
to	stop	the	NFS	service	when	performing	any	changes	to	a	shared	filesystem:

[nfs]#	systemctl	stop	nfs

Once	the	NFS	service	is	stopped,	the	rest	of	the	steps	are	the	same:

[nfs]#	umount	/nfs
[nfs]#	xfs_repair	/dev/md0/nfs
Phase	1	-	find	and	verify	superblock...
Phase	2	-	using	internal	log
								-	zero	log...
								-	scan	filesystem	freespace	and	inode	maps...
								-	found	root	inode	chunk
Phase	3	-	for	each	AG...
								-	scan	and	clear	agi	unlinked	lists...
								-	process	known	inodes	and	perform	inode	discovery...
								-	agno	=	0
								-	agno	=	1
								-	agno	=	2
								-	agno	=	3
								-	process	newly	discovered	inodes...
Phase	4	-	check	for	duplicate	blocks...
								-	setting	up	duplicate	extent	list...
								-	check	for	inodes	claiming	duplicate	blocks...
								-	agno	=	0

								-	agno	=	1
								-	agno	=	2
								-	agno	=	3
Phase	5	-	rebuild	AG	headers	and	trees...
								-	reset	superblock...
Phase	6	-	check	inode	connectivity...
								-	resetting	contents	of	realtime	bitmap	and	summary	inodes
								-	traversing	filesystem	...
								-	traversal	finished	...
								-	moving	disconnected	inodes	to	lost+found	...
Phase	7	-	verify	and	correct	link	counts...
done

Once	the	filesystem	has	been	repaired,	we	can	simply	remount	it	as	follows:

[nfs]#	mount	/nfs
[nfs]#	mount	|	grep	/nfs
nfsd	on	/proc/fs/nfsd	type	nfsd	(rw,relatime)
/dev/mapper/md0-nfs	on	/nfs	type	xfs	
(rw,relatime,seclabel,attr2,inode64,noquota)

After	 remounting	 the	/nfs	 filesystem,	we	 can	 see	 the	options	 show	rw,	 which
means	it	is	Read-Writable.

Recovering	the	/	(root)	filesystem

The	/	or	root	filesystem	is	a	little	different.	It	is	different	because	it	is	the	top-
level	filesystem	that	contains	 the	majority	of	 the	Linux	packages,	binaries,	and
commands.	This	means	that	we	cannot	simply	unmount	this	filesystem	without
losing	the	tools	necessary	to	remount	it.

For	 this	 reason,	 we	 will	 actually	 use	 the	 mount	 command	 to	 remount	 the	 /
filesystem	without	having	to	unmount	it	first:

[nfs]#	mount	-o	remount	/

In	order	to	tell	the	mount	command	to	unmount	and	then	remount	the	filesystem,
we	 simply	need	 to	 pass	 the	–o	 (options)	 flag	 followed	by	 the	 option	remount.
The	 –o	 flag	 allows	 you	 to	 pass	 filesystem	 options	 such	 as	 rw	 or	 ro	 from	 the
command	 line.	When	we	 remount	 the	 /	 filesystem,	we	 are	 simply	 passing	 the
remount	filesystem	option:

#	mount	|	grep	root

/dev/mapper/md0-root	on	/	type	xfs	
(rw,relatime,seclabel,attr2,inode64,noquota)

If	we	use	the	mount	command	to	show	the	mounted	filesystems,	we	can	validate
that	 the	 /	 filesystem	 has	 been	 remounted	 with	 Read-Write	 access.	 Since	 the
filesystem	type	is	xfs,	the	remount	should	have	caused	the	filesystem	to	perform
a	consistency	check	and	repair.	 If	we	have	any	doubts	of	 the	 integrity	of	 the	/
filesystem,	our	next	step	should	be	to	simply	reboot	the	NFS	server.

If	the	server	is	unable	to	mount	the	/	filesystem,	the	xfs_repair	utility	will	be
called	automatically.

Validation
At	 this	 point,	 we	 can	 see	 that	 the	 NFS	 server's	 filesystems	 issues	 have	 been
recovered.	We	 should	 now	validate	 that	 our	NFS	 client	 is	 able	 to	write	 to	 the
NFS	share.	But	before	we	do	that,	we	should	also	first	restart	the	NFS	service	we
stopped	earlier:

[nfs]#	systemctl	start	nfs
[nfs]#	systemctl	status	nfs
nfs-server.service	-	NFS	server	and	services
			Loaded:	loaded	(/usr/lib/systemd/system/nfs-server.service;	
enabled)
			Active:	active	(exited)	since	Mon	2015-04-27	22:20:46	MST;	6s	
ago
		Process:	2278	ExecStopPost=/usr/sbin/exportfs	-f	(code=exited,	
status=0/SUCCESS)
		Process:	3098	ExecStopPost=/usr/sbin/exportfs	-au	(code=exited,	
status=1/FAILURE)
		Process:	3095	ExecStop=/usr/sbin/rpc.nfsd	0	(code=exited,	
status=0/SUCCESS)
		Process:	3265	ExecStart=/usr/sbin/rpc.nfsd	$RPCNFSDARGS	
(code=exited,	status=0/SUCCESS)
		Process:	3264	ExecStartPre=/usr/sbin/exportfs	-r	(code=exited,	
status=0/SUCCESS)
	Main	PID:	3265	(code=exited,	status=0/SUCCESS)
			CGroup:	/system.slice/nfs-server.service

Once	 the	 NFS	 service	 is	 started,	 we	 can	 test	 from	 the	 client	 using	 the	 touch
command:

[db]#	touch	/data/testfile.txt
[db]#	ls	-la	/data/testfile.txt	
-rw-r--r--.	1	root	root	0	Apr	28	05:24	/data/testfile.txt

It	appears	that	we	have	successfully	corrected	our	issue.

As	a	side	note,	if	we	noticed	that	requests	to	the	NFS	share	were	taking	a	long
time,	It	might	be	necessary	to	unmount	and	mount	the	NFS	share	on	the	client
side.	This	 is	a	common	 issue	 if	 the	NFS	client	has	not	 identified	 that	 the	NFS
server	has	been	restarted.

Summary
In	 this	 chapter,	we	 took	 a	 rather	 deep	 dive	 into	 how	 filesystems	 are	mounted,
how	NFS	 is	 configured	 and	 what	 to	 do	 in	 case	 of	 filesystems	 going	 into	 the
Read-Only	 mode.	 We	 even	 took	 that	 a	 step	 further	 and	 manually	 repaired	 a
filesystem	where	the	physical	disk	device	was	having	issues.

In	 the	 next	 chapter,	 we	 will	 take	 this	 same	 issue	 further	 by	 troubleshooting
hardware	 failures.	 This	 means	 looking	 at	 logs	 for	 hardware	 messages,
troubleshooting	 hard	 drive	 RAID	 sets,	 and	 many	 other	 hardware-related
troubleshooting	steps.

Chapter	 8.	 Hardware
Troubleshooting
In	the	last	chapter,	we	identified	that	the	filesystems	on	our	NFS	were	mounted
as	 Read-Only.	 In	 order	 to	 identify	 the	 cause,	 we	 performed	 quite	 a	 bit	 of
troubleshooting	 around	 NFS	 and	 filesystems.	 We	 used	 commands	 such	 as
showmount	 to	 see	 what	 NFS	 shares	 are	 available	 and	 the	 mount	 command	 to
show	the	mounted	filesystems.

Once	we	identified	the	issue,	we	were	able	to	use	the	fsck	command	to	perform
a	filesystem	check	and	recover	the	filesystems.

In	 this	 chapter,	 we	 will	 continue	 down	 the	 path	 from	 Chapter	 7,	 FileSystem
Errors	and	Recovery	and	investigate	a	hardware	device	failure.	This	chapter	will
cover	many	of	the	log	files	and	tools	necessary	to	determine	not	only	whether	a
hardware	failure	has	occurred,	but	why	it	has	occurred	as	well.

Starting	with	a	log	entry
In	 Chapter	 7,	 FileSystem	 Errors	 and	 Recovery	 while	 looking	 through	 the
/var/log/messages	log	file	to	identify	issues	with	the	NFS	servers	filesystems,
we	noticed	the	following	messages:

Apr	26	10:25:44	nfs	kernel:	md/raid1:md127:	Disk	failure	on	sdb1,	
disabling	device.
md/raid1:md127:	Operation	continuing	on	1	devices.
Apr	26	10:25:55	nfs	kernel:	md:	unbind<sdb1>
Apr	26	10:25:55	nfs	kernel:	md:	export_rdev(sdb1)
Apr	26	10:27:20	nfs	kernel:	md:	bind<sdb1>
Apr	26	10:27:20	nfs	kernel:	md:	recovery	of	RAID	array	md127
Apr	26	10:27:20	nfs	kernel:	md:	minimum	_guaranteed_		speed:	1000	
KB/sec/disk.
Apr	26	10:27:20	nfs	kernel:	md:	using	maximum	available	idle	IO	
bandwidth	(but	not	more	than	200000	KB/sec)	for	recovery.
Apr	26	10:27:20	nfs	kernel:	md:	using	128k	window,	over	a	total	of	
511936k.
Apr	26	10:27:20	nfs	kernel:	md:	md127:	recovery	done.

The	preceding	messages	indicate	that	the	RAID	device	/dev/md127	had	a	failure.
Since	the	previous	chapter	was	solely	focused	on	the	issues	with	the	filesystem
itself,	we	did	not	investigate	the	RAID	device	failure	further.	In	this	chapter,	we
will	investigate	to	determine	the	cause	and	resolution.

To	 start	 the	 investigation,	we	 should	 first	 review	 the	 original	 log	messages	 as
these	can	tell	us	quite	a	bit	about	the	state	of	the	RAID	device.

As	a	start,	let's	break	down	the	messages	into	smaller	sections	as	follows:

Apr	26	10:25:44	nfs	kernel:	md/raid1:md127:	Disk	failure	on	sdb1,	
disabling	device.
md/raid1:md127:	Operation	continuing	on	1	devices.

The	first	log	message	is	actually	quite	telling.	The	first	key	piece	of	information
shown	is	the	RAID	device	that	the	message	is	about	(md/raid1:md127).

By	the	name	of	this	device,	we	already	know	quite	a	bit.	The	first	thing	we	know
is	 that	 this	 RAID	 device	 is	 created	 by	 Linux's	 software	 raid	 system	multiple
device	driver	(md).	This	system	allows	Linux	to	take	two	independent	disks	and

apply	a	RAID	to	them.

Since	we	will	be	working	primarily	with	a	RAID	in	this	chapter,	we	should	first
understand	what	RAID	is	and	how	it	works.

What	is	a	RAID?
Redundant	Array	of	Independent	Disks	(RAID)	is	often	either	a	software-	or
hardware-based	system	that	allows	users	to	take	multiple	disks	and	use	them	as
one	device.	The	RAID	can	be	configured	 in	multiple	ways,	allowing	for	either
greater	data	redundancy	or	performance.

This	configuration	is	commonly	referred	to	as	a	RAID	level.	The	different	types
of	RAID	levels	provide	different	functionality	to	get	a	better	 idea	of	the	RAID
levels.	Let's	explore	a	few	that	are	commonly	used.

RAID	0	–	striping
RAID	 0	 is	 one	 of	 the	 simplest	 RAID	 levels	 to	 understand.	 The	way	 RAID	 0
works	is	by	taking	multiple	disks	and	combining	them	to	act	as	one.	When	data
is	written	to	the	RAID	device,	the	data	is	split	and	parts	are	written	on	each	disk.
To	understand	this	better,	let's	put	together	a	simple	scenario.

If	we	had	a	simple	RAID	0	device	that	consisted	of	five	500	GB	drives,	our
RAID	device	would	be	the	size	of	all	the	five	drives	together—2500	GB	or
2.5	TB.	If	we	were	to	write	a	50	MB	file	to	the	RAID	device,	10	MB	of	the
file's	data	would	be	written	to	each	disk	at	the	same	time.

This	process	is	commonly	referred	to	as	striping.	In	the	same	context,	when	that
50	MB	file	is	read	from	the	RAID	device,	the	read	request	will	be	processed	by
each	disk	at	the	same	time	as	well.

The	ability	 to	 split	 a	 file	 and	process	parts	of	 it	 to	 each	disk	 at	 the	 same	 time
provides	 better	 performance	 of	 the	write	 or	 read	 requests.	 In	 fact,	 because	we
have	five	disks,	the	requests	are	faster	by	a	multiple	of	5.

A	simple	analogy	to	this	would	be	if	you	had	five	people	building	a	wall	at	equal
speed,	 they	would	 be	 five	 times	 faster	 than	 a	 single	 person	 building	 the	 same
wall.

While	RAID	0	provides	performance,	it	does	not	provide	any	data	protection.	If
a	 single	drive	 in	 this	RAID	 fails,	 the	data	 from	 that	 drive	 is	 not	 available	 and
such	a	failure	could	result	in	complete	data	loss	with	RAID	0.

RAID	1	–	mirroring
RAID	 1	 is	 another	 simple	 RAID	 level.	 Unlike	 RAID	 0	 where	 the	 drives	 are
combined,	in	RAID	1	the	drives	are	mirrored.	RAID	1	generally	consists	of	two
or	more	drives.	When	data	is	written	to	the	RAID	device,	the	data	is	written	to
each	device	in	its	entirety.

This	process	is	referred	to	as	mirroring,	since	the	data	is	essentially	mirrored	on
all	drives:

Using	the	same	scenario	as	before,	if	we	had	five	500	GB	disk	drives	in	a
RAID	1	configuration,	the	total	disk	size	would	be	500	GB.	When	we	write
the	same	50	MB	file	to	the	RAID	device,	each	drive	will	get	its	own	copy
of	that	50	MB	file.
This	 also	means	 that	 the	write	 request	will	 only	be	 as	 fast	 as	 the	 slowest
drive	 in	 the	 RAID.	 With	 RAID	 1,	 every	 drive	 must	 complete	 the	 write
request	before	it	is	considered	complete.
Read	 requests,	however,	 can	be	 served	by	any	one	of	 the	RAID	1	drives.
Because	of	 this,	a	RAID	1	can	sometimes	provide	 read	 requests	 faster,	as
each	request	can	be	performed	by	a	different	drive	in	the	RAID.

RAID	1	provides	the	highest	level	of	data	resiliency,	as	it	only	requires	one	disk
drive	 to	 remain	 active	 during	 failures.	Using	 our	 five-disk	 scenario,	we	 could
lose	four	of	the	five	disks	and	still	rebuild	and	use	the	RAID.	This	is	the	reason
why	RAID	1	should	be	used	when	data	protection	 is	more	 important	 than	disk
performance.

RAID	5	–	striping	with	distributed	parity
RAID	5	is	an	example	of	a	difficult-to-understand	RAID	level.	RAID	5	works
by	striping	data	across	multiple	disks	such	as	RAID	0,	but	it	also	includes	parity.
Parity	 data	 is	 special	 data	 that	 is	 generated	 by	 performing	 an	 exclusive	 OR
operation	on	the	data	written	to	the	RAID	device.	The	resulting	data	can	be	used
to	rebuild	the	missing	data	from	another	drive.

Using	the	same	example	as	we	did	earlier,	where	we	have	five	500	GB	hard
drives	 in	a	RAID	5	configuration,	 if	we	were	 to	yet	again	write	a	50	MB
file,	 each	 disk	 will	 receive	 10	MB	 of	 data;	 this	 is	 exactly	 like	 RAID	 0.
However,	unlike	RAID	0,	parity	data	is	also	written	to	each	disk.	Because
of	the	additional	parity	data,	the	total	data	size	available	to	the	RAID	is	the
total	of	the	four	drives,	with	one	drive's	worth	of	data	allocated	to	parity.	In
our	case,	this	would	mean	2	TB	of	available	disk	space	with	500	GB	used
for	parity.

Often,	there	is	a	misconception	that	the	parity	data	is	written	to	a	dedicated	drive
with	RAID	5.	This	is	not	the	case.	It	is	simply	that	the	parity	data	size	is	a	full
disk's	worth	of	space.	This	data,	however,	is	distributed	against	all	disks.

A	reason	to	use	RAID	5	over	RAID	0	is	the	fact	that	it	is	possible	for	the	data	to
be	rebuilt	if	a	single	drive	fails.	The	only	problem	with	RAID	5	is	if	two	drives
fail,	the	RAID	cannot	be	rebuilt	and	may	result	in	data	loss.

RAID	 6	 –	 striping	 with	 double	 distributed
parity
RAID	6	 is	essentially	 the	same	 type	of	RAID	as	RAID	5;	however,	 the	parity
data	 is	 doubled.	By	doubling	 the	parity	data,	 the	RAID	can	 survive	up	 to	 two
disk	 failures.	Since	 the	parity	 is	doubled	 if	we	were	 to	 take	 five	500	GB	hard
drives	 and	 place	 them	 into	 a	 RAID	 6	 configuration,	 the	 available	 disk	 space
would	be	1.5	TB,	 the	sum	of	3	drives;	 the	other	1	TB	of	data	 space	would	be
occupied	by	two	sets	of	parity	data.

RAID	10	–	mirrored	and	striped
RAID	10	 (commonly	 known	 as	RAID	1	 +	 0)	 is	 another	 very	 common	RAID
level.	RAID	10	is	essentially	a	combination	of	both	RAID	1	and	RAID	0.	With
RAID	10	 each	disk	 has	 a	mirror	 and	data	 is	 striped	 across	 all	 of	 the	mirrored
drives.	To	explain	this	we	will	use	a	similar	example	as	above;	however,	we	will
do	this	with	six	500	GB	drives.

If	we	were	to	write	a	30	MB	file,	it	will	be	broken	into	10	MB	chunks	and
striped	 to	 three	RAID	devices.	These	RAID	devices	 are	RAID	1	mirrors.
Essentially,	a	RAID	10	 is	numerous	RAID	1	devices	striped	 together	 in	a
RAID	0	configuration.

The	 RAID	 10	 configuration	 is	 a	 good	 balance	 between	 performance	 and	 data
protection.	In	order	for	a	complete	failure	to	occur,	both	sides	of	a	mirror	must
fail;	this	means	2	sides	of	a	RAID	1.

Considering	the	number	of	disks	in	the	RAID	the	chances	of	this	are	less	likely
than	 those	of	RAID	5.	From	a	performance	 standpoint,	RAID	10	 still	 benefits
from	the	striping	methodology	and	is	able	 to	write	different	chunks	of	a	single
file	to	each	disk,	by	increasing	the	write	speed.

RAID	10	also	benefits	from	having	two	disks	with	the	same	data;	as	with	RAID
1,	when	a	read	request	 is	made	either	disk	may	serve	 that	 request	allowing	for
concurrent	read	requests	to	be	handled	by	each	disk	independently.

The	downside	to	RAID	10	is	while	it	often	can	meet	or	exceed	the	performance
of	RAID	5	it	often	takes	more	hardware	to	do	this	as	each	disk	is	mirrored	and
you	lose	half	of	the	total	disk	space	to	the	RAID.

With	our	preceding	example,	our	usable	space	for	six	500	GB	drives	in	a	RAID
10	 configuration	 would	 be	 1.5	 TB.	 Simply	 put,	 it	 is	 50	 percent	 of	 our	 disk
capacity.	This	same	capacity	is	available	with	4	drives	for	RAID	5.

Back	to	troubleshooting	our	RAID
Now	 that	 we	 have	 a	 better	 understanding	 of	 RAID	 and	 the	 different
configurations,	let's	go	back	to	investigating	our	errors.

Apr	26	10:25:44	nfs	kernel:	md/raid1:md127:	Disk	failure	on	sdb1,	
disabling	device.
md/raid1:md127:	Operation	continuing	on	1	devices.

From	the	preceding	error,	we	can	see	that	our	RAID	device	is	md127.	We	can
also	 see	 that	 this	 device	 is	 a	RAID	1	 device	 (md/raid1).	 The	message	 stating
Operation	continuing	on	1	devices	means	 the	 second	part	of	 the	mirror	 is	 still
operational.

The	good	 thing	 is	 that,	 if	both	sides	of	 the	mirror	were	unavailable,	 the	RAID
would	completely	fail	and	result	in	worse	issues.

Since	we	now	know	the	RAID	device	affected,	the	type	of	RAID	used,	and	even
the	hard	disk	that	failed,	we	have	quite	a	bit	of	information	about	this	failure.	If
we	continue	looking	at	the	log	entries	from	/var/log/messages,	we	can	find	out
even	more:

Apr	26	10:25:55	nfs	kernel:	md:	unbind<sdb1>
Apr	26	10:25:55	nfs	kernel:	md:	export_rdev(sdb1)
Apr	26	10:27:20	nfs	kernel:	md:	bind<sdb1>
Apr	26	10:27:20	nfs	kernel:	md:	recovery	of	RAID	array	md127
Apr	26	10:27:20	nfs	kernel:	md:	minimum	_guaranteed_		speed:	1000	
KB/sec/disk.

The	 preceding	 messages	 are	 interesting	 as	 they	 indicate	 that	 MD	 the	 Linux
software	RAID	service	attempted	to	recover	the	RAID:

Apr	26	10:25:55	nfs	kernel:	md:	unbind<sdb1>

In	the	first	line	of	this	section	of	logs,	it	seems	that	the	device	sdb1	was	removed
from	the	RAID:

Apr	26	10:27:20	nfs	kernel:	md:	bind<sdb1>

The	third	line,	however,	is	stating	that	the	device	sdb1	has	been	re-added	to	the
RAID	or	"bound"	to	the	RAID.

The	fourth	and	fifth	lines	show	that	the	RAID	started	recovery	steps:

Apr	26	10:27:20	nfs	kernel:	md:	recovery	of	RAID	array	md127
Apr	26	10:27:20	nfs	kernel:	md:	minimum	_guaranteed_		speed:	1000	
KB/sec/disk.

How	RAID	recovery	works
Earlier	we	discussed	how	various	RAID	 levels	 are	 able	 to	 rebuild	and	 recover
data	from	lost	devices.	This	happens	either	via	parity	data	or	mirrored	data.

When	a	RAID	device	loses	one	of	its	drives	and	that	drive	is	either	replaced	or
re-added	to	the	RAID,	the	RAID	manager,	whether	it	is	a	software	or	hardware
RAID,	will	 start	 rebuilding	 the	data.	The	goal	of	 this	 rebuild	 is	 to	 recreate	 the
data	that	should	be	on	the	missing	drive.

If	the	RAID	is	a	mirrored	RAID,	the	data	from	the	available	mirrored	disk	will
be	read	and	written	to	the	replaced	disk.

For	parity-based	RAIDs,	the	rebuild	will	be	based	on	the	surviving	data	that	has
been	striped	across	the	RAID	and	the	parity	data	within	the	RAID.

During	the	rebuild	process	for	parity-based	RAIDs,	any	additional	failure	could
result	in	a	failed	rebuild.	With	mirror-based	RAIDs,	the	failure	can	occur	on	any
disk	as	long	as	there	is	one	full	copy	of	the	data	being	used	for	the	rebuild.

At	 the	 end	 of	 our	 captured	 log	 messages,	 we	 can	 see	 that	 the	 rebuild	 was
successful:

Apr	26	10:27:20	nfs	kernel:	md:	md127:	recovery	done.

It	appears	that	the	RAID	device	/dev/md127	is	healthy	based	on	the	end	of	the
log	messages	found	in	the	previous	chapter.

Checking	the	current	RAID	status
While	 /var/log/messages	 is	 a	 great	 way	 to	 see	 what	 has	 happened	 on	 the
server,	 it	 doesn't	 necessarily	 mean	 that	 those	 log	 messages	 are	 accurate	 with
regard	to	the	current	state	of	the	RAID.

In	 order	 to	 see	 the	 current	 status	 of	 the	 RAID	 devices,	 we	 can	 run	 a	 few
commands.

The	first	command	we	will	use	is	the	mdadm	command:

[nfs]#	mdadm	--detail	/dev/md127
/dev/md127:
								Version	:	1.0
		Creation	Time	:	Wed	Apr	15	09:39:22	2015
					Raid	Level	:	raid1
					Array	Size	:	511936	(500.02	MiB	524.22	MB)
		Used	Dev	Size	:	511936	(500.02	MiB	524.22	MB)
			Raid	Devices	:	2
		Total	Devices	:	1
				Persistence	:	Superblock	is	persistent

		Intent	Bitmap	:	Internal

				Update	Time	:	Sun	May	10	06:16:10	2015
										State	:	clean,	degraded	
	Active	Devices	:	1
Working	Devices	:	1
	Failed	Devices	:	0
		Spare	Devices	:	0

											Name	:	localhost:boot
											UUID	:	7adf0323:b0962394:387e6cd0:b2914469
									Events	:	52

				Number			Major			Minor			RaidDevice	State
							0							8								1								0						active	sync			/dev/sda1
							2							0								0								2						removed

The	 mdadm	 command	 is	 used	 to	 manage	 Linux	 MD	 based	 RAIDs.	 In	 the
preceding	 command,	 we	 specified	 the	 flag	 --detail	 followed	 by	 a	 RAID
device.	This	tells	mdadm	to	print	the	details	of	the	specified	RAID	device.

The	mdadm	command	can	perform	more	 than	 just	printing	status;	 it	can	also	be
used	 to	 perform	 RAID	 activities	 such	 as	 creating,	 destroying,	 or	 modifying	 a
RAID	device.

To	understand	the	output	of	the	--detail	flag,	let's	break	down	the	output	from
above	as	follows:

/dev/md127:
								Version	:	1.0
		Creation	Time	:	Wed	Apr	15	09:39:22	2015
					Raid	Level	:	raid1
					Array	Size	:	511936	(500.02	MiB	524.22	MB)
		Used	Dev	Size	:	511936	(500.02	MiB	524.22	MB)
			Raid	Devices	:	2
		Total	Devices	:	1
				Persistence	:	Superblock	is	persistent

The	 first	 section	 tells	 us	 quite	 a	 bit	 about	 the	RAID	 itself.	 Important	 items	 to
note	are	the	Creation	Time,	which	in	this	case	is	Wed	April	15th	at	9:39	A.M.
This	tells	us	when	the	RAID	was	first	created.

The	Raid	Level	is	also	noted,	which	as	we	saw	in	/var/log/messages	is	RAID
1.	We	can	also	see	the	Array	Size,	which	tells	us	the	total	available	disk	space
the	RAID	device	will	provide	(524	MB)	and	the	number	of	Raid	Devices	used
in	this	RAID	array,	which	in	this	case	is	two	devices.

The	number	of	devices	 that	make	up	 this	RAID	 is	 important	 as	 it	 can	help	us
understand	the	state	of	this	RAID.

Since	our	RAID	is	made	up	of	a	total	of	two	devices,	if	any	one	device	fails,	we
know	that	our	RAID	will	be	at	risk	of	a	complete	failure	if	 the	leftover	disk	is
lost.	If	our	RAID	consisted	of	three	devices,	however,	we	would	know	that	even
the	loss	of	two	disks	would	not	cause	a	complete	RAID	failure.

Just	 from	 the	 first	 half	 of	 the	 mdadm	 command,	 we	 can	 see	 quite	 a	 bit	 of
information	about	this	RAID.	From	the	second	half,	we	will	find	even	more	key
information	as	follows:

		Intent	Bitmap	:	Internal

				Update	Time	:	Sun	May	10	06:16:10	2015

										State	:	clean,	degraded	
	Active	Devices	:	1
Working	Devices	:	1
	Failed	Devices	:	0
		Spare	Devices	:	0

											Name	:	localhost:boot
											UUID	:	7adf0323:b0962394:387e6cd0:b2914469
									Events	:	52

				Number			Major			Minor			RaidDevice	State
							0							8								1								0						active	sync			/dev/sda1
							2							0								0								2						removed

The	Update	Time	 is	useful	as	 it	shows	the	 last	 time	this	RAID	changed	status,
whether	that	status	change	was	the	addition	of	a	disk	or	a	rebuild.

This	timestamp	can	be	useful,	especially	if	we	are	trying	to	correlate	it	with	log
entries	in	/var/log/messages	or	other	system	events.

Another	 key	 piece	 of	 information	 is	 the	 RAID	 Device	 State,	 which,	 for	 our
example,	is	clean,	degraded.	The	degraded	state	means	that	while	the	RAID	has
a	 failed	 device,	 the	 RAID	 itself	 is	 still	 functional.	 Degraded	 simply	 means
functional	but	suboptimal.

If	our	RAID	device	was	actively	rebuilding	or	recovering	right	now,	we	would
also	see	those	statuses	listed.

Under	 the	 current	 state	 output,	 we	 can	 see	 four	 device	 categories	 that	 tell	 us
about	 the	hard	disks	used	for	 this	RAID.	The	first	being	Active	Devices;	 this
tells	us	the	number	of	drives	that	are	currently	active	in	the	RAID.

The	 second	 is	 Working	 Devices;	 this	 tells	 us	 the	 number	 of	 working	 drives.
Often,	the	number	of	Working	Devices	and	Active	Devices	will	be	the	same.

The	 fourth	 item	 in	 this	 list	 is	 Failed	 Devices;	 this	 is	 the	 number	 of	 devices
currently	marked	as	failed.	Even	though	our	RAID	currently	has	a	failed	device,
this	number	is	0.	There	is	a	valid	reason	for	this,	but	we	will	cover	that	reason	in
a	bit.

The	 last	 item	 in	 our	 list	 is	 the	 number	 of	 Spare	 Devices.	 In	 some	 RAID

systems,	 you	 can	 create	 spare	 devices,	 which	 are	 used	 to	 rebuild	 a	 RAID	 in
events	such	as	drive	failure.

These	 spare	 devices	 can	 come	 in	 handy,	 as	 the	 RAID	 system	 will	 usually
automatically	 rebuild	 the	 RAID,	 which	 reduces	 the	 likelihood	 of	 complete
failure	of	the	RAID.

With	the	final	two	lines	of	the	output	of	mdadm,	we	can	see	information	about	the
drives	that	make	up	the	RAID:

				Number			Major			Minor			RaidDevice	State
							0							8								1								0						active	sync			/dev/sda1
							2							0								0								2						removed

From	 the	 output,	 we	 can	 see	 that	 we	 have	 one	 disk	 device	 /dev/sda1	 that	 is
currently	 in	an	active	sync	state.	We	can	also	see	 that	another	device	has	been
removed	from	the	RAID.

Summarizing	the	key	information

From	 the	 output	 of	 mdadm	 --detail,	 we	 can	 see	 that	 /dev/md127	 is	 a	 RAID
device	 that	has	a	RAID	level	of	1	and	is	currently	 in	a	degraded	state.	We	can
see	 from	 the	 details	 that	 the	 degraded	 state	 is	 due	 to	 the	 fact	 that	 one	 of	 the
drives	that	make	up	the	RAID	is	currently	removed.

Looking	at	md	status	with	/proc/mdstat
Another	useful	place	to	look	for	the	current	status	of	MD	is	/proc/mdstat;	this
file,	like	many	files	in	/proc,	is	constantly	updated	by	the	kernel.	If	we	use	the
cat	command	to	read	this	file,	we	can	take	a	quick	look	at	this	server's	current
RAID	status:

[nfs]#	cat	/proc/mdstat	
Personalities	:	[raid1]	
md126	:	active	raid1	sda2[0]
						7871488	blocks	super	1.2	[2/1]	[U_]
						bitmap:	1/1	pages	[4KB],	65536KB	chunk

md127	:	active	raid1	sda1[0]
						511936	blocks	super	1.0	[2/1]	[U_]
						bitmap:	1/1	pages	[4KB],	65536KB	chunk

unused	devices:	<none>

The	contents	of	/proc/mdstat	are	somewhat	cryptic,	but	if	we	break	them	down
it	contains	quite	a	lot	of	information.

Personalities	:	[raid1]

The	first	line	Personalities	tells	us	what	RAID	levels	the	kernel	on	this	system
currently	supports.	For	our	example,	it	is	RAID	1:

md126	:	active	raid1	sda2[0]
						7871488	blocks	super	1.2	[2/1]	[U_]
						bitmap:	1/1	pages	[4KB],	65536KB	chunk

The	next	set	of	 lines	is	 the	current	status	of	/dev/md126,	another	RAID	device
on	this	system	that	we	have	not	yet	looked	at.	These	three	lines	can	actually	give
us	quite	a	bit	of	 information	about	md126;	 in	 fact,	 they	give	us	much	 the	same
information	as	mdadm	--detail	would	tell	us.

md126	:	active	raid1	sda2[0]

Within	 the	 first	 line	 itself,	we	can	 see	 the	device	name	md126.	We	 can	 see	 the
current	state	of	 the	RAID,	which	 is	active.	We	can	also	see	 the	RAID	level	of
this	RAID	device	RAID	1.	Finally,	we	can	also	see	the	disk	devices	that	make	up

this	RAID;	which,	in	our	example,	is	only	sda2.

The	second	line	also	contains	key	information	as	follows:

						7871488	blocks	super	1.2	[2/1]	[U_]

Specifically,	 the	 last	 two	values	are	 the	most	useful	for	our	current	 task,	[2/1]
shows	 how	many	 disk	 devices	 are	 allocated	 to	 this	 RAID	 and	 how	many	 are
available.	From	the	value	in	the	example	we	can	see	that	2	drives	are	expected
but	only	1	drive	is	available.

The	 last	 value	 [U_]	 shows	 the	 current	 status	 of	 the	 drives	 that	 make	 up	 this
RAID.	The	status	U	is	for	up	and	the	"_"	is	for	down.

In	our	example	we	can	see	that	one	disk	device	is	up,	and	the	other	is	down.

Given	the	above	 information,	we	were	able	 to	determine	 that	 the	RAID	device
/dev/md126	is	currently	in	an	active	state;	it	is	using	RAID	level	1	and	currently
has	one	of	two	disks	unavailable.

If	we	keep	looking	through	the	/proc/mdstat	file	we	can	see	a	similar	status	for
md127.

Using	both	/proc/mdstat	and	mdadm

After	 going	 through	/proc/mdstat	 and	mdadm	--detail	we	 can	 see	 that	 both
provide	similar	information.	From	my	experience	I've	found	using	both	mdstat
and	mdadm	 can	be	useful.	The	/proc/mdstat	 file	 is	 generally	where	 I	 go	 for	 a
quick	and	easy	snapshot	of	all	RAID	devices	on	the	system,	whereas	the	mdadm
command	is	generally	what	I	use	for	deeper	RAID	device	details	(details	such	as
the	number	of	spare	drives,	creation	time	and	the	last	update	time).

Identifying	a	bigger	issue
Earlier	while	using	mdadm	to	look	at	the	current	status	of	md127,	we	could	see	that
the	RAID	device	md127	had	a	disk	removed	from	service.	While	looking	through
/proc/mdstat	we	discovered	that	there	is	another	RAID	device	/dev/md126,	and
that	too	has	a	disk	removed	from	service.

Another	interesting	item	that	we	can	see	is	that	the	RAID	device	/dev/md126	is	a
surviving	 disk:	 /dev/sda1.	 This	 is	 interesting	 because	 the	 surviving	 disk	 for
/dev/md127	 is	/dev/sda2.	 If	we	 remember	 from	 the	earlier	 chapter	/dev/sda1
and	/dev/sda2	 are	 simply	2	partitions	 from	 the	 same	physical	disk.	Given	 the
fact	 that	 both	RAID	 devices	 have	 a	missing	 drive	 and	 that	 our	 logs	 state	 that
/dev/md127	 had	 /dev/sdb1	 removed	 and	 re-added.	 It	 is	 likely	 that	 both
/dev/md127	and	/dev/md126	are	using	partitions	from	/dev/sdb.

Since	/proc/mdstat	 only	has	 two	 statuses	 for	RAID	devices,	 up	or	 down,	we
can	 confirm	 whether	 the	 second	 disk	 has	 actually	 been	 removed	 from
/dev/md126	using	the	--detail	flag:

[nfs]#	mdadm	--detail	/dev/md126
/dev/md126:
								Version	:	1.2
		Creation	Time	:	Wed	Apr	15	09:39:19	2015
					Raid	Level	:	raid1
					Array	Size	:	7871488	(7.51	GiB	8.06	GB)
		Used	Dev	Size	:	7871488	(7.51	GiB	8.06	GB)
			Raid	Devices	:	2
		Total	Devices	:	1
				Persistence	:	Superblock	is	persistent

		Intent	Bitmap	:	Internal

				Update	Time	:	Mon	May	11	04:03:09	2015
										State	:	clean,	degraded	
	Active	Devices	:	1
Working	Devices	:	1
	Failed	Devices	:	0
		Spare	Devices	:	0

											Name	:	localhost:pv00
											UUID	:	bec13d99:42674929:76663813:f748e7cb

									Events	:	5481

				Number			Major			Minor			RaidDevice	State
							0							8								2								0						active	sync			/dev/sda2
							2							0								0								2						removed

From	 the	 output,	 we	 can	 see	 that	 the	 current	 status	 and	 configuration	 for
/dev/md126	is	exactly	the	same	as	/dev/md127.	Given	this	information,	we	can
make	an	assumption	that	/dev/md126	once	had	/dev/sdb2	as	part	of	its	RAID.

Since	 we	 suspect	 that	 the	 problem	may	 simply	 be	 that	 a	 single	 hard	 drive	 is
having	an	issue,	we	need	to	validate	if	that	is	truly	the	case	or	not.	The	first	step
is	to	identify	whether	or	not	there	truly	is	a	/dev/sdb	device;	the	fasted	way	to
do	this	is	to	perform	a	directory	listing	in	/dev	with	the	ls	command:

[nfs]#	ls	-la	/dev/	|	grep	sd
brw-rw----.		1	root	disk						8,			0	May	10	06:16	sda
brw-rw----.		1	root	disk						8,			1	May	10	06:16	sda1
brw-rw----.		1	root	disk						8,			2	May	10	06:16	sda2
brw-rw----.		1	root	disk						8,		16	May	10	06:16	sdb
brw-rw----.		1	root	disk						8,		17	May	10	06:16	sdb1
brw-rw----.		1	root	disk						8,		18	May	10	06:16	sdb2

We	can	see	from	the	results	of	this	ls	command	that	there	is	in	fact	an	sdb,	sdb1,
and	sdb2	device.	Before	going	further,	let's	get	a	clearer	understanding	of	/dev.

Understanding	/dev
The	/dev	directory	 is	a	special	directory	where	 the	contents	are	created	by	 the
kernel	at	 installation	 time.	This	directory	contains	special	 files	 that	allow	users
or	applications	to	interact	with	physical	and	sometimes	logical	devices.

If	we	look	at	the	previous	ls	command's	results,	we	can	see	that	within	the	/dev
directory	there	are	several	files	that	begin	with	sd.

In	the	previous	chapter,	we	learned	that	files	that	start	with	sd	are	actually	seen
as	SCSI	or	SATA	drives.	In	our	case,	we	have	both	/dev/sda	and	/dev/sdb;	this
means,	on	this	system,	there	are	two	physical	SCSI	or	SATA	drives.

The	 additional	 devices	 /dev/sda1,	 /dev/sda2,	 /dev/sdb1,	 and	 /dev/sdb2	 are
simply	 partitions	 of	 those	 disks.	 In	 fact,	 with	 disk	 drives,	 a	 device	 name	 that
ends	 with	 a	 numeric	 value	 is	 often	 a	 partition	 of	 another	 device,	 just	 as
/dev/sdb1	is	a	partition	of	/dev/sdb.	While	there	are	of	course	some	exceptions
to	 this	 rule,	 it	 is	often	safe	 to	make	 this	assumption	when	troubleshooting	disk
drives.

More	than	just	disk	drives
The	/dev/	directory	contains	far	more	than	just	disk	drives.	If	we	look	in	/dev/,
we	can	actually	see	quite	a	few	common	devices.

[nfs]#	ls	-F	/dev
autofs											hugepages/							network_throughput		snd/					
tty21		tty4			tty58				vcs1
block/											initctl|									null																sr0						
tty22		tty40		tty59				vcs2
bsg/													input/											nvram															stderr@		
tty23		tty41		tty6					vcs3
btrfs-control				kmsg													oldmem														stdin@			
tty24		tty42		tty60				vcs4
bus/													log=													port																stdout@		
tty25		tty43		tty61				vcs5
cdrom@											loop-control					ppp																	tty						
tty26		tty44		tty62				vcs6
char/												lp0														ptmx																tty0					
tty27		tty45		tty63				vcsa
console										lp1														pts/																tty1					
tty28		tty46		tty7					vcsa1
core@												lp2														random														tty10				
tty29		tty47		tty8					vcsa2
cpu/													lp3														raw/																tty11				tty3			
tty48		tty9					vcsa3
cpu_dma_latency		mapper/										rtc@																tty12				
tty30		tty49		ttyS0				vcsa4
crash												mcelog											rtc0																tty13				
tty31		tty5			ttyS1				vcsa5
disk/												md/														sda																	tty14				
tty32		tty50		ttyS2				vcsa6
dm-0													md0/													sda1																tty15				
tty33		tty51		ttyS3				vfio/
dm-1													md126												sda2																tty16				
tty34		tty52		uhid					vga_arbiter
dm-2													md127												sdb																	tty17				
tty35		tty53		uinput			vhost-net
fd@														mem														sdb1																tty18				
tty36		tty54		urandom		zero
full													mqueue/										sdb2																tty19				
tty37		tty55		usbmon0
fuse													net/													shm/																tty2					
tty38		tty56		usbmon1
hpet													network_latency		snapshot												tty20				

tty39		tty57		vcs

From	the	results	of	this	ls,	we	can	see	that	there	are	numerous	files,	directories,
and	symlinks	in	the	/dev	directory.

The	following	is	a	list	of	common	devices	or	directories	that	are	useful	to	know
and	understand:

/dev/cdrom:	This	 is	often	a	symlink	 to	 the	cdrom	device.	The	CD-ROM's
actual	device	 follows	a	naming	convention	similar	 to	hard	disks,	where	 it
starts	with	 sr	 and	 is	 followed	 by	 the	 number	 of	 the	 device.	We	 can	 see
where	the	/dev/cdrom	symlink	points	with	the	ls	command:

[nfs]#	ls	-la	/dev/cdrom
lrwxrwxrwx.	1	root	root	3	May	10	06:16	/dev/cdrom	->	sr0

/dev/console:	This	device	 is	 not	 necessarily	 linked	 to	 a	 specific	hardware
device	 like	 /dev/sda	 or	 /dev/sr0.	 The	 console	 device	 is	 used	 for
interacting	with	 the	 systems	console,	which	may	or	may	not	be	 an	 actual
monitor.
/dev/cpu:	 This	 is	 actually	 a	 directory	 that	 contains	 additional	 directories
within	 it	 for	each	CPU	on	 the	system.	Within	 those	directories	 is	a	cpuid
file	used	to	query	information	about	the	CPU:

[nfs]#	ls	-la	/dev/cpu/0/cpuid	
crw-------.	1	root	root	203,	0	May	10	06:16	/dev/cpu/0/cpuid

/dev/md:	This	is	another	directory	that	contains	symlinks	with	user-friendly
names	 that	 link	 to	 actual	 RAID	 devices.	 If	 we	 use	 ls,	 we	 can	 see	 the
available	RAID	devices	on	this	system:

[nfs]#	ls	-la	/dev/md/
total	0
drwxr-xr-x.		2	root	root			80	May	10	06:16	.
drwxr-xr-x.	20	root	root	3180	May	10	06:16	..
lrwxrwxrwx.		1	root	root				8	May	10	06:16	boot	->	../md127
lrwxrwxrwx.		1	root	root				8	May	10	06:16	pv00	->	../md126

/dev/random	 and	 /dev/urandom:	 These	 two	 devices	 are	 used	 for
generating	random	data.	The	/dev/random	and	/dev/urandom	devices	will
both	 pull	 random	 data	 from	 the	 kernel's	 entropy	 pool.	 One	 difference
between	 these	 two	 is	 that	 when	 the	 system's	 entropy	 count	 is	 low,	 the
/dev/random	device	will	wait	until	sufficient	entropy	has	been	re-added.

As	 we	 learned	 earlier,	 the	 /dev/	 directory	 has	 quite	 a	 few	 useful	 files	 and
directories.	Getting	back	to	our	original	issue,	however,	we	have	identified	that
/dev/sdb	exists	and	there	are	two	partitions	/dev/sdb1	and	/dev/sdb2.

We	have	not,	 however,	 identified	whether	/dev/sdb	was	 originally	 part	 of	 the
two	RAID	devices	currently	 in	a	degraded	state.	To	do	 this,	we	can	utilize	 the
dmesg	facility.

Device	messages	with	dmesg
The	dmesg	command	 is	 a	 great	 command	 for	 troubleshooting	 hardware	 issues.
When	 a	 system	 initially	 boots,	 the	 kernel	 will	 identify	 the	 various	 hardware
devices	available	to	that	system.

As	the	kernel	 identifies	 these	devices,	 the	information	is	written	to	 the	kernel's
ring	 buffer.	 This	 ring	 buffer	 is	 essentially	 an	 internal	 log	 for	 the	 kernel.	 The
dmesg	command	can	be	used	to	print	this	ring	buffer.

The	following	is	an	example	output	from	the	dmesg	command;	in	this	example,
we	will	use	the	head	command	to	shorten	the	output	to	only	the	first	15	lines:

[nfs]#	dmesg	|	head	-15
[0.000000]	Initializing	cgroup	subsys	cpuset
[0.000000]	Initializing	cgroup	subsys	cpu
[0.000000]	Initializing	cgroup	subsys	cpuacct
[0.000000]	Linux	version	3.10.0-229.1.2.el7.x86_64	
(builder@kbuilder.dev.centos.org)	(gcc	version	4.8.2	20140120	(Red	
Hat	4.8.2-16)	(GCC))	#1	SMP	Fri	Mar	27	03:04:26	UTC	2015
[0.000000]	Command	line:	BOOT_IMAGE=/vmlinuz-3.10.0-
229.1.2.el7.x86_64	root=/dev/mapper/md0-root	ro	rd.lvm.lv=md0/swap	
crashkernel=auto	rd.md.uuid=bec13d99:42674929:76663813:f748e7cb	
rd.lvm.lv=md0/root	rd.md.uuid=7adf0323:b0962394:387e6cd0:b2914469	
rhgb	quiet	LANG=en_US.UTF-8	systemd.debug
[0.000000]	e820:	BIOS-provided	physical	RAM	map:
[0.000000]	BIOS-e820:	[mem	0x0000000000000000-
0x000000000009fbff]	usable
[0.000000]	BIOS-e820:	[mem	0x000000000009fc00-
0x000000000009ffff]	reserved
[0.000000]	BIOS-e820:	[mem	0x00000000000f0000-
0x00000000000fffff]	reserved
[0.000000]	BIOS-e820:	[mem	0x0000000000100000-
0x000000001ffeffff]	usable
[0.000000]	BIOS-e820:	[mem	0x000000001fff0000-
0x000000001fffffff]	ACPI	data
[0.000000]	BIOS-e820:	[mem	0x00000000fffc0000-
0x00000000ffffffff]	reserved
[0.000000]	NX	(Execute	Disable)	protection:	active
[0.000000]	SMBIOS	2.5	present.
[0.000000]	DMI:	innotek	GmbH	VirtualBox/VirtualBox,	BIOS	
VirtualBox	12/01/2006

The	reason	we	limited	the	output	to	just	15	lines	is	because	the	dmesg	command
will	output	quite	a	bit	of	data.	To	put	it	in	perspective,	we	can	run	the	command
again,	but	 this	 time	send	 the	output	 to	wc	-l,	which	will	 count	 the	number	of
lines	printed:

[nfs]#	dmesg	|	wc	-l
597

As	we	can	see,	the	dmesg	command	returns	597	lines.	Reading	all	the	597	lines
of	the	kernel's	ring	buffer	is	not	a	quick	process.

Since	 our	 goal	 was	 to	 find	 out	 information	 about	 /dev/sdb,	 we	 can	 run	 the
dmesg	command	again,	this	time	using	the	grep	command	to	filter	the	output	to
/dev/sdb	related	information:

[nfs]#	dmesg	|	grep	-C	5	sdb
[2.176800]	scsi	3:0:0:0:	CD-ROM												VBOX					CD-ROM											
1.0		PQ:	0	ANSI:	5
[2.194908]	sd	0:0:0:0:	[sda]	16777216	512-byte	logical	blocks:	
(8.58	GB/8.00	GiB)
[2.194951]	sd	0:0:0:0:	[sda]	Write	Protect	is	off
[2.194953]	sd	0:0:0:0:	[sda]	Mode	Sense:	00	3a	00	00
[2.194965]	sd	0:0:0:0:	[sda]	Write	cache:	enabled,	read	cache:	
enabled,	doesn't	support	DPO	or	FUA
[2.196250]	sd	1:0:0:0:	[sdb]	16777216	512-byte	logical	blocks:	
(8.58	GB/8.00	GiB)
[2.196279]	sd	1:0:0:0:	[sdb]	Write	Protect	is	off
[2.196281]	sd	1:0:0:0:	[sdb]	Mode	Sense:	00	3a	00	00
[2.196294]	sd	1:0:0:0:	[sdb]	Write	cache:	enabled,	read	cache:	
enabled,	doesn't	support	DPO	or	FUA
[2.197471]		sda:	sda1	sda2
[2.197700]	sd	0:0:0:0:	[sda]	Attached	SCSI	disk
[2.198139]		sdb:	sdb1	sdb2
[2.198319]	sd	1:0:0:0:	[sdb]	Attached	SCSI	disk
[2.200851]	sr	3:0:0:0:	[sr0]	scsi3-mmc	drive:	32x/32x	xa/form2	
tray
[2.200856]	cdrom:	Uniform	CD-ROM	driver	Revision:	3.20
[2.200980]	sr	3:0:0:0:	Attached	scsi	CD-ROM	sr0
[2.366634]	md:	bind<sda1>
[2.370652]	md:	raid1	personality	registered	for	level	1
[2.370820]	md/raid1:md127:	active	with	1	out	of	2	mirrors
[2.371797]	created	bitmap	(1	pages)	for	device	md127
[2.372181]	md127:	bitmap	initialized	from	disk:	read	1	pages,	
set	0	of	8	bits

[2.373915]	md127:	detected	capacity	change	from	0	to	524222464
[2.374767]		md127:	unknown	partition	table
[2.376065]	md:	bind<sdb2>
[2.382976]	md:	bind<sda2>
[2.385094]	md:	kicking	non-fresh	sdb2	from	array!
[2.385102]	md:	unbind<sdb2>
[2.385105]	md:	export_rdev(sdb2)
[2.387559]	md/raid1:md126:	active	with	1	out	of	2	mirrors
[2.387874]	created	bitmap	(1	pages)	for	device	md126
[2.388339]	md126:	bitmap	initialized	from	disk:	read	1	pages,	
set	19	of	121	bits
[2.390324]	md126:	detected	capacity	change	from	0	to	8060403712
[2.391344]		md126:	unknown	partition	table

When	executing	 the	 preceding	 example,	 the	–C	 (context)	 flag	was	 used	 to	 tell
grep	to	include	five	lines	of	context	to	the	output.	Generally,	when	grep	is	run
with	no	flags,	only	lines	that	contain	the	search	string	("sdb"	,	in	this	case)	are
printed.	With	 the	 context	 flag	 set	 to	 five,	 the	grep	 command	will	print	5	 lines
before	and	5	lines	after	each	line	that	contains	the	search	string.

This	use	of	grep	allows	us	to	see	not	only	the	lines	that	include	the	string	sdb,
but	also	the	lines	before	and	after,	which	may	contain	additional	information.

Now	that	we	have	this	additional	information,	let's	break	it	down	to	understand
what	it	is	telling	us	better:

[2.176800]	scsi	3:0:0:0:	CD-ROM												VBOX					CD-ROM											
1.0		PQ:	0	ANSI:	5
[2.194908]	sd	0:0:0:0:	[sda]	16777216	512-byte	logical	blocks:	
(8.58	GB/8.00	GiB)
[2.194951]	sd	0:0:0:0:	[sda]	Write	Protect	is	off
[2.194953]	sd	0:0:0:0:	[sda]	Mode	Sense:	00	3a	00	00
[2.194965]	sd	0:0:0:0:	[sda]	Write	cache:	enabled,	read	cache:	
enabled,	doesn't	support	DPO	or	FUA
[2.196250]	sd	1:0:0:0:	[sdb]	16777216	512-byte	logical	blocks:	
(8.58	GB/8.00	GiB)
[2.196279]	sd	1:0:0:0:	[sdb]	Write	Protect	is	off
[2.196281]	sd	1:0:0:0:	[sdb]	Mode	Sense:	00	3a	00	00
[2.196294]	sd	1:0:0:0:	[sdb]	Write	cache:	enabled,	read	cache:	
enabled,	doesn't	support	DPO	or	FUA
[2.197471]		sda:	sda1	sda2
[2.197700]	sd	0:0:0:0:	[sda]	Attached	SCSI	disk
[2.198139]		sdb:	sdb1	sdb2
[2.198319]	sd	1:0:0:0:	[sdb]	Attached	SCSI	disk

The	 preceding	 information	 seems	 to	 be	 standard	 information	 about	 /dev/sdb.
We	 can	 see	 some	 basic	 information	 about	/dev/sda	 and	 /dev/sdb	 from	 these
messages.

One	useful	thing	we	can	see	from	the	preceding	information	is	the	size	of	these
drives:

[2.194908]	sd	0:0:0:0:	[sda]	16777216	512-byte	logical	blocks:	
(8.58	GB/8.00	GiB)
[2.196250]	sd	1:0:0:0:	[sdb]	16777216	512-byte	logical	blocks:	
(8.58	GB/8.00	GiB)

We	can	see	that	each	drive	is	8.58	GB	in	size.	While	the	information	is	useful	in
general,	it	is	not	useful	for	our	current	situation.	What	is	useful,	however,	is	the
last	four	lines	from	the	preceding	code	snippet:

[2.197471]		sda:	sda1	sda2
[2.197700]	sd	0:0:0:0:	[sda]	Attached	SCSI	disk
[2.198139]		sdb:	sdb1	sdb2
[2.198319]	sd	1:0:0:0:	[sdb]	Attached	SCSI	disk

These	last	four	lines	are	showing	the	available	partitions	on	both	/dev/sda	and
/dev/sdb	as	well	as	a	message	stating	that	each	disk	has	been	Attached.

This	information	is	quite	useful	as	it	tells	us	at	the	most	basic	level	that	these	two
drives	are	working.	This	is	something	that	is	in	question	for	/dev/sdb,	since	we
suspect	that	the	RAID	system	has	removed	it	from	service.

So	far,	the	dmesg	command	has	already	given	us	a	bit	of	useful	information;	let's
keep	looking	through	the	data	to	better	understand	these	disks.

[2.200851]	sr	3:0:0:0:	[sr0]	scsi3-mmc	drive:	32x/32x	xa/form2	
tray
[2.200856]	cdrom:	Uniform	CD-ROM	driver	Revision:	3.20
[2.200980]	sr	3:0:0:0:	Attached	scsi	CD-ROM	sr0

The	preceding	three	lines	would	be	useful	if	we	 troubleshoot	an	 issue	with	our
CD-ROM	device.	However,	for	our	disk	issue,	they	are	not	useful	and	are	only
included	due	to	grep's	context	being	set	to	5.

The	following	lines,	however,	will	tell	us	quite	a	bit	about	our	disk	drives:

[2.366634]	md:	bind<sda1>
[2.370652]	md:	raid1	personality	registered	for	level	1
[2.370820]	md/raid1:md127:	active	with	1	out	of	2	mirrors
[2.371797]	created	bitmap	(1	pages)	for	device	md127
[2.372181]	md127:	bitmap	initialized	from	disk:	read	1	pages,	
set	0	of	8	bits
[2.373915]	md127:	detected	capacity	change	from	0	to	524222464
[2.374767]		md127:	unknown	partition	table
[2.376065]	md:	bind<sdb2>
[2.382976]	md:	bind<sda2>
[2.385094]	md:	kicking	non-fresh	sdb2	from	array!
[2.385102]	md:	unbind<sdb2>
[2.385105]	md:	export_rdev(sdb2)
[2.387559]	md/raid1:md126:	active	with	1	out	of	2	mirrors
[2.387874]	created	bitmap	(1	pages)	for	device	md126
[2.388339]	md126:	bitmap	initialized	from	disk:	read	1	pages,	
set	19	of	121	bits
[2.390324]	md126:	detected	capacity	change	from	0	to	8060403712
[2.391344]		md126:	unknown	partition	table

The	last	section	of	dmesg's	output	tells	us	quite	a	bit	about	the	RAID	devices	and
/dev/sdb.	Since	there	is	quite	a	bit	of	data,	we	will	need	to	break	this	down	to
really	understand	it	all:

The	first	few	lines	show	use	information	about	/dev/md127.
[2.366634]	md:	bind<sda1>
[2.370652]	md:	raid1	personality	registered	for	level	1
[2.370820]	md/raid1:md127:	active	with	1	out	of	2	mirrors
[2.371797]	created	bitmap	(1	pages)	for	device	md127
[2.372181]	md127:	bitmap	initialized	from	disk:	read	1	pages,	
set	0	of	8	bits
[2.373915]	md127:	detected	capacity	change	from	0	to	524222464
[2.374767]		md127:	unknown	partition	table

This	 line	 appears	 to	 be	 information	 created	 during	 boot,	 as	 these	 messages
suggest	 the	 RAID	 was	 initializing.	 It	 also	 appears	 that	 when	 the	 RAID	 is
initialized,	it	detected	that	only	one	of	the	two	available	disks	was	bound	to	the
RAID.

While	this	information	itself	is	not	new	to	our	troubleshooting,	what	this	tells	us
is	that	the	system	was	booted	in	this	state.	This	means	that	whatever	happened	to
/dev/sdb	may	have	happened	previous	to	this	system's	most	recent	reboot.

It	 appears	 from	 the	 rest	 of	 this	 snippet	 that	 there	 are	 similar	 messages	 for

/dev/md126;	 however,	 there	 is	 a	 bit	 more	 information	 included	 with	 those
messages:

[2.376065]	md:	bind<sdb2>
[2.382976]	md:	bind<sda2>
[2.385094]	md:	kicking	non-fresh	sdb2	from	array!
[2.385102]	md:	unbind<sdb2>
[2.385105]	md:	export_rdev(sdb2)
[2.387559]	md/raid1:md126:	active	with	1	out	of	2	mirrors
[2.387874]	created	bitmap	(1	pages)	for	device	md126
[2.388339]	md126:	bitmap	initialized	from	disk:	read	1	pages,	
set	19	of	121	bits
[2.390324]	md126:	detected	capacity	change	from	0	to	8060403712
[2.391344]		md126:	unknown	partition	table

The	 preceding	messages	 look	 very	 similar	 to	 the	messages	 from	 /dev/md127;
however,	 there	 are	 a	 few	 lines	 that	 were	 not	 present	 in	 the	 messages	 at
/dev/md127:

[2.376065]	md:	bind<sdb2>
[2.382976]	md:	bind<sda2>
[2.385094]	md:	kicking	non-fresh	sdb2	from	array!
[2.385102]	md:	unbind<sdb2>

If	 we	 look	 at	 these	 messages,	 we	 can	 see	 that	 /dev/md126	 attempted	 to	 use
/dev/sdb2	in	the	RAID	array;	however,	it	found	the	drive	to	be	non-fresh.	The
non-fresh	message	is	interesting	as	it	might	explain	why	/dev/sdb	 is	not	being
included	into	the	RAID	devices.

Summarizing	what	dmesg	has	provided
In	a	RAID	set,	each	disk	maintains	an	event	count	for	every	write	request.	The
RAID	uses	this	event	count	to	ensure	that	each	disk	has	received	the	appropriate
amount	of	write	 requests.	This	allows	 the	RAID	 to	validate	 the	consistency	of
the	entire	RAID.

When	 a	RAID	 is	 restarting,	 the	RAID	manager	will	 check	 the	 event	 count	 of
each	disk	and	ensure	that	they	are	consistent.

From	 the	 preceding	 messages,	 it	 appears	 that	 /dev/sda2	 may	 have	 a	 higher
event	count	than	/dev/sdb2.	This	would	 indicate	 that	some	writes	occurred	on
/dev/sda1	 that	 never	 occurred	 on	 /dev/sdb2.	 This	 would	 be	 abnormal	 for	 a
mirrored	array	and	would	indicate	an	issue	with	/dev/sdb2.

How	 do	 we	 check	 whether	 the	 event	 counts	 are	 different?	 With	 the	 mdadm
command,	we	can	display	the	event	count	for	each	disk	device.

Using	 mdadm	 to	 examine	 the
superblock
To	view	 the	event	count,	we	will	use	 the	mdadm	command	with	 the	--examine
flag	to	examine	the	disk	devices:

[nfs]#	mdadm	--examine	/dev/sda1
/dev/sda1:
										Magic	:	a92b4efc
								Version	:	1.0
				Feature	Map	:	0x1
					Array	UUID	:	7adf0323:b0962394:387e6cd0:b2914469
											Name	:	localhost:boot
		Creation	Time	:	Wed	Apr	15	09:39:22	2015
					Raid	Level	:	raid1
			Raid	Devices	:	2

	Avail	Dev	Size	:	1023968	(500.07	MiB	524.27	MB)
					Array	Size	:	511936	(500.02	MiB	524.22	MB)
		Used	Dev	Size	:	1023872	(500.02	MiB	524.22	MB)
			Super	Offset	:	1023984	sectors
			Unused	Space	:	before=0	sectors,	after=96	sectors
										State	:	clean
				Device	UUID	:	92d97c32:1f53f59a:14a7deea:34ec8c7c

Internal	Bitmap	:	-16	sectors	from	superblock
				Update	Time	:	Mon	May	11	04:08:10	2015
		Bad	Block	Log	:	512	entries	available	at	offset	-8	sectors
							Checksum	:	bd8c1d5b	-	correct
									Events	:	60

			Device	Role	:	Active	device	0
			Array	State	:	A.	('A'	==	active,	'.'	==	missing,	'R'	==	
replacing)

The	--examine	flag	is	very	similar	to	--detail	except	where	--detail	 is	used
to	print	the	RAID	device	details.	--examine	is	used	to	print	RAID	details	from
the	 individual	disks	 that	make	up	 the	RAID.	The	details	 that	--examine	prints
are	actually	from	the	superblock	details	on	the	disk.

When	 the	Linux	RAID	is	utilizing	a	disk	as	part	of	a	RAID	device,	 the	RAID

system	will	reserve	some	space	on	the	disk	for	a	superblock.	This	superblock	is
simply	used	to	store	metadata	about	the	disk	and	the	RAID.

In	the	preceding	command,	we	simply	printed	the	RAID	superblock	information
from	 /dev/sda1.	 To	 get	 a	 better	 understanding	 of	 the	 RAID	 superblock,	 let's
take	a	look	at	the	details	the	--examine	flag	provides:

/dev/sda1:
										Magic	:	a92b4efc
								Version	:	1.0
				Feature	Map	:	0x1
					Array	UUID	:	7adf0323:b0962394:387e6cd0:b2914469
											Name	:	localhost:boot
		Creation	Time	:	Wed	Apr	15	09:39:22	2015
					Raid	Level	:	raid1
			Raid	Devices	:	2

The	 first	 section	of	 this	 output	 provides	 quite	 a	 bit	 of	 useful	 information.	The
magic	number,	for	instance,	is	used	as	a	superblock	header.	This	is	a	value	that	is
used	to	indicate	the	beginning	of	the	superblock.

Another	 useful	 piece	 of	 information	 is	 the	 Array	 UUID.	 This	 is	 a	 unique
identifier	for	the	RAID	that	this	disk	belongs	to.	If	we	print	the	details	of	RAID
md127,	we	 can	 see	 that	 the	Array	UUID	 from	/dev/sda1	 and	 the	UUID	 from
md127	match:

[nfs]#	mdadm	--detail	/dev/md127	|	grep	UUID
											UUID	:	7adf0323:b0962394:387e6cd0:b2914469

This	can	be	useful	when	a	device	name	has	changed	and	you	need	to	identify	the
disks	that	belong	to	a	specific	RAID.	An	example	of	this	would	be	if	someone
accidently	 put	 drives	 into	 the	wrong	 slot	 during	 hardware	maintenance.	 If	 the
drives	still	contain	the	UUID,	it	is	possible	to	identify	the	RAID	the	misplaced
drives	belong	to.

The	bottom	three	lines	Creation	Time,	RAID	Level,	and	RAID	Devices	are	also
very	useful	when	used	with	the	output	of	--detail.

This	second	snippet	of	 information	is	useful	for	determining	information	about
the	disk	device:

Avail	Dev	Size	:	1023968	(500.07	MiB	524.27	MB)
					Array	Size	:	511936	(500.02	MiB	524.22	MB)
		Used	Dev	Size	:	1023872	(500.02	MiB	524.22	MB)
			Super	Offset	:	1023984	sectors
			Unused	Space	:	before=0	sectors,	after=96	sectors
										State	:	clean
				Device	UUID	:	92d97c32:1f53f59a:14a7deea:34ec8c7c

In	this	snippet,	we	can	see	the	size	of	the	individual	disk	and	the	array	in	the	first
three	lines.	If	there	was	ever	a	question	about	the	size	of	each	disk	in	the	array,
this	information	could	be	very	useful.	In	addition	to	the	size,	we	can	also	see	the
current	 State	 of	 the	 RAID.	 This	 state	 matches	 the	 state	 we	 see	 from	 the	 --
detail	output	of	/dev/md127.

[nfs]#	mdadm	--detail	/dev/md127	|	grep	State
										State	:	clean,	degraded

The	next	section	of	information	from	the	--examine	output	is	very	useful	for	our
issue:

Internal	Bitmap	:	-16	sectors	from	superblock
				Update	Time	:	Mon	May	11	04:08:10	2015
		Bad	Block	Log	:	512	entries	available	at	offset	-8	sectors
							Checksum	:	bd8c1d5b	-	correct
									Events	:	60

			Device	Role	:	Active	device	0
			Array	State	:	A.	('A'	==	active,	'.'	==	missing,	'R'	==	
replacing)

In	this	section,	we	can	see	the	Events	information,	which	is	showing	the	current
event	 count	 value	 on	 this	 disk.	 We	 can	 also	 see	 the	 Array	 State	 value	 of
/dev/sda1.	The	value	of	A.	indicates	that	from	the	perspective	of	/dev/sda1,	its
mirrored	partner	is	missing.

As	we	examine	 the	details	of	 the	 superblock	under	/dev/sdb1,	we	will	 see	an
interesting	difference	in	the	Array	State	and	Events	values:

[nfs]#	mdadm	--examine	/dev/sdb1
/dev/sdb1:
										Magic	:	a92b4efc
								Version	:	1.0

				Feature	Map	:	0x1
					Array	UUID	:	7adf0323:b0962394:387e6cd0:b2914469
											Name	:	localhost:boot
		Creation	Time	:	Wed	Apr	15	09:39:22	2015
					Raid	Level	:	raid1
			Raid	Devices	:	2

	Avail	Dev	Size	:	1023968	(500.07	MiB	524.27	MB)
					Array	Size	:	511936	(500.02	MiB	524.22	MB)
		Used	Dev	Size	:	1023872	(500.02	MiB	524.22	MB)
			Super	Offset	:	1023984	sectors
			Unused	Space	:	before=0	sectors,	after=96	sectors
										State	:	clean
				Device	UUID	:	5a9bb172:13102af9:81d761fb:56d83bdd

Internal	Bitmap	:	-16	sectors	from	superblock
				Update	Time	:	Mon	May		4	21:09:30	2015
		Bad	Block	Log	:	512	entries	available	at	offset	-8	sectors
							Checksum	:	cd226d7b	-	correct
									Events	:	48

			Device	Role	:	Active	device	1
			Array	State	:	AA	('A'	==	active,	'.'	==	missing,	'R'	==	
replacing)

From	the	results,	we	have	answered	quite	a	few	questions	about	/dev/sdb1.

The	first	question	that	we	had	is	whether	/dev/sdb1	was	part	of	a	RAID	or	not.
From	 the	 fact	 that	 this	 device	 has	 a	RAID	 superblock	 and	 that	 information	 is
printable	via	mdadm,	we	can	safely	say	yes.

					Array	UUID	:	7adf0323:b0962394:387e6cd0:b2914469

By	looking	at	the	Array	UUID,	we	can	also	determine	whether	this	device	was	a
part	of	/dev/md127,	as	we	suspected:

[nfs]#	mdadm	--detail	/dev/md127	|	grep	UUID
											UUID	:	7adf0323:b0962394:387e6cd0:b2914469

As	it	appears,	/dev/sdb1	was	at	some	point	part	of	/dev/md127.

The	final	question	we	need	to	answer	is	whether	or	not	the	Events	values	differ
between	 /dev/sda1	 and	 /dev/sdb1.	 From	 the	 --examine	 information	 from

/dev/sda1,	we	 can	 see	 the	 event	 count	 is	 set	 to	 60.	 In	 the	preceding	 code,	--
examine	results	from	/dev/sdb1;	we	can	see	that	the	event	count	is	much	lower
—48:

									Events	:	48

Given	 the	 difference,	 we	 can	 safely	 say	 that	 /dev/sdb1	 is	 12	 events	 behind
/dev/sda1.	This	is	a	very	significant	difference	and	a	sensible	reason	for	MD	to
reject	adding	/dev/sdb1	to	the	RAID	array.

As	an	interesting	side	note,	if	we	look	at	the	Array	State	of	/dev/sdb1,	we	can
see	that	it	still	believes	that	it	is	an	active	disk	in	the	/dev/md127	array:

			Array	State	:	AA	('A'	==	active,	'.'	==	missing,	'R'	==	
replacing)

This	is	due	to	the	fact	that	since	the	device	is	no	longer	part	of	the	RAID,	it	 is
not	being	updated	with	the	current	status.	We	can	see	this	in	the	update	time	as
well:

				Update	Time	:	Mon	May		4	21:09:30	2015

The	Update	Time	for	/dev/sda1	is	much	more	recent;	thus,	it	should	be	trusted
above	the	disk	/dev/sdb1.

Checking	/dev/sdb2
Now	 that	 we	 know	 the	 reasons	 behind	 /dev/sdb1	 not	 being	 added	 to
/dev/md127,	 we	 should	 determine	 whether	 the	 same	 situation	 is	 true	 for
/dev/sdb2	and	/dev/md126.

Since	we	 already	 know	 that	/dev/sda2	 is	 healthy	 and	 part	 of	 the	/dev/md126
array,	we	will	focus	solely	on	capturing	its	Events	value:

[nfs]#	mdadm	--examine	/dev/sda2	|	grep	Events
									Events	:	7517

The	event	count	of	/dev/sda2	 is	quite	high	in	comparison	to	/dev/sda1.	From
this,	we	can	determine	that	/dev/md126	is	probably	a	very	active	RAID	device.

Now	that	we	have	the	event	count,	let's	take	a	look	at	the	details	of	/dev/sdb2:

[nfs]#	mdadm	--examine	/dev/sdb2
/dev/sdb2:
										Magic	:	a92b4efc
								Version	:	1.2
				Feature	Map	:	0x1
					Array	UUID	:	bec13d99:42674929:76663813:f748e7cb
											Name	:	localhost:pv00
		Creation	Time	:	Wed	Apr	15	09:39:19	2015
					Raid	Level	:	raid1
			Raid	Devices	:	2

	Avail	Dev	Size	:	15742976	(7.51	GiB	8.06	GB)
					Array	Size	:	7871488	(7.51	GiB	8.06	GB)
				Data	Offset	:	8192	sectors
			Super	Offset	:	8	sectors
			Unused	Space	:	before=8104	sectors,	after=0	sectors
										State	:	clean
				Device	UUID	:	01db1f5f:e8176cad:8ce68d51:deff57f8

Internal	Bitmap	:	8	sectors	from	superblock
				Update	Time	:	Mon	May		4	21:10:31	2015
		Bad	Block	Log	:	512	entries	available	at	offset	72	sectors
							Checksum	:	98a8ace8	-	correct
									Events	:	541

			Device	Role	:	Active	device	1
			Array	State	:	AA	('A'	==	active,	'.'	==	missing,	'R'	==	
replacing)

Again,	 from	 the	 fact	 that	 we	 were	 able	 to	 print	 superblock	 information	 from
/dev/sdb2,	we	have	determined	that	this	device	is	in	fact	part	of	a	RAID:

					Array	UUID	:	bec13d99:42674929:76663813:f748e7cb

If	we	compare	the	Array	UUID	of	/dev/sdb2	with	the	UUID	of	/dev/md126,	we
will	also	see	that	it	was	in	fact	part	of	that	RAID	array:

[nfs]#	mdadm	--detail	/dev/md126	|	grep	UUID
											UUID	:	bec13d99:42674929:76663813:f748e7cb

This	answers	our	question	as	to	whether	/dev/sdb2	was	part	of	the	md126	RAID.
If	we	look	at	the	event	count	of	/dev/sdb2,	we	can	also	answer	the	question	as
to	why	it	is	not	currently	part	of	that	RAID:

Events	:	541

It	 appears	 that	 this	device	has	missed	write	 events	 that	were	 sent	 to	 the	md126
RAID,	given	 that	 the	Events	 count	 from	/dev/sda2	was	7517	and	 the	Events
count	from	/dev/sdb2	is	541.

What	we	have	learned	so	far
From	the	troubleshooting	steps	that	we	have	taken	so	far,	we	have	collected	quite
a	few	key	pieces	of	data.	Let's	walk	through	what	we	have	learned	and	what	we
can	infer	from	these	findings:

On	our	system,	we	have	two	RAID	devices.

Using	the	mdadm	command	and	the	contents	of	/proc/mdstat,	we	were	able
to	 determine	 that	 this	 system	 has	 two	 RAID	 devices—/dev/md126	 and
/dev/md127.
Both	RAID	devices	are	a	RAID	1	and	missing	a	mirrored	device.

With	the	mdadm	command	and	output	of	dmesg,	we	were	able	to	identify	that
both	RAID	devices	are	set	up	as	a	RAID	1	device.	On	top	of	that,	we	were
also	 able	 to	 see	 that	 both	 RAID	 devices	 were	 missing	 a	 disk;	 both	 the
missing	devices	were	partitions	from	the	/dev/sdb	hard	disk.
Both	/dev/sdb1	and	/dev/sdb2	have	mismatched	event	counts.

With	the	mdadm	command,	we	were	able	to	inspect	the	superblock	details
of	the	/dev/sdb1	and	/dev/sdb2	devices.	During	this,	we	were	able	to	see
that	the	event	counts	for	those	devices	are	not	matching	the	active	partitions
on	/dev/sda.

For	 this	 reason,	 the	 RAID	 will	 not	 re-add	 the	 /dev/sdb	 devices	 to	 their
respective	RAID	arrays.
The	disk	/dev/sdb	seems	to	be	functional.

While	 the	RAID	hasn't	added	/dev/sdb1	or	/dev/sdb2	 to	 their	 respective
RAID	arrays,	it	does	not	mean	that	the	device	/dev/sdb	is	faulty.

From	the	messages	in	dmesg,	we	did	not	see	any	errors	for	the	/dev/sdb	device
itself.	We	also	were	able	 to	use	mdadm	 to	 inspect	 the	partitions	on	those	drives.
From	everything	we	have	done	so	far,	these	drives	appear	to	be	functional.

Re-adding	the	drives	to	the	arrays
The	 /dev/sdb	 disk	 seems	 to	 be	 functional	 and,	 outside	 the	 event	 count
difference,	we	 cannot	 see	 any	 reason	 the	RAID	would	 reject	 the	 devices.	Our
next	step	will	be	an	attempt	to	re-add	the	removed	devices	to	their	RAID	arrays.

The	first	RAID	we	will	attempt	this	with	is	/dev/md127:

[nfs]#	mdadm	--detail	/dev/md127
/dev/md127:
								Version	:	1.0
		Creation	Time	:	Wed	Apr	15	09:39:22	2015
					Raid	Level	:	raid1
					Array	Size	:	511936	(500.02	MiB	524.22	MB)
		Used	Dev	Size	:	511936	(500.02	MiB	524.22	MB)
			Raid	Devices	:	2
		Total	Devices	:	1
				Persistence	:	Superblock	is	persistent

		Intent	Bitmap	:	Internal

				Update	Time	:	Mon	May	11	04:08:10	2015
										State	:	clean,	degraded	
	Active	Devices	:	1
Working	Devices	:	1
	Failed	Devices	:	0
		Spare	Devices	:	0

											Name	:	localhost:boot
											UUID	:	7adf0323:b0962394:387e6cd0:b2914469
									Events	:	60

				Number			Major			Minor			RaidDevice	State
							0							8								1								0						active	sync			/dev/sda1
							2							0								0								2						removed

The	 simplest	way	 to	 re-add	 the	 drive	 is	 to	 simply	 use	 the	 -a	 (add)	 flag	with
mdadm.

[nfs]#	mdadm	/dev/md127	-a	/dev/sdb1
mdadm:	re-added	/dev/sdb1

The	 preceding	 command	 will	 tell	 mdadm	 to	 add	 the	 device	 /dev/sdb1	 to	 the

RAID	device	/dev/md127.	Since	/dev/sdb1	was	already	part	of	the	RAID	array,
the	MD	 service	 simply	 re-adds	 the	 disk	 and	 re-syncs	 the	missing	 events	 from
/dev/sda1.

We	can	see	this	in	action	if	we	look	at	the	RAID	details	with	the	--detail	flag:

[nfs]#	mdadm	--detail	/dev/md127
/dev/md127:
								Version	:	1.0
		Creation	Time	:	Wed	Apr	15	09:39:22	2015
					Raid	Level	:	raid1
					Array	Size	:	511936	(500.02	MiB	524.22	MB)
		Used	Dev	Size	:	511936	(500.02	MiB	524.22	MB)
			Raid	Devices	:	2
		Total	Devices	:	2
				Persistence	:	Superblock	is	persistent

		Intent	Bitmap	:	Internal

				Update	Time	:	Mon	May	11	16:47:32	2015
										State	:	clean,	degraded,	recovering	
	Active	Devices	:	1
Working	Devices	:	2
	Failed	Devices	:	0
		Spare	Devices	:	1

	Rebuild	Status	:	50%	complete

											Name	:	localhost:boot
											UUID	:	7adf0323:b0962394:387e6cd0:b2914469
									Events	:	66

				Number			Major			Minor			RaidDevice	State
							0							8								1								0						active	sync			/dev/sda1
							1							8							17								1						spare	rebuilding			
/dev/sdb1

From	 the	 preceding	 output,	 we	 can	 see	 a	 few	 differences	 from	 the	 earlier
examples.	One	very	important	difference	is	the	Rebuild	Status:

Rebuild	Status	:	50%	complete

With	mdadm	--detail,	we	can	see	the	completion	status	of	the	drives	re-syncing.
If	 there	were	any	errors	 in	 this	process,	we	will	also	be	able	 to	 see	 this.	 If	we

look	 at	 the	 bottom	 three	 lines,	 we	 can	 also	 see	 which	 devices	 are	 active	 and
which	are	being	rebuilt.

				Number			Major			Minor			RaidDevice	State
							0							8								1								0						active	sync			/dev/sda1
							1							8							17								1						spare	rebuilding			
/dev/sdb1

After	 a	 few	 seconds,	 if	we	 run	mdadm	--detail	 again,	we	 should	 see	 that	 the
RAID	device	has	re-synced:

[nfs]#	mdadm	--detail	/dev/md127
/dev/md127:
								Version	:	1.0
		Creation	Time	:	Wed	Apr	15	09:39:22	2015
					Raid	Level	:	raid1
					Array	Size	:	511936	(500.02	MiB	524.22	MB)
		Used	Dev	Size	:	511936	(500.02	MiB	524.22	MB)
			Raid	Devices	:	2
		Total	Devices	:	2
				Persistence	:	Superblock	is	persistent

		Intent	Bitmap	:	Internal

				Update	Time	:	Mon	May	11	16:47:32	2015
										State	:	clean	
	Active	Devices	:	2
Working	Devices	:	2
	Failed	Devices	:	0
		Spare	Devices	:	0

											Name	:	localhost:boot
											UUID	:	7adf0323:b0962394:387e6cd0:b2914469
									Events	:	69

				Number			Major			Minor			RaidDevice	State
							0							8								1								0						active	sync			/dev/sda1
							1							8							17								1						active	sync			/dev/sdb1

Now	we	 can	 see	 that	 both	 drives	 are	 listed	 as	active	sync	 state	 and	 that	 the
RAID	State	is	simply	clean.

The	preceding	output	 is	what	a	 functional	RAID	1	device	should	 look	 like.	At
this	point,	we	can	consider	the	issue	with	/dev/md127	resolved.

Adding	a	new	disk	device
Sometimes	 you	 will	 find	 yourself	 in	 a	 situation	 where	 your	 disk	 drive	 was
actually	faulty	and	the	actual	physical	hardware	must	be	replaced.	In	situations
like	this,	once	the	partitions	/dev/sdb1	and	/dev/sdb2	are	recreated,	the	device
can	simply	be	added	to	the	RAID	using	the	same	steps	as	we	used	earlier.

When	 the	 command	 mdadm	 <raid	 device>	 -a	 <disk	 device>	 is	 executed,
mdadm	 first	 checks	 to	 see	 whether	 the	 disk	 device	 was	 ever	 once	 part	 of	 the
RAID.

It	 does	 this	 by	 reading	 the	 superblock	 information	 on	 the	 disk	 device.	 If	 the
device	was	previously	part	of	the	RAID,	it	simply	re-adds	it	and	starts	a	rebuild
to	re-sync	the	drives.

If	the	disk	device	was	never	part	of	the	RAID,	it	will	be	added	as	a	spare	device,
and	if	the	RAID	is	degraded,	the	spare	device	will	be	used	to	get	the	RAID	back
into	a	clean	state.

When	disks	are	not	added	cleanly
In	a	previous	work	environment,	when	we	replaced	hard	drives	the	drives	were
always	 quality	 tested	 before	 being	 used	 to	 replace	 faulty	 drives	 in	 production
environments.	Often,	this	quality	testing	involved	creating	partitions	and	adding
those	partitions	to	an	existing	RAID.

Because	 those	 devices	 already	 had	 a	RAID	 superblock	 on	 them,	mdadm	 would
reject	the	addition	of	the	devices	to	the	RAID.	It	is	possible	to	clear	an	existing
RAID	superblock	using	the	mdadm	command:

[nfs]#	mdadm	--zero-superblock	/dev/sdb2

The	 preceding	 command	 will	 tell	 mdadm	 to	 remove	 the	 RAID	 superblock
information	from	the	specified	disk—in	this	case,	/dev/sdb2:

[nfs]#	mdadm	--examine	/dev/sdb2
mdadm:	No	md	superblock	detected	on	/dev/sdb2.

Using	--examine,	we	can	see	that	there	is	now	no	superblock	on	the	device	that
had	one	before.

The	 --zero-superblock	 flag	 should	 be	 used	with	 caution	 and	 only	when	 the
device	data	is	no	longer	required.	Once	this	superblock	information	is	removed,
the	 RAID	 sees	 this	 disk	 as	 a	 blank	 disk,	 and	 during	 any	 re-sync	 process,	 the
existing	data	will	be	overwritten.

Once	the	superblock	is	removed,	the	same	steps	can	be	performed	to	add	it	to	a
RAID	array:

[nfs]#	mdadm	/dev/md126	-a	/dev/sdb2
mdadm:	added	/dev/sdb2

Another	way	to	watch	the	rebuild	status
Earlier	we	used	mdadm	--detail	 to	 show	 the	 rebuild	 status	of	md127.	Another
way	to	see	this	information	is	via	/proc/mdstat:

[nfs]#	cat	/proc/mdstat
Personalities	:	[raid1]	
md126	:	active	raid1	sdb2[2]	sda2[0]
						7871488	blocks	super	1.2	[2/1]	[U_]
						[>....................]		recovery	=		0.0%	(1984/7871488)	
finish=65.5min	speed=1984K/sec
						bitmap:	1/1	pages	[4KB],	65536KB	chunk

md127	:	active	raid1	sdb1[1]	sda1[0]
						511936	blocks	super	1.0	[2/2]	[UU]
						bitmap:	0/1	pages	[0KB],	65536KB	chunk

unused	devices:	<none>

After	a	bit,	the	RAID	will	finish	re-syncing;	now,	both	the	RAID	arrays	are	in	a
healthy	status:

[nfs]#	cat	/proc/mdstat	
Personalities	:	[raid1]	
md126	:	active	raid1	sdb2[2]	sda2[0]
						7871488	blocks	super	1.2	[2/2]	[UU]
						bitmap:	0/1	pages	[0KB],	65536KB	chunk

md127	:	active	raid1	sdb1[1]	sda1[0]
						511936	blocks	super	1.0	[2/2]	[UU]
						bitmap:	0/1	pages	[0KB],	65536KB	chunk

unused	devices:	<none>

Summary
In	the	previous	chapter,	Chapter	7,	FileSystem	Errors	and	Recovery	we	noticed	a
simple	RAID	failure	message	in	our	/var/log/messages	log	file.	In	this	chapter,
we	 used	 a	 Data	 Collector	 approach	 to	 investigate	 the	 cause	 of	 that	 failure
message.

After	 investigating	 with	 the	 RAID	 management	 command	 mdadm,	 we	 found
several	 RAID	 devices	 in	 a	 degraded	 state.	 Using	 dmesg,	 we	 were	 able	 to
determine	 which	 hard	 drive	 devices	 were	 affected	 and	 that	 the	 disks	 at	 some
point	were	removed	from	service.	We	also	found	that	the	disk	event	counts	were
mismatched,	preventing	the	disks	from	being	re-added	automatically.

We	verified	that	the	devices	were	not	physically	faulty	with	dmesg	and	choose	to
re-add	them	to	the	RAID	array.

While	 this	 chapter	 focused	 heavily	 on	 RAID	 and	 disk	 failures,	 both
/var/log/messages	and	dmesg	can	be	used	to	troubleshoot	other	device	failures.
For	 devices	 other	 than	 hard	 disks,	 however,	 the	 solution	 is	 often	 a	 simple
replacement.	 Of	 course,	 like	 most	 things,	 this	 depends	 on	 the	 type	 of	 failure
experienced.

In	the	next	chapter,	we	will	show	how	to	troubleshoot	custom	user	applications
and	the	use	of	system	tools	to	perform	some	advanced	troubleshooting.

Chapter	 9.	 Using	 System	 Tools	 to
Troubleshoot	Applications
In	 the	 previous	 chapter,	 we	 covered	 troubleshooting	 hardware	 issues.
Specifically,	you	learned	what	to	do	when	hard	disks	have	been	removed	from	a
RAID	and	cannot	be	read.

In	 this	 chapter,	 we	 will	 get	 back	 to	 troubleshooting	 applications,	 but	 unlike
earlier	 examples,	 we	 will	 not	 be	 troubleshooting	 a	 popular	 open	 source
application	 such	 as	 WordPress.	 In	 this	 chapter,	 we	 will	 focus	 on	 a	 custom
application	 that	will	be	much	more	difficult	 to	 troubleshoot	 than	a	well-known
one.

Open	 source	 versus	 home-grown
applications
Popular	 open	 source	 projects	 often	 have	 an	 online	 community	 or	 bug/issue
tracker.	 As	we	 experienced	 in	 Chapter	 3,	Troubleshooting	 a	Web	 Application,
these	can	be	useful	 resources	 for	 troubleshooting	application	 issues.	Often,	 the
issue	has	 already	been	 reported	or	 asked	about	 in	 these	communities,	with	 the
majority	of	these	posts	also	containing	a	solution	for	the	issue.

These	solutions	are	posted	on	 the	Internet	 in	open	forums;	any	errors	 from	the
application	 can	 also	 simply	 be	 searched	 for	 on	Google.	Most	 of	 the	 time,	 the
search	will	show	multiple	possible	answers.	It	 is	a	pretty	rare	occurrence	when
an	error	from	a	popular	open	source	application	produces	zero	search	results	on
Google.

With	 custom	 applications,	 however,	 application	 errors	 might	 not	 always	 be
resolved	 with	 a	 quick	 Google	 search.	 Sometimes,	 an	 application	 provides	 a
generic	error	such	as	Permission	Denied	or	File	not	found.	On	other	occasions,
however,	 they	produce	no	error	or	 application-specific	 errors	 such	as	 the	 issue
we	will	be	working	with	today.

When	faced	with	nondescriptive	errors	in	open	source	tools,	you	can	always	ask
for	help	on	an	online	site	of	some	sort.	With	custom	applications,	however,	you
might	not	always	have	the	option	of	asking	a	developer	what	the	error	means.

Sometimes,	it	is	up	to	the	systems	administrator	to	fix	the	application	with	little
to	no	help	from	the	developer.

When	 those	 situations	 occur,	 there	 are	 a	myriad	 of	 tools	 at	 the	 administrator's
disposal.	 In	 today's	chapter,	we	will	be	exploring	some	of	 these	tools	while,	of
course,	troubleshooting	a	custom	application.

When	the	application	won't	start
For	 this	chapter's	problem,	we	will	start	as	we	have	with	most	other	problems,
except	today,	rather	than	receiving	an	alert	or	phone	call,	we	are	actually	asked	a
question	by	another	systems	administrator.

The	systems	administrator	is	attempting	to	start	an	application	on	the	blog	web
server.	 When	 they	 attempt	 to	 start	 the	 application,	 it	 appears	 to	 be	 starting;
however,	at	the	end,	it	simply	prints	an	error	message	and	exits.

Our	 first	 response	 to	 this	 scenario	 is	 of	 course	 the	 first	 step	 in	 the
troubleshooting	process—duplicate	it.

The	other	systems	administrator	informs	us	that	they	are	starting	the	application
by	performing	the	following	steps:

1.	 Logging	into	the	server	as	the	vagrant	user
2.	 Moving	to	the	directory	/opt/myapp
3.	 Running	the	script	start.sh

Before	going	any	further,	let's	attempt	those	same	steps:

$	whoami
vagrant
$	cd	/opt/myapp/
$	ls	-la
total	8
drwxr-xr-x.	5	vagrant	vagrant		69	May	18	03:11	.
drwxr-xr-x.	4	root				root					50	May	18	00:48	..
drwxrwxr-x.	2	vagrant	vagrant		24	May	18	01:14	bin
drwxrwxr-x.	2	vagrant	vagrant		23	May	18	00:51	conf
drwxrwxr-x.	2	vagrant	vagrant			6	May	18	00:50	logs
-rwxr-xr-x.	1	vagrant	vagrant	101	May	18	03:11	start.sh
$./start.sh	
Initializing	with	configuration	file	/opt/myapp/conf/config.yml
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Starting	service:	[Failed]

In	 the	preceding	 steps,	we	 follow	 the	 same	steps	as	 the	previous	administrator
and	get	the	same	results.	The	application	appears	to	have	failed	to	start.

In	the	preceding	example,	the	whoami	command	was	used	to	show	that	we	were
logged	in	as	the	vagrant	user.	This	command	is	very	handy	when	dealing	with
applications	as	it	can	be	used	to	ensure	the	proper	system	user	is	performing	the
start	process.

We	can	see	from	the	preceding	startup	attempt	that	the	application	failed	to	start
with	the	following	message:

Starting	service:	[Failed]

However,	we	need	to	know	why	it	failed	to	start	and	whether	the	process	truly
failed

To	 answer	 the	 question	 on	 whether	 the	 process	 truly	 failed	 or	 not	 is	 actually
quite	simple.	To	do	 this,	we	can	simply	check	 the	exit	code	of	 the	application,
which	is	done	by	printing	the	$?	variable	after	executing	the	start.sh	script,	as
follows:

$	echo	$?
1

Exit	codes
On	Linux	and	Unix	systems,	programs	have	 the	ability	 to	pass	a	value	 to	 their
parent	process	while	they	terminate.	This	value	is	called	an	exit	code.	Programs
that	are	terminating	or	"exiting"	use	exit	codes	to	tell	the	process	that	invoked	it
whether	that	program	was	successful	or	unsuccessful.

For	POSIX	systems	(such	as	Red	Hat	Enterprise	Linux),	the	standard	convention
is	 for	 programs	 to	 exit	with	 a	 0	 status	 code	 for	 success	 and	 a	 non-zero	 status
code	for	failure.	Since	our	preceding	example	exited	with	a	status	code	of	1,	this
means	the	application	exited	with	a	failure.

To	 understand	 exit	 codes	 a	 little	 better,	 let's	 write	 a	 quick	 little	 script	 that
performs	a	successful	task:

$	cat	/var/tmp/exitcodes.sh	
#!/bin/bash
touch	/var/tmp/file.txt

This	quick	little	shell	script	performs	one	task,	it	runs	the	touch	command	on	the
file	/var/tmp/file.txt.	 If	 that	 file	exists,	 the	 touch	command	simply	updates
the	access	 time	on	 that	 file.	 If	 the	 file	does	not	 exist,	 the	 touch	command	will
create	it.

Since	/var/tmp	is	a	temporary	directory	with	open	permissions,	this	script,	when
executed	as	the	vagrant	user,	should	be	successful:

$	/var/tmp/exitcodes.sh

After	 executing	 the	 command,	 we	 can	 see	 the	 exit	 code	 by	 using	 the	 BASH
special	variable	$?.	This	variable	is	a	special	variable	in	the	BASH	shell	that	can
only	be	used	to	read	the	exit	code	of	the	last	program	executed.	This	variable	is
one	of	a	few	special	variables	in	the	BASH	shell	that	can	only	be	read	and	never
written.

To	see	the	exit	status	of	our	script,	we	can	echo	the	value	of	$?	to	our	screen:

$	echo	$?
0

It	 looks	 like	 this	script	 returned	a	0	exit	status.	This	means	 the	script	 executed
successfully	and	most	likely	updated	or	created	the	file	/var/tmp/file.txt.	We
can	validate	that	the	file	was	updated	by	performing	an	ls	-la	on	the	file	itself:

$	ls	-la	/var/tmp/file.txt	
-rw-rw-r--.	1	vagrant	vagrant	0	May	25	14:25	/var/tmp/file.txt

From	the	output	of	the	ls	command,	 it	appears	 the	file	was	updated	or	created
recently.

The	 preceding	 example	 shows	 what	 happens	 when	 a	 script	 is	 successful,	 but
what	 about	 when	 the	 script	 is	 unsuccessful?	 With	 a	 modified	 version	 of	 the
preceding	script,	we	can	easily	see	what	happens	when	a	script	fails:

$	cat	/var/tmp/exitcodes.sh	
#!/bin/bash
touch	/some/directory/that/doesnt/exist/file.txt

The	modified	 version	will	 attempt	 to	 create	 a	 file	 in	 a	 directory	 that	 does	 not
exist.	That	script	will	then	fail	and	exit	with	an	exit	code	that	indicates	failure:

$	/var/tmp/exitcodes.sh	
touch:	cannot	touch	'/some/directory/that/doesnt/exist/file.txt':	
No	such	file	or	directory

We	 can	 see	 from	 the	 output	 of	 the	 script	 that	 the	 touch	 command	 failed,	 but
what	about	the	exit	code?

$	echo	$?
1

The	exit	code	also	shows	that	the	script	has	failed.	The	standard	for	exit	codes	is
0	for	a	success	and	anything	non-zero	is	a	failure.	In	general,	you	will	see	either
a	 0	 or	 1	 exit	 code.	 Some	 applications,	 however,	 will	 use	 other	 exit	 codes	 to
indicate	specific	failures:

$	somecommand
-bash:	somecommand:	command	not	found
$	echo	$?
127

For	 example,	 if	 we	 were	 to	 execute	 a	 command	 that	 does	 not	 exist	 from	 the

BASH	shell,	the	exit	code	provided	will	be	127.	This	exit	code	is	a	convention
used	to	indicate	that	the	command	was	not	found.	The	following	is	a	list	of	exit
codes	that	are	used	for	specific	purposes:

0:	Success
1:	General	failure	has	occurred
2:	Misuse	of	shell	built-ins
126:	Command	invoked	could	not	be	executed
127:	Command	not	found
128:	Invalid	argument	passed	to	the	exit	command
130:	Command	stopped	with	Ctrl	+	C	keys
255:	Exit	code	provided	is	out	of	the	0	-	255	range

This	list	is	a	good	general	guide	for	exit	codes.	However,	since	each	application
can	 provide	 its	 own	 exit	 codes	 you	might	 find	 that	 a	 command	 or	 application
provides	 an	 exit	 code	 that	 is	 not	 within	 the	 preceding	 list.	 For	 open	 source
applications,	you	can	generally	 look	up	what	 the	exit	 code	means.	For	 custom
applications,	however,	you	may	or	may	not	have	the	ability	to	look	up	what	the
exit	codes	means.

Is	the	script	failing,	or	the	application?
One	interesting	thing	about	shell	scripts	and	exit	codes	is	that	when	a	shell	script
is	executed,	the	exit	code	for	that	script	will	be	the	exit	code	of	the	last	command
executed.

To	put	this	in	perspective,	we	can	modify	our	test	script	again:

$	cat	/var/tmp/exitcodes.sh	
#!/bin/bash
touch	/some/directory/that/doesnt/exist/file.txt
echo	"It	works"

The	 preceding	 command	 should	 produce	 an	 interesting	 result.	 The	 touch
command	will	fail;	however,	the	echo	command	will	be	successful.

What	this	means	is	that	when	executed,	even	though	the	touch	command	fails,
the	echo	command	is	successful	so	the	exit	code	from	the	command	line	should
show	the	script	as	successful:

$	/var/tmp/exitcodes.sh	
touch:	cannot	touch	'/some/directory/that/doesnt/exist/file.txt':	
No	such	file	or	directory
It	works
$	echo	$?
0

The	preceding	 command	 is	 an	 example	 of	 a	 script	 that	 does	 not	 handle	 errors
gracefully.	If	we	were	to	rely	on	this	script	to	provide	us	with	the	correct	status
of	the	execution	solely	by	the	exit	code,	we	would	have	incorrect	results.

It	 is	always	good	 for	a	 systems	administrator	 to	be	a	bit	 skeptical	of	unknown
scripts.	 I	have	 found	many	occasions	 (and	written	a	 few	myself)	where	scripts
have	no	error	checking.	For	this	reason,	one	of	the	first	steps	we	should	perform
with	our	issue	is	to	validate	that	the	exit	code	of	1	is	actually	coming	from	the
application	being	launched.

To	do	this,	we	will	need	to	read	the	start	script:

$	cat	./start.sh	
#!/bin/bash

HOMEDIR=/opt/myapp

$HOMEDIR/bin/application	--deamon	--config	$HOMEDIR/conf/config.yml

From	 the	 look	 of	 things,	 the	 start	 script	 is	 very	 basic.	 It	 looks	 like	 the	 script
simply	sets	 the	$HOMEDIR	variable	 to	/opt/myapp	and	 then	runs	 the	application
by	running	the	command	$HOMEDIR/bin/application.

Tip

After	the	value	of	$HOMEDIR	is	set	to	/opt/myapp,	you	can	assume	that	any	future
reference	to	$HOMEDIR	is	actually	the	value	/opt/myapp.

From	 the	 preceding	 script,	 we	 can	 see	 that	 the	 last	 command	 executed	 is	 the
application,	meaning	the	exit	code	we	received	was	from	the	application	and	not
another	command.	This	proves	that	we	are	receiving	the	true	exit	status	of	this
application.

The	 start	 script	 does	 provide	 us	 with	 a	 bit	 more	 information	 than	 just	 which
command	provides	the	exit	code.	If	we	take	a	look	at	the	application's	command
line	parameters,	we	can	understand	even	more	about	this	application:

$HOMEDIR/bin/application	--deamon	--config	$HOMEDIR/conf/config.yml

This	 is	 the	 command	 that	 actually	 starts	 the	 application	 within	 the	 start.sh
script.	The	 script	 is	 running	 the	 command	/opt/myapp/bin/application	 with
the	 arguments	 --daemon	 and	 --config	 /opt/myapp/conf/config.yml.	 While
we	 might	 not	 know	 much	 about	 this	 application,	 we	 can	 make	 some
assumptions.

One	assumption	we	can	make	is	that	the	--daemon	flag	causes	this	application	to
daemonize	itself.	On	Unix	and	Linux	systems,	a	process	that	runs	continuously
as	a	background	process	is	referred	to	as	a	daemon.

Typically,	 a	daemon	process	 is	 a	 service	 that	doesn't	 require	user	 input.	A	 few
easily	 recognizable	 examples	 of	 daemons	 are	 Apache	 or	 MySQL.	 These
processes	run	in	the	background	and	perform	a	service	rather	than	running	in	a
user's	desktop	or	shell.

With	 the	preceding	 flag,	we	can	 safely	assume	 that	 this	process	 is	designed	 to
run	in	the	background	once	it	is	started	successfully.

Another	assumption	we	can	make	based	on	the	command	line	parameters	is	that
the	 file	 /opt/myapp/conf/config.yml	 is	 used	 as	 a	 configuration	 file	 for	 the
application.	This	seems	pretty	straightforward	considering	the	flag	is	named	--
config.

The	preceding	assumptions	are	pretty	easy	to	recognize	because	the	flags	use	the
long	 format	 --option.	 However,	 not	 all	 applications	 or	 services	 use	 the	 long
format	for	command	line	flags.	Often,	these	are	single	character	flags.

While	every	application	has	its	own	command	line	flags	and	might	differ	from
application	 to	 application,	 common	 flags	 such	 as	 --config	 and	 --deamon	 are
often	shortened	to	-c	and	-d	or	-D.	 If	our	application	was	provided	with	single
character	flags,	it	would	have	looked	more	like	the	following:

$HOMEDIR/bin/application	-d	-c	$HOMEDIR/conf/config.yml

Even	 with	 the	 shortened	 options,	 we	 can	 safely	 identify	 that	 -c	 specifies	 a
configuration	file.

A	wealth	 of	 information	 in	 the	 configuration
file
We	 know	 that	 this	 application	 is	 using	 the	 configuration	 file
/opt/myapp/conf/config.yml.	 If	we	 read	 this	 file,	we	might	 find	 information
about	the	application	and	what	task	it	is	trying	to	perform:

$	cat	conf/config.yml	
port:	25
debug:	True
logdir:	/opt/myapp/logs

The	configuration	file	for	this	application	is	quite	short,	but	there	is	quite	a	bit	of
useful	 information	 within	 it.	 The	 first	 configuration	 item	 is	 interesting,	 as	 it
seems	 to	specify	port	25	 as	a	port	 for	 the	application	 to	use.	Without	knowing
exactly	what	this	application	does,	this	information	is	not	immediately	useful	but
might	be	useful	to	us	later.

The	 second	 item	 seems	 to	 suggest	 the	 application	 is	 in	 a	 debug	mode.	 Often
applications	or	services	might	have	a	debug	mode,	which	causes	them	to	log	or
output	 debugging	 information	 for	 troubleshooting.	 In	 our	 case,	 it	 seems	 the
debug	option	is	enabled,	as	the	value	of	this	item	is	True.

The	third	and	final	item	is	what	appears	to	be	a	directory	path	for	logs.	Log	files
are	 always	 useful	 for	 troubleshooting	 applications.	Often,	 you	 are	 able	 to	 find
information	about	the	application	issue	within	log	files.	This	is	especially	true	if
the	 application	 is	 in	 a	 debug	 state,	 which	 appears	 to	 be	 the	 case	 for	 our
application.

Since	our	application	seems	to	be	in	the	debug	mode	and	we	know	the	location
of	the	log	directory.	We	can	check	that	log	directory	for	any	log	files	that	might
have	been	created	during	the	application's	start	process:

$	ls	-la	/opt/myapp/logs/
total	4
drwxrwxr-x.	2	vagrant	vagrant		22	May	30	03:51	.
drwxr-xr-x.	5	vagrant	vagrant		53	May	30	03:49	..
-rw-rw-r--.	1	vagrant	vagrant	454	May	30	03:54	debug.out

If	we	run	an	ls	-la	in	the	log	directory,	we	can	see	a	debug.out	file.	Based	on
the	name,	 this	file	 is	most	 likely	 the	debug	output	from	the	application	but	not
necessarily	the	application's	primary	log	file.	This	file,	however,	might	be	even
more	 useful	 than	 a	 standard	 log	 as	 it	might	 contain	 the	 reason	 the	 application
startup	is	failing:

$	cat	debug.out	
Configuration	file	processed

Starting	service:	[Failed]
Configuration	file	processed

Starting	service:	[Success]
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Proccessed	5	messages
Proccessed	5	messages
Configuration	file	processed

Starting	service:	[Failed]
Configuration	file	processed

Starting	service:	[Failed]

Based	 on	 the	 contents	 of	 this	 file	 it	 appears	 that	 this	 file	 contains	 logs	 from
multiple	 executions	 of	 this	 application.	 We	 can	 see	 this	 based	 on	 a	 repeated
pattern.

Configuration	file	processed

This	seems	to	be	the	first	 item	printed	each	time	the	application	starts.	We	can
see	these	lines	a	total	of	four	times;	most	likely,	this	means	this	application	has
been	started	at	least	four	times	in	the	past.

Within	this	file,	we	can	see	an	important	log	message:

Starting	service:	[Success]

It	seems	that	the	second	time	this	application	was	started	the	application	startup
was	 successful.	 However,	 each	 time	 it	 was	 started	 afterwards	 the	 application
failed.

Watching	log	files	during	startup

Since	 the	 debug	 file's	 contents	 do	 not	 include	 timestamps,	 it	 is	 somewhat
difficult	 to	know	whether	the	debug	output	from	this	file	was	written	when	we
started	the	application	or	during	a	previous	startup.

Since	 we	 don't	 know	 which	 lines	 were	 written	 during	 our	 last	 attempt	 as
compared	 to	 other	 attempts,	 we	 will	 need	 to	 try	 and	 identify	 how	 many	 log
entries	are	written	each	time	the	application	is	started.	To	do	this,	we	can	use	the
tail	command	with	the	-f	or	--follow	flag:

$	tail	-f	debug.out	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Proccessed	5	messages
Proccessed	5	messages
	[Failed]
Configuration	file	processed

Starting	service:	[Failed]
Configuration	file	processed

Starting	service:	[Failed]

When	first	starting	the	tail	command	with	the	-f	(follow)	flag,	the	last	10	lines
of	the	file	are	printed.	This	is	also	the	default	behavior	of	tail	if	it	is	run	with	no
flags.

However,	the	-f	flag	doesn't	simply	stop	at	the	last	10	lines.	When	run	with	the	-
f	flag,	tail	will	continuously	monitor	the	specified	file	for	new	data.	Once	tail
sees	new	data	written	 to	 the	 specified	 file,	 the	data	will	 then	be	written	 to	 the
output	of	tail.

By	 running	 tail	-f	 against	 the	debug.out	 file,	we	will	 be	 able	 to	 identify	 any
new	debug	 logs	being	written	by	 the	application.	 If	we	once	again	execute	 the
start.sh	 script	 we	 should	 see	 any	 possible	 debug	 data	 being	 printed	 by	 the
application	during	startup:

$./start.sh	
Initializing	with	configuration	file	/opt/myapp/conf/config.yml
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Starting	service:	[Failed]

The	start.sh	 script's	 output	 is	 the	 same	 as	 last	 time,	which	 is	 not	much	of	 a

surprise	at	this	point.	However,	now	that	we	are	watching	the	debug.out	file,	we
might	find	something	useful:

Configuration	file	processed

Starting	service:	[Failed]

From	the	tail	command,	we	can	see	that	the	preceding	three	lines	were	printed
during	the	execution	of	start.sh.	While	this	in	itself	does	not	explain	why	the
application	is	unable	to	start,	it	does	tell	us	something	interesting:

$	cat	debug.out	
Configuration	file	processed

Starting	service:	[Failed]
Configuration	file	processed

Starting	service:	[Success]
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Processed	5	messages
Processed	5	messages
Configuration	file	processed

Starting	service:	[Failed]
Configuration	file	processed

Starting	service:	[Failed]
Configuration	file	processed

Starting	service:	[Failed]

Given	 that	 when	 the	 application	 fails	 to	 start,	 "Failed"	 messages	 from	 the
preceding	 command	 are	 printed,	 and	 we	 can	 see	 that	 the	 last	 three	 times	 the
start.sh	 script	was	executed,	 it	 failed.	However,	 the	 instance	before	 that	was
successful.

So	far,	I	executed	the	start	script	twice	and	the	other	admin	executed	the	script
once.	 This	 would	 account	 for	 the	 three	 failures	 we	 see	 at	 the	 end	 of	 the
debug.out	file.	The	interesting	thing	about	this	is	that	the	instance	before	those
the	application	successfully	started.

This	 is	 interesting	 because	 it	 indicates	 a	 strong	 possibility	 that	 a	 previous
instance	of	the	application	might	be	running.

Checking	 whether	 the	 application	 is
already	running
One	very	common	cause	for	this	type	of	problem	is	simply	that	the	application	is
already	 running.	 Some	 applications	 should	 only	 be	 started	 once,	 and	 the
application	 itself	 will	 check	 whether	 another	 instance	 is	 running	 before
completing	a	startup.

In	 general,	 if	 this	 scenario	were	 the	 case,	we	would	 expect	 the	 application	 to
print	an	error	to	the	screen	or	the	debug.out	file.	However,	not	every	application
has	appropriate	error	handling	or	messaging.	This	 is	especially	 true	for	custom
applications,	and	it	seems	to	be	true	for	the	application	we	are	working	with	as
well.

At	 the	 moment,	 we	 are	 making	 the	 assumption	 that	 our	 issue	 is	 caused	 by
another	 instance	 of	 the	 application.	This	 is	 an	 educated	 guess	 based	 on	 debug
messages	 and	previous	 experience.	While	we	do	not	have	 any	hard	 facts	 (yet)
that	 tell	 us	 whether	 another	 instance	 is	 running	 or	 not;	 this	 scenario	 is	 quite
common.

This	 situation	 is	 a	 perfect	 example	 of	 an	 Educated	 Guesser	 using	 previous
experience	 to	 build	 a	 hypothesis	 of	 a	 root	 cause.	 Of	 course,	 after	 forming	 a
hypothesis,	our	next	step	is	 to	validate	whether	or	not	 it	 is	correct.	Even	if	our
hypothesis	turns	out	to	be	incorrect	we	at	least	can	eliminate	a	potential	cause	of
our	problem.

Since	 our	 current	 hypothesis	 is	 that	we	might	 already	 have	 an	 instance	 of	 the
application	running,	we	can	validate	it	by	executing	the	ps	command:

$	ps	-elf	|	grep	application
0	S	vagrant			7110		5567		0		80			0	-	28160	pipe_w	15:22	pts/0				
00:00:00	grep	--color=auto	application

From	 this,	 it	 appears	 that	 our	 hypothesis	 might	 be	 incorrect.	 However,	 the
preceding	command	simply	performs	a	process	list	and	searches	that	output	for
any	 instance	 of	 the	 word	 application.	While	 this	 command	might	 be	 enough,
some	 applications	 during	 startup	 (especially	 ones	 that	 daemonize)	will	 launch

another	process	that	might	not	match	the	string	"application".

Since	we	have	been	starting	the	application	as	the	"vagrant"	user	it	seems	likely
that	even	if	 the	application	daemonized,	 the	processes	would	be	running	as	 the
vagrant	user.	Using	 the	 same	command	we	can	also	 search	 the	process	 list	 for
processes	running	as	the	vagrant	user:

$	ps	-elf	|	grep	vagrant
4	S	root						4230			984		0		80			0	-	32881	poll_s	May30	?								
00:00:00	sshd:	vagrant	[priv]
5	S	vagrant			4233		4230		0		80			0	-	32881	poll_s	May30	?								
00:00:00	sshd:	vagrant@pts/1
0	S	vagrant			4234		4233		0		80			0	-	28838	n_tty_	May30	pts/1				
00:00:00	-bash
4	S	root						5563			984		0		80			0	-	32881	poll_s	May31	?								
00:00:00	sshd:	vagrant	[priv]
5	S	vagrant			5566		5563		0		80			0	-	32881	poll_s	May31	?								
00:00:01	sshd:	vagrant@pts/0
0	S	vagrant			5567		5566		0		80			0	-	28857	wait			May31	pts/0				
00:00:00	-bash
0	R	vagrant			7333		5567		0		80			0	-	30839	-						14:58	pts/0				
00:00:00	ps	-elf
0	S	vagrant			7334		5567		0		80			0	-	28160	pipe_w	14:58	pts/0				
00:00:00	grep	--color=auto	vagrant

This	command	gave	us	quite	a	bit	more	output,	but	unfortunately	none	of	these
processes	are	the	application	we	are	looking	for.

Checking	open	files
The	 preceding	 process	 list	 commands	 did	 not	 provide	 any	 results	 that	 would
indicate	that	an	instance	of	our	application	is	running.	However,	before	assuming
that	it	is	in	fact	not	running	we	should	perform	one	final	check.

Since	we	know	that	the	application	we	are	working	with	appears	to	be	installed
into	 /opt/myapp	 and	we	 can	 see	 both	 configuration	 files	 and	 logs	within	 that
directory.It	 is	pretty	safe	 to	assume	that	 the	application	 in	question	might	open
one	or	more	of	the	files	located	within	/opt/myapp.

One	very	useful	command	is	the	lsof	command.	With	this	command,	we	can	list
all	of	the	open	files	on	the	system.	While	this	might	not	sound	very	powerful	at
first,	 let's	 take	 a	 detailed	 look	 at	 this	 command	 to	 understand	 how	 much
information	it	can	actually	provide.

When	 running	 the	 lsof	 command,	 permissions	 become	 very	 critical	 to
understand.	When	executing	lsof	with	no	parameters,	the	command	will	print	a
list	of	all	open	files	for	every	process	it	can	identify.	If	we	run	this	command	as
an	unprivileged	user	such	as	the	"vagrant"	user,	the	output	will	only	consist	of
processes	that	are	running	as	the	vagrant	user.	If	we	run	the	command	as	the	root
user,	 however,	 this	 command	 will	 print	 open	 files	 for	 all	 processes	 on	 the
system.

To	 put	 into	 perspective	 just	 how	many	 files	 this	 translates	 to,	we	will	 run	 the
lsof	command	and	redirect	the	output	to	the	wc	-l	command,	which	will	count
the	number	of	lines	provided	in	the	output:

#	lsof	|	wc	-l
3840

From	the	wc	command,	we	can	see	that	there	are	currently	3840	files	open	on	this
system.	Now	some	of	these	files	might	be	duplicated,	as	it	is	possible	for	more
than	one	process	to	open	the	same	file.	However,	the	sheer	number	of	open	files
on	this	system	is	quite	large.	To	put	it	in	further	perspective,	this	system	is	also	a
fairly	underutilized	system	and	is	not	running	many	applications	in	general.	Do
not	 be	 surprised	 if	 after	 executing	 the	 preceding	 commands	 on	 a	well-utilized
system	the	number	of	open	files	is	exponentially	higher.

Since	 looking	 at	 3840	 open	 files	 is	 not	 very	 practical,	 let's	 get	 a	 better
understanding	of	lsof	by	taking	a	look	at	the	first	10	files	from	the	lsof	output.
We	 can	 do	 this	 by	 redirecting	 the	 command's	 output	 to	 the	 head	 command,
which,	 like	 the	tail	 command,	will	print	10	 lines	by	default.	However,	where
the	tail	command	prints	the	last	10	lines,	the	head	command	prints	the	first	10:

#	lsof	|	head
COMMAND				PID	TID				USER			FD						TYPE													DEVICE		
SIZE/OFF							NODE	NAME
systemd						1								root		cwd							DIR														253,1						
4096								128	/
systemd						1								root		rtd							DIR														253,1						
4096								128	/
systemd						1								root		txt							REG														253,1			
1214408			67629956	/usr/lib/systemd/systemd
systemd						1								root		mem							REG														253,1					
58288		134298633	/usr/lib64/libnss_files-2.17.so
systemd						1								root		mem							REG														253,1					
90632		134373166	/usr/lib64/libz.so.1.2.7
systemd						1								root		mem							REG														253,1					
19888		134393597	/usr/lib64/libattr.so.1.1.0
systemd						1								root		mem							REG														253,1				
113320		134298625	/usr/lib64/libnsl-2.17.so
systemd						1								root		mem							REG														253,1				
153184		134801313	/usr/lib64/liblzma.so.5.0.99
systemd						1								root		mem							REG														253,1				
398264		134373152	/usr/lib64/libpcre.so.1.2.0

As	we	can	see,	the	lsof	command,	when	executed	as	the	root,	is	able	to	provide
us	with	quite	a	bit	of	useful	information.	Let's	just	look	at	the	first	line	of	output
to	understand	what	lsof	displays:

COMMAND				PID	TID				USER			FD						TYPE													DEVICE		
SIZE/OFF							NODE	NAME
systemd						1								root		cwd							DIR														253,1						
4096								128	/

The	lsof	command	prints	10	columns	with	each	open	file.

The	 first	 column	 is	 the	 COMMAND	 column.	 This	 field	 contains	 the	 name	 of	 the
executable	 that	 has	 the	 file	 open.	 This	 is	 very	 useful	 when	 identifying	 which
processes	have	a	specific	file	open.

For	our	use	case,	this	will	tell	us	which	processes	have	the	files	we	are	interested
in	open	and	might	tell	us	the	process	name	of	the	application	we	are	looking	for.

The	second	column	is	the	PID	column.	This	field	is	just	as	useful	as	the	first	as
this	shows	the	process	ID	of	the	application	that	has	opened	the	files	displayed.
This	value	will	allow	us	to	narrow	down	the	application	to	a	specific	process	if	it
is	in	fact	running.

The	third	column	is	the	TID	column,	which	in	our	output	is	blank.	This	column
contains	 the	 thread	 ID	 of	 the	 process	 in	 question.	 In	 Linux,	 multithreaded
applications	 are	 able	 to	 spawn	 threads,	 which	 are	 also	 known	 as	 lightweight
processes.	 These	 threads	 are	 similar	 to	 a	 regular	 process	 but	 are	 able	 to	 share
resources	 such	 as	 file	 descriptors	 and	 memory	 maps.	 You	 might	 hear	 these
referred	to	as	threads	or	lightweight	processes	but	these	are	essentially	the	same
thing.

In	order	to	see	the	TID	field,	we	can	add	the	-K	(show	threads)	flag	to	the	lsof
command.	This	will	cause	lsof	to	print	all	of	the	lightweight	processes	as	well
as	the	full	processes.

The	fourth	column	of	the	lsof	output	is	the	USER	field.	This	field	will	print	the
username	or	UID	(if	a	username	is	not	found)	of	the	process	that	has	opened	the
file.	It	is	important	to	know	that	this	field	is	the	user	the	process	is	executing	and
not	the	owner	of	the	file	itself.

For	example,	if	a	process	running	as	rotot	had	opened	a	file	owned	by	vagrant,
the	USER	field	in	lsof	will	show	root.	The	reason	for	this	is	because	the	lsof
command	 is	 used	 to	 show	which	 processes	 have	 files	 open	 and	 is	 utilized	 to
display	information	about	the	process,	not	necessarily	the	files.

Understanding	file	descriptors

The	fifth	column	is	very	interesting	as	this	is	the	field	for	File	Descriptor	(FD);
which	is	a	tricky	Unix	and	Linux	topic	to	understand.

File	 descriptors	 are	 part	 of	 the	 POSIX	 application	 programming	 interface
(API),	which	 is	 a	 standard	 that	 all	modern	Linux	 and	Unix	 operating	 systems
follow.	 From	 a	 program's	 perspective,	 the	 file	 descriptor	 is	 an	 object	 that	 is

represented	by	a	nonnegative	number.	This	number	is	used	as	an	identifier	for	a
table	of	open	files	managed	by	the	kernel	on	a	per-process	basis.

Since	 the	 kernel	 maintains	 this	 on	 a	 per-process	 level,	 the	 data	 is	 contained
within	the	/proc	file	system.	We	can	see	this	open	file	table	by	performing	an	ls
-la	in	the	/proc/<process	id>/fd	directory:

#	ls	-la	/proc/1/fd
total	0
dr-x------.	2	root	root		0	May	17	23:07	.
dr-xr-xr-x.	8	root	root		0	May	17	23:07	..
lrwx------.	1	root	root	64	May	17	23:07	0	->	/dev/null
lrwx------.	1	root	root	64	May	17	23:07	1	->	/dev/null
lrwx------.	1	root	root	64	Jun		1	15:08	10	->	socket:[7951]
lr-x------.	1	root	root	64	Jun		1	15:08	11	->	/proc/1/mountinfo
lr-x------.	1	root	root	64	Jun		1	15:08	12	->	/proc/swaps
lrwx------.	1	root	root	64	Jun		1	15:08	13	->	socket:[11438]
lr-x------.	1	root	root	64	Jun		1	15:08	14	->	anon_inode:inotify
lrwx------.	1	root	root	64	May	17	23:07	2	->	/dev/null
lrwx------.	1	root	root	64	Jun		1	15:08	20	->	socket:[7955]
lrwx------.	1	root	root	64	Jun		1	15:08	21	->	socket:[13968]
lrwx------.	1	root	root	64	Jun		1	15:08	22	->	socket:[13980]
lrwx------.	1	root	root	64	May	17	23:07	23	->	socket:[13989]
lrwx------.	1	root	root	64	Jun		1	15:08	24	->	socket:[7989]
lrwx------.	1	root	root	64	Jun		1	15:08	25	->	/dev/initctl
lrwx------.	1	root	root	64	Jun		1	15:08	26	->	socket:[7999]
lrwx------.	1	root	root	64	May	17	23:07	27	->	socket:[6631]
lrwx------.	1	root	root	64	May	17	23:07	28	->	socket:[6634]
lrwx------.	1	root	root	64	May	17	23:07	29	->	socket:[6636]
lr-x------.	1	root	root	64	May	17	23:07	3	->	anon_inode:inotify
lrwx------.	1	root	root	64	May	17	23:07	30	->	socket:[8006]
lr-x------.	1	root	root	64	Jun		1	15:08	31	->	anon_inode:inotify
lr-x------.	1	root	root	64	Jun		1	15:08	32	->	/dev/autofs
lr-x------.	1	root	root	64	Jun		1	15:08	33	->	pipe:[10502]
lr-x------.	1	root	root	64	Jun		1	15:08	34	->	anon_inode:inotify
lrwx------.	1	root	root	64	Jun		1	15:08	35	->	anon_inode:[timerfd]
lrwx------.	1	root	root	64	Jun		1	15:08	36	->	socket:[8095]
lrwx------.	1	root	root	64	Jun		1	15:08	37	->	/run/dmeventd-server
lrwx------.	1	root	root	64	Jun		1	15:08	38	->	/run/dmeventd-client
lrwx------.	1	root	root	64	Jun		1	15:08	4	->	anon_inode:[eventpoll]
lrwx------.	1	root	root	64	Jun		1	15:08	43	->	socket:[11199]
lrwx------.	1	root	root	64	Jun		1	15:08	47	->	socket:[14300]
lrwx------.	1	root	root	64	Jun		1	15:08	48	->	socket:[14300]
lrwx------.	1	root	root	64	Jun		1	15:08	5	->	anon_inode:[signalfd]
lr-x------.	1	root	root	64	Jun		1	15:08	6	->	/sys/fs/cgroup/systemd
lrwx------.	1	root	root	64	Jun		1	15:08	7	->	socket:[7917]

lrwx------.	1	root	root	64	Jun		1	15:08	8	->	anon_inode:[timerfd]
lrwx------.	1	root	root	64	Jun		1	15:08	9	->	socket:[7919]

This	is	a	file	descriptor	table	for	the	systemd	process.	As	you	can	see,	there	is	a
number	and	that	number	is	linked	to	a	file/object.

What	is	not	easily	represented	in	this	output	is	that	this	is	ever-changing.	When	a
file/object	 is	 closed,	 the	 file	 descriptor	 number	 then	 becomes	 reusable	 for	 the
kernel	to	assign	it	to	a	new	open	file/object.	Depending	on	how	often	a	process	is
opening	 and	 closing	 files,	 if	 we	 were	 to	 repeat	 the	 same	 ls,	 we	 might	 see	 a
completely	different	set	of	open	file	in	this	table.

With	 this,	 we	 would	 expect	 the	 FD	 field	 in	 lsof	 to	 always	 show	 a	 number.
However,	the	FD	field	in	the	lsof	output	can	actually	contain	more	than	just	the
file	 descriptor	 number.	 This	 is	 because	 lsof	 actually	 shows	more	 open	 items
than	just	files.

When	 executed,	 the	 lsof	 command	 will	 print	 many	 different	 types	 of	 open
objects;	not	all	of	these	are	files.	An	example	of	this	can	be	seen	in	the	first	line
of	output	from	our	lsof	command	earlier:

COMMAND				PID	TID				USER			FD						TYPE													DEVICE		
SIZE/OFF							NODE	NAME
systemd						1								root		cwd							DIR														253,1						
4096								128	/

The	preceding	item	is	not	a	file,	but	rather	a	directory.	Because	this	is	a	directory
the	FD	field	shows	cwd,	which	is	used	to	represent	the	current	working	directory
of	 the	 open	 item.	This	 is	 actually	 a	 very	 different	 output	 from	what	would	 be
printed	when	the	open	item	is	a	file.

To	better	show	the	difference,	we	can	run	an	lsof	command	against	a	specific
file	by	providing	the	file	as	an	argument	to	lsof:

#	lsof	/dev/null	|	head
COMMAND				PID				USER			FD			TYPE	DEVICE	SIZE/OFF	NODE	NAME
systemd						1				root				0u			CHR				1,3						0t0			23	/dev/null
systemd						1				root				1u			CHR				1,3						0t0			23	/dev/null
systemd						1				root				2u			CHR				1,3						0t0			23	/dev/null
systemd-j		436				root				0r			CHR				1,3						0t0			23	/dev/null
systemd-j		436				root				1w			CHR				1,3						0t0			23	/dev/null

systemd-j		436				root				2w			CHR				1,3						0t0			23	/dev/null
lvmetad				469				root				0r			CHR				1,3						0t0			23	/dev/null
systemd-u		476				root				0u			CHR				1,3						0t0			23	/dev/null
systemd-u		476				root				1u			CHR				1,3						0t0			23	/dev/null

In	 the	preceding	output,	we	are	able	 to	not	only	 see	 that	many	processes	have
/dev/null	open,	but	that	the	FD	field	is	quite	different	for	each	line.	If	we	look	at
the	first	line,	we	can	see	that	the	systemd	process	has	/dev/null	open	and	that
the	FD	field	has	a	value	of	0u.

When	lsof	 is	 displaying	 an	open	 item	 that	 is	 a	 standard	 file,	 the	FD	 field	will
contain	 the	 file	descriptor	number	associated	with	 that	open	 file	 in	 the	kernels
table,	0	in	this	case.

If	we	look	back	at	the	/proc/1/fd	directory,	we	can	actually	see	this	represented
in	the	kernels	table:

#	ls	-la	/proc/1/fd/0
lrwx------.	1	root	root	64	May	17	23:07	/proc/1/fd/0	->	/dev/null

The	 file	 descriptor	 number	 can	 potentially	 be	 followed	 by	 two	 more	 values
depending	on	how	the	file	is	opened	and	whether	it	is	locked.

The	 first	 potential	 value	 shows	 the	mode	 that	 the	 file	 is	 opened	 in.	 From	 our
example,	this	is	represented	by	the	u	in	the	0u	value.	The	lowercase	u	represents
that	the	file	is	opened	for	both	read	and	write	access.

The	following	is	a	list	of	potential	modes	that	lsof	will	display:

r:	The	lowercase	r	represents	that	the	file	is	opened	for	read	only
w:	The	lowercase	w	represents	that	the	file	is	opened	for	writes	only
u:	The	lowercase	u	represents	that	the	file	is	opened	for	both	read	and	writes
<space>:	The	blank	space	is	used	to	depict	that	the	mode	the	file	is	open	in
is	unknown	and	that	there	is	no	lock	currently	on	the	file
-:	The	hyphen	is	used	to	depict	that	the	mode	the	file	is	open	in	is	unknown
and	that	there	is	currently	a	lock	on	the	file

The	last	two	values	are	actually	quite	interesting	as	they	bring	us	to	the	second
potential	value	after	the	file	descriptor	number.

Processes	on	Linux	and	Unix	systems	are	allowed	to	request	files	 to	be	locked
when	they	are	opened.	There	are	multiple	types	of	locks	and	this	is	shown	in	the
lsof	output	as	well:

master				1586								root			10uW					REG														253,1								
33		135127929	/var/spool/postfix/pid/master.pid

In	 the	 preceding	 example,	 the	 FD	 field	 contained	 10uW.	 From	 the	 previous
examples	we	know	that	10	is	the	file	descriptor	number	and	that	u	denotes	that
this	file	is	open	for	both	read	and	write	but	the	W	is	new.	This	W	shows	what	type
of	lock	the	process	has	on	this	file;	a	write	lock	for	this	example.

Like	the	file	open	mode,	there	are	many	different	types	of	locks	that	can	be	seen
from	lsof.	This	is	a	list	of	possible	locks	shown	by	lsof:

N:	This	is	used	for	Solaris	NFS	locks	of	unknown	types
r:	This	is	a	read	lock	on	part	of	a	file
R:	This	is	a	read	lock	on	an	entire	file
w:	This	is	a	write	lock	on	part	of	a	file
W:	This	is	a	write	lock	on	an	entire	file
u:	This	is	a	read	and	write	lock	of	any	length
U:	This	is	a	read	and	write	lock	of	unknown	type
x:	This	is	a	SCO	Openserver	Xenix	lock	of	a	partial	file
X:	This	is	a	SCO	Openserver	Xenix	lock	of	a	full	file

You	might	notice	that	there	are	several	possible	locks	that	are	not	Linux-specific.
This	is	because	lsof	is	a	tool	widely	used	in	both	Linux	and	Unix	and	supports
many	Unix	distributions	such	as	Solaris	and	SCO.

Now	that	we	have	covered	how	lsof	displays	the	FD	 field	 for	actual	 files,	 let's
take	a	look	at	how	it	displays	open	objects	that	are	not	necessarily	files:

iprupdate		595								root		cwd							DIR														253,1						
4096								128	/
iprupdate		595								root		rtd							DIR														253,1						
4096								128	/
iprupdate		595								root		txt							REG														253,1				
114784		135146206	/usr/sbin/iprupdate
iprupdate		595								root		mem							REG														253,1			
2107600		134298615	/usr/lib64/libc-2.17.so

With	this,	we	can	see	quite	a	few	different	FD	values	in	this	list,	such	as	cwd,	rtd,
txt,	and	mem.	We	already	know	from	an	earlier	example	that	cwd	is	used	to	show
a	Current	Working	Directory	but	the	others	are	quite	new.	There	are	actually
quite	 a	 few	 possible	 file	 types	 depending	 on	 the	 object	 that	 is	 open.	 The
following	 list	 contains	all	of	 the	possible	values	 that	 can	be	displayed	 if	 a	 file
descriptor	number	is	not	used:

cwd:	Current	working	directory
Lnn:	Library	reference	for	AIX	systems	(nn	is	a	number	value)
err:	File	descriptor	information	error
jld:	FreeBSD	jailed	directory
ltx:	Shared	library	text
Mxx:	Hex	memory	mapped	(xx	is	a	type	number)
m86:	DOS	merged	mapped	file
mem:	Memory	mapped	file
mmap:	Memory	mapped	device
pd:	Parent	directory
rtd:	Root	directory
tr:	Kernel	trace	file
txt:	Program	text
v86:	VP/ix	mapped	file

We	can	 see	 that	 there	 are	many	 possible	 values	 for	 the	FD	 field.	Now	 that	we
have	seen	the	possible	values,	let's	take	a	look	at	the	preceding	example	to	better
understand	what	types	of	open	items	were	shown:

iprupdate		595								root		cwd							DIR														253,1						
4096								128	/
iprupdate		595								root		rtd							DIR														253,1						
4096								128	/
iprupdate		595								root		txt							REG														253,1				
114784		135146206	/usr/sbin/iprupdate
iprupdate		595								root		mem							REG														253,1			
2107600		134298615	/usr/lib64/libc-2.17.so

The	first	two	lines	are	interesting	as	they	are	both	for	the	"/"	directory.	However,
the	 first	 line	 shows	 the	 "/"	 directory	 as	 cwd,	 which	 means	 it	 is	 the	 current
working	directory.	The	second	line	shows	the	"/"	directory	as	rtd,	which	means
this	is	also	the	root	directory	for	the	iprupdate	program.

The	third	line	shows	that	/usr/sbin/iprupdate	is	the	program	itself	as	it	has	a
FD	field	value	of	txt.	This	means	the	open	file	is	the	code	of	the	program.	The
fourth	 line	 for	 the	 open	 item	 /usr/lib64/libc-2.17.so	 shows	 a	 FD	 of	 mem.
This	means	 the	 file	 /usr/lib64/libc-2.17.so	 has	 been	 read	 and	 placed	 into
memory	for	the	iprupdate	process.	This	means	that	this	file	can	be	accessed	as	a
memory	 object.	 This	 is	 a	 common	 practice	 for	 library	 files	 such	 as	 libc-
2.17.so.

Getting	back	to	the	lsof	output
Now	 that	 we	 have	 thoroughly	 explored	 the	 FD	 field,	 let's	 move	 to	 the	 sixth
column	of	the	lsof	output,	the	TYPE	field.	This	field	shows	the	type	of	file	that	is
being	opened.	As	there	are	quite	a	large	number	of	possible	types,	it	would	be	a
bit	tricky	to	list	them	here;	however,	you	can	always	find	this	referenced	in	the
lsof	man	page,	which	is	accessible	online	or	via	the	"man	lsof"	command.

While	we	will	not	be	listing	every	possible	file	type,	we	can	take	a	quick	look	at
a	few	file	types	captured	from	our	example	system:

systemd						1								root		mem							REG														253,1				
160240		134296681	/usr/lib64/ld-2.17.so
systemd						1								root				0u						CHR																1,3							
0t0									23	/dev/null
systemd						1								root				6r						DIR															0,20									
0							6404	/sys/fs/cgroup/systemd
systemd						1								root				7u					unix	0xffff88001d672580							
0t0							7917	@/org/freedesktop/systemd1/notify

The	first	example	item	shows	a	TYPE	of	REG.	This	TYPE	 is	very	common	as	 the
item	being	listed	is	a	Regular	file.	The	second	example	item	shows	Character
special	 file	 (CHR).	 The	CHR	 denotes	 special	 files	 that	 present	 themselves	 as
files	 but	 are	 actually	 an	 interface	 for	 a	 device.	The	 item	 listed	/dev/null	 is	 a
perfect	example	of	a	character	file	as	it	is	used	as	input	to	nothing.	Anything	that
is	written	to	/dev/null	is	nullified	and	if	you	were	to	read	this	file,	you	would
receive	no	output.

The	 third	 item	 shows	 DIR,	 it	 should	 not	 be	 a	 surprise	 that	 DIR	 stands	 for	 a
directory.	 This	 is	 a	 very	 common	 TYPE	 as	 many	 processes	 at	 some	 level	 will
require	a	directory	to	be	opened.

The	fourth	item	shows	unix,	which	shows	that	 this	open	item	is	a	Unix	socket
file.	Unix	socket	files	are	special	files	 that	are	used	as	 input/output	devices	for
process	 communication.	 These	 files	 should	 show	 up	 quite	 often	 in	 the	 lsof
output.

As	we	can	see	from	the	preceding	example,	on	Linux	systems,	there	are	several
different	types	of	files.

Now	 that	we	have	 looked	 at	 the	 sixth	 column	of	 the	 output	 in	lsof,	 the	 TYPE
column,	let's	take	a	quick	look	at	the	seventh,	the	DEVICE	column:

COMMAND				PID	TID				USER			FD						TYPE													DEVICE		
SIZE/OFF							NODE	NAME
systemd						1								root		cwd							DIR														253,1						
4096								128	/

If	we	look	at	the	preceding	item,	we	can	see	the	DEVICE	column	has	a	value	of
253,1.	These	numbers	represent	the	major	and	minor	numbers	of	the	device	that
this	 item	 is	 on.	Major	 and	minor	 numbers	 in	Linux	 are	 used	by	 the	 system	 to
determine	 how	 a	 device	 is	 accessed.	 The	major	 number,	which	 in	 this	 case	 is
253,	is	used	to	determine	which	driver	the	system	should	use.	Once	the	driver	is
selected,	 the	minor	 number,	 1	 in	 our	 case,	 is	 then	 used	 to	 narrow	 down	 how
exactly	this	device	should	be	accessed.

Tip

Major	 and	minor	 numbers	 are	 actually	 an	 important	 part	 of	 Linux	 and	 how	 it
uses	devices.	While	we	will	not	be	covering	this	topic	in	depth	within	this	book,
it	 is	 something	 I	 would	 suggest	 learning	 more	 about	 as	 this	 information	 is
incredibly	useful	when	troubleshooting	issues	with	hardware	devices.

systemd						1								root		mem							REG														253,1				
160240		134296681	/usr/lib64/ld-2.17.so
systemd						1								root				0u						CHR																1,3							
0t0									12	/dev/null

Now	 that	we	have	 explored	 the	DEVICE	 column,	 let's	 take	 a	 look	 at	 the	 eighth
column	of	the	lsof	output,	SIZE/OFF.	The	SIZE/OFF	column	is	used	 to	display
either	the	size	of	the	open	item	or	the	offset.	Offsets	are	generally	displayed	with
devices	 such	as	 socket	 files	and	character	 files.	When	 this	 column	contains	 an
offset,	 it	 will	 be	 preceded	 with	 "0t".	 In	 the	 above	 example,	 we	 can	 see	 the
character	file	/dev/null	has	an	offset	value	of	0t0.

The	SIZE	value	is	used	when	referring	to	open	items	such	as	regular	files.	This
value	 is	actually	 the	size	of	 the	file	 in	bytes.	For	example,	we	can	see	 that	 the
SIZE	 column	 for	 /usr/lib64/ld-2.17.so	 is	 160240.	 This	 means	 this	 file	 is
roughly	160	KB	in	size.

The	ninth	column	in	the	lsof	output	is	the	NODE	column:

httpd					3205						apache				2w						REG														253,1							
497		134812768	/var/log/httpd/error_log
httpd					3205						apache				4u					IPv6														16097							
0t0								TCP	*:http	(LISTEN)

For	regular	files,	the	NODE	column	will	show	the	inode	number	of	the	file.	Within
a	filesystem,	every	file	has	an	inode,	this	inode	is	used	as	an	index	that	contains
all	of	the	individual	files'	metadata.	This	metadata	consists	of	items	such	as	the
file's	location	on	disk,	file	permissions,	the	creation	time,	and	modification	time
of	 the	 file.	Like	major	and	minor	numbers,	 I	 suggest	 taking	a	deeper	dive	 into
inodes	and	what	they	contain,	as	inodes	are	a	core	component	to	how	files	exist
on	a	Linux	system.

You	 can	 see,	 from	 the	 first	 item	 in	 the	 preceding	 example,	 the	 inode	 of
/var/log/httpd/error_log	is	134812768.

The	second	 line,	however,	shows	 the	NODE	 as	TCP,	which	 is	not	an	 inode.	The
reason	 it	shows	TCP	is	because	 the	open	 item	is	a	TCP	Socket,	which	 is	not	a
file	on	a	filesystem.	Like	the	TYPE	column,	the	NODE	column	will	change	based
on	 the	open	 item.	However,	 on	most	 systems,	 you	will	 generally	 see	 an	 inode
number,	TCP	or	UDP	(for	UDP	Sockets).

The	tenth	and	final	column	in	 the	lsof	output	 is	pretty	self-explanatory,	as	we
have	 referenced	 it	 several	 times	 already.	 The	 tenth	 column	 is	 the	 NAME	 field,
which	is	as	simple	as	it	sounds;	it	lists	the	name	of	the	open	item:

COMMAND				PID	TID				USER			FD						TYPE													DEVICE		
SIZE/OFF							NODE	NAME
systemd						1								root		cwd							DIR														253,1						
4096								128	/

Using	 lsof	 to	 check	 whether	 we	 have	 a
previously	running	process
Now	that	we	know	a	lot	more	about	how	lsof	works	and	how	it	can	help	us,	let's
use	 this	 command	 to	 check	 whether	 there	 are	 any	 running	 instances	 of	 our
application.

If	we	 simply	 ran	 the	lsof	 command	 as	 the	 root	 user,	we	would	 see	 all	 of	 the
open	files	on	this	system.	However,	that	output	can	be	quite	overwhelming	even
when	we	redirect	 the	output	to	commands	such	as	less	or	grep.	Luckily,	lsof
will	allow	us	to	specify	files	and	directories	to	look	for:

#	lsof	/opt/myapp/conf/config.yml	
COMMAND		PID				USER			FD			TYPE	DEVICE	SIZE/OFF						NODE	NAME
less				3494	vagrant				4r			REG		253,1							45	201948450	
/opt/myapp/conf/config.yml

As	we	can	see,	by	specifying	a	 file	 in	 the	preceding	command,	we	 limited	 the
output	to	processes	that	have	the	file	open.

If	we	specify	a	directory,	the	output	is	similar:

#	lsof	/opt/myapp/
COMMAND		PID				USER			FD			TYPE	DEVICE	SIZE/OFF		NODE	NAME
bash				3474	vagrant		cwd				DIR		253,1							53	25264	/opt/myapp
less				3509	vagrant		cwd				DIR		253,1							53	25264	/opt/myapp

From	this,	we	can	see	 that	 two	processes	have	 the	/opt/myapp	directory	open.
Another	way	we	 could	 limit	 the	output	 of	lsof	 is	 to	 specify	 the	+D	 (directory
contents)	 flag,	 followed	by	a	directory.	This	 flag	will	 tell	lsof	 to	 look	for	any
open	items	from	that	directory	and	below.

For	 example,	we	 saw	 that	when	 using	lsof	 against	 the	 configuration	 file,	 the
less	 process	 had	 it	 opened.	 We	 could	 also	 see	 that	 when	 used	 against	 the
/opt/myapp/	directory,	two	processes	had	the	directory	open.

We	can	see	all	of	these	items	with	just	one	command	using	the	+D	flag:

#	lsof	+D	/opt/myapp/
COMMAND		PID				USER			FD			TYPE	DEVICE	SIZE/OFF						NODE	NAME

bash				3474	vagrant		cwd				DIR		253,1							53					25264	
/opt/myapp
less				3509	vagrant		cwd				DIR		253,1							53					25264	
/opt/myapp
less				3509	vagrant				4r			REG		253,1							45	201948450	
/opt/myapp/conf/config.yml

This	 would	 also	 show	 us	 any	 other	 items	 located	 under	 the	 /opt/myapp
directory.	 Since	 we	 are	 looking	 to	 check	 whether	 another	 instance	 of	 the
application	is	running	let's	take	a	look	at	the	preceding	lsof	output	and	see	what
can	be	learned:

COMMAND		PID				USER			FD			TYPE	DEVICE	SIZE/OFF						NODE	NAME
bash				3474	vagrant		cwd				DIR		253,1							53					25264	
/opt/myapp

The	first	open	item	shows	a	process	of	bash,	running	as	the	vagrant	user	with	a
file	descriptor	of	a	current	working	directory.	This	 line	 is	most	 likely	our	own
bash	 process	 that	 is	 currently	 in	 the	/opt/myapp	 directory,	 currently	 executing
the	less	command	on	the	/opt/myapp/conf/config.yml	file.

We	can	check	 this	by	using	 the	ps	command	and	grep	 for	 the	 string	3474,	 the
process	ID	of	the	bash	command:

#	ps	-elf	|	grep	3474
0	S	vagrant			3474		3473		0		80			0	-	28857	wait			20:09	pts/1				
00:00:00	-bash
0	S	vagrant			3509		3474		0		80			0	-	27562	n_tty_	20:14	pts/1				
00:00:00	less	conf/config.yml
0	S	root						3576		2978		0		80			0	-	28160	pipe_w	21:08	pts/0				
00:00:00	grep	--color=auto	3474

I	opted	to	use	the	grep	command	in	this	case,	as	we	will	also	be	able	to	see	any
child	processes	that	reference	process	ID	3474.	The	same	thing	can	be	performed
without	the	grep	command	as	well	by	running	the	following	command:

#	ps	-lp	3474	--ppid	3474
F	S			UID			PID		PPID		C	PRI		NI	ADDR	SZ	WCHAN		TTY										TIME	
CMD
0	S		1000		3474		3473		0		80			0	-	28857	wait			pts/1				00:00:00	
bash
0	S		1000		3509		3474		0		80			0	-	27562	n_tty_	pts/1				00:00:00	
less

Overall,	 both	 produce	 the	 same	 results;	 however,	 the	 first	method	 is	 easier	 to
remember.

If	we	look	at	the	process	list	output,	we	can	see	that	the	bash	command	is	in	fact
related	 to	our	shell	as	 its	child	process	 is	 the	less	command	 that	we	know	we
have	running	in	another	window.

We	can	also	see	the	process	ID	of	the	less	command:	3509.	The	same	process
ID	is	shown	in	the	less	command	in	the	lsof	output:

less				3509	vagrant		cwd				DIR		253,1							53					25264	
/opt/myapp
less				3509	vagrant				4r			REG		253,1							45	201948450	
/opt/myapp/conf/config.yml

Since	the	output	only	shows	our	own	processes,	it	is	safe	to	assume	that	there	is
not	a	previous	application	instance	running	in	the	background.

Finding	 out	 more	 about	 the
application
We	now	know	that	the	problem	is	not	that	another	instance	of	this	application	is
running.	At	this	point,	we	should	try	and	identify	more	about	this	application	and
what	it	is	doing.

The	 first	 thing	 to	 do	 when	 trying	 to	 find	 out	 more	 information	 about	 this
application	is	to	see	what	type	of	file	the	application	is.	We	can	do	this	by	using
the	file	command:

$	file	bin/application	
bin/application:	setuid	ELF	64-bit	LSB	executable,	x86-64,	version	
1	(SYSV),	dynamically	linked	(uses	shared	libs),	for	GNU/Linux	
2.6.32,	BuildID[sha1]=0xbc4685b44eb120ff2252e21bd735933d51409ffa,	
not	stripped

The	file	command	is	a	very	useful	command	to	have	in	your	tool	belt,	as	this
command	will	identify	the	file	type	of	the	file	being	specified.	In	the	preceding
example,	we	can	see	 that	 the	"application"	 file	 is	a	compiled	binary.	We	can
see	that	it	is	compiled	by	this	particular	output:	ELF	64-bit	LSB	executable.

This	 line	 also	 tells	 us	 that	 the	 application	 is	 compiled	 as	 a	 64-bit	 application.
This	is	interesting	as	there	are	quite	a	few	differences	between	64-bit	and	32-bit
applications.	One	very	common	scenario	is	due	to	the	amount	of	resources	a	64-
bit	 application	 can	 consume;	 32-bit	 applications	 are	 often	much	more	 limited
than	a	64-bit	version.

Another	common	issue	is	when	trying	to	execute	a	64-bit	application	on	a	32-bit
kernel.	We	have	yet	to	validate	whether	we	are	running	on	a	64-bit	kernel;	if	we
are	attempting	to	run	a	64-bit	executable	with	a	32-bit	kernel,	we	are	bound	to
receive	some	errors.

The	 types	 of	 errors	 seen	 by	 trying	 to	 execute	 a	 64-bit	 application	 on	 a	 32-bit
kernel	are	pretty	specific	and	not	very	likely	to	be	the	cause	of	our	issue.	Even
though	it	is	not	a	likely	cause,	we	can	check	whether	the	kernel	is	a	64-bit	kernel
or	not	with	the	uname	–a	command:

$	uname	-a
Linux	blog.example.com	3.10.0-123.el7.x86_64	#1	SMP	Mon	Jun	30	
12:09:22	UTC	2014	x86_64	x86_64	x86_64	GNU/Linux

From	the	output	of	the	uname	-a	command,	we	can	see	that	the	kernel	is	in	fact	a
64-bit	kernel	by	the	presence	of	this	string	"x86_64".

Tracing	an	application	with	strace
Since	we	know	that	the	application	is	a	compiled	binary	and	we	do	not	have	the
source	code,	 this	makes	reading	the	code	within	 the	application	fairly	difficult.
What	 we	 can	 do,	 however,	 is	 trace	 the	 system	 calls	 that	 the	 application	 is
performing	to	see	if	we	can	find	any	information	as	to	why	it	is	not	starting.

What	is	a	system	call?

System	calls	are	 the	 primary	 interface	 between	 an	 application	 and	 the	 kernel.
Simply	 put,	 a	 system	 call	 is	 a	method	 of	 requesting	 the	 kernel	 to	 perform	 an
action.

Most	applications	do	not	need	 to	worry	about	system	calls,	as	system	calls	are
generally	 called	by	 low-level	 libraries,	 such	 as	 the	GNU	C	Library.	While	 the
programmer	 need	 not	 worry	 about	 system	 calls,	 it	 is	 important	 to	 know	 that
every	action	performed	by	an	application	drills	down	to	some	sort	of	system	call.

This	is	important	to	know	because	we	can	trace	these	system	calls	to	determine
what	exactly	an	application	is	doing.	Much	like	we	use	tcpdump	to	trace	network
traffic	 on	 a	 system,	we	 can	 use	 a	 command	 called	strace	 to	 trace	 the	 system
calls	of	a	process.

To	get	the	feel	of	strace,	let's	use	strace	to	perform	a	system	call	trace	on	our
exitcodes.sh	script	from	earlier.	To	do	this,	we	will	run	the	strace	command
followed	by	the	exitcodes.sh	script.

When	 executed,	 the	 strace	 command	 will	 start	 up	 and	 then	 execute	 the
exitcodes.sh	 script.	 While	 the	 exitcodes.sh	 script	 is	 running,	 the	 strace
command	will	print	every	system	call	and	the	arguments	provided	to	them	from
the	exitcodes.sh	script:

$	strace	/var/tmp/exitcodes.sh	
execve("/var/tmp/exitcodes.sh",	["/var/tmp/exitcodes.sh"],	[/*	26	
vars	*/])	=	0
brk(0)																																		=	0x261a000
mmap(NULL,	4096,	PROT_READ|PROT_WRITE,	MAP_PRIVATE|MAP_ANONYMOUS,	
-1,	0)	=	0x7f890bd12000
access("/etc/ld.so.preload",	R_OK)						=	-1	ENOENT	(No	such	file	
or	directory)

open("/etc/ld.so.cache",	O_RDONLY|O_CLOEXEC)	=	3
fstat(3,	{st_mode=S_IFREG|0644,	st_size=24646,	...})	=	0
mmap(NULL,	24646,	PROT_READ,	MAP_PRIVATE,	3,	0)	=	0x7f890bd0b000
close(3)																																=	0
open("/lib64/libtinfo.so.5",	O_RDONLY|O_CLOEXEC)	=	3
read(3,	
"\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0@\316\0\0\0\0\0\0"..
.,	832)	=	832
fstat(3,	{st_mode=S_IFREG|0755,	st_size=174520,	...})	=	0
mmap(NULL,	2268928,	PROT_READ|PROT_EXEC,	MAP_PRIVATE|MAP_DENYWRITE,	
3,	0)	=	0x7f890b8c9000
mprotect(0x7f890b8ee000,	2097152,	PROT_NONE)	=	0
mmap(0x7f890baee000,	20480,	PROT_READ|PROT_WRITE,	
MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE,	3,	0x25000)	=	0x7f890baee000
close(3)																																=	0
open("/lib64/libdl.so.2",	O_RDONLY|O_CLOEXEC)	=	3
read(3,	
"\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\320\16\0\0\0\0\0\0"
...,	832)	=	832
fstat(3,	{st_mode=S_IFREG|0755,	st_size=19512,	...})	=	0

This	is	only	a	small	portion	of	the	output	from	strace.	The	full	output	is	actually
several	pages	long.	However,	the	exitcodes.sh	script	isn't	very	long.	In	fact,	it's
a	simple	three-line	script:

$	cat	/var/tmp/exitcodes.sh	
#!/bin/bash
touch	/some/directory/that/doesnt/exist/file.txt
echo	"It	works"

This	 script	 is	 a	 good	 example	 as	 to	 how	 much	 heavy	 lifting	 higher-level
programming	 languages,	 such	 as	 bash,	 provide.	 Now	 that	 we	 know	 what	 the
exitcodes.sh	 script	 does,	 let's	 take	 a	 look	 at	 some	 of	 the	 system	 calls	 it
performs.

We	will	start	with	the	first	eight	lines:

execve("/var/tmp/exitcodes.sh",	["/var/tmp/exitcodes.sh"],	[/*	26	
vars	*/])	=	0
brk(0)																																		=	0x261a000
mmap(NULL,	4096,	PROT_READ|PROT_WRITE,	MAP_PRIVATE|MAP_ANONYMOUS,	
-1,	0)	=	0x7f890bd12000
access("/etc/ld.so.preload",	R_OK)						=	-1	ENOENT	(No	such	file	
or	directory)
open("/etc/ld.so.cache",	O_RDONLY|O_CLOEXEC)	=	3

fstat(3,	{st_mode=S_IFREG|0644,	st_size=24646,	...})	=	0
mmap(NULL,	24646,	PROT_READ,	MAP_PRIVATE,	3,	0)	=	0x7f890bd0b000
close(3)																																=	0

As	 system	 calls	 are	 quite	 extensive	 and	 some	 of	 them	 are	 complicated	 to
understand.	We	will	focus	our	breakdown	on	system	calls	that	are	common	and	a
bit	easier	to	understand.

The	first	system	call	that	we	will	examine	is	the	access()	system	call:

access("/etc/ld.so.preload",	R_OK)						=	-1	ENOENT	(No	such	file	
or	directory)

Most	 system	calls	have	a	name	 that	 roughly	explains	 the	 function	 it	 performs.
The	access()	 system	 call	 is	 no	 different,	 as	 this	 system	 call	 is	 used	 to	 check
whether	the	application	calling	it	has	sufficient	access	to	open	the	file	specified.
In	the	preceding	example,	the	file	specified	is	/etc/ld.so.preload.

An	interesting	thing	about	strace	is	not	only	does	it	show	the	system	call,	it	also
shows	 the	 return	 value.	 In	 our	 preceding	 example,	 the	 access()	 system	 call
received	 a	 return	 value	 of	-1,	which	 is	 the	 typical	 value	 for	 errors.	When	 the
return	value	is	an	error,	strace	will	also	provide	the	error	string.	In	this	case,	the
access()	call	received	the	error	-1	ENOENT	(No	such	file	or	directory).

The	 preceding	 error	 is	 pretty	 self-explanatory,	 as	 it	 seems	 the	 file
/etc/ld.so.preload	simply	does	not	exist.

The	next	system	call	is	one	that	will	be	seen	quite	often;	it	is	the	open()	system
call:

open("/etc/ld.so.cache",	O_RDONLY|O_CLOEXEC)	=	3

The	open()	system	call	performs	just	what	it	says,	it	 is	used	to	open	(or	create
and	open)	a	file	or	device.	From	the	preceding	example,	we	can	see	that	the	file
specified	 is	 the	 /etc/ld.so.cache	 file.	 We	 can	 also	 see	 that	 one	 of	 the
arguments	 passed	 to	 this	 system	 call	 is	 "O_RDONLY".	 This	 argument	 tells	 the
open()	call	to	open	the	file	in	the	read	only	mode.

Even	 if	 we	 didn't	 already	 know	 that	 the	 O_RDONLY	 argument	 tells	 the	 open
command	to	open	the	file	in	read	only,	the	name	is	almost	self-descriptive.	For

system	 calls	 that	 are	 not	 self-descriptive,	 the	 information	 can	 be	 found	with	 a
fairly	quick	Google	search,	as	system	calls	are	very	well	documented:

fstat(3,	{st_mode=S_IFREG|0644,	st_size=24646,	...})	=	0

The	next	system	call	to	look	at	is	the	fstat()	system	call.	This	system	call	will
pull	the	status	of	a	file.	The	information	this	system	call	provides	includes	things
such	 as	 the	 inode	 number,	 user	 ownership,	 and	 size	 of	 the	 file.	 By	 itself,	 the
fstat()	system	call	might	not	look	very	important	but	when	we	look	at	the	next
system	call,	mmap(),	the	information	it	provides	can	be	important.

mmap(NULL,	24646,	PROT_READ,	MAP_PRIVATE,	3,	0)	=	0x7f890bd0b000

This	system	call	can	be	used	to	map	or	unmap	a	file	into	memory.	If	we	look	at
the	 fstat()	 line	 and	 look	 at	 the	 mmap()	 line,	 we	 will	 see	 two	 numbers	 that
coincide.	 The	 fstat()	 line	 has	 st_size=24646,	 which	 is	 the	 second	 argument
provided	to	mmap().

Even	without	knowing	the	details	of	these	system	calls	it	is	pretty	easy	to	build
the	 assumption	 that	 the	mmap()	 system	 call	mapped	 the	 file	 from	 the	fstat()
call	into	the	memory.

The	final	system	call	from	the	preceding	example	is	very	simple	to	understand:

close(3)																																=	0

The	close()	system	call	simply	closes	the	open	file	or	device.	Given	that	earlier
we	 opened	 the	 file	 /etc/ld.so.cache,	 it	 only	 makes	 sense	 that	 this	 close()
system	 call	 was	 used	 to	 close	 that	 file.	 Before	we	 get	 back	 to	 debugging	 our
application,	let's	take	a	quick	look	at	the	last	four	lines	put	together:

open("/etc/ld.so.cache",	O_RDONLY|O_CLOEXEC)	=	3
fstat(3,	{st_mode=S_IFREG|0644,	st_size=24646,	...})	=	0
mmap(NULL,	24646,	PROT_READ,	MAP_PRIVATE,	3,	0)	=	0x7f890bd0b000
close(3)																																

As	we	look	at	these	four	system	calls,	we	can	start	to	see	a	pattern.	The	open()
call	is	used	to	open	the	/etc/ld.so.cache	file	and	is	given	a	return	value	of	3.
The	fstat()	command	is	provided	3	as	input	and	gets	st_size=24646	as	output.
The	mmap()	function	is	given	24646	and	3	as	input	and	the	close()	 function	 is

provided	with	3	as	input.

Given	 that	 the	 output	 of	 the	 open()	 call	 is	 3	 and	 the	 value	 3	 has	 been	 used
multiple	times	in	these	four	system	calls,	it	is	safe	to	conclude	that	this	number	3
is	 the	 file	 descriptor	 number	 of	 the	 open	 file	 /etc/ld.so.cache.	 With	 that
conclusion,	 it	 is	also	pretty	safe	 to	assume	that	 the	preceding	four	system	calls
perform	the	actions	of	opening	the	file	/etc/ld.so.cache,	determining	the	size
of	the	file,	mapping	that	file	into	memory,	and	then	closing	the	file	descriptor.

As	you	can	see,	 this	 is	quite	a	bit	of	 information	from	just	 four	simple	system
calls.	Let's	put	what	you	 just	 learned	 into	practice	and	use	strace	 to	 trace	 the
application	process.

Using	 strace	 to	 identify	 why	 the	 application
will	not	start
Earlier,	when	we	ran	strace,	we	simply	provided	it	with	a	command	to	execute.
This	 is	 one	way	you	 can	 invoke	strace,	 but	what	 do	you	do	 if	 the	process	 is
already	running?	Well,	strace	can	also	trace	running	processes.

When	tracing	an	existing	process,	we	can	start	strace	with	the	–p	(process)	flag
followed	by	the	process	ID	to	trace.	This	causes	strace	 to	bind	to	that	process
and	start	tracing	it.	For	tracing	our	application	startup,	we	are	going	to	use	this
method.

To	do	this,	we	are	going	to	execute	 the	start.sh	script	 in	the	background	and
then	run	strace	against	the	process	ID	of	the	start.sh	script:

$./start.sh	&
[1]	3353

By	adding	&	to	the	end	of	the	command	line,	we	are	telling	the	start	script	to	run
in	 the	background.	The	output	 provides	us	with	 the	process	 ID	of	 the	 running
script,	3353.	However,	in	another	window	as	the	root	user,	we	can	use	strace	to
trace	this	process	with	the	following	command:

#	strace	-o	/var/tmp/app.out	-f	-p	3353
Process	3353	attached
Process	3360	attached

The	preceding	command	adds	a	few	more	options	 than	 just	–p	and	 the	process
ID.	 We	 also	 add	 the	 –o	 /var/tmp/app.out	 arguments.	 This	 option	 will	 tell
strace	to	save	the	traced	data	to	the	output	file	/var/tmp/app.out.	The	earlier
strace	 that	we	 ran	 provided	 quite	 a	 bit	 of	 output;	 by	 specifying	 that	 the	 data
should	be	written	to	a	file,	the	data	will	be	a	bit	more	manageable	to	search.

The	other	new	option	we	added	is	–f;	this	argument	tells	strace	to	follow	child
processes.	 Since	 the	 start	 script	 starts	 the	 application,	 the	 application	 itself	 is
considered	a	child	process	of	 the	start	script.	 In	 the	preceding	example	we	can
see	that	strace	was	attached	to	 two	processes.	We	can	assume	that	 the	second
process	 received	 the	process	 ID	of	3360,	 this	 is	 important	 to	know,	 as	we	will

need	to	reference	that	process	ID	while	looking	through	the	trace	output:

#	less	/var/tmp/app.out

Let's	 get	 started	 reading	 the	 strace	 output	 and	 attempt	 to	 identify	 what	 is
happening.	While	going	through	this	output,	we	will	limit	it	to	only	sections	that
are	useful	for	identifying	our	issue:

3360		execve("/opt/myapp/bin/application",	
["/opt/myapp/bin/application",	"--deamon",	"--config",	
"/opt/myapp/conf/config.yml"],	[/*	28	vars	*/])	=	0

The	 first	 system	call	 that	 appears	 interesting	 is	 the	execve()	 system	call.	This
particular	 call	 of	 execve()	 appears	 to	 be	 executing	 the
/opt/myapp/bin/application	binary.

One	 important	 item	to	point	out	 is	 that,	with	 this	output,	we	can	see	a	number
before	the	system	call.	This	number,	3360,	is	the	process	ID	of	the	process	that
executed	 the	 system	 call.	 The	 process	 ID	will	 only	 be	 shown	when	 the	 strace
command	is	tracing	multiple	processes.

The	next	group	of	system	calls	that	seem	important	are	the	
following:
3360		open("/opt/myapp/conf/config.yml",	O_RDONLY)	=	3
3360		fstat(3,	{st_mode=S_IFREG|0600,	st_size=45,	...})	=	0
3360		fstat(3,	{st_mode=S_IFREG|0600,	st_size=45,	...})	=	0
3360		mmap(NULL,	4096,	PROT_READ|PROT_WRITE,	
MAP_PRIVATE|MAP_ANONYMOUS,	-1,	0)	=	0x7fd0528df000
3360		read(3,	"port:	25\ndebug:	True\nlogdir:	/op"...,	4096)	=	45
3360		read(3,	"",	4096)																	=	0
3360		read(3,	"",	4096)																	=	0

From	 the	 preceding	 group,	 we	 can	 see	 that	 the	 application	 is	 opening	 the
config.yml	file	in	read	only	and	did	not	receive	an	error.	We	can	also	see	that
the	read()	 system	call	 (which	 appears	 to	 be	 reading	 from	 file	 descriptor	 3)	 is
reading	the	config.yml	file.

3360		close(3)																										=	0

It	 appears	 further	 down	 the	 file	 that	 this	 file	 descriptor	 is	 closed	 using	 the
close()	system	call.	This	information	is	useful	as	it	tells	us	that	we	are	able	to
read	the	config.yml	 file	and	that	our	issue	is	not	related	to	permissions	on	the

configuration	file:

3360		open("/opt/myapp/logs/debug.out",	O_WRONLY|O_CREAT|O_APPEND,	
0666)	=	3
3360		lseek(3,	0,	SEEK_END)													=	1711
3360		fstat(3,	{st_mode=S_IFREG|0664,	st_size=1711,	...})	=	0
3360		fstat(3,	{st_mode=S_IFREG|0664,	st_size=1711,	...})	=	0
3360		mmap(NULL,	4096,	PROT_READ|PROT_WRITE,	
MAP_PRIVATE|MAP_ANONYMOUS,	-1,	0)	=	0x7fd0528df000
3360		write(1,	"-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	"...,	52)	=	52

If	we	continue,	we	can	see	that	our	configuration	is	taking	effect	as	well,	as	the
process	 has	 opened	 the	 debug.out	 file	 for	 writing	 using	 the	 open()	 call	 and
written	to	it	with	the	write()	call.

For	applications	that	have	many	log	files,	system	calls	such	as	the	above	can	be
useful	for	identifying	log	messages	that	might	not	have	been	obvious.

When	looking	through	system	calls,	you	can	roughly	understand	the	context	of
when	 the	 message	 was	 generated	 and	 possibly	 why.	 This	 context	 can	 be
extremely	useful	depending	on	the	issue.

3360		socket(PF_INET,	SOCK_STREAM,	IPPROTO_IP)	=	4
3360		bind(4,	{sa_family=AF_INET,	sin_port=htons(25),	
sin_addr=inet_addr("0.0.0.0")},	16)	=	-1	EADDRINUSE	(Address	
already	in	use)
3360		open("/dev/null",	O_WRONLY|O_CREAT|O_TRUNC,	0666)	=	5
3360		fstat(5,	{st_mode=S_IFCHR|0666,	st_rdev=makedev(1,	3),	...})	
=	0
3360		write(1,	"Starting	service:	[Failed]\n",	27)	=	27
3360		write(3,	"Configuration	file	processed\r\n--"...,	86)	=	86
3360		close(3)																										=	0

Speaking	of	context,	the	preceding	system	calls	explain	our	problem	specifically,
one	system	call.	While	the	strace	file	contained	many	system	calls	that	returned
errors,	the	majority	of	them	were	like	the	following:

3360		stat("/usr/lib64/python2.7/encodings/ascii",	0x7fff8ef0d670)	
=	-1	ENOENT	(No	such	file	or	directory)

This	is	fairly	common,	as	it	simply	means	the	process	attempted	to	access	a	file
that	 is	 not	present.	 In	 the	 trace	 file,	 however,	 there	 is	 one	 error	 that	 sticks	out
more	than	the	others:

3360		bind(4,	{sa_family=AF_INET,	sin_port=htons(25),	
sin_addr=inet_addr("0.0.0.0")},	16)	=	-1	EADDRINUSE	(Address	
already	in	use)

The	 preceding	 system	 call	 bind()	 is	 a	 system	 call	 that	 binds	 a	 socket.	 The
preceding	example	appears	to	binding	a	network	socket.	If	we	think	back	to	our
configuration	file,	we	know	that	port	25	is	specified:

#	cat	/opt/myapp/conf/config.yml	
port:	25

In	 the	 system	 call,	 we	 can	 see	 the	 string	 sin_port=htons(25),	 which	 might
mean	 this	 bind	 system	 call	 is	 trying	 to	 bind	 to	 port	25.	 From	 the	 return	 value
provided,	we	can	see	that	the	bind()	call	received	an	error.	The	message	of	that
error	suggests	"Address	is	already	in	use".

Since	we	know	that	the	application	is	configured	to	utilize	port	25	in	some	way
and	we	 can	 see	 a	 bind()	 system	 call,	 it	 stands	 to	 reason	 that	 this	 application
might	not	be	 starting	 simply	because	port	25	 is	 already	being	used	by	another
process,	which	at	this	point,	is	our	new	hypothesis.

Resolving	the	conflict
As	you	learned	in	the	networking	chapter,	we	can	verify	that	a	process	has	port
25	in	use	with	a	quick	netstat	command:

#	netstat	-nap	|	grep	:25
tcp								0						0	127.0.0.1:25												0.0.0.0:*															
LISTEN						1588/master									
tcp6							0						0	::1:25																		:::*																				
LISTEN						1588/master

When	we	run	netstat	 as	 the	 root	user	and	add	 the	–p	 flag,	 the	command	will
include	the	process	ID	and	name	of	process	for	each	LISTEN-ing	socket.	From
this,	we	can	see	that	port	25	is	in	fact	being	used	and	the	process	1588	is	the	one
listening.

To	get	a	better	understanding	of	what	process	this	is,	we	can	once	again	utilize
the	ps	command:

#	ps	-elf	|	grep	1588
5	S	root						1588					1		0		80			0	-	22924	ep_pol	13:53	?								
00:00:00	/usr/libexec/postfix/master	-w
4	S	postfix			1616		1588		0		80			0	-	22967	ep_pol	13:53	?								
00:00:00	qmgr	-l	-t	unix	-u
4	S	postfix			3504		1588		0		80			0	-	22950	ep_pol	20:36	?								
00:00:00	pickup	-l	-t	unix	-u

It	appears	that	the	postfix	service	is	the	one	listening	on	port	25,	which	is	not
very	surprising	since	 this	port	 is	generally	used	 for	SMTP	communication	and
postfix	is	an	e-mail	service.

The	 question	 now	 is,	 should	 postfix	 be	 listening	 on	 this	 port	 or	 should	 the
application?	Unfortunately,	 there	 is	no	easy	answer	 to	 that	question,	 as	 it	 truly
depends	on	the	systems	and	what	they	are	doing.

For	 the	 sake	 of	 this	 exercise,	 we	 will	 assume	 the	 answer	 is	 that	 the	 custom
application	should	be	using	port	25,	and	postfix	should	not	be	running.

To	 stop	 postfix	 from	 listening	 on	 port	 25,	 we	will	 first	 stop	 postfix	 using	 the
systemctl	commands:

	#	systemctl	stop	postfix

This	 stops	 the	 postfix	 service	 where	 the	 next	 command	 will	 disable	 it	 from
starting	up	again	on	the	next	reboot:

#	systemctl	disable	postfix
rm	'/etc/systemd/system/multi-user.target.wants/postfix.service'

Disabling	 the	 postfix	 service	 is	 an	 important	 step	 to	 resolving	 this	 issue.
Currently,	we	believe	the	issue	is	caused	by	a	port	conflict	between	the	custom
application	and	postfix.	If	we	do	not	disable	the	postfix	service,	the	next	time	the
system	 reboots	 it	 will	 be	 started	 again.	 This	 will	 then	 prevent	 the	 custom
application	from	being	started	as	well.

While	this	might	seem	basic,	I	want	to	stress	the	importance	of	this	step	as,	on
numerous	 occasions,	 I've	 seen	 an	 issue	 happen	 repeatedly,	 simply	 because	 the
person	who	resolved	it	the	first	time	didn't	disable	a	service.

If	 we	 run	 the	 systemctl	 status	 command,	 we	 can	 now	 see	 that	 the	 postfix
service	is	stopped	and	disabled:

#	systemctl	status	postfix
postfix.service	-	Postfix	Mail	Transport	Agent
			Loaded:	loaded	(/usr/lib/systemd/system/postfix.service;	
disabled)
			Active:	inactive	(dead)

Jun	09	04:05:42	blog.example.com	systemd[1]:	Starting	Postfix	Mail	
Transport	Agent...
Jun	09	04:05:43	blog.example.com	postfix/master[1588]:	daemon	
started	--	version	2.10.1,	configuration	/etc/postfix
Jun	09	04:05:43	blog.example.com	systemd[1]:	Started	Postfix	Mail	
Transport	Agent.
Jun	09	21:14:14	blog.example.com	systemd[1]:	Stopping	Postfix	Mail	
Transport	Agent...
Jun	09	21:14:14	blog.example.com	systemd[1]:	Stopped	Postfix	Mail	
Transport	Agent.

With	the	postfix	service	stopped,	we	can	now	once	again	start	the	application	to
see	if	the	issue	is	resolved.

$./start.sh
Initializing	with	configuration	file	/opt/myapp/conf/config.yml

-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Starting	service:	[Success]
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Proccessed	5	messages
Proccessed	5	messages
Proccessed	5	messages

It	appears	the	issue	was	in	fact	resolved	by	stopping	the	postfix	service.	We	can
see	 this	by	 the	 "[Success]"	message	printed	 from	 the	 startup	process.	We	can
also	see	this	if	we	run	the	lsof	command	again:

#	lsof	+D	/opt/myapp/
COMMAND				PID				USER			FD			TYPE	DEVICE	SIZE/OFF						NODE	NAME
bash						3332	vagrant		cwd				DIR		253,1							53					25264	
/opt/myapp
start.sh		3585	vagrant		cwd				DIR		253,1							53					25264	
/opt/myapp
start.sh		3585	vagrant		255r			REG		253,1						111					25304	
/opt/myapp/start.sh
applicati	3588				root		cwd				DIR		253,1							53					25264	
/opt/myapp
applicati	3588				root		txt				REG		253,1				36196		68112463	
/opt/myapp/bin/application
applicati	3588				root				3w			REG		253,1					1797	134803515	
/opt/myapp/logs/debug.out

Now	 that	 the	 application	 is	 running,	 we	 can	 see	 several	 processes	 have	 open
items	in	the	/opt/myapp	directory.	We	can	also	see	that	one	of	those	processes	is
the	application	command	with	a	process	ID	of	3588.	To	get	a	better	look	at	what
the	application	is	doing	we	can	once	again	run	lsof,	but	this	time	we	will	search
only	for	files	open	by	the	process	ID	3588:

#	lsof	-p	3588
COMMAND				PID	USER			FD			TYPE	DEVICE		SIZE/OFF						NODE	NAME
applicati	3588	root		cwd				DIR		253,1								53					25264	
/opt/myapp
applicati	3588	root		rtd				DIR		253,1						4096							128	/
applicati	3588	root		txt				REG		253,1					36196		68112463	
/opt/myapp/bin/application
applicati	3588	root		mem				REG		253,1				160240	134296681	
/usr/lib64/ld-2.17.so
applicati	3588	root				0u			CHR		136,2							0t0									5	
/dev/pts/2
applicati	3588	root				1u			CHR		136,2							0t0									5	
/dev/pts/2

applicati	3588	root				2u			CHR		136,2							0t0									5	
/dev/pts/2
applicati	3588	root				3w			REG		253,1						1797	134803515	
/opt/myapp/logs/debug.out
applicati	3588	root				4u		sock				0,6							0t0					38488	
protocol:	TCP

The	–p	(process)	flag	will	filter	the	lsof	output	to	a	specific	process.	In	this	case,
we	limited	the	output	to	the	custom	application	we	just	started:

applicati	3588	root				4u		sock				0,6							0t0					38488	
protocol:	TCP

In	the	last	line,	we	can	see	that	the	application	has	a	TCP	socket	open.	Given	the
status	messages	from	the	application	and	the	results	from	lsof,	it	is	pretty	safe	to
say	the	application	has	started	and	started	correctly.

Summary
We	 took	 an	 application	 issue	 and	used	 common	Linux	 tools	 such	 as	lsof	and
strace	to	find	the	root	cause,	a	port	conflict.	What	is	even	more	important	is	that
we	 did	 this	 with	 no	 prior	 knowledge	 of	 the	 application	 or	 the	 tasks	 it	 was
attempting	to	perform.

With	the	example	from	this	chapter,	we	can	easily	see	how	having	access	to	and
knowledge	 of	 basic	 Linux	 tools,	 together	 with	 an	 understanding	 of	 the
troubleshooting	process,	can	enable	you	to	solve	almost	any	issue,	whether	that
issue	is	an	application	issue	or	a	systems	issue.

In	the	next	chapter,	we	will	examine	the	Linux	user	and	kernel	limits,	and	how
they	can	sometimes	cause	issues.

Chapter	 10.	 Understanding	 Linux
User	and	Kernel	Limits
In	 the	previous	chapter,	we	used	tools	such	as	lsof	and	strace	 to	 identify	 the
root	cause	of	an	application	issue.

In	 this	 chapter,	 we	 will	 once	 again	 identify	 the	 root	 cause	 of	 an	 application-
related	issue.	However,	we	will	also	focus	on	learning	and	understanding	Linux
user	and	kernel	limitations.

A	reported	issue
Much	 like	 the	 previous	 chapter,	 which	 focused	 on	 an	 issue	 with	 a	 custom
application,	today's	issue	comes	from	the	same	custom	application.

Today,	we	will	be	working	on	an	issue	reported	by	an	application	support	team.
However,	 this	 time	the	support	 team	was	able	 to	provide	us	with	quite	a	bit	of
information.

The	 application	 we	 were	 working	 on	 in	 Chapter	 9,	 Using	 System	 Tools	 to
Troubleshoot	Applications,	now	receives	messages	over	port	25	and	stores	them
in	a	queue	directory.	Periodically,	a	job	runs	to	process	those	queued	messages,
but	the	job	doesn't	seem	to	be	working	anymore.

The	 application	 support	 team	 has	 noticed	 quite	 a	 large	 amount	 of	 messages
backlogged	in	the	queue.	However,	even	though	they	have	been	troubleshooting
the	issue	as	much	as	possible,	they	are	stuck	and	require	our	assistance.

Why	is	the	job	failing?
Since	the	issue	being	reported	is	that	a	scheduled	job	is	not	working,	we	should
first	 focus	 on	 the	 job	 itself.	 In	 this	 scenario,	 we	 have	 the	 application	 support
team	available	to	answer	any	questions.	So,	let's	get	a	few	more	details	about	this
job.

Background	questions
The	 following	 is	 a	 quick	 list	 of	 questions	 that	 should	 help	 provide	 you	 with
additional	information:

How	is	the	job	run?
Can	we	run	the	job	manually	if	we	need	to?
What	does	this	job	execute?

These	three	questions	may	seem	pretty	basic,	but	they	are	important.	Let's	first
look	at	the	answers	the	application	team	provides:

How	is	the	job	run?

The	job	is	executed	as	a	cron	job.
Can	we	run	the	job	manually	if	we	need	to?

Yes,	it	should	be	okay	to	execute	the	job	manually	as	often	as	needed.
What	does	this	job	execute?

The	 job	 executes	 the	 /opt/myapp/bin/processor	 command	 as	 the	 vagrant
user.

The	preceding	three	questions	are	important	because	they	will	save	us	quite	a	bit
of	troubleshooting	time.	The	first	question	is	focused	on	how	the	job	is	executed.
Since	the	reported	issue	is	that	the	job	is	not	working,	we	don't	know	yet	if	the
issue	is	because	the	job	is	not	running	or	if	the	job	is	being	executed	but	failing
for	some	reason.

The	answer	to	the	first	question	tells	us	that	the	job	is	executed	by	crond,	which
is	 the	 cron	 daemon	 that	 runs	 on	 Linux.	 This	 is	 useful	 as	 we	 can	 use	 this
information	to	identify	whether	the	job	is	being	executed	or	not.	In	general,	there
are	many	methods	 for	 scheduled	 jobs	 to	 be	 executed.	 Sometimes	 the	 software
that	is	executing	the	scheduled	job	runs	on	a	different	system	and	sometimes	it
runs	on	the	same	local	system.

In	this	case,	the	job	is	being	executed	by	crond	on	the	same	server.

The	second	question	is	also	important.	Just	like	we	had	to	launch	the	application

manually	in	 the	 last	chapter,	we	may	need	to	perform	this	 troubleshooting	step
with	 this	 reported	 issue	 as	well.	Based	 on	 the	 answer,	 it	 seems	we	 are	 free	 to
execute	this	command	as	many	times	as	needed.

The	 third	 question	 is	 useful	 as	 it	 tells	 us	 not	 only	 what	 command	 is	 being
executed	 but	 also	 which	 job	 to	 look	 out	 for.	 Cron	 jobs	 are	 a	 very	 common
method	of	scheduling	tasks.	It	is	common	for	a	system	to	have	many	cron	jobs
scheduled.

Is	the	cron	job	even	running?
Since	we	know	that	 the	 job	 is	being	executed	by	crond,	we	 should	 first	 check
whether	the	job	is	being	executed	or	not.	To	do	this,	we	can	check	the	cron	logs
on	the	server	in	question.	For	example,	consider	the	following	log:

#	ls	-la	/var/log/cron*
-rw-r--r--.	1	root	root	30792	Jun	10	18:05	/var/log/cron
-rw-r--r--.	1	root	root	28261	May	18	03:41	/var/log/cron-20150518
-rw-r--r--.	1	root	root		6152	May	24	21:12	/var/log/cron-20150524
-rw-r--r--.	1	root	root	42565	Jun		1	15:50	/var/log/cron-20150601
-rw-r--r--.	1	root	root	18286	Jun		7	16:22	/var/log/cron-20150607

Specifically,	on	Red	Hat	based	Linux	systems	we	can	check	the	/var/log/cron
log	 file.	 I	 specified	"Red	Hat	based"	 in	 the	previous	sentence	because	on	non-
Red-Hat-based	 systems	 the	 cron	 logs	 may	 be	 located	 in	 a	 different	 log	 file.
Debian-based	systems,	for	example,	default	to	/var/log/syslog.

If	we	didn't	know	which	 log	file	contained	cron	 logs,	 there	 is	a	simple	 trick	 to
find	it.	Just	run	the	following	command	line:

#	grep	-ic	cron	/var/log/*	|	grep	-v	:0
/var/log/cron:400
/var/log/cron-20150518:379
/var/log/cron-20150524:86
/var/log/cron-20150601:590
/var/log/cron-20150607:248
/var/log/messages:1
/var/log/secure:1

The	preceding	command	will	use	grep	to	search	all	of	the	log	files	in	/var/log
for	the	string	cron.	The	command	will	also	search	for	Cron,	CRON,	cRon,	and	so
on,	as	we	added	the	–i	(insensitive)	flag	to	the	grep	command.	This	tells	grep	to
search	in	case-insensitivity	mode.	Essentially,	this	means	any	match	of	the	word
"cron"	 will	 be	 found	 even	 if	 the	 word	 is	 capitalized	 or	 mixed	 case.	We	 also
added	 the	–c	 (count)	 flag	 to	 the	 grep	 command,	which	 causes	 it	 to	 count	 the
number	of	instances	it	has	found:

/var/log/cron:400

If	we	look	at	the	first	result,	we	can	see	that	grep	has	found	400	instances	of	the

word	"cron"	in	/var/log/cron.

Finally,	 we	 redirect	 the	 results	 to	 another	 grep	 command	 with	 the	 –v	 flag
followed	by	:0.	This	grep	will	take	the	results	of	the	first	execution	and	omit	(-
v)	any	 lines	with	 the	string	:0.	This	 is	useful	 for	 restricting	 the	 results	 to	only
files	with	the	cron	string	within	them.

From	 the	 preceding	 results,	 we	 can	 see	 that	 the	 file,	 /var/log/cron,	 has	 the
most	instances	of	the	word	"cron"	within	it.	This	fact	alone	is	a	good	indication
that	/var/log/cron	is	the	log	file	for	the	crond	daemon.

Now	that	we	know	which	log	file	has	the	log	messages	we	are	looking	for,	we
can	take	a	look	at	the	contents	of	that	log	file.	Since	this	log	file	is	quite	large	we
will	use	the	less	command	to	read	this	file:

#	less	/var/log/cron

Since	 there	 is	quite	 a	bit	of	 information	 in	 this	 log,	we	will	only	 focus	on	 log
entries	that	will	help	explain	the	issue.	The	following	segment	is	an	interesting
group	of	log	messages	that	should	answer	whether	our	job	is	running	or	not:

Jun	10	18:01:01	localhost	CROND[2033]:	(root)	CMD	(run-parts	
/etc/cron.hourly)
Jun	10	18:01:01	localhost	run-parts(/etc/cron.hourly)[2033]:	
starting	0anacron
Jun	10	18:01:01	localhost	run-parts(/etc/cron.hourly)[2042]:	
finished	0anacron
Jun	10	18:01:01	localhost	run-parts(/etc/cron.hourly)[2033]:	
starting	0yum-hourly.cron
Jun	10	18:01:01	localhost	run-parts(/etc/cron.hourly)[2048]:	
finished	0yum-hourly.cron
Jun	10	18:05:01	localhost	CROND[2053]:	(vagrant)	CMD	
(/opt/myapp/bin/processor	--debug	--config	
/opt/myapp/conf/config.yml	>	/dev/null)
Jun	10	18:10:01	localhost	CROND[2086]:	(root)	CMD	
(/usr/lib64/sa/sa1	1	1)
Jun	10	18:10:01	localhost	CROND[2087]:	(vagrant)	CMD	
(/opt/myapp/bin/processor	--debug	--config	
/opt/myapp/conf/config.yml	>	/dev/null)
Jun	10	18:15:01	localhost	CROND[2137]:	(vagrant)	CMD	
(/opt/myapp/bin/processor	--debug	--config	
/opt/myapp/conf/config.yml	>	/dev/null)
Jun	10	18:20:01	localhost	CROND[2147]:	(root)	CMD	

(/usr/lib64/sa/sa1	1	1)

The	preceding	log	messages	show	quite	a	few	lines.	Let's	break	down	the	logs	to
get	 a	 better	 understanding	 of	 what	 is	 being	 executed.	 Consider	 the	 following
lines:

Jun	10	18:01:01	localhost	CROND[2033]:	(root)	CMD	(run-parts	
/etc/cron.hourly)
Jun	10	18:01:01	localhost	run-parts(/etc/cron.hourly)[2033]:	
starting	0anacron
Jun	10	18:01:01	localhost	run-parts(/etc/cron.hourly)[2042]:	
finished	0anacron
Jun	10	18:01:01	localhost	run-parts(/etc/cron.hourly)[2033]:	
starting	0yum-hourly.cron
Jun	10	18:01:01	localhost	run-parts(/etc/cron.hourly)[2048]:	
finished	0yum-hourly.cron

The	first	few	lines	do	not	seem	to	be	the	job	we	are	searching	for	but	rather	the
cron.hourly	jobs.

On	 Linux	 systems,	 there	 are	 multiple	 ways	 to	 specify	 cron	 jobs.	 On	 RHEL
systems,	there	are	several	directories	within	/etc/	that	start	with	the	name	cron:

#	ls	-laF	/etc/	|	grep	cron
-rw-------.		1	root	root						541	Jun		9		2014	anacrontab
drwxr-xr-x.		2	root	root							34	Jan	23	15:43	cron.d/
drwxr-xr-x.		2	root	root							62	Jul	22		2014	cron.daily/
-rw-------.		1	root	root								0	Jun		9		2014	cron.deny
drwxr-xr-x.		2	root	root							44	Jul	22		2014	cron.hourly/
drwxr-xr-x.		2	root	root								6	Jun		9		2014	cron.monthly/
-rw-r--r--.		1	root	root						451	Jun		9		2014	crontab
drwxr-xr-x.		2	root	root								6	Jun		9		2014	cron.weekly/

The	cron.daily,	cron.hourly,	cron.monthly,	and	cron.weekly	directories	are
all	directories	 that	can	contain	 scripts.	These	 scripts	are	 to	be	 run	per	 the	 time
specified	in	the	directory	name.

For	example,	let's	look	at	/etc/cron.hourly/0yum-hourly.cron:

#	cat	/etc/cron.hourly/0yum-hourly.cron
#!/bin/bash

#	Only	run	if	this	flag	is	set.	The	flag	is	created	by	the	yum-cron	
init

#	script	when	the	service	is	started	--	this	allows	one	to	use	
chkconfig	and
#	the	standard	"service	stop|start"	commands	to	enable	or	disable	
yum-cron.
if	[[!	-f	/var/lock/subsys/yum-cron]];	then
		exit	0
fi

#	Action!
exec	/usr/sbin/yum-cron	/etc/yum/yum-cron-hourly.conf

The	preceding	 file	 is	 a	 simple	bash	 script	 that	 the	crond	 daemon	will	 execute
every	hour,	as	it	 is	 in	the	cron.hourly	directory.	In	general	 the	scripts	 that	are
contained	 within	 these	 directories	 are	 put	 there	 by	 system	 services.	 However,
these	 directories	 are	 also	 open	 to	 systems	 administrators	 to	 place	 their	 own
scripts.

User	crontabs
If	 we	 continue	 down	 the	 log	 file,	 we	 can	 see	 an	 entry	 that	 is	 relevant	 to	 our
custom	job:

Jun	10	18:10:01	localhost	CROND[2087]:	(vagrant)	CMD	
(/opt/myapp/bin/processor	--debug	--config	
/opt/myapp/conf/config.yml	>	/dev/null)

This	 line	 shows	 the	 processor	 command	 that	 the	 application	 support	 team
referenced.	 This	 line	 must	 be	 the	 job	 the	 application	 support	 team	 is	 having
issues	with.	The	 log	entry	 tells	us	quite	a	bit	of	useful	 information.	For	one,	 it
provides	us	with	the	command	line	options	being	passed	to	this	job:

/opt/myapp/bin/processor	--debug	--config	
/opt/myapp/conf/config.yml	>	/dev/null

It	also	 tells	us	 the	 job	 is	being	executed	as	vagrant.	The	most	 important	 thing
this	log	entry	tells	us	though	is	that	the	job	is	being	executed.

Since	we	 know	 the	 job	 is	 being	 executed,	we	 should	 then	 verify	 if	 the	 job	 is
successful.	 To	 do	 this	 we	 will	 take	 an	 easy	 approach	 and	 execute	 the	 job
manually:

$	/opt/myapp/bin/processor	--debug	--config	
/opt/myapp/conf/config.yml
Initializing	with	configuration	file	/opt/myapp/conf/config.yml
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Starting	message	processing	job
Traceback	(most	recent	call	last):
		File	"app.py",	line	28,	in	init	app	(app.c:1488)
IOError:	[Errno	24]	Too	many	open	files:	
'/opt/myapp/queue/1433955823.29_0.txt'

We	should	omit	>	/dev/null	from	the	end	of	the	cron	task	as	this	will	redirect
the	output	to	/dev/null.	This	is	a	common	way	of	throwing	away	the	output	of
cron	 jobs.	 For	 this	 manual	 execution,	 we	 can	 utilize	 the	 output	 to	 help
troubleshoot	the	issue.

Once	 executed,	 the	 job	 seems	 to	 fail.	 Not	 only	 does	 it	 fail,	 but	 it	 is	 also
producing	an	error	message	along	with	the	failure:

IOError:	[Errno	24]	Too	many	open	files:	
'/opt/myapp/queue/1433955823.29_0.txt'

This	error	is	interesting,	as	it	seems	to	suggest	that	the	application	is	opening	too
many	files.	Why	would	that	matter?

Understanding	user	limits
On	 Linux	 systems,	 there	 are	 limitations	 that	 every	 process	 is	 held	 to.	 These
limits	 are	 in	 place	 to	 prevent	 processes	 from	 utilizing	 too	 many	 system
resources.

While	 these	 limits	 are	 enforced	 on	 every	 user,	 it	 is	 possible,	 however,	 to	 set
different	 limits	 per	 user.	 To	 check	what	 limits	 are	 set	 on	 the	vagrant	 user	 by
default,	we	can	use	the	ulimit	command:

$	ulimit	-a
core	file	size										(blocks,	-c)	0
data	seg	size											(kbytes,	-d)	unlimited
scheduling	priority													(-e)	0
file	size															(blocks,	-f)	unlimited
pending	signals																	(-i)	3825
max	locked	memory							(kbytes,	-l)	64
max	memory	size									(kbytes,	-m)	unlimited
open	files																						(-n)	1024
pipe	size												(512	bytes,	-p)	8
POSIX	message	queues					(bytes,	-q)	819200
real-time	priority														(-r)	0
stack	size														(kbytes,	-s)	8192
cpu	time															(seconds,	-t)	unlimited
max	user	processes														(-u)	3825
virtual	memory										(kbytes,	-v)	unlimited
file	locks																						(-x)	unlimited

When	we	executed	the	ulimit	command,	we	did	so	as	the	vagrant	user.	This	is
important	as	when	we	run	the	ulimit	command	as	any	other	user	including	root,
the	output	will	be	the	limits	of	that	user.

If	we	look	at	the	output	of	the	ulimit	command,	we	can	see	that	there	are	quite	a
few	limitations	that	can	be	set.

The	file	size	limit
Let's	take	a	look	and	breakdown	a	few	key	limits:

file	size															(blocks,	-f)	unlimited

The	first	interesting	item	is	the	file	size	limit.	This	limit	will	restrict	how	large
a	file	the	user	can	create.	The	current	setting	for	the	vagrant	user	is	unlimited
but	what	would	happen	if	we	set	this	value	to	a	smaller	number?

We	can	do	 this	 by	 executing	ulimit	–f	 followed	 by	 the	 number	 of	 blocks	 to
limit	the	file	to.	For	example,	consider	the	following	command	line:

$	ulimit	-f	10

After	setting	the	value	to	10	we	can	verify	it	took	effect	by	running	ulimit	–f
again,	but	this	time	with	no	value:

$	ulimit	-f
10

Now	that	our	limit	is	set	to	10	blocks,	let's	try	to	create	a	500	MB	file	by	using
the	dd	command:

$	dd	if=/dev/zero	of=/var/tmp/bigfile	bs=1M	count=500
File	size	limit	exceeded

One	nice	 thing	about	 user	 limits	 on	Linux	 is	 generally	 the	 errors	 provided	 are
self-explanatory.	We	can	see	from	the	preceding	output	that	not	only	was	the	dd
command	unable	 to	create	 the	file	 it	 received	an	error	stating	that	 the	file,	size
limit	was	exceeded.

The	max	user	processes	limit
Another	interesting	limit	is	the	max	processes	limit:

max	user	processes														(-u)	3825

This	limit	prevents	a	user	from	having	too	many	running	processes	at	one	time.
This	 is	a	very	useful	and	 interesting	 limitation	as	 it	can	easily	prevent	a	 rogue
application	from	taking	over	a	system.

It	can	also	be	a	 limitation	 that	you	will	often	encounter.	This	 is	especially	 true
for	 applications	 that	 launch	 many	 sub	 processes	 or	 threads.	 To	 see	 how	 this
limitation	works,	we	can	change	our	setting	to	10:

$	ulimit	-u	10
$	ulimit	-u
10

Like	 the	 file	 size	 limit,	 we	 can	 modify	 the	 process	 limit	 using	 the	 ulimit
command.	This	 time,	however,	we	use	 the	-u	 flag.	Each	user	 limit	has	 its	own
unique	flag	with	the	ulimit	command.	We	can	see	 these	flags	 in	 the	output	of
ulimit	–a,	and	of	course,	each	flag	is	referenced	in	the	man	page	for	ulimit.

Now	 that	we	have	 set	 our	processes	 to	be	 limited	 to	10,	we	 can	 see	 that	 limit
enforced	by	running	a	command:

$	man	ulimit
man:	fork	failed:	Resource	temporarily	unavailable

By	 simply	 being	 logged	 into	 the	 vagrant	 user	 through	 SSH,	 we	 are	 already
utilizing	 multiple	 processes.	 It	 will	 be	 quite	 easy	 to	 run	 into	 the	 limit	 of	 10
processes	as	any	new	command	we	run	will	put	our	login	over	the	limitation.

From	 the	 preceding	 example	 we	 can	 see	 that	 when	 the	 man	 command	 was
executed,	 it	 was	 not	 able	 to	 start	 a	 child	 process	 and	 thus	 returned	 an	 error
stating	Resource	temporarily	unavailable.

The	open	files	limit
The	final	interesting	user	limit	that	I	want	explore	is	the	open	files	limit:

open	files																						(-n)	1024

The	open	files	limit	will	restrict	a	process	from	opening	more	than	the	defined
number	of	 files.	This	 limit	 can	be	used	 to	prevent	 a	process	 from	opening	 too
many	 files	 at	 one	 time.	 This	 is	 something	 that	 can	 come	 in	 handy	 when
preventing	an	application	from	consuming	too	many	of	the	system's	resources.

Like	the	other	limits,	let's	see	what	happens	when	we	reduce	this	limit	to	a	very
unreasonable	number:

$	ulimit	-n	2
$	ls
-bash:	start_pipeline:	pgrp	pipe:	Too	many	open	files
ls:	error	while	loading	shared	libraries:	libselinux.so.1:	cannot	
open	shared	object	file:	Error	24

As	with	the	other	examples,	we	received	an	error,	Too	many	open	files,	in	this
case.	However,	 this	 error	 looks	 quite	 familiar.	 If	we	were	 to	 look	 back	 at	 the
error	received	from	our	scheduled	job	we	will	see	why.

IOError:	[Errno	24]	Too	many	open	files:	
'/opt/myapp/queue/1433955823.29_0.txt'

After	setting	our	max	number	of	open	files	 to	2,	the	ls	command	produced	an
error;	the	error	has	the	same	exact	error	message	our	application	received	when
executed	earlier.

Does	this	mean	that	our	application	is	trying	to	open	more	files	than	our	system
is	configured	to	allow?	That	is	a	strong	possibility.

Changing	user	limits
Since	 we	 suspect	 the	 open	 files	 limit	 is	 preventing	 the	 application	 from
executing,	we	can	set	its	limit	to	a	higher	value.	However,	this	is	not	as	simple	as
executing	ulimit	–n;	the	following	output	is	what	we	get	when	it's	executed:

$	ulimit	-n
1024
$	ulimit	-n	5000
-bash:	ulimit:	open	files:	cannot	modify	limit:	Operation	not	
permitted
$	ulimit	-n	4096
$	ulimit	-n
4096

By	 default,	 on	 our	 example	 system	 the	 highest	 the	 vagrant	 user	 is	 allowed	 to
raise	 the	open	files	 limitation	 to	 is	4096.	As	we	 can	 see	 from	 the	 preceding
error,	anything	higher	is	denied;	but	like	most	things	with	Linux	we	can	change
this.

The	limits.conf	file
The	user	limits	that	we	have	been	using	and	modifying	are	part	of	Linux's	PAM
system.	PAM	or	Pluggable	Authentication	Modules	 is	a	system	that	provides	a
modular	authentication	system.

For	 example,	 if	 our	 system	 was	 to	 utilize	 LDAP	 for	 authentication,	 the
pam_ldap.so	library	would	be	used	to	provide	this	functionality.	However,	since
our	 system	 uses	 local	 users	 for	 authentication,	 the	 pam_localuser.so	 library
handles	the	user	authentication.

We	can	validate	this	if	we	read	the	/etc/pam.d/system-auth	file:

$	cat	/etc/pam.d/system-auth
#%PAM-1.0
#	This	file	is	auto-generated.
#	User	changes	will	be	destroyed	the	next	time	authconfig	is	run.
auth								required						pam_env.so
auth								sufficient				pam_unix.so	nullok	try_first_pass
auth								requisite					pam_succeed_if.so	uid	>=	1000	
quiet_success
auth								required						pam_deny.so

account					required						pam_unix.so
account					sufficient				pam_localuser.so
account					sufficient				pam_succeed_if.so	uid	<	1000	quiet
account					required						pam_permit.so

password				requisite					pam_pwquality.so	try_first_pass	
local_users_only	retry=3	authtok_type=
password				sufficient				pam_unix.so	sha512	shadow	nullok	
try_first_pass	use_authtok
password				required						pam_deny.so

session					optional						pam_keyinit.so	revoke
session					required						pam_limits.so
-session					optional						pam_systemd.so
session					[success=1	default=ignore]	pam_succeed_if.so	service	in	
crond	quiet	use_uid
session					required						pam_unix.so

If	we	look	at	the	preceding	example,	we	can	see	that	pam_localuser.so	is	listed
with	account	as	the	first	column:

account					sufficient				pam_localuser.so

This	means	the	pam_localuser.so	module	is	a	sufficient	module	to	allow	an
account	to	be	utilized,	which	essentially	means	that	the	user	is	able	to	log	in	if
they	have	a	correct	/etc/passwd	and	/etc/shadow	entry.

session					required						pam_limits.so

If	we	look	at	the	preceding	line,	we	can	see	where	user	limits	are	enforced.	This
line	essentially	tells	the	system	that	the	pam_limits.so	module	is	required	for	all
user	 sessions.	 This	 effectively	 ensures	 that	 the	 user	 limits,	 which	 the
pam_limits.so	module	identifies	are	enforced	on	each	user	session.

The	 configuration	 for	 this	 PAM	 module	 is	 located	 in
/etc/security/limits.conf	and	/etc/security/limits.d/:

$	cat	/etc/security/limits.conf
#This	file	sets	the	resource	limits	for	the	users	logged	in	via	
PAM.
#								-	core	-	limits	the	core	file	size	(KB)
#								-	data	-	max	data	size	(KB)
#								-	fsize	-	maximum	filesize	(KB)
#								-	memlock	-	max	locked-in-memory	address	space	(KB)
#								-	nofile	-	max	number	of	open	files
#								-	rss	-	max	resident	set	size	(KB)
#								-	stack	-	max	stack	size	(KB)
#								-	cpu	-	max	CPU	time	(MIN)
#								-	nproc	-	max	number	of	processes
#								-	as	-	address	space	limit	(KB)
#								-	maxlogins	-	max	number	of	logins	for	this	user
#								-	maxsyslogins	-	max	number	of	logins	on	the	system
#								-	priority	-	the	priority	to	run	user	process	with
#								-	locks	-	max	number	of	file	locks	the	user	can	hold
#								-	sigpending	-	max	number	of	pending	signals
#								-	msgqueue	-	max	memory	used	by	POSIX	message	queues	
(bytes)
#								-	nice	-	max	nice	priority	allowed	to	raise	to	values:	
[-20,	19]
#								-	rtprio	-	max	realtime	priority
#
#<domain>						<type>		<item>									<value>
#

#*															soft				core												0

#*															hard				rss													10000
#@student								hard				nproc											20
#@faculty								soft				nproc											20
#@faculty								hard				nproc											50
#ftp													hard				nproc											0
#@student								-							maxlogins							4

When	we	read	the	limits.conf	file,	we	can	see	quite	a	bit	of	useful	information
about	user	limits.

Within	 this	 file,	 the	 available	 limitations	 are	 listed	 along	with	 a	 description	of
what	that	limitation	enforces.	For	example,	in	the	preceding	command	lines,	we
can	see	the	following	for	the	number	of	open	files	limit:

#								-	nofile	-	max	number	of	open	files

From	 this	 line	we	 can	 see	 that	 if	we	want	 to	 change	 the	number	of	open	 files
available	to	our	user,	we	will	need	to	use	the	nofile	type.	On	top	of	listing	what
each	 limitation	 does,	 the	 limits.conf	 file	 also	 contains	 examples	 of	 setting
custom	limits	for	users	and	groups:

#ftp													hard				nproc											0

Given	this	example	we	can	see	what	format	we	need	to	use	to	set	the	limit;	but
what	should	we	set	the	limitation	too?	If	we	look	back	at	the	error	from	our	job,
we	can	see	that	the	error	listed	a	file	in	the	/opt/myapp/queue	directory:

IOError:	[Errno	24]	Too	many	open	files:	
'/opt/myapp/queue/1433955823.29_0.txt'

It	 is	 safe	 to	 say	 that	 the	 application	 is	 trying	 to	 open	 the	 files	 within	 this
directory.	So,	to	determine	how	many	files	this	process	needs	to	have	open,	let's
find	out	how	many	files	exist	in	this	directory	by	using	the	following	command
line:

$	ls	-la	/opt/myapp/queue/	|	wc	-l
492304

The	preceding	command	uses	ls	–la	to	list	all	of	the	files	and	directories	within
the	queue/	directory	and	 redirects	 that	output	 to	wc	–l.	The	wc	 command	will
count	 the	 number	 of	 lines	 (-l)	 from	 the	 provided	 output,	 which	 essentially

means	that	within	the	queue/	directory,	there	are	492,304	files	and/or	directories.

Given	 the	 large	 number,	 we	 should	 set	 the	 number	 of	 open	 files	 limit	 to
500000,	 enough	 to	process	 the	queue/	directory	with	a	 little	 extra	 just	 in	case.
We	can	do	this	by	appending	the	following	line	to	the	limits.conf	file:

#	vi	/etc/security/limits.conf

After	adding	our	line	with	vi,	or	another	text	editor,	we	can	verify	it	is	there	with
the	tail	command:

$	tail	/etc/security/limits.conf
#@student								hard				nproc											20
#@faculty								soft				nproc											20
#@faculty								hard				nproc											50
#ftp													hard				nproc											0
#@student								-							maxlogins							4

vagrant				soft		nofile				100000
vagrant				hard		nofile				500000

#	End	of	file

Changing	 these	 settings	 does	 not	mean	 our	 login	 shell	 instantly	 has	 a	 limit	 of
500000.	Our	logged	in	session	still	has	a	limitation	of	4096	set.

$	ulimit	-n
4096

We	also	still	cannot	increase	it	beyond	that	value.

$	ulimit	-n	9000
-bash:	ulimit:	open	files:	cannot	modify	limit:	Operation	not	
permitted

In	order	for	our	change	to	take	effect,	we	must	log	in	to	our	user	once	again.

As	 we	 discussed	 earlier,	 these	 limitations	 are	 set	 by	 PAM,	 which	 is	 applied
during	the	login	of	our	shell	session.	Since	the	limitations	are	set	during	login,
we	 are	 still	 being	 restricted	 by	 the	 previous	 values	 picked	 up	 when	 we	 last
logged	in.

To	obtain	the	new	limitations,	we	must	log	out	and	log	back	in	(or	spawn	a	new

login	session).	For	our	examples,	we	will	log	out	of	our	shell	and	log	back	in.

$	ulimit	-n
100000
$	ulimit	-n	501000
-bash:	ulimit:	open	files:	cannot	modify	limit:	Operation	not	
permitted
$	ulimit	-n	500000
$	ulimit	-n
500000

If	 we	 look	 at	 the	 preceding	 command	 lines,	 we	 can	 see	 something	 quite
interesting.

When	we	logged	in	this	time,	our	number	of	files	limitation	was	set	to	100000,
which	 just	 happens	 to	 be	 the	 same	 limit	 we	 set	 as	 the	 soft	 limit	 in	 the
limits.conf	 file.	 This	 happened	 because	 the	 soft	 limit	 is	 the	 limit	 set	 by
default	for	each	session.

The	hard	limit	is	the	highest	value	above	the	soft	limit	that	this	user	can	set.	We
can	see	this	in	action	in	the	preceding	example,	as	we	were	able	to	set	the	nofile
limit	to	500000	but	not	501000.

Future	proofing	the	scheduled	job

The	 reason	we	 set	 the	 soft	 limit	 to	 100000	 was	 because	we	 are	 planning	 for
similar	 scenarios	 in	 the	 future.	With	 the	soft	 limit	 set	 at	100000,	 the	 cron	 job
that	runs	this	scheduled	job	will	be	limited	to	100,000	open	files.	However,	since
the	hard	 limit	 is	set	 to	500000,	 someone	can	 then	manually	 run	 the	 job	with	a
higher	limit	set	on	their	login	session.

As	long	as	the	number	of	files	in	the	queue	directory	does	not	exceed	500,000,
there	 should	 no	 longer	 be	 a	 need	 for	 anyone	 to	 edit	 the
/etc/security/limits.conf	file.

Running	the	job	again
Now	that	our	limitations	have	been	increased,	we	can	try	to	run	the	job	again.

$	/opt/myapp/bin/processor	--debug	--config	
/opt/myapp/conf/config.yml
Initializing	with	configuration	file	/opt/myapp/conf/config.yml
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Starting	message	processing	job
Traceback	(most	recent	call	last):
		File	"app.py",	line	28,	in	init	app	(app.c:1488)
IOError:	[Errno	23]	Too	many	open	files	in	system:	
'/opt/myapp/queue/1433955989.86_5.txt'

Once	again	we	received	an	error.	However,	this	time	the	error	is	just	a	little	bit
different.

In	the	previous	run,	we	received	the	following	error.

IOError:	[Errno	24]	Too	many	open	files:	
'/opt/myapp/queue/1433955823.29_0.txt'

However,	this	time	we	received	this	error.

IOError:	[Errno	23]	Too	many	open	files	in	system:	
'/opt/myapp/queue/1433955989.86_5.txt'

The	 difference	 is	 extremely	 subtle,	 but	 in	 the	 second	 run	 our	 error	 stated	Too
many	open	 files	 in	 system,	whereas	 our	 first	 run	 did	 not	 include	in	 system.
The	 reason	 for	 this	 is	 because	we	hit	 a	different	 type	of	 limitation,	not	 a	user
limitation,	but	a	system	limitation.

Kernel	tunables
The	Linux	Kernel	itself	can	set	limitations	on	a	system	as	well.	These	limits	are
defined	 based	 on	 kernel	 parameters.	 Some	 of	 these	 parameters	 are	 static	 and
cannot	be	changed	during	 runtime;	while	others	can.	When	a	kernel	parameter
can	be	changed	during	runtime	this	is	called	a	tunable	parameter.

We	can	see	both	static	and	tunable	kernel	parameters	and	their	current	values	by
using	the	sysctl	command:

#	sysctl	-a	|	head
abi.vsyscall32	=	1
crypto.fips_enabled	=	0
debug.exception-trace	=	1
debug.kprobes-optimization	=	1
dev.hpet.max-user-freq	=	64
dev.mac_hid.mouse_button2_keycode	=	97
dev.mac_hid.mouse_button3_keycode	=	100
dev.mac_hid.mouse_button_emulation	=	0
dev.parport.default.spintime	=	500
dev.parport.default.timeslice	=	200

Since	there	are	many	parameters	available,	I	used	the	head	command	to	limit	the
output	to	the	first	10.	The	error	we	received	earlier	mentioned	a	limitation	on	the
system,	this	suggests	we	may	be	hitting	a	limit	imposed	by	the	kernel	itself.

The	only	problem	is	how	do	we	know	which	one?	The	fastest	answer	of	course
is	 to	 search	Google.	 Since	 there	 are	 so	many	 kernel	 parameters	 (800+	 on	 the
system	we	are	working	on),	it	is	difficult	to	simply	read	the	output	of	sysctl	–a
and	find	the	right	one.

A	more	realistic	approach	 is	 to	simply	search	for	 the	 type	of	parameter	we	are
looking	 to	 modify.	 An	 example	 search	 for	 our	 scenario	 would	 be	 Linux
parameter	max	open	files.	 If	we	were	 to	 perform	 this	 search	we	will	most
likely	 find	 the	 parameter	 and	 how	 to	 modify	 it.	 If	 Google	 is	 not	 an	 option
however,	there	is	another	way.

In	general,	the	kernel	parameters	have	a	name	that	describes	what	the	parameter
controls.

For	example,	if	we	were	to	look	for	the	kernel	parameter	that	disables	IPv6	we
would	first	start	by	searching	for	the	net	string,	as	in	network:

#	sysctl	-a	|	grep	-c	net
556

However,	this	still	returns	a	large	number	of	results.	Within	those	results,	we	can
see	the	string	ipv6	though.

#	sysctl	-a	|	grep	-c	ipv6
233

Still,	quite	a	few	results;	however,	we	get	the	following	output	if	we	add	a	search
for	the	string	disable:

#	sysctl	-a	|	grep	ipv6	|	grep	disable
net.ipv6.conf.all.disable_ipv6	=	0
net.ipv6.conf.default.disable_ipv6	=	0
net.ipv6.conf.enp0s3.disable_ipv6	=	0
net.ipv6.conf.enp0s8.disable_ipv6	=	0
net.ipv6.conf.lo.disable_ipv6	=	0

We	can	finally	narrow	down	the	possible	parameters.	However,	we	do	not	fully
know	what	these	parameters	do.	Not	yet,	at	least.

If	 we	 perform	 a	 quick	 search	 through	 /usr/share/doc,	 we	 might	 find	 a	 few
documents	 that	 explain	 what	 these	 settings	 do.	 We	 can	 do	 this	 quickly	 by
performing	a	recursive	search	for	-r	through	this	directory	using	grep.	In	order
to	keep	the	output	simple,	we	can	add	-l	 (list	file),	which	causes	grep	 to	only
list	the	filenames	it	finds	the	desired	string	within:

#	grep	-rl	net.ipv6	/usr/share/doc/
/usr/share/doc/grub2-tools-2.02/grub.html

On	 Red	 Hat	 based	 Linux	 systems,	 the	 /usr/share/doc	 directory	 is	 used	 for
additional	documentation	outside	of	the	system's	man	pages.	If	we	were	limited
to	 only	 utilizing	 the	 documentation	 on	 the	 system	 itself,	 the	 /usr/share/doc
directory	is	one	of	the	first	places	to	check.

Finding	the	kernel	parameter	for	open	files
Since	we	like	performing	tasks	 the	hard	way,	we	will	 try	 to	 identify	 the	kernel
parameter	that	is	potentially	limiting	us	without	searching	for	it	on	Google.	The
first	step	to	do	this	will	be	to	search	the	sysctl	output	for	the	string	file.

The	reason	we	are	searching	for	file	 is	because	we	are	hitting	a	 limitation	on
the	 number	 of	 files.	 While	 this	 may	 not	 provide	 the	 exact	 parameter	 we	 are
trying	to	identify,	the	search	at	least	is	going	to	get	us	started:

#	sysctl	-a	|	grep	file
fs.file-max	=	48582
fs.file-nr	=	1088		0		48582
fs.xfs.filestream_centisecs	=	3000

Searching	for	file	may	have	actually	been	a	very	good	choice	after	all.	Simply
based	on	the	names	of	the	parameters,	the	two	that	may	be	interesting	to	us	are
fs.file-max	and	fs.file-nr.	At	this	point,	we	do	not	know	which	one	controls
the	number	of	open	files	or	if	either	of	these	do.

To	find	out	more	information	we	can	search	through	the	doc	directory.

#	grep	-r	fs.file-	/usr/share/doc/
/usr/share/doc/postfix-2.10.1/README_FILES/TUNING_README:
fs.file-max=16384

It	seems	that	a	document	named	TUNING_README,	located	in	the	Postfix	services
documentation,	has	a	reference	to	at	least	one	of	our	values.	Let's	check	out	the
file	to	see	what	this	document	says	about	this	kernel	parameter:

*	Configure	the	kernel	for	more	open	files	and	sockets.	The	details	
are
				extremely	system	dependent	and	change	with	the	operating	system	
version.	Be
				sure	to	verify	the	following	information	with	your	system	
tuning	guide:

						o	Linux	kernel	parameters	can	be	specified	in	
/etc/sysctl.conf	or	changed
								with	sysctl	commands:

								fs.file-max=16384

								kernel.threads-max=2048

If	we	read	the	contents	of	the	file	around	where	it	lists	our	kernel	parameter,	we
can	see	that	it	specifically	calls	out	parameters	to	configure	the	kernel	for	more
open	files	and	sockets.

This	document	calls	out	two	kernel	parameters	to	allow	for	more	open	files	and
sockets.	The	first	is	called	fs.file-max,	which	is	one	we	also	identified	with	our
sysctl	search.	The	second	is	called	kernel.threads-max,	which	is	fairly	new.

Simply	based	on	the	names,	it	seems	the	tunable	parameter	we	want	to	modify	is
the	fs.file-max	parameter.	Let's	take	a	look	at	its	current	value	as	follows:

#	sysctl	fs.file-max
fs.file-max	=	48582

We	can	list	the	current	value	of	this	parameter	by	executing	sysctl	followed	by
the	 parameter	 name	 (as	 shown	 in	 the	 preceding	 command	 lines).	 This	 will
simply	 display	 the	 value	 as	 it	 is	 defined	 currently;	 which	 seems	 to	 be	 set	 at
48582	a	number	far	lower	than	our	current	user	limits.

Tip

In	the	preceding	example,	we	found	this	parameter	in	a	postfix	document.	While
this	may	be	good,	 it	 is	 not	 exact.	 If	 you	often	 find	yourself	 needing	 to	 search
locally	for	kernel	parameters,	it	would	be	a	good	idea	to	install	the	kernel-doc
package.	The	kernel-doc	package	contains	quite	a	bit	of	information,	especially
about	tunables.

Changing	kernel	tunables
Since	we	believe	the	fs.file-max	parameter	controls	the	maximum	number	of
open	 files	a	 system	can	have,	we	should	change	 this	value	 to	allow	our	 job	 to
run.

Like	most	system	configuration	items	on	Linux,	there	is	the	option	to	change	this
value	 ad-hoc	 and	 on	 reboot.	 Earlier	 we	 set	 the	 limits.conf	 file	 to	 allow	 the
vagrant	user	 the	ability	 to	open	100,000	files	as	a	soft	 limit	and	500,000	as	a
hard	limit.	The	question	is	do	we	want	this	user	to	be	able	to	open	500,000	files
as	a	normal	operation?	Or	should	this	be	a	one-time	task	to	correct	the	issue	we
are	currently	facing?

The	answer	is	simply:	it	depends!

If	we	look	at	the	situation	we	are	working	on	currently,	the	job	in	question	has
not	 been	 run	 for	 quite	 a	 while.	 Because	 of	 this	 there	 is	 a	 large	 backlog	 of
messages	in	the	queue.	However,	these	are	not	normal	conditions.

Earlier	 when	 we	 set	 the	 user	 limit	 to	 100,000	 files,	 we	 did	 so	 as	 this	 is	 a
somewhat	appropriate	value	for	this	job.	With	this	considered,	we	should	also	set
the	kernel	parameter	to	a	value	slightly	over	100000	but	not	too	far	over.

For	this	scenario	and	in	this	environment,	we	are	going	to	perform	two	actions.
The	 first	 is	 to	configure	 the	 system	 to	allow	for	125,000	open	 files	by	default.
The	 second	 is	 to	 set	 the	 current	 parameter	 to	 525,000	 open	 files	 to	 allow	 the
scheduled	job	to	run	successfully.

Permanently	changing	a	tunable

Since	we	want	to	change	the	value	of	fs.file-max	to	125000	by	default,	we	will
need	 to	 edit	 the	 sysctl.conf	 file.	 The	 sysctl.conf	 file	 is	 a	 system
configuration	file,	which	allows	you	to	specify	custom	values	for	tunable	kernel
parameters.	During	every	 reboot	of	 the	 system,	 this	 file	 is	 read	and	 the	values
within	it	are	applied.

In	 order	 to	 set	 our	 fs.file-max	 value	 to	 125000	 we	 can	 simply	 append	 the
following	line	to	this	file:

#	vi	/etc/sysctl.conf
fs.file-max=125000

Now	 that	we	have	added	our	 custom	value,	we	will	need	 to	 tell	 the	 system	 to
apply	it.

As	mentioned	earlier,	the	sysctl.conf	file	is	applied	on	reboot,	however	we	can
also	apply	 the	settings	 to	 this	 file	at	any	 time	using	 the	sysctl	command	with
the	–p	flag.

#	sysctl	-p
fs.file-max	=	125000

When	given	the	–p	flag,	the	sysctl	command	will	read	and	apply	the	values	to
the	file	specified,	or	if	no	file	is	specified	/etc/sysctl.conf.	Since	we	did	not
specify	a	file	after	the	–p	flag,	the	sysctl	command	applied	the	values	added	to
/etc/sysctl.conf	and	printed	the	values	it	modified.

Let's	validate	it	was	applied	appropriately	by	executing	sysctl	again.

#	sysctl	fs.file-max
fs.file-max	=	125000

It	appears	that	in	fact	the	value	was	applied	appropriately,	but	what	about	setting
it	to	525000?

Temporarily	changing	a	tunable

While	 it	 may	 be	 simple	 enough	 to	 change	 the	 /etc/sysctl.conf	 to	 a	 higher
value,	apply	it,	and	then	revert	the	change.	There	is	a	much	easier	way	to	change
a	tunable's	value	temporarily.

The	 sysctl	 command,	 when	 provided	 with	 the	 –w	 option,	 will	 allow
modification	of	tunable	values.	To	see	this	in	action,	we	will	use	this	to	set	the
fs.file-max	value	to	525000.

#	sysctl	-w	fs.file-max=525000
fs.file-max	=	525000

Like	when	we	applied	the	sysctl.conf	file's	values,	when	we	executed	sysctl
–w	 it	 printed	 the	 values	 it	 applied.	 If	we	 validate	 them	 again,	we	will	 see	 the

value	is	set	to	525000	files:

#	sysctl	fs.file-max
fs.file-max	=	525000

Running	the	job	one	last	time
Now	that	we	have	set	our	open	files	 limit	to	500000	 for	 the	vagrant	user	and
525000	on	 the	system	as	a	whole.	We	can	execute	 this	 job	manually	one	more
time,	and	this	time	it	should	be	successful:

$	/opt/myapp/bin/processor	--debug	--config	
/opt/myapp/conf/config.yml
Initializing	with	configuration	file	/opt/myapp/conf/config.yml
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Starting	message	processing	job
Added	492304	to	queue
Processing	492304	messages
Processed	492304	messages

This	 time	 the	 job	executed	without	providing	any	errors!	We	can	 see	 from	 the
output	 of	 the	 job	 that	 all	 of	 the	 files	 in	/opt/myapp/queue	 were	 processed	 as
well.

A	look	back
Now	that	we	have	resolved	the	issue,	let's	take	a	second	to	look	at	what	we	did	to
resolve	the	issue.

Too	many	open	files
In	order	to	troubleshoot	our	issue,	we	executed	a	scheduled	cron	job	manually.	If
we	 circle	 back	 to	previous	 chapters,	 this	 is	 a	 prime	 example	of	 duplicating	 an
issue	and	seeing	it	for	ourselves.

In	this	case,	the	job	was	not	performing	the	tasks	it	was	supposed	to.	In	order	to
identify	the	reason,	we	ran	it	manually.

During	that	manual	execution,	we	were	able	to	identify	the	following	error:

IOError:	[Errno	24]	Too	many	open	files:	
'/opt/myapp/queue/1433955823.29_0.txt'

This	error	is	very	common	and	is	caused	by	the	job	running	into	user	limits	that
prevent	 a	 single	 user	 from	 opening	 too	many	 files.	 To	 resolve	 this	 we	 added
custom	settings	to	the	/etc/security/limits.conf	file.

These	changes	set	the	soft	limitation	of	open	files	to	100000	 for	our	user	by
default.	We	also	allowed	the	user	to	increase	the	open	files	limit	to	500000	on
an	ad-hoc	basis	via	the	hard	setting:

IOError:	[Errno	23]	Too	many	open	files	in	system:	
'/opt/myapp/queue/1433955989.86_5.txt'

After	 modifying	 these	 limits,	 we	 executed	 the	 job	 again	 and	 experienced	 a
similar	but	different	error.

This	 time	 the	 open	 files	 limitation	was	 being	 imposed	 on	 the	 system	 itself,
which	in	this	case	imposed	a	system-wide	limit	of	48,000	open	files.

To	resolve	 this	we	set	a	permanent	setting	of	125000	 in	the	/etc/sysctl.conf
file	and	temporarily	changed	the	value	to	525000.

From	that	point	we	were	able	to	execute	the	job	manually.	Beyond	this	instance
however,	 since	we	 changed	 the	 default	 limitations	we	 also	 gave	 this	 job	more
resources	to	execute	normally.	As	long	as	there	is	not	a	backlog	of	greater	than
100,000	files	this	job	should	execute	without	issue	in	the	future.

A	bit	of	clean	up
Speaking	of	normal	executions,	in	order	to	reduce	the	kernel's	limitation	of	open
files	we	can	execute	 the	sysctl	command	 again	with	 the	–p	 option.	This	will
reset	the	value	to	the	defined	value	within	the	/etc/sysctl.conf	file.

#	sysctl	-p
fs.file-max	=	125000

One	caveat	to	this	method	is	that	sysctl	-p	will	only	reset	the	values	specified
in	 /etc/sysctl.conf;	 which	 only	 contains	 a	 handful	 of	 tunable	 values	 by
default.	If	a	value	not	specified	in	/etc/sysctl.conf	is	modified,	the	sysctl	-
p	method	will	not	reset	this	value	to	default.

Summary
In	 this	 chapter,	 we	 became	 very	 familiar	 with	 the	 kernel	 and	 user	 limitations
enforced	within	Linux.	These	settings	become	very	useful	as	any	application	that
utilizes	many	resources	will	eventually	run	into	one	of	these.

In	the	next	chapter,	we	will	be	focusing	on	a	very	common	but	very	tricky	issue.
We	will	focus	on	troubleshooting	and	identifying	the	cause	of	a	system	running
out	 of	 memory.	 When	 a	 system	 runs	 out	 of	 memory,	 there	 are	 a	 lot	 of
consequences	such	as	application	processes	being	killed.

Chapter	 11.	 Recovering	 from
Common	Failures
In	the	previous	chapter,	we	explored	the	user	and	system	limitations	that	exist	on
Linux	 servers.	We	 looked	 at	 what	 limits	 are	 in	 place	 and	 how	 to	 change	 the
values	for	applications	that	require	more	than	default.

In	this	chapter,	we	will	put	our	troubleshooting	skills	 to	use	with	a	system	that
has	had	its	resources	exhausted.

The	reported	problem
Today's	chapter,	much	like	the	other	chapters,	will	start	with	someone	reporting
an	 issue.	The	 issue	 being	 reported	 is	 that	Apache	 is	 no	 longer	 running	 on	 the
server,	which	serves	the	company's	blog:	blog.example.com.

A	 fellow	 systems	 administrator	 who	 is	 reporting	 the	 issue	 has	 explained	 that
someone	reported	that	the	blog	was	down	and	when	he	logged	into	the	server	he
could	 see	 Apache	 was	 no	 longer	 running.	 At	 that	 point,	 our	 peer	 was	 unsure
what	to	do	to	continue	and	asked	for	our	help.

Is	Apache	really	down?
The	 first	 thing	 that	 we	 should	 do	 when	 a	 service	 is	 reported	 as	 down	 is	 to
validate	 that	 it	 really	 is	down.	This	 is	essentially	our	duplicate	 it	 for	ourselves
step	from	our	troubleshooting	process.	With	a	service	such	as	Apache,	we	should
also	validate	that	it	is	in	fact	down	fairly	quickly.

In	my	experience,	 I	have	often	been	 told	 that	a	 service	 is	down	when	 it	 really
was	not.	The	 server	may	have	been	having	 an	 issue	but	 it	was	not	 technically
down.	The	difference	between	up	or	down	can	change	the	troubleshooting	steps
that	we	need	to	perform	to	resolve	the	issue.

This	 said,	 the	 first	 step	 that	 I	 always	perform	 for	 issues	 like	 this	 is	 to	validate
whether	 the	 service	 really	 is	 down	 or	 whether	 the	 service	 simply	 is	 not
responding.

To	 validate	 that	Apache	 is	 really	 down,	we	will	 use	 the	 ps	 command.	As	we
learned	earlier,	this	command	will	print	a	list	of	the	currently	running	processes.
We	will	redirect	this	output	to	the	grep	command	to	check	whether	there	are	any
instances	of	the	httpd	(Apache)	service	running:

#	ps	-elf	|	grep	http
0	S	root						2645		1974		0		80			0	-	28160	pipe_w	21:45	pts/0	
00:00:00	grep	--color=auto	http

From	the	output	of	the	abovementioned	ps	command,	we	can	see	that	there	are
no	 processes	 running	 with	 the	 name	 httpd.	 Under	 normal	 circumstances,	 we
would	 expect	 to	 see	 at	 least	 a	 few	 lines	 that	 look	 similar	 to	 the	 following
example:

5	D	apache				2383					1		0		80			0	-	115279	conges	20:58	?	
00:00:04	/usr/sbin/httpd	-DFOREGROUND

Since	 there	 are	no	httpd	 processes	 found	 in	 the	 process	 list,	we	 can	 conclude
that	Apache	is	in	fact	down	on	this	system.	The	question	now	is,	why?

Why	is	it	down?
Before	simply	resolving	the	issue	by	starting	the	Apache	service,	we	are	going	to
first	figure	out	why	the	Apache	service	 is	not	running.	This	 is	a	process	called
Root	 Cause	 Analysis	 (RCA),	 which	 is	 a	 formal	 process	 that	 is	 used	 to
understand	what	first	caused	the	issue.

We	will	get	very	familiar	with	this	process	in	the	next	chapter.	In	this	chapter,	we
will	keep	it	simple	and	focus	specifically	on	why	Apache	is	not	running.

One	of	the	first	places	for	us	to	look	is	in	the	Apache	logs	in	/var/log/httpd.
We	 learned	 of	 these	 logs	 in	 the	 previous	 chapters	while	 troubleshooting	 other
webserver-related	 issues.	As	we	 saw	 in	 these	 earlier	 chapters,	 application	 and
service	logs	can	be	very	helpful	in	determining	what	has	happened	to	the	service.

Since	Apache	is	no	longer	running,	we	are	more	interested	in	the	last	few	events
that	 happened.	 If	 the	 service	 experienced	 a	 fatal	 error	 or	 was	 stopped,	 there
should	be	a	message	at	the	end	of	the	log	file	showing	this.

Because	 we	 are	 only	 interested	 in	 the	 last	 few	 events,	 we	 will	 use	 the	 tail
command	to	show	the	last	10	lines	of	the	error_log	file.	The	error_log	file	is
the	first	log	to	check	as	it	is	the	most	likely	place	for	anything	unusual:

#	tail	/var/log/httpd/error_log
[Sun	Jun	21	20:51:32.889455	2015]	[mpm_prefork:notice]	[pid	2218]	
AH00163:	Apache/2.4.6		PHP/5.4.16	configured	--	resuming	normal	
operations
[Sun	Jun	21	20:51:32.889690	2015]	[core:notice]	[pid	2218]	AH00094:	
Command	line:	'/usr/sbin/httpd	-D	FOREGROUND'
[Sun	Jun	21	20:51:33.892170	2015]	[mpm_prefork:error]	[pid	2218]	
AH00161:	server	reached	MaxRequestWorkers	setting,	consider	raising	
the	MaxRequestWorkers	setting
[Sun	Jun	21	20:53:42.577787	2015]	[mpm_prefork:notice]	[pid	2218]	
AH00170:	caught	SIGWINCH,	shutting	down	gracefully	[Sun	Jun	21	
20:53:44.677885	2015]	[core:notice]	[pid	2249]	SELinux	policy	
enabled;	httpd	running	as	context	system_u:system_r:httpd_t:s0
[Sun	Jun	21	20:53:44.678919	2015]	[suexec:notice]	[pid	2249]	
AH01232:	suEXEC	mechanism	enabled	(wrapper:	/usr/sbin/suexec)
[Sun	Jun	21	20:53:44.703088	2015]	[auth_digest:notice]	[pid	2249]	
AH01757:	generating	secret	for	digest	authentication	...
[Sun	Jun	21	20:53:44.704046	2015]	[lbmethod_heartbeat:notice]	[pid	

2249]	AH02282:	No	slotmem	from	mod_heartmonitor
[Sun	Jun	21	20:53:44.732504	2015]	[mpm_prefork:notice]	[pid	2249]	
AH00163:	Apache/2.4.6		PHP/5.4.16	configured	--	resuming	normal	
operations
[Sun	Jun	21	20:53:44.732568	2015]	[core:notice]	[pid	2249]	AH00094:	
Command	line:	'/usr/sbin/httpd	-D	FOREGROUND'

From	the	error_log	file	contents,	we	can	see	quite	a	few	interesting	messages.
Let's	take	a	quick	look	at	some	of	the	more	informational	log	entries.

[Sun	Jun	21	20:53:42.577787	2015]	[mpm_prefork:notice]	[pid	2218]	
AH00170:	caught	SIGWINCH,	shutting	down	gracefully

The	preceding	 line	 shows	 that	 the	Apache	process	was	 shut	down	on	Sunday,
Jun	21	at	20:53.	We	can	see	 this	as	 the	error	message	clearly	states	shutting
down	 gracefully.	 The	 next	 few	 lines,	 however,	 seem	 to	 indicate	 that	 the
Apache	service	was	back	up	only	2	seconds	later:

[Sun	Jun	21	20:53:44.677885	2015]	[core:notice]	[pid	2249]	SELinux	
policy	enabled;	httpd	running	as	context	
system_u:system_r:httpd_t:s0
[Sun	Jun	21	20:53:44.678919	2015]	[suexec:notice]	[pid	2249]	
AH01232:	suEXEC	mechanism	enabled	(wrapper:	/usr/sbin/suexec)
[Sun	Jun	21	20:53:44.703088	2015]	[auth_digest:notice]	[pid	2249]	
AH01757:	generating	secret	for	digest	authentication	...
[Sun	Jun	21	20:53:44.704046	2015]	[lbmethod_heartbeat:notice]	[pid	
2249]	AH02282:	No	slotmem	from	mod_heartmonitor
[Sun	Jun	21	20:53:44.732504	2015]	[mpm_prefork:notice]	[pid	2249]	
AH00163:	Apache/2.4.6		PHP/5.4.16	configured	--	resuming	normal	
operations

The	shutdown	log	entry	shows	a	process	id	of	2218,	whereas	the	preceding	five
lines	 show	 a	 process	 id	 of	 2249.	 The	 5th	 line	 also	 states	 resuming	 normal
operations.	 These	 four	 messages	 seem	 to	 indicate	 that	 the	 Apache	 process
simply	restarted.	Most	likely,	this	was	a	graceful	restart	of	Apache.

A	 graceful	 restart	 of	 Apache	 is	 a	 fairly	 common	 task	 performed	 during	 the
modification	 of	 its	 configuration.	 This	 is	 a	way	 to	 restart	 the	Apache	 process
without	taking	it	fully	down	and	impacting	the	web	service.

[Sun	Jun	21	20:53:44.732568	2015]	[core:notice]	[pid	2249]	AH00094:	
Command	line:	'/usr/sbin/httpd	-D	FOREGROUND'

The	most	interesting	thing	that	these	10	lines	tell	us,	however,	is	that	the	last	log
Apache	printed	was	nothing	more	than	a	notification.	When	Apache	was	stopped
gracefully,	it	 logged	a	message	in	the	error_log	 file	 to	show	that	 it	was	being
stopped.

Since	 the	Apache	processes	are	no	 longer	 running	and	 there	are	no	 log	entries
showing	that	it	was	shut	down	gracefully	or	even	ungracefully,	we	conclude	that
irrespective	 of	 the	 reason	why	Apache	was	 not	 running,	 it	 did	 not	 shut	 down
normally.

If	 a	 person	 shut	 down	 the	 service	 by	 using	 apachectl	 or	 the	 systemctl
command,	we	would	 expect	 to	 see	 a	message	 similar	 to	 that	 discussed	 in	 the
earlier	example.	Since	the	last	line	of	the	log	file	shows	no	shutdown	message,
we	can	only	assume	 that	 this	process	was	killed	or	 terminated	under	abnormal
circumstances.

Now,	the	question	is	What	might	have	caused	the	Apache	process	to	terminate	in
an	abnormal	manner	like	this?

One	 place	 that	 may	 provide	 a	 clue	 as	 to	 what	 happened	 with	 Apache	 is	 the
systemd	facility	as	Red	Hat	Enterprise	Linux	7	services,	such	as	Apache,	have
been	moved	to	systemd.	Upon	booting,	the	systemd	facility	starts	up	any	service
that	it	has	been	configured	to	start.

When	 a	 process	 that	 systemd	 starts	 is	 terminated,	 that	 activity	 is	 captured	 by
systemd.	Depending	on	what	has	happened	since	the	process	was	terminated,	we
can	see	whether	systemd	captured	this	event	by	using	the	systemctl	command:

#	systemctl	status	httpd
httpd.service	-	The	Apache	HTTP	Server
			Loaded:	loaded	(/usr/lib/systemd/system/httpd.service;	enabled)
			Active:	failed	(Result:	timeout)	since	Fri	2015-06-26	21:21:38	
UTC;	22min	ago
		Process:	2521	ExecStop=/bin/kill	-WINCH	${MAINPID}	(code=exited,	
status=0/SUCCESS)
		Process:	2249	ExecStart=/usr/sbin/httpd	$OPTIONS	-DFOREGROUND	
(code=killed,	signal=KILL)
	Main	PID:	2249	(code=killed,	signal=KILL)
			Status:	"Total	requests:	1649;	Current	requests/sec:	-1.29;	
Current	traffic:			0	B/sec"

Jun	21	20:53:44	blog.example.com	systemd[1]:	Started	The	Apache	
HTTP	Server.
Jun	26	21:12:55	blog.example.com	systemd[1]:	httpd.service:	main	
process	exited,	code=killed,	status=9/KILL
Jun	26	21:21:20	blog.example.com	systemd[1]:	httpd.service	stopping	
timed	out.	Killing.
Jun	26	21:21:38	blog.example.com	systemd[1]:	Unit	httpd.service	
entered	failed	state.

The	output	of	the	systemctl	status	command	shows	quite	a	bit	of	information.
Since	we	covered	this	quite	a	bit	in	the	previous	chapters,	I	am	going	to	skip	to
just	the	parts	of	this	output	that	will	tell	us	what	happened	to	the	Apache	service.

The	first	two	lines	that	look	interesting	are	the	following:

		Process:	2249	ExecStart=/usr/sbin/httpd	$OPTIONS	-DFOREGROUND	
(code=killed,	signal=KILL)
	Main	PID:	2249	(code=killed,	signal=KILL)

In	 these	 two	 lines,	 we	 can	 see	 process	 id	 2249,	 which	 we	 also	 saw	 in	 the
error_log	file.	This	is	the	process	id	of	the	Apache	instance	started	on	Sunday,
June	21.	We	 can	 also	 see	 from	 these	 lines	 that	 process	2249	 was	 killed.	 This
seems	to	indicate	that	someone	or	something	killed	our	Apache	service:

Jun	21	20:53:44	blog.example.com	systemd[1]:	Started	The	Apache	
HTTP	Server.
Jun	26	21:12:55	blog.example.com	systemd[1]:	httpd.service:	main	
process	exited,	code=killed,	status=9/KILL
Jun	26	21:21:20	blog.example.com	systemd[1]:	httpd.service	stopping	
timed	out.	Killing.
Jun	26	21:21:38	blog.example.com	systemd[1]:	Unit	httpd.service	
entered	failed	state.

If	we	look	at	the	last	few	lines	in	the	systemctl	status	output,	we	can	see	events
that	 the	 systemd	 facility	 captured.	 The	 first	 event	 that	 we	 can	 see	 is	 that	 the
Apache	service	was	started	on	June	21	at	20:53.	This	isn't	much	of	a	surprise	as
it	correlates	with	the	information	we	saw	in	error_log.

The	 last	 three	 lines,	 however,	 show	 that	 the	Apache	process	was	 subsequently
killed	on	June	26	at	21:21.	Unfortunately	these	events	do	not	show	exactly	why
the	Apache	process	was	killed	or	who	killed	it.	What	it	does	tell	us	is	the	exact
time	 that	 Apache	 was	 killed.	 This	 also	 shows	 that	 it	 was	 not	 likely	 that	 the

systemd	facility	stopped	the	Apache	service.

What	else	was	happening	at	that	time?
Since	 we	 were	 not	 able	 to	 determine	 the	 cause	 from	 the	 Apache	 logs	 or
systemctl	status,	we	will	need	to	keep	digging	to	understand	what	else	may
have	killed	this	service.

#	date
Sun	Jun	28	18:32:33	UTC	2015

Since	the	26th	was	several	days	ago,	we	have	a	somewhat	limited	set	of	places	to
look	 for	 additional	 information.	 One	 place	 that	 we	 can	 look	 is	 the
/var/log/messages	 log	 file.	 As	 we	 discovered	 in	 the	 earlier	 chapters,	 the
messages	 log	 contains	 quite	 a	 lot	 of	 diverse	 information	 from	 many	 of	 the
different	facilities	within	the	system.	If	there	were	a	place	that	could	tell	us	what
was	happening	with	the	system	at	that	time,	it	would	be	there.

Searching	the	messages	log

The	messages	log	is	quite	large	and	has	many	log	entries	within	it:

#	wc	-l	/var/log/messages
21683	/var/log/messages

Therefore,	we	need	to	filter	log	messages	that	are	either	not	relevant	to	our	issue
or	not	during	the	time	of	our	issue.	The	first	thing	that	we	can	do	is	search	the
log	for	messages	from	the	day	Apache	was	stopped:	June	26:

#	tail	-1	/var/log/messages
Jun	28	20:44:01	localhost	systemd:	Started	Session	348	of	user	
vagrant.

From	the	previously	mentioned	tail	command,	we	can	see	that	messages	within
the	/var/log/messages	file	have	the	format	of	date,	hostname,	process,	and	then
message.	The	date	field	is	a	three-letter	month	followed	by	the	day	number	and	a
24-h	timestamp.

Since	 our	 issue	 occurred	 on	 June	 26th,	 we	 can	 search	 this	 log	 file	 for	 any
instance	 of	 the	 string	 "Jun	 26".	 This	 should	 provide	 all	 messages	 that	 were
written	on	the	26th:

#	grep	-c	"Jun	26"	/var/log/messages

17864

This	evidently	 is	still	quite	a	few	log	messages,	 far	 too	many	to	read	 them	all.
Given	 this	 number,	 we	 need	 to	 filter	 the	 messages	 even	 more,	 maybe	 by	 the
process:

#	grep	"Jun	26"	/var/log/messages	|	cut	-d\		-f1,2,5	|	sort	-n	|	
uniq	-c	|	sort	-nk	1	|	tail
					39	Jun	26	journal:
					56	Jun	26	NetworkManager:
					76	Jun	26	NetworkManager[582]:
					76	Jun	26	NetworkManager[588]:
					78	Jun	26	NetworkManager[580]:
					79	Jun	26	systemd-logind:
				110	Jun	26	systemd[1]:
				152	Jun	26	NetworkManager[574]:
			1684	Jun	26	systemd:
		15077	Jun	26	kernel:

The	preceding	code	is	commonly	called	a	bash	one-liner.	This	is	often	a	series
of	commands	that	redirect	their	output	to	another	command	to	provide	a	function
or	output	 that	one	command	by	 itself	cannot	perform	or	generate.	 In	 this	case,
we	 have	 a	 one-liner	 that	 shows	 us	which	 processes	were	 logging	 the	most	 on
June	26th.

Breaking	down	this	useful	one-liner

The	 above	mentioned	 one-liner	 is	 somewhat	 complicated	 at	 first	 but	 once	we
break	down	this	one-liner,	it	becomes	much	easier	to	understand.	This	is	a	useful
one-liner	as	it	makes	identifying	trends	within	log	files	a	lot	easier.

Let's	break	down	this	one-liner	to	get	a	better	understanding	of	what	it	is	doing:

#	grep	"Jun	26"	/var/log/messages	|	cut	-d\		-f1,2,5	|	sort	|	uniq	
-c	|	sort	-nk	1	|	tail

We	 already	 know	 what	 the	 first	 command	 does;	 it	 simply	 searches	 the
/var/log/messages	 file	 for	 any	 instance	 of	 the	 string	 "Jun	 26".	 The	 other
commands	 are	 ones	 that	 we	 haven't	 covered	 before,	 but	 they	 can	 be	 useful
commands	to	know.

The	cut	command

The	 cut	 command	 in	 this	 one-liner	 is	 used	 to	 read	 the	 output	 of	 the	 grep
command	 and	 print	 only	 specific	 parts	 of	 each	 line.	 To	 understand	 how	 this
works,	we	should	first	run	the	one-liner	ending	at	the	cut	command:

#	grep	"Jun	26"	/var/log/messages	|	cut	-d\		-f1,2,5
Jun	26	systemd:
Jun	26	systemd:
Jun	26	systemd:
Jun	26	systemd:
Jun	26	systemd:
Jun	26	systemd:
Jun	26	systemd:
Jun	26	systemd:
Jun	26	systemd:
Jun	26	systemd:

The	 preceding	 cut	 command	works	 by	 specifying	 a	 delimiter	 and	 cutting	 the
output	by	that	delimiter.

A	delimiter	 is	 a	 character	used	 to	break	down	 the	 line	 into	multiple	 fields;	we
can	specify	it	with	the	–d	flag.	In	the	preceding	example,	the	–d	flag	is	followed
by	"\";	 the	backslash	 is	an	escape	character	and	 is	 followed	by	a	single	space.
This	tells	the	cut	command	to	use	a	single	space	character	as	the	delimiter.

The	–f	flag	is	used	to	specify	the	fields	that	should	be	displayed.	These	fields
are	the	strings	of	text	between	the	delimiter.

For	example,	let's	take	a	look	at	the	following	command:

$	echo	"Apples:Bananas:Carrots:Dried	Cherries"	|	cut	-d:	-f1,2,4
Apples:Bananas:Dried	Cherries

Here,	 we	 specified	 that	 the	 ":"	 character	 is	 the	 delimiter	 for	 cut.	 We	 also
specified	 that	 it	 should	 print	 the	 first,	 second,	 and	 fourth	 fields.	 This	 had	 the
effect	of	printing	Apples	(the	first	field),	Bananas	(the	second	field),	and	Dried
Cherries	(the	fourth	field).	The	third	field,	Carrots,	was	omitted	from	the	output.
This	 is	 because	we	 didn't	 specifically	 tell	 the	 cut	 command	 to	 print	 the	 third
field.

Now	that	we	know	how	cut	works,	let's	look	at	how	it	processes	the	messages
log	entries.

Here's	a	sample	of	a	log	message:

Jun	28	21:50:01	localhost	systemd:	Created	slice	user-0.slice.

When	we	executed	the	cut	command	in	our	one-liner,	we	specifically	told	it	to
only	print	the	first,	second,	and	fifth	fields:

#	grep	"Jun	26"	/var/log/messages	|	cut	-d\		-f1,2,5
Jun	26	systemd:

By	specifying	a	single	space	character	to	be	the	delimiter	in	our	cut	command,
we	can	see	that	this	causes	cut	to	only	print	the	month,	day,	and	program	from
each	 log	 entry.	 By	 itself,	 this	 may	 not	 seem	 very	 useful,	 but	 as	 we	 continue
looking	through	this	one-liner,	the	functionality	provided	by	cut	will	be	critical.

The	sort	command

The	next	command	sort	is	actually	used	twice	within	this	one-liner:

#	grep	"Jun	26"	/var/log/messages	|	cut	-d\		-f1,2,5	|	sort	|	head
Jun	26	audispd:
Jun	26	audispd:
Jun	26	audispd:
Jun	26	audispd:
Jun	26	audispd:
Jun	26	auditd[539]:
Jun	26	auditd[539]:
Jun	26	auditd[542]:
Jun	26	auditd[542]:
Jun	26	auditd[548]:

This	command	is	actually	pretty	simple	in	what	it	does.	The	sort	command	 in
this	one-liner	takes	the	output	of	the	cut	command	and	orders	(sorts)	it.

To	explain	this	better,	let's	look	at	the	following	example:

#	cat	/var/tmp/fruits.txt	
Apples
Dried	Cherries
Carrots
Bananas

The	above	file	again	has	several	fruits,	and	this	time,	they	are	not	in	alphabetical
order.	If	we	use	the	sort	command	to	read	this	file,	however,	the	order	of	these

fruits	will	change:

#	sort	/var/tmp/fruits.txt	
Apples
Bananas
Carrots
Dried	Cherries

As	we	can	see,	the	order	is	now	alphabetical	despite	how	the	fruits	are	listed	in
the	 file	 itself.	The	nice	 thing	about	sort	 is	 that	 it	 can	be	used	 to	order	 text	 in
several	 different	ways.	 In	 fact,	 in	 the	 second	 instance	of	sort	within	our	one-
liner,	we	use	the	–n	flag	to	sort	the	text	numerically	as	well:

#	cat	/var/tmp/numbers.txt
10
23
2312
23292
1212
129191
#	sort	-n	/var/tmp/numbers.txt	
10
23
1212
2312
23292
129191

The	uniq	command

The	reason	that	our	one-liner	contains	the	sort	command	is	simply	to	order	the
input	sent	to	uniq	-c:

#	grep	"Jun	26"	/var/log/messages	|	cut	-d\		-f1,2,5	|	sort	|	uniq	
-c	|	head
						5	Jun	26	audispd:
						2	Jun	26	auditd[539]:
						2	Jun	26	auditd[542]:
						3	Jun	26	auditd[548]:
						2	Jun	26	auditd[550]:
						2	Jun	26	auditd[553]:
					15	Jun	26	augenrules:
					38	Jun	26	avahi-daemon[573]:
					19	Jun	26	avahi-daemon[579]:
					19	Jun	26	avahi-daemon[581]:

The	uniq	 command	can	be	used	 to	 identify	 lines	 that	match	 and	display	 these
lines	in	a	single	unique	line.	To	understand	this	better,	let's	look	at	the	following
example:

$	cat	/var/tmp/duplicates.txt	
Apple
Apple
Apple
Apple
Banana
Banana
Banana
Carrot
Carrot

Our	example	file	"duplicates.txt"	contains	multiple	duplicate	lines.	When	we
read	this	file	with	uniq,	we	will	only	see	each	unique	line:

$	uniq	/var/tmp/duplicates.txt	
Apple
Banana
Carrot

This	can	be	somewhat	useful;	however,	 I	 find	 that	with	 the	–c	 flag,	 the	output
can	be	even	more	useful:

$	uniq	-c	/var/tmp/duplicates.txt	
						4	Apple
						3	Banana
						2	Carrot

With	the	–c	flag,	the	uniq	command	will	count	the	number	of	times	that	it	finds
each	 line.	 Here,	 we	 can	 see	 that	 there	 are	 four	 lines	 with	 the	 word	 Apple.
Therefore,	 the	uniq	 command	printed	 the	 number	 4	 before	 the	word	Apple	 to
show	that	there	were	four	instances	of	this	line:

$	cat	/var/tmp/duplicates.txt	
Apple
Apple
Orange
Apple
Apple
Banana
Banana

Banana
Carrot
Carrot
$	uniq	-c	/var/tmp/duplicates.txt	
						2	Apple
						1	Orange
						2	Apple
						3	Banana
						2	Carrot

One	caveat	to	the	uniq	command	is	that	in	order	to	get	an	accurate	count,	each
instance	needs	to	be	right	after	the	other.	You	can	see	what	happens	when	we	add
the	word	Orange	between	the	groups	of	Apple	lines.

Tying	it	all	together

If	we	look	at	our	command	again,	we	can	now	better	understand	what	it	is	doing:

#	grep	"Jun	26"	/var/log/messages	|	cut	-d\		-f1,2,5	|	sort	|	uniq	
-c	|	sort	-n	|	tail
					39	Jun	26	journal:
					56	Jun	26	NetworkManager:
					76	Jun	26	NetworkManager[582]:
					76	Jun	26	NetworkManager[588]:
					78	Jun	26	NetworkManager[580]:
					79	Jun	26	systemd-logind:
				110	Jun	26	systemd[1]:
				152	Jun	26	NetworkManager[574]:
			1684	Jun	26	systemd:
		15077	Jun	26	kernel:

The	 above	 command	 will	 filter	 and	 print	 all	 of	 the	 log	 messages	 in
/var/log/messages	that	match	the	string	"Jun	26".	The	output	will	then	be	sent
to	the	cut	command,	which	prints	the	month,	day,	and	process	of	each	line.	This
output	 is	 then	 sent	 to	 the	 sort	 command	 to	 order	 the	 output	 into	 groups	 that
match	 each	 other.	 The	 sorted	 output	 is	 then	 sent	 to	 uniq	 –c	 that	 counts	 the
number	of	occurrences	of	each	line	and	prints	one	unique	line	with	the	count.

From	 there,	we	add	another	sort	 to	order	 the	output	 by	 the	number	 added	by
uniq,	and	add	tail	to	shorten	the	output	to	the	last	10	lines.

So,	what	exactly	does	this	fancy	one-liner	tell	us?	Well,	it	tells	us	that	the	kernel
facility	and	the	systemd	process	are	logging	quite	a	bit.	In	fact,	in	comparison	to

the	other	items	listed,	we	can	see	that	these	two	have	more	log	messages	than	the
others.

However,	 it	 may	 not	 be	 unusual	 for	 systemd	 and	 kernel	 to	 have	 more	 log
messages	in	/var/log/messages.	If	there	was	another	process	that	wrote	many
logs,	we	would	be	able	to	see	this	in	the	one-liner's	output.	However,	since	our
first	 run	did	 not	 yield	 anything	useful,	we	 can	modify	 the	 one-liner	 to	 narrow
down	the	output:

Jun	26	19:51:10	localhost	auditd[550]:	Started	dispatcher:	
/sbin/audispd	pid:	562

If	 we	 look	 at	 the	 format	 of	 a	 messages	 log	 entry,	 we	 can	 see	 that	 after	 the
process,	 the	 log	message	can	be	 found.	To	narrow	down	our	 search	a	 little	bit
more,	we	can	add	a	little	bit	of	the	message	to	our	output.

We	 can	 do	 this	 by	 changing	 the	 cut	 command's	 field	 list	 to	 "1,2,5-8".	 By
adding	the	"-8"	after	5,	we	find	that	the	cut	command	displays	all	fields	from	5
to	8.	This	has	the	effect	of	including	the	first	three	words	of	each	log	message	in
our	one-liner:

#	grep	"Jun	26"	/var/log/messages	|	cut	-d\		-f1,2,5-8	|	sort	|	
uniq	-c	|	sort	-n	|	tail	-30
					64	Jun	26	kernel:	131055	pages	RAM
					64	Jun	26	kernel:	5572	pages	reserved
					64	Jun	26	kernel:	lowmem_reserve[]:	0	462
					77	Jun	26	kernel:	[579]
					79	Jun	26	kernel:	Out	of	memory:
					80	Jun	26	kernel:	[<ffffffff810b68f8>]	?	
ktime_get_ts+0x48/0xe0
					80	Jun	26	kernel:	[<ffffffff81102e03>]	?	
proc_do_uts_string+0xe3/0x130
					80	Jun	26	kernel:	[<ffffffff8114520e>]	
oom_kill_process+0x24e/0x3b0
					80	Jun	26	kernel:	[<ffffffff81145a36>]	
out_of_memory+0x4b6/0x4f0
					80	Jun	26	kernel:	[<ffffffff8114b579>]	
__alloc_pages_nodemask+0xa09/0xb10
					80	Jun	26	kernel:	[<ffffffff815dd02d>]	dump_header+0x8e/0x214
					80	Jun	26	kernel:	[pid]
					81	Jun	26	kernel:	[<ffffffff8118bc3a>]	
alloc_pages_vma+0x9a/0x140
					93	Jun	26	kernel:	Call	Trace:

					93	Jun	26	kernel:	[<ffffffff815e19ba>]	dump_stack+0x19/0x1b
					93	Jun	26	kernel:	[<ffffffff815e97c8>]	page_fault+0x28/0x30
					93	Jun	26	kernel:	[<ffffffff815ed186>]	
__do_page_fault+0x156/0x540
					93	Jun	26	kernel:	[<ffffffff815ed58a>]	do_page_fault+0x1a/0x70
					93	Jun	26	kernel:	Free	swap	
					93	Jun	26	kernel:	Hardware	name:	innotek
					93	Jun	26	kernel:	lowmem_reserve[]:	0	0
					93	Jun	26	kernel:	Mem-Info:
					93	Jun	26	kernel:	Node	0	DMA:
					93	Jun	26	kernel:	Node	0	DMA32:
					93	Jun	26	kernel:	Node	0	hugepages_total=0
					93	Jun	26	kernel:	Swap	cache	stats:
					93	Jun	26	kernel:	Total	swap	=
				186	Jun	26	kernel:	Node	0	DMA
				186	Jun	26	kernel:	Node	0	DMA32
				489	Jun	26	kernel:	CPU		

If	we	also	 increase	 the	tail	 command	 to	display	 the	 last	30	 lines,	we	can	 see
some	interesting	trends.	The	first	line	that	is	very	interesting	is	the	fourth	line	in
the	output:

					79	Jun	26	kernel:	Out	of	memory:

It	seems	that	the	kernel	printed	79	log	messages	that	start	with	the	term	"Out	of
memory".	While	it	may	seem	a	bit	obvious	to	say,	 it	seems	that	 this	server	may
have	run	out	of	memory	at	some	point.

The	next	two	interesting	lines	seem	to	support	this	theory	as	well:

					80	Jun	26	kernel:	[<ffffffff8114520e>]	
oom_kill_process+0x24e/0x3b0
					80	Jun	26	kernel:	[<ffffffff81145a36>]	
out_of_memory+0x4b6/0x4f0

The	first	 line	seems	 to	suggest	 that	 the	kernel	killed	a	process;	 the	second	 line
once	again	indicates	that	there	is	an	out	of	memory	situation.	Could	this	system
have	run	out	of	memory	and	in	doing	so	killed	the	Apache	process?	This	seems
very	likely.

What	happens	when	a	Linux	system	runs	out
of	memory?
On	 Linux,	memory	 is	 managed	 a	 bit	 differently	 from	 that	 on	 other	 operating
systems.	When	a	system	is	running	low	on	memory,	the	kernel	has	a	process	that
is	designed	 to	 reclaim	the	used	memory;	 this	process	 is	called	out	of	memory
killer	(oom-kill).

The	oom-kill	process	is	designed	to	kill	processes	that	utilize	a	large	amount	of
memory	in	order	to	free	this	memory	for	critical	system	processes.	We	will	cover
oom-kill	 in	 a	 bit,	 but	 first,	 we	 should	 understand	 how	 Linux	 defines	 out	 of
memory.

Minimum	free	memory

On	 Linux,	 the	 oom-kill	 process	 will	 be	 initiated	 when	 the	 amount	 of	 free
memory	is	lower	than	a	defined	minimum.	This	minimum	is	of	course	a	kernel
tunable	 parameter	 named	 vm.min_free_kbytes.	 This	 parameter	 allows	 you	 to
set	 the	 amount	 of	 memory	 in	 kilobytes	 that	 the	 system	 ensures	 is	 always
available.

When	 the	 available	memory	 is	 below	 the	 value	 of	 this	 parameter,	 the	 system
starts	to	take	action.	Before	going	too	far,	let's	first	look	at	what	this	value	is	set
at	on	our	system	and	refresh	how	memory	is	managed	in	Linux.

We	 can	 view	 the	 current	 vm.min_free_kbytes	 value	 with	 the	 same	 sysctl
command	that	we	used	in	the	previous	chapter:

#	sysctl	vm.min_free_kbytes
vm.min_free_kbytes	=	11424

Currently,	 the	 value	 is	 11424	 kilobytes	 or	 approximately	 11	 megabytes.	 This
means	that	our	system's	free	memory	must	always	be	greater	than	11	megabytes
or	 the	 system	 will	 kick	 off	 the	 oom-kill	 process.	 This	 seems	 pretty
straightforward,	but	as	we	know	from	Chapter	4,	Troubleshooting	Performance
Issues,	the	way	Linux	manages	memory	is	not	necessarily	that	easy:

#	free
													total							used							free					shared				buffers	

cached
Mem:								243788					230012						13776									60										0	2272
-/+	buffers/cache:					227740						16048
Swap:						1081340					231908					849432

If	we	 run	 the	free	 command	 on	 this	 system,	we	 can	 see	 the	 current	memory
usage	and	how	much	is	available.	Before	going	too	far,	we	will	break	down	this
output	to	refresh	our	understanding	of	how	Linux	uses	memory.

													total							used							free					shared				buffers		
cached
Mem:								243788					230012						13776									60										0	2272

In	 the	 first	 line,	we	 can	 see	 that	 the	 system	has	 a	 total	 of	 243MB	of	 physical
memory.	We	can	see	in	the	second	column	that	230MB	of	that	is	currently	used,
and	the	third	column	shows	that	13MB	is	unused.	It	is	this	unused	value	that	the
system	is	measuring	in	order	to	determine	whether	or	not	the	minimum	required
memory	is	currently	free.

This	 is	 important	 because	 if	 we	 remember	 from	 Chapter	 4,	 Troubleshooting
Performance	 Issues,	 there	 is	 a	 second	 "memory	 free"	 value	 that	 we	 use	 to
determine	how	much	memory	is	available.

													total							used							free					shared				buffers	
cached
Mem:								243788					230012						13776									60										0	2272
-/+	buffers/cache:					227740						16048

On	 the	 second	 line	 of	free,	we	 can	 see	 the	 amount	 of	 used	 and	 free	memory
when	 the	 system	 accounts	 for	 the	memory	 used	 by	 the	 cache.	 As	we	 learned
earlier,	the	Linux	system	very	aggressively	caches	files	and	filesystem	attributes.
All	of	 this	cache	 is	stored	 in	memory,	and	we	can	see	 that	 in	 the	 instant	when
this	free	command	was	run,	we	had	2,272	KB	of	memory	used	by	cache.

When	 the	 free	 memory	 (not	 including	 cache)	 starts	 to	 get	 close	 to	 the
min_free_kbytes	 value,	 the	 system	will	 start	 reclaiming	 some	of	 the	memory
used	for	the	cache.	This	is	designed	to	allow	the	system	to	cache	what	it	can,	but
during	 low	 memory	 conditions,	 this	 cache	 becomes	 disposable	 in	 order	 to
prevent	the	oom-kill	process	from	starting:

Swap:						1081340					231908					849432

The	 third	 line	 of	 the	 free	 command	 brings	 us	 to	 another	 important	 step	 in
Linux's	memory	management:	swapping.	As	we	can	see	from	the	preceding	line,
when	this	free	command	was	executed,	the	system	swapped	roughly	231MB	of
data	from	the	physical	memory	to	the	swap	device.

This	is	what	we	would	expect	to	see	on	a	system	that	has	been	running	low	on
available	memory.	When	free	memory	starts	to	become	scarce,	the	system	will
start	 taking	memory	objects	 that	are	 in	 the	physical	memory	and	push	 them	to
the	swap	memory.

How	aggressively	the	system	starts	to	perform	these	swapping	activities	depends
greatly	on	the	value	defined	in	the	kernel	parameter	called	vm.swappiness:

$	sysctl	vm.swappiness
vm.swappiness	=	30

On	 our	 system,	 the	 swappiness	 value	 is	 currently	 set	 to	 30.	 This	 tunable
parameter	 accepts	 values	 between	 0	 and	 100,	with	 100	 allowing	 for	 the	most
aggressive	swapping	policy.

When	 the	swappiness	 value	 is	 lower,	 the	 system	will	 prefer	 to	 retain	memory
objects	in	the	physical	memory	for	as	long	as	possible	before	moving	them	to	the
swap	device.

A	quick	recap

Before	going	into	oom-kill,	let's	recap	what	happens	when	the	memory	starts	to
get	low	on	a	Linux	system.	The	system	will	first	try	to	free	memory	objects	used
for	disk	cache	and	move	the	used	memory	to	the	swap	device.	If	 the	system	is
unable	 to	 free	 an	 adequate	 amount	 of	 memory	 through	 the	 two	 previously
mentioned	processes,	the	kernel	kicks	off	the	oom-kill	process.

How	oom-kill	works

As	 mentioned	 earlier,	 the	 oom-kill	 process	 is	 a	 process	 launched	 when	 free
memory	is	 low.	This	process	is	designed	to	identify	processes	that	are	utilizing
large	amounts	of	memory	and	are	not	critical	to	the	system	operation.

So,	 how	 does	 oom-kill	 determine	 this?	 Well,	 it's	 actually	 determined	 by	 the
kernel	and	is	constantly	updated.

We	discussed	in	the	earlier	chapters	how	every	running	process	on	a	system	has
a	 folder	 within	 the	 /proc	 file	 system.	 The	 kernel	 maintains	 this	 folder,	 and
within	it,	there	are	many	interesting	files.

#	ls	-la	/proc/6689/oom_*
-rw-r--r--.	1	root	root	0	Jun	29	15:23	/proc/6689/oom_adj
-r--r--r--.	1	root	root	0	Jun	29	15:23	/proc/6689/oom_score
-rw-r--r--.	1	root	root	0	Jun	29	15:23	/proc/6689/oom_score_adj

The	 three	 previously	 mentioned	 files	 are	 specifically	 relevant	 to	 the	 oom-kill
process	 and	 how	 likely	 each	 process	 is	 to	 be	 killed.	 The	 first	 file	 that	we	 are
going	to	look	at	is	the	oom_score	file:

#	cat	/proc/6689/oom_score
40

If	 we	 cat	 this	 file,	 we	 see	 that	 it	 simply	 contains	 a	 number.	 However,	 this
number	 is	 very	 important	 to	 the	 oom-kill	 process	 as	 this	 number	 is	 process
6689's	OOM	Score.

The	OOM	Score	is	a	value	that	the	kernel	assigns	to	a	process	that	determines
whether	 the	 corresponding	 process	 is	 a	 high	 or	 low	 priority	 for	 oom-kill.	 The
higher	 the	 score,	 the	more	 likely	 the	 process	 is	 to	 be	 killed.	When	 the	 kernel
assigns	 this	 process	 a	 value,	 it	 bases	 the	 value	 on	 the	 amount	 of	memory	 and
swap	that	the	process	uses	as	well	as	its	criticality	to	the	system.

You	may	be	asking	yourself,	I	wonder	if	there	is	a	way	to	adjust	the	oom	score
for	my	processes.	The	answer	to	this	question	is	yes,	there	is!	This	is	where	the
other	 two	 files	 oom_adj	 and	 oom_score_adj	 come	 into	 play.	 These	 two	 files
allow	 you	 to	 adjust	 the	 oom	 score	 of	 a	 process,	 allowing	 you	 to	 control	 the
likelihood	of	the	process	being	killed.

Currently,	 the	oom_adj	 file	 is	 to	 be	 depreciated	 in	 lieu	 of	oom_score_adj.	For
this	reason,	we	will	simply	focus	on	the	oom_score_adj	file.

Adjusting	the	oom	score

The	oom_score_adj	 file	supports	values	 from	-1000	 to	1000,	where	 the	higher
value	 will	 increase	 the	 likelihood	 of	 oom-kill	 selecting	 the	 process.	 Let's	 see
what	 happens	 to	 our	 oom	 score	 when	 we	 add	 an	 adjustment	 of	 800	 to	 our

process:

#	echo	"800"	>	/proc/6689/oom_score_adj	
#	cat	/proc/6689/oom_score
840

Simply	by	changing	the	contents	to	800,	the	kernel	detected	this	adjustment	and
added	800	 to	 the	oom	score	 for	 this	process.	 If	 this	 system	were	 to	 run	out	of
memory	in	the	near	future,	this	process	would	absolutely	be	killed	by	oom-kill.

If	 we	 were	 to	 change	 this	 value	 to	 -1000,	 this	 would	 essentially	 exclude	 the
process	from	oom-kill.

Determining	 whether	 our	 process	 was	 killed
by	oom-kill
Now	that	we	know	what	happens	when	a	system	runs	low	on	memory,	let's	take
a	 closer	 look	at	what	 exactly	happened	 to	our	 system.	To	do	 this,	we	will	 use
less	 to	 read	 the	/var/log/messages	 file	 and	 look	 for	 the	 first	 instance	of	 the
"kernel:	Out	of	memory"	message:

Jun	26	00:53:39	blog	kernel:	Out	of	memory:	Kill	process	5664	
(processor)	score	265	or	sacrifice	child

Interestingly	enough,	the	first	instance	of	an	"Out	of	memory"	log	message	is	20
hours	before	our	Apache	process	was	killed.	To	add	to	this,	the	process	killed	is
a	very	familiar	process,	the	"processor"	cronjob	from	the	previous	chapter.

This	single	log	entry	can	actually	tell	us	quite	a	bit	about	that	process	and	why
oom-kill	 selected	 this	process.	On	 the	 first	 line,	we	can	see	 that	 the	kernel	has
given	the	processor	process	a	score	of	265.	While	not	the	highest	score,	we	have
seen	that	the	score	of	265	is	very	likely	to	be	higher	than	that	of	most	processes
running	at	this	time.

This	seems	to	suggest	that	the	processor	job	was	utilizing	quite	a	bit	of	memory
at	this	time.	Let's	keep	looking	through	this	file	to	see	what	else	may	have	been
happening	on	this	system:

Jun	26	00:54:31	blog	kernel:	Out	of	memory:	Kill	process	5677	
(processor)	score	273	or	sacrifice	child

Just	 a	 bit	 further	 down	 the	 log	 file,	 we	 can	 see	 yet	 another	 instance	 of	 the
processor	process	being	killed.	It	seems	that	every	time	this	job	runs,	this	system
is	running	out	of	memory.

In	the	interest	of	time,	let's	jump	down	to	the	21st	hour	to	take	a	closer	look	at
the	time	that	our	Apache	process	being	killed:

Jun	26	21:12:54	localhost	kernel:	Out	of	memory:	Kill	process	2249	
(httpd)	score	7	or	sacrifice	child
Jun	26	21:12:54	localhost	kernel:	Killed	process	2249	(httpd)	
total-vm:462648kB,	anon-rss:436kB,	file-rss:8kB

Jun	26	21:12:54	localhost	kernel:	httpd	invoked	oom-killer:	
gfp_mask=0x200da,	order=0,	oom_score_adj=0

It	seems	that	the	messages	log	had	our	answer	all	along.	From	the	preceding	few
lines,	we	can	see	process	2249,	which	happens	to	be	our	Apache	server	process
id:

Jun	26	21:12:55	blog.example.com	systemd[1]:	httpd.service:	main	
process	exited,	code=killed,	status=9/KILL

Here,	 we	 see	 that	 systemd	 detected	 that	 the	 process	 was	 killed	 at	 21:12:55.
Further,	we	can	see	from	the	messages	log	that	oom-kill	targeted	this	process	at
21:12:54.	At	 this	point,	 there	 is	no	doubt	 that	 the	process	was	killed	by	oom-
kill.

Why	did	the	system	run	out	of	memory?
At	this	point,	we	were	able	to	determine	that	 the	Apache	service	was	killed	by
the	 system	when	 it	 ran	out	 of	memory.	Unfortunately,	 oom-kill	 is	 not	 the	 root
cause	of	the	issue,	but	rather	a	symptom.	While	it	is	the	reason	that	the	Apache
service	is	down,	if	we	simply	restarted	the	process	and	did	nothing	else,	the	issue
may	reoccur.

At	this	point,	we	need	to	identify	what	caused	the	system	to	run	out	of	memory
in	the	first	place.	To	do	this,	let's	take	a	look	at	the	entire	list	of	Out	of	memory
messages	in	the	messages	log	file:

#	grep	"Out	of	memory"	/var/log/messages*	|	cut	-d\		-f1,2,10,12	|	
uniq	-c
					38	/var/log/messages:Jun	28	process	(processor)
						1	/var/log/messages:Jun	28	process	(application)
					10	/var/log/messages:Jun	28	process	(processor)
						1	/var/log/messages-20150615:Jun	10	process	(python)
						1	/var/log/messages-20150628:Jun	22	process	(processor)
					47	/var/log/messages-20150628:Jun	26	process	(processor)
					32	/var/log/messages-20150628:Jun	26	process	(httpd)

Using	the	cut	and	uniq	–c	commands	again,	we	can	see	an	interesting	trend	in
the	messages	 log.	We	can	see	 that	 the	kernel	has	 invoked	oom-kill	quite	a	few
times.	We	can	see	that	even	today	the	system	kicked	off	the	oom-kill	process.

The	 first	 thing	 that	we	should	do	now	 is	 to	 figure	out	 just	how	much	memory
this	system	has.

#	free	-m
													total							used							free					shared				buffers	
cached
Mem:											238								206									32										0										0	2
-/+	buffers/cache:								203									34
Swap:									1055								428								627

Using	 the	free	command,	we	can	see	 that	 the	system	has	238	MB	of	physical
memory	and	1055	MB	of	swap.	However,	we	can	also	see	 that	only	34	MB	of
memory	is	free	and	that	the	system	has	swapped	428	MB	of	physical	memory.

It's	very	obvious	that	for	the	current	workload	that	this	system	is	under,	it	simply

does	not	have	enough	memory	allocated.

If	we	 look	 back	 at	 the	 processes	 that	 are	 targeted	 by	 oom-kill,	we	 can	 see	 an
interesting	trend:

#	grep	"Out	of	memory"	/var/log/messages*	|	cut	-d\		-f10,12	|	sort	
|	uniq	-c
						1	process	(application)
					32	process	(httpd)
				118	process	(processor)
						1	process	(python)

Here,	 it	 is	very	obvious	 that	 the	 two	processes	 that	were	killed	 the	most	often
were	httpd	and	processor.	What	we	 learned	earlier	 is	 that	oom-kill	 identifies
which	processes	to	kill	on	the	basis	of	the	amount	of	memory	that	they	are	using.
This	means	that	these	two	processes	are	using	the	most	memory	on	the	system,
but	just	how	much	memory	are	they	using?

#	ps	-eo	rss,size,cmd	|	grep	processor
				0			340	/bin/sh	-c	/opt/myapp/bin/processor	--debug	--config	
/opt/myapp/conf/config.yml	>	/dev/null
130924	240520	/opt/myapp/bin/processor	--debug	--config	
/opt/myapp/conf/config.yml
		964			336	grep	--color=auto	processor

Using	the	ps	command	to	specifically	display	the	rss	and	size	fields,	which	we
learned	 in	Chapter	4,	Troubleshooting	Performance	Issues,	we	can	see	 that	 the
processor	 job	 is	 using	 130	 MB	 of	 resident	 memory	 and	 240	 MB	 of	 virtual
memory.

If	the	system	only	has	238	MB	of	physical	memory	and	the	process	is	using	240
MB	of	virtual	memory,	eventually,	 this	system	is	going	 to	run	 low	on	physical
memory.

Resolving	 the	 issue	 in	 the	 long-term
and	short-term
Issues	 such	 as	 the	 one	 discussed	 in	 this	 chapter	 can	 be	 a	 bit	 tricky,	 as	 they
generally	have	two	paths	to	resolution.	There	is	a	long-term	fix	and	a	short-term
fix;	both	are	necessary,	but	one	is	only	temporary.

Long-term	resolution
For	the	long-term	resolution	of	this	issue,	we	really	have	two	options.	We	could
increase	 the	 server's	 physical	 memory	 to	 provide	 both	 Apache	 and	 Processor
adequate	memory	for	their	tasks.	Alternatively,	we	could	move	the	processor	to
another	server.

Since	we	know	that	this	server	has	frequently	killed	the	Apache	service	and	the
processor	job,	it	is	likely	that	the	memory	on	the	system	is	simply	too	low	for	it
to	perform	both	these	roles.	By	moving	the	processor	job	(and	likely	the	custom
app	that	it	is	part	of)	to	another	system,	we	would	be	moving	the	workload	to	a
dedicated	server.

On	 the	 basis	 of	 the	 memory	 usage	 of	 the	 processor,	 it	 may	 also	 be	 worth
increasing	the	memory	on	the	new	server	as	well.	As	it	seems,	the	processor	job
utilizes	 enough	memory	 to	 cause	out	of	memory	 conditions	on	 a	 low	memory
server	such	as	the	one	that	it	is	on	now.

Determining	 which	 long-term	 solution	 is	 best	 frankly	 depends	 on	 the
environment	and	 the	applications	causing	 the	system	 to	 run	out	of	memory.	 In
some	cases,	it	may	be	better	to	simply	increase	the	server's	memory	and	call	it	a
day.

This	task	is	very	easy	in	virtual	and	cloud	environments,	but	it	may	not	always
be	 the	 best	 answer.	 Determining	 which	 answer	 is	 better	 truly	 depends	 on	 the
environment	that	you	are	working	with.

Short-term	resolution
Let's	 say	hypothetically	 that	 both	 the	 long-term	 resolutions	would	 take	 several
days	 to	 implement.	 As	 of	 right	 now,	 the	 Apache	 service	 is	 still	 down	 on	 our
system.	This	means	that	our	company	blog	is	also	still	down;	to	resolve	the	issue
momentarily,	we	need	to	bring	Apache	back	up.

However,	we	shouldn't	just	simply	restart	Apache	with	the	systemctl	command.
Before	bringing	anything	up,	we	should	actually	first	reboot	the	server.

When	most	Linux	administrators	hear	the	words	"let's	reboot"	they	get	a	sinking
feeling	 in	 their	 stomach.	This	 is	 because,	 as	Linux	 systems	 administrators,	we
very	rarely	need	to	reboot	our	systems.	We	have	been	told	that	rebooting	Linux
servers	outside	of	updating	the	kernel	is	a	naughty	thing	to	do.

For	the	most	part,	we	are	correct	 in	believing	that	rebooting	a	server	 is	not	 the
right	 solution.	However,	 I	 consider	 the	 system	 running	out	of	memory	 to	be	 a
special	case.

It	is	my	opinion	that	when	oom-kill	is	launched	the	system	in	question	should	be
rebooted	before	being	fully	restored	to	its	normal	state.

The	reason	I	say	this	is	that	the	oom-kill	process	can	kill	any	process,	including
critical	 system	processes.	While	 the	oom-kill	process	does	 log	via	syslog	what
processes	were	killed,	 the	syslog	daemon	is	 just	another	process	on	 the	system
that	can	be	killed	by	oom-kill.

Even	if	oom-kill	did	not	kill	the	syslog	process	in	situations	where	oom-kill	has
killed	many	 different	 processes,	 it	 can	 be	 tricky	 to	 ensure	 each	 one	 is	 up	 and
running	as	it	should	be.	This	is	particularly	true	when	the	person	working	on	the
issue	is	less	experienced.

While	you	can	 spend	 time	determining	what	processes	 are	 running	and	ensure
that	 you	 restart	 each	 process,	 it	 is	 much	 faster	 and	 arguably	 safer	 to	 simply
reboot	the	server.	As	you	know	that	upon	booting,	every	process	that	is	defined
to	start	will	be	started.

While	not	 every	 system	administrator	would	agree	with	 this	opinion,	 I	believe

that	 it	 is	 the	 best	 approach	 to	 ensure	 that	 the	 system	 is	 in	 a	 stable	 state.	 It's
important	 to	 remember	 though	 that	 this	 is	 only	 a	 short-term	 solution,	 upon
rebooting,	unless	something	changes,	the	system	can	simply	run	out	of	memory
again.

For	our	situation,	it	would	be	best	to	disable	the	processor	job	until	the	server's
memory	 can	 be	 increased	 or	 the	 job	 can	 be	 moved	 to	 a	 dedicated	 system.
However,	 that	 may	 not	 be	 acceptable	 in	 all	 situations.	 Like	 the	 long-term
resolution,	preventing	 this	 from	happening	again	 is	 situational	 and	depends	on
the	environment	that	you	are	managing.

Since	 we	 assume	 that	 the	 short-term	 solution	 is	 the	 right	 solution	 for	 our
example,	we	will	proceed	to	reboot	the	system:

#	reboot
Connection	to	127.0.0.1	closed	by	remote	host.

Once	the	system	is	back	online,	we	can	validate	that	Apache	is	running	with	the
systemctl	command:

#	systemctl	status	httpd
httpd.service	-	The	Apache	HTTP	Server
			Loaded:	loaded	(/usr/lib/systemd/system/httpd.service;	enabled)
			Active:	active	(running)	since	Wed	2015-07-01	15:37:22	UTC;	1min	
29s	ago
	Main	PID:	1012	(httpd)
			Status:	"Total	requests:	0;	Current	requests/sec:	0;	Current	
traffic:			0	B/sec"
			CGroup:	/system.slice/httpd.service
											├─1012	/usr/sbin/httpd	-DFOREGROUND
											├─1439	/usr/sbin/httpd	-DFOREGROUND
											├─1443	/usr/sbin/httpd	-DFOREGROUND
											├─1444	/usr/sbin/httpd	-DFOREGROUND
											├─1445	/usr/sbin/httpd	-DFOREGROUND
											└─1449	/usr/sbin/httpd	-DFOREGROUND

Jul	01	15:37:22	blog.example.com	systemd[1]:	Started	The	Apache	
HTTP	Server.

If	we	run	free	again	on	this	system,	we	can	see	 that	 the	memory	utilization	 is
much	lower,	at	least	until	now:

#	free	-m

													total							used							free					shared				buffers	
cached
Mem:											238								202									35										4										0	86
-/+	buffers/cache:								115								122
Swap:									1055										0							1055

Summary
In	 this	 chapter,	 we	 used	 our	 troubleshooting	 skills	 to	 identify	 both	 the	 issue
affecting	the	company	blog	and	the	root	cause	of	this	issue.	We	were	able	to	use
the	skills	and	techniques	that	we	learned	in	earlier	chapters	to	determine	that	the
Apache	 service	was	 down.	We	 also	 identified	 that	 the	 root	 cause	 of	 this	 issue
was	the	system	running	out	of	memory.

We	could	see	by	investigating	the	log	files	that	the	two	processes	using	the	most
memory	 on	 the	 system	 were	 Apache	 and	 a	 custom	 application	 named
processor.	Furthermore,	by	identifying	these	processes,	we	were	able	to	make	a
long-term	recommendation	to	prevent	this	issue	from	re-occurring.

On	 top	 of	 all	 this,	 we	 learned	 quite	 a	 bit	 about	 what	 happens	 when	 Linux
systems	run	out	of	memory.

In	the	next	chapter,	we	will	put	everything	you	have	learned	this	far	to	the	test	by
performing	a	root	cause	analysis	of	an	unresponsive	system.

Chapter	 12.	 Root	 Cause	 Analysis	 of
an	Unexpected	Reboot
In	this	last	chapter,	we	will	put	the	troubleshooting	methods	and	skills	that	you
learned	in	previous	chapters	to	the	test.	We	will	perform	a	root	cause	analysis	of
one	of	the	most	difficult	real-world	scenarios:	an	unexpected	reboot.

As	 we	 discussed	 in	 Chapter	 1,	 Troubleshooting	 Best	 Practices,	 a	 root	 cause
analysis	 is	 a	 bit	 more	 involved	 than	 simply	 troubleshooting	 and	 resolving	 an
issue.	 In	Enterprise	 environments,	 you	will	 find	 that	 every	 issue	 that	 causes	 a
significant	impact	will	require	a	root	cause	analysis	(RCA).	The	reason	for	this	is
because	Enterprise	 environments	often	have	well-established	processes	of	how
incidents	are	supposed	to	be	handled.

In	 general,	when	 a	 significant	 incident	 occurs,	 the	 organization	 impacted	by	 it
wants	to	avoid	it	from	happening	again.	You	can	see	this	in	many	industries	even
outside	of	technical	environments.

As	we	discussed	in	Chapter	1,	Troubleshooting	Best	Practices,	a	useful	RCA	has
the	following	characteristics:

The	problem	as	it	was	reported
The	actual	root	cause	of	the	problem
A	timeline	of	events	and	actions	taken
Any	key	data	points
A	plan	of	action	to	prevent	the	incident	from	re-occurring

For	today's	issue,	we	will	use	an	incident	to	build	a	sample	root	cause	analysis
document.	To	do	this,	we	will	use	the	information	gathering	and	troubleshooting
steps	 you	 learned	 in	 previous	 chapters.	While	 doing	 all	 of	 this,	 you	will	 also
learn	to	handle	unexpected	reboots,	one	of	the	worst	incidents	to	identify	the	root
cause	for.

The	reason	unexpected	reboots	are	difficult	is	that	when	the	system	reboots	you
often	lose	the	information	you	need	to	identify	the	root	cause	of	the	issue.	As	we
have	seen	in	previous	chapters,	the	more	data	we	can	collect	during	an	issue,	the
more	likely	we	are	to	identify	the	cause	of	the	issue.

The	 information	 lost	 during	 reboots	 can	 often	 be	 the	 difference	 between
identifying	the	root	cause	and	not	identifying	the	root	cause.

A	late	night	alert
As	we	have	been	progressing	through	the	chapters	and	solving	many	issues	for
our	recent	employer,	we	have	also	been	gaining	their	confidence	in	our	abilities.
Recently,	we	were	even	placed	on	the	on	call	rotation,	which	means	that	if	issues
occur	after	hours	an	alert	will	be	sent	to	our	phone	by	SMS.

Of	course,	the	first	night	of	being	on	call	we	get	an	alert;	the	alert	is	not	a	good
one.

ALERT:	blog.example.com	is	no	longer	responding	to	ICMP	Pings

When	we	were	added	to	the	on	call	rotation,	our	team	lead	informed	us	that	any
major	 incident	 that	occurs	 after	hours	must	 also	have	an	RCA	performed.	The
reason	for	this	is	so	that	others	in	our	group	can	learn	and	understand	what	we
did	to	resolve	the	issue	and	how	to	prevent	it	from	happening	again.

As	we	discussed	 earlier	 one	of	 the	key	 components	 to	 a	useful	RCA	 is	 listing
when	things	happen.	A	major	event	in	our	timeline	is	when	we	received	the	alert;
based	on	our	SMS	message	we	can	see	that	we	received	the	alert	on	July	05th,
2015	at	01:52	or	rather;	1:52	A.M.	on	the	fifth	of	July	(welcome	to	on	call!).

Identifying	the	issue
From	 the	 alert,	we	 can	 see	 that	 our	monitoring	 system	was	 unable	 to	 perform
ICMP	pings	to	our	company	blog	server.	The	first	thing	we	should	do	is	determine
whether	or	not	we	can	ping	the	server:

$	ping	blog.example.com
PING	blog.example.com	(192.168.33.11):	56	data	bytes
64	bytes	from	192.168.33.11:	icmp_seq=0	ttl=64	time=0.832	ms
64	bytes	from	192.168.33.11:	icmp_seq=1	ttl=64	time=0.382	ms
64	bytes	from	192.168.33.11:	icmp_seq=2	ttl=64	time=0.240	ms
64	bytes	from	192.168.33.11:	icmp_seq=3	ttl=64	time=0.234	ms
^C
---	blog.example.com	ping	statistics	---
4	packets	transmitted,	4	packets	received,	0.0%	packet	loss
round-trip	min/avg/max/stddev	=	0.234/0.422/0.832/0.244	ms

It	seems	that	we	are	able	to	ping	the	server	in	question,	so	maybe	this	is	a	false
alert?	Just	in	case,	let's	attempt	to	log	in	to	the	system:

$	ssh	192.168.33.11	-l	vagrant
vagrant@192.168.33.11's	password:	
$

Looks	 like	we	were	able	 to	 log	 in	and	 the	system	is	up	and	running;	 let's	 start
taking	a	look	around	to	check	whether	we	can	identify	any	issues.

As	covered	in	a	previous	chapter,	the	first	command	we	always	run	is	w:

$	w
01:59:46	up	9	min,		1	user,		load	average:	0.00,	0.01,	0.02
USER					TTY								LOGIN@			IDLE			JCPU			PCPU	WHAT
vagrant		pts/0					01:59				2.00s		0.03s		0.01s	w

In	this	instance,	this	little	habit	has	actually	paid	off	quite	well.	With	the	output
of	the	w	command,	we	can	see	that	this	server	has	only	been	up	for	9	minutes.	It
seems	our	monitoring	system	could	not	ping	our	server	because	it	was	rebooting.

Tip

We	should	take	note	that	we	were	able	to	identify	that	 the	server	was	rebooted
after	logging	in;	this	will	be	a	critical	event	in	our	timeline.

Did	someone	reboot	this	server?
While	we	have	just	identified	the	root	cause	of	the	alert,	this	is	not	the	root	cause
of	the	issue.	We	need	to	identify	why	the	server	rebooted.	It's	not	often	(at	least
shouldn't	 be)	 that	 servers	 reboot	 themselves;	 sometimes	 it	 can	 simply	 be
someone	performing	maintenance	on	this	server	without	letting	others	know.	We
can	 see	 if	 anyone	 has	 been	 logged	 into	 this	 server	 recently	 using	 the	 last
command:

$	last
vagrant		pts/0								192.168.33.1					Sun	Jul		5	01:59			still	
logged	in			
joe		pts/1								192.168.33.1					Sat	Jun		6	18:49	-	21:37		
(02:48)				
bob		pts/0								10.0.2.2									Sat	Jun		6	18:16	-	21:37		
(03:21)				
billy		pts/0								10.0.2.2									Sat	Jun		6	17:09	-	18:14		
(01:05)				
doug		pts/0								10.0.2.2									Sat	Jun		6	15:26	-	17:08		
(01:42)				

The	last	command's	output	starts	with	the	latest	 logins	at	 the	top.	This	data	is
pulled	from	/var/log/wtmp,	which	 is	used	 to	store	 login	details.	At	 the	end	of
the	last	command's	output,	we	see	the	following	line:

wtmp	begins	Mon	Jun	21	23:39:24	2014

This	 tells	 us	 how	 far	 back	 the	 wtmp	 log	 file	 goes;	 a	 pretty	 useful	 piece	 of
information.	If	we	want	to	see	a	specific	number	of	logins,	we	could	simply	add
the	–n	flag	followed	by	the	number	of	logins	we	wish	to	see.

This	can	be	pretty	useful	 in	general;	however,	 since	we	don't	know	how	many
logins	there	have	been	lately	on	this	machine	we	will	just	use	the	default.

From	the	output	we	received,	we	can	see	that	 there	haven't	been	any	logins	on
this	server	recently.	Outside	of	someone	physically	pressing	the	power	button	or
unplugging	this	system,	we	can	assume	that	a	person	did	not	reboot	the	server.

Tip

This	is	another	fact/event	that	we	should	use	in	our	timeline.

What	do	the	logs	tell	us?
Since	a	person	didn't	 reboot	 this	 server,	 our	 next	 hypothesis	 is	 that	 this	 server
was	rebooted	by	either	a	software	or	hardware	problem.	The	next	logical	step	for
us	is	to	look	through	the	system	log	files	to	determine	what	happened:

01:59:46	up	9	min,		1	user,		load	average:	0.00,	0.01,	0.02

In	the	output	of	w,	we	see	that	the	server	has	been	up	for	9	minutes	and	that	the
time	of	that	command	execution	was	01:59.	Since	we	are	going	to	look	through
the	 logs	on	 this	 system,	we	should	start	 looking	at	a	 time	window	of	01:45	 to
01:52.

The	first	log	we	should	look	through	is	the	/var/log/messages	log.	By	default,
on	 Red	 Hat	 based	 systems	 this	 log	 file	 contains	 all	 the	 info	 and	 higher	 log
messages.	 This	 means	 that	 if	 we	 want	 to	 find	 information	 about	 why	 we
rebooted,	then	this	is	the	prime	location.

The	 following	 snippet	 was	 grabbed	 using	 the	 less	 command	 to	 read
/var/log/messages:

Jul		5	01:48:01	localhost	auditd[560]:	Audit	daemon	is	low	on	disk	
space	for	logging
Jul		5	01:48:01	localhost	auditd[560]:	Audit	daemon	is	suspending	
logging	due	to	low	disk	space.
Jul		5	01:50:02	localhost	watchdog[608]:	loadavg	25	9	3	is	higher	
than	the	given	threshold	24	18	12!
Jul		5	01:50:02	localhost	watchdog[608]:	shutting	down	the	system	
because	of	error	-3
Jul		5	01:50:12	localhost	rsyslogd:	[origin	software="rsyslogd"	
swVersion="7.4.7"	x-pid="593"	x-info="http://www.rsyslog.com"]	
exiting	on	signal	15.
Jul		5	01:50:32	localhost	systemd:	Time	has	been	changed
Jul		5	01:50:32	localhost	NetworkManager[594]:	<info>	dhclient	
started	with	pid	722
Jul		5	01:50:32	localhost	NetworkManager[594]:	<info>	Activation	
(enp0s3)	Stage	3	of	5	(IP	Configure	Start)	complete.
Jul		5	01:50:32	localhost	vboxadd-service:	Starting	VirtualBox	
Guest	Addition	service	[OK]
Jul		5	01:50:32	localhost	systemd:	Started	LSB:	VirtualBox	
Additions	service.
Jul		5	01:50:32	localhost	dhclient[722]:	Internet	Systems	

Consortium	DHCP	Client	4.2.5
Jul		5	01:50:32	localhost	dhclient[722]:	Copyright	2004-2013	
Internet	Systems	Consortium.
Jul		5	01:50:32	localhost	dhclient[722]:	All	rights	reserved.
Jul		5	01:50:32	localhost	dhclient[722]:	For	info,	please	visit	
https://www.isc.org/software/dhcp/
Jul		5	01:50:32	localhost	dhclient[722]:	
Jul		5	01:50:32	localhost	NetworkManager:	Internet	Systems	
Consortium	DHCP	Client	4.2.5
Jul		5	01:50:32	localhost	NetworkManager:	Copyright	2004-2013	
Internet	Systems	Consortium.
Jul		5	01:50:32	localhost	NetworkManager:	All	rights	reserved.
Jul		5	01:50:32	localhost	NetworkManager:	For	info,	please	visit	
https://www.isc.org/software/dhcp/
Jul		5	01:50:32	localhost	NetworkManager[594]:	<info>	(enp0s3):	
DHCPv4	state	changed	nbi	->	preinit
Jul		5	01:50:32	localhost	dhclient[722]:	Listening	on	
LPF/enp0s3/08:00:27:20:5d:4b
Jul		5	01:50:32	localhost	dhclient[722]:	Sending	on			
LPF/enp0s3/08:00:27:20:5d:4b
Jul		5	01:50:32	localhost	dhclient[722]:	Sending	on			
Socket/fallback
Jul		5	01:50:32	localhost	dhclient[722]:	DHCPREQUEST	on	enp0s3	to	
255.255.255.255	port	67	(xid=0x3ae55b57)

Since	 there	 is	 quite	 a	 bit	 of	 information	 here,	 let's	 break	 down	what	we	 see	 a
little	bit.

The	 first	 task	 is	 finding	 a	 log	 message	 that	 is	 clearly	 written	 on	 boot.	 By
identifying	 a	 log	message	 that	 is	 written	 on	 boot,	 we	will	 be	 able	 to	 identify
which	 logs	were	written	 prior	 to	 and	 after	 the	 reboot.	We	will	 also	be	 able	 to
identify	a	boot	time	for	our	root	cause	documentation:

Jul		5	01:50:12	localhost	rsyslogd:	[origin	software="rsyslogd"	
swVersion="7.4.7"	x-pid="593"	x-info="http://www.rsyslog.com"]	
exiting	on	signal	15.
Jul		5	01:50:32	localhost	systemd:	Time	has	been	changed
Jul		5	01:50:32	localhost	NetworkManager[594]:	<info>	dhclient	
started	with	pid	722
Jul		5	01:50:32	localhost	NetworkManager[594]:	<info>	Activation	
(enp0s3)	Stage	3	of	5	(IP	Configure	Start)	complete.

The	first	log	entry	that	looks	promising	is	the	message	from	NetworkManager	at
01:50:32.	This	message	 is	 stating	 that	 the	NetworkManager	 service	has	 started

dhclient.

The	dhclient	 process	 is	 used	 to	make	DHCP	 requests	 and	 configure	 network
settings	 based	 on	 the	 reply.	 This	 process	 is	 generally	 only	 called	 when	 the
network	is	being	reconfigured	or	at	boot	time:

Jul		5	01:50:12	localhost	rsyslogd:	[origin	software="rsyslogd"	
swVersion="7.4.7"	x-pid="593"	x-info="http://www.rsyslog.com"]	
exiting	on	signal	15.

If	 we	 look	 at	 the	 preceding	 line,	 we	 can	 see	 that	 at	 01:50:12,	 the	 rsyslogd
process	is	exiting	on	signal	15.	This	means,	the	rsyslogd	process	was	sent	a
signal	to	terminate,	a	pretty	standard	process	during	shutdown.

We	can	determine	that	at	01:50:12	the	server	was	in	the	shutdown	process	and	at
01:50:32	the	server	was	in	the	boot	process.	This	means,	we	should	be	looking	at
everything	before	01:50:12	to	determine	why	the	system	rebooted.

Tip

The	 shutdown	 time	 and	 boot	 time	 will	 also	 be	 needed	 for	 our	 root	 cause
timelines.

From	 the	 preceding	 captured	 logs,	 we	 can	 see	 two	 processes	 wrote	 to
/var/log/messages	before	01:50;	the	auditd	and	watchdog	processes.

Jul		5	01:48:01	localhost	auditd[560]:	Audit	daemon	is	low	on	disk	
space	for	logging
Jul		5	01:48:01	localhost	auditd[560]:	Audit	daemon	is	suspending	
logging	due	to	low	disk	space.

Let's	first	 take	a	look	at	the	auditd	process.	We	can	see	a	"low	on	disk	space"
message	in	the	first	line.	Could	our	system	have	run	into	an	issue	due	to	low	disk
space?	It's	possible,	and	it	is	something	we	can	check	right	now:

#	df	-h
Filesystem															Size		Used	Avail	Use%	Mounted	on
/dev/mapper/centos-root			39G			39G			32M	100%	/
devtmpfs																	491M					0		491M			0%	/dev
tmpfs																				498M					0		498M			0%	/dev/shm
tmpfs																				498M		6.5M		491M			2%	/run
tmpfs																				498M					0		498M			0%	/sys/fs/cgroup

/dev/sda1																497M		104M		394M		21%	/boot

It	does	seem	like	the	filesystem	is	at	100	percent	but	something	like	that	in	itself
would	 not	 typically	 cause	 a	 reboot.	 Considering	 the	 second	 auditd	 message
displays	 the	 daemon	 is	 suspending	 logging;	 this	would	 also	 not	 seem	 like	 a
reboot	procedure.	Let's	keep	looking	and	see	what	else	we	can	identify:

Jul		5	01:50:02	localhost	watchdog[608]:	loadavg	25	9	3	is	higher	
than	the	given	threshold	24	18	12!
Jul		5	01:50:02	localhost	watchdog[608]:	shutting	down	the	system	
because	of	error	-3

The	next	two	messages	from	the	watchdog	process	are	interesting.	The	first	one
states	 that	 the	loadavg	 for	 the	 server	 is	 higher	 than	 a	 specified	 threshold.	The
second	message	 is	 very	 interesting	 as	 it	 specifically	 states,	 "shutting	down	 the
system".

Could	 the	 watchdog	 process	 have	 rebooted	 this	 server?	 Maybe,	 but	 the	 first
question	is,	what	is	the	watchdog	process?

Learning	about	new	processes	and	services
It's	not	uncommon	when	digging	through	the	messages	log	to	find	a	process	you
have	never	used	or	seen	before:

#	ps	-eo	cmd	|	sort	|	uniq	|	wc	-l
115

Even	 on	 our	 basic	 example	 system,	 there	 are	 115	 unique	 commands	 in	 the
process	list.	This	is	especially	true	when	you	add	in	a	newer	release	such	as	Red
Hat	 Enterprise	 Linux	 7	 (newer	 at	 the	 time	 of	 writing	 this).	 Each	 new	 release
brings	 in	new	functionality,	which	might	even	mean	new	processes	running	by
default.	It's	very	hard	to	keep	up	with	it	all.

For	 the	 sake	 of	 our	 example,	 watchdog	 is	 one	 of	 those	 cases.	 At	 this	 point,
outside	of	inferring	from	the	name	that	it	watches	things,	we	have	no	idea	what
this	process	does.	So	how	do	we	learn	more	about	it?	Well,	we	either	Google	it,
or	man	it:

$	man	watchdog
NAME
							watchdog	-	a	software	watchdog	daemon

SYNOPSIS
							watchdog	[-F|--foreground]	[-f|--force]	[-c	filename|--
config-file	filename]	[-v|--verbose]	[-s|--sync]	[-b|--softboot]	[-
q|--no-action]

DESCRIPTION
							The		Linux		kernel		can		reset		the	system	if	serious	
problems	are	detected.		This	can	be	implemented	via	special	
watchdog	hardware,	or	via	a	slightly	less	reliable	software-only	
watchdog	inside	the	kernel.	Either	way,	there	needs	to	be	a	daemon	
that	tells	the	kernel	the	system	is	working	fine.	If	the	daemon	
stops	doing	that,	the	system	is	reset.

							watchdog	is	such	a	daemon.	It	opens	/dev/watchdog,	and	keeps	
writing	to	it	often	enough	to	keep	the	kernel	from	resetting,	at	
least	once	per	minute.	Each	write	delays	the	reboot	time	another	
minute.	After	a	minute		of		inactivity	the	watchdog	hardware	will	
cause	the	reset.	In	the	case	of	the	software	watchdog	the	ability	
to	reboot	will	depend	on	the	state	of	the	machines	and	interrupts.

							The	watchdog	daemon	can	be	stopped	without	causing	a	reboot	
if	the	device	/dev/watchdog	is	closed	correctly,	unless	your	kernel	
is	compiled	with	the	CONFIG_WATCHDOG_NOWAYOUT	option	enabled.

Based	on	the	man	page,	we	have	identified	that	the	watchdog	service	is	actually
used	to	determine	whether	the	server	is	healthy.	If	the	watchdog	is	unable	to	do
this,	it	might	reboot	the	server:

Jul		5	01:50:02	localhost	watchdog[608]:	shutting	down	the	system	
because	of	error	-3

It	seems	from	this	log	message	that	the	watchdog	software	is	the	one	that	caused
the	 reboot.	 Could	 it	 be	 that	 watchdog	 rebooted	 the	 system	 because	 the
filesystems	are	full?

If	 we	 go	 further	 down	 the	 man	 page,	 we	 will	 see	 another	 piece	 of	 useful
information,	as	follows:

TESTS
							The	watchdog	daemon	does	several	tests	to	check	the	system	
status:

							·		Is	the	process	table	full?

							·		Is	there	enough	free	memory?

							·		Are	some	files	accessible?

							·		Have	some	files	changed	within	a	given	interval?

							·		Is	the	average	work	load	too	high?

On	 the	 last	 "test"	 in	 this	 list,	 it	 states	 that	 the	 watchdog	 daemon	 can	 check
whether	the	average	work	load	is	too	high:

Jul		5	01:50:02	localhost	watchdog[608]:	loadavg	25	9	3	is	higher	
than	the	given	threshold	24	18	12!

Given	the	man	page	and	the	preceding	log	message,	it	seems	that	watchdog	didn't
reboot	the	server	because	of	the	filesystem,	but	rather	due	to	the	load	average	of
the	server.

Tip

Before	going	further,	let's	note	that	at	01:50:02	the	watchdog	process	kicked	off
the	reboot.

What	caused	the	high	load	average?
While	we	have	identified	what	rebooted	the	server,	we	still	have	not	gotten	to	the
root	 cause	 of	 the	 issue.	We	 still	 need	 to	 figure	 out	what	 caused	 the	 high	 load
average.	Unfortunately,	 this	would	 classify	 as	 information	 that	 is	 lost	 during	 a
reboot.

If	 the	 system	was	 still	 experiencing	 a	 high	 load	 average,	we	would	 simply	 be
able	to	use	top	or	ps	to	figure	out	which	processes	are	using	the	most	CPU	time.
Once	 the	 system	was	 rebooted	 however,	 any	 process	 that	 was	 causing	 a	 high
load	average	would	have	been	restarted.

Unless	 these	 processes	 started	 causing	 a	 high	 load	 average	 again,	we	 have	 no
way	of	identifying	the	source.

$	w
	02:13:07	up		23	min,		1	user,		load	average:	0.00,	0.01,	0.05
USER					TTY								LOGIN@			IDLE			JCPU			PCPU	WHAT
vagrant		pts/0					01:59				3.00s		0.26s		0.10s	sshd:	vagrant	
[priv]

However,	we	are	able	to	identify	when	the	load	average	started	to	increase	and
how	high	it	went.	This	information	might	be	useful	as	we	investigate	further,	as
we	can	use	it	to	identify	what	time	things	started	to	go	wrong.

To	look	at	a	historical	view	of	the	load	average,	we	can	use	the	sar	command:

$	sar

Lucky	 for	 us,	 it	 seems	 the	sar	 commands	 collection	 interval	 is	 set	 to	 every	2
minutes.	The	default	is	10	minutes,	which	means	we	would	normally	see	a	line
for	every	10	minutes:

01:42:01	AM				all				0.01				0.00				0.06					0.00					0.00				
99.92
01:44:01	AM				all				0.01				0.00				0.06					0.00					0.00				
99.93
01:46:01	AM				all				0.01				0.00				0.06					0.00					0.00				
99.93
01:48:01	AM				all			33.49				0.00				2.14					0.00					0.00				
64.37

01:50:05	AM				all			87.80				0.00			12.19					0.00					0.00					
0.01
Average:							all				3.31				0.00				0.45					0.00					0.00				
96.24

01:50:23	AM							LINUX	RESTART

01:52:01	AM			CPU			%user			%nice			%system			%iowait			%steal		
%idle
01:54:01	AM			all			0.01				0.00					0.06					0.00							0.00			
99.93
01:56:01	AM			all			0.01				0.00					0.05					0.00							0.00			
99.94
01:58:01	AM			all			0.01				0.00					0.05					0.00							0.00			
99.94
02:00:01	AM			all			0.03				0.00					0.10					0.00							0.00			
99.87

Looking	at	the	output,	we	can	see	that	at	01:46,	this	system	has	hardly	any	CPU
usage.	However,	starting	at	01:48,	there	was	a	33	percent	utilization	of	the	CPU
in	the	user	space.

It	also	seems	that	at	01:50,	sar	was	able	to	capture	the	CPU	utilization	that	was
being	used	at	99.99	percent,	with	87.8	percent	being	used	by	the	user,	and	12.19
percent	being	used	by	the	system.

Tip

The	above	are	all	good	facts	to	use	during	our	root	cause	summary.

With	 this,	 we	 now	 know	 that	 our	 issue	 started	 sometime	 between	 01:44	 and
01:46,	we	can	see	this	from	the	CPU	usage.

Let's	take	a	look	at	the	load	average	with	the	–q	flag	to	see	if	the	load	averages
match	the	CPU	utilization:

#	sar	-q
Again,	we	can	narrow	events	down	even	further:
01:42:01	AM								0						145					0.00						0.01						0.02									
0
01:44:01	AM								0						145					0.00						0.01						0.02									
0
01:46:01	AM								0						144					0.00						0.01						0.02									
0

01:48:01	AM							14						164					4.43						1.12						0.39									
0
01:50:05	AM							37						189				25.19						9.14						3.35									
0
Average:											1						147					0.85						0.30						0.13									
0

01:50:23	AM							LINUX	RESTART

01:52:01	AM			runq-sz		plist-sz		ldavg-1			ldavg-5		ldavg-15		
blocked
01:54:01	AM									0							143					0.01						0.04						0.02								
0
01:56:01	AM									1							138					0.00						0.02						0.02								
0
01:58:01	AM									0							138					0.00						0.01						0.02								
0
02:00:01	AM									0							141					0.00						0.01						0.02								
0

With	 the	 load	 average	measurements,	we	 can	 see	 that	 all	 was	 quiet	 at	 01:46
even	though	the	CPU	was	high.	However,	in	the	next	run	at	01:48,	we	could	see
the	run	queue	at	14	and	the	1	minute	load	average	at	4.

What	are	the	run	queue	and	load	average?
Since	we	are	looking	at	the	run	queue	and	load	average,	let's	take	a	second	to	get
an	understanding	of	what	these	values	mean.

In	a	very	basic	concept,	the	run	queue	value	shows	the	number	of	processes	in	an
active	state	waiting	to	be	executed.

For	more	details,	let's	think	about	a	CPU	and	how	it	works.	A	single	CPU	is	able
to	perform	only	one	task	at	a	time.	Most	servers	these	days	have	multiple	cores
and	sometimes	multiple	processors	per	 server.	On	Linux,	each	core	and	 thread
(for	hyper	threaded	CPUs)	are	seen	as	a	single	CPU.

Each	one	of	these	CPUs	is	able	to	execute	one	task	at	a	time.	If	we	had	two	CPU
servers,	our	server	could	execute	two	tasks	at	a	time.

Let's	assume	for	a	second	that	our	2	CPU	system	needs	to	execute	four	tasks	at
the	same	time.	The	system	can	execute	two	of	those	tasks	but	the	other	two	tasks
must	wait	until	 the	first	 two	are	finished.	When	situations	 like	 this	happen,	 the
processes	 that	are	waiting	are	placed	 into	a	"run	queue".	When	 the	system	has
processes	 in	 the	 run	 queue,	 they	will	 be	 prioritized	 and	 executed	 once	 CPU's
become	available.

In	our	sar	capture,	we	can	see	the	run	queue	value	was	14	at	01:48;	this	means
that	at	that	moment,	there	were	14	tasks	waiting	in	the	run	queue	for	CPU.

Load	average

The	 load	average	 is	 a	 bit	 different	 from	 the	 run	queue,	 but	 not	 very.	The	 load
average	 is	 the	 average	 run	 queue	 value	 over	 a	 given	 amount	 of	 time.	 In	 our
preceding	example,	we	can	see	ldavg-1	 (this	column	is	 the	average	run	queue
length	for	the	last	minute).

The	run	queue	value	and	the	1-minute	load	average	can	be	different	because	the
run	 queue	 value,	 as	 reported	 by	 sar	 is	 at	 the	 time	 of	 execution	where	 the	 1-
minute	load	average	is	the	run	queue	averaged	over	60	seconds.

01:46:01	AM								0						144						0.00						0.01						0.02									
0

01:48:01	AM							14						164						4.43						1.12						0.39									
0
01:50:05	AM							37						189					25.19						9.14						3.35									
0

A	 single	 capture	 of	 a	 high	 run	 queue	 might	 not	 necessarily	 mean	 there	 is	 an
issue,	 especially	 if	 the	 1-minute	 load	 average	 is	 not	 high.	 However,	 in	 our
example,	we	can	see	that	at	01:48,	our	run	queue	had	14	tasks	in	queue,	and	at
01:50,	our	run	queue	had	37	tasks	in	queue.

On	top	of	that,	we	can	see	that	at	01:50,	our	1-minute	load	average	was	25.

Given	the	overlap	with	the	CPU	utilization,	it	seems	that	roughly	around	01:46	-
01:48,	something	happened	to	cause	a	high	CPU	utilization.	Along	with	this	high
utilization,	there	were	also	a	lot	of	tasks	that	needed	to	be	executed	but	could	not
be.

Tip

We	should	take	a	second	and	note	down	the	times	and	values	we	saw	in	sar,	as
these	will	be	necessary	details	for	the	root	cause	summary.

Investigating	the	filesystem	being	full
Earlier,	we	noticed	 that	 the	 filesystem	was	100	percent	 full.	Unfortunately,	 the
version	of	sysstat	we	have	installed	doesn't	capture	disk	space	usage.	A	useful
thing	 to	 identify	 is	when	 the	filesystem	filled	up	as	compared	 to	when	our	 run
queue	started	to	increase:

Jul		5	01:48:01	localhost	auditd[560]:	Audit	daemon	is	low	on	disk	
space	for	logging
Jul		5	01:48:01	localhost	auditd[560]:	Audit	daemon	is	suspending	
logging	due	to	low	disk	space.

From	 the	 log	 messages	 we	 saw	 earlier,	 we	 could	 see	 the	 auditd	 process
identified	the	low	disk	space	at	01:48.	This	is	extremely	close	to	the	time	our	run
queue	spike	was	seen.

This	 is	 building	 towards	 a	 hypothesis	 that	 the	 problem's	 root	 cause	 was	 a
filesystem	 filling	 up,	 which	 caused	 a	 process	 to	 either	 launch	 many	 CPU
intensive	tasks	or	block	the	CPU	for	other	tasks.

While	this	is	a	sound	theory,	we	have	to	prove	it	to	be	true.	One	way	we	can	get
closer	to	proving	this	is	to	identify	what	is	utilizing	the	majority	of	disk	space	on
this	system:

#	du	-k	/	|	sort	-nk	1	|	tail	-25
64708		/var/cache/yum/x86_64/7/epel
67584		/var/cache/yum/x86_64/7/base
68668		/usr/lib/firmware
75888		/usr/lib/modules/3.10.0-123.el7.x86_64/kernel/drivers
80172		/boot
95384		/usr/share/locale
103548		/usr/lib/locale
105900		/usr/lib/modules/3.10.0-123.el7.x86_64/kernel
116080		/usr/lib/modules
116080		/usr/lib/modules/3.10.0-123.el7.x86_64
148276		/usr/bin
162980		/usr/lib64
183640		/var/cache/yum
183640		/var/cache/yum/x86_64
183640		/var/cache/yum/x86_64/7
184396		/var/cache
285240		/usr/share

317628		/var
328524		/usr/lib
1040924		/usr
2512948		/opt/myapp/logs
34218392		/opt/myapp/queue
36731428		/opt/myapp
36755164		/opt
38222996		/

The	preceding	one-liner	is	a	very	useful	method	for	identifying	which	directories
or	files	are	using	the	most	space.

The	du	command
The	 preceding	 one-liner	 uses	 the	 sort	 command,	 which	 you	 learned	 about	 in
Chapter	11,	Recovering	from	Common	Failures	to	sort	the	output	of	du.	The	du
command	 is	 a	 very	 useful	 command	 that	 can	 estimate	 the	 amount	 of	 space	 a
given	directory	is	using.

For	example,	if	we	wanted	to	know	how	much	space	the	/var/tmp	directory	was
using,	we	could	easily	identify	that	with	the	following	du	command:

#	du	-h	/var/tmp
0		/var/tmp/systemd-private-Wu4ixe/tmp
0		/var/tmp/systemd-private-Wu4ixe
0		/var/tmp/systemd-private-pAN90Q/tmp
0		/var/tmp/systemd-private-pAN90Q
160K		/var/tmp

A	useful	attribute	of	du	is	that,	by	default,	it	will	not	only	list	/var/tmp	but	also
the	directories	within	it.	We	can	see	that	there	are	a	few	directories	with	nothing
in	them	but	the	/var/tmp/	directory	contains	160	kb	of	data.

#	du	-h	/var/tmp/
0		/var/tmp/systemd-private-Wu4ixe/tmp
0		/var/tmp/systemd-private-Wu4ixe
0		/var/tmp/systemd-private-pAN90Q/tmp
0		/var/tmp/systemd-private-pAN90Q
4.0K		/var/tmp/somedir
164K		/var/tmp/

Note

It	is	important	to	know	that	the	size	of	/var/tmp	is	the	size	of	the	contents	within
/var/tmp,	which	includes	the	other	subdirectories.

To	illustrate	the	preceding	point,	I	created	a	directory	named	"somedir"	and	put
a	 4	 kb	 file	 within	 it.	We	 can	 see	 from	 this	 subsequent	 du	 command	 that	 the
/var/tmp	directory	is	now	showing	164	kb	used.

The	du	command	 has	 quite	 a	 number	 of	 flags	 that	 allow	 us	 to	 change	 how	 it
outputs	disk	usage.	In	the	preceding	examples,	the	values	are	being	printed	in	a
human-readable	format,	thanks	to	the	–h	 flag.	In	 the	one	liner,	 these	values	are

being	represented	in	kilobytes	due	to	the	–k	flag:

2512948		/opt/myapp/logs
34218392		/opt/myapp/queue
36731428		/opt/myapp
36755164		/opt
38222996		/

If	we	go	back	to	the	one-liner,	we	can	see	from	the	output	that	from	the	38	GB
used	in	/,	34	GB	is	in	the	/opt/myapp/queue	directory.	This	directory	is	pretty
familiar	to	us,	as	we	were	troubleshooting	issues	with	this	directory	in	previous
chapters.

From	 our	 previous	 experience,	 we	 know	 that	 this	 directory	 is	 used	 to	 queue
messages	received	via	a	custom	application.

Given	 the	size	of	 this	directory,	 it's	possible	 that	before	 the	 reboot,	 the	custom
application	was	running	on	this	server	and	filled	up	the	filesystem.

We	already	know	that	 this	directory	 is	consuming	the	majority	of	 the	space	on
this	system.	It	would	be	useful	 to	determine	when	the	 last	file	 in	this	directory
was	created	as	this	will	give	us	a	rough	timeframe	of	when	this	application	was
running	last:

#	ls	-l
total	368572
drwxrwxr-x.	2	vagrant	vagrant								40	Jun	10	17:03	bin
drwxrwxr-x.	2	vagrant	vagrant								23	Jun	10	16:55	conf
drwxrwxr-x.	2	vagrant	vagrant								49	Jun	10	16:40	logs
drwxr-xr-x.	2	root				root				272932864	Jul		5	01:50	queue
-rwxr-xr-x.	1	vagrant	vagrant							116	Jun	10	16:56	start.sh

We	can	actually	do	this	by	performing	an	ls	in	the	/opt/myapp	directory.	We	can
see	 from	 the	 preceding	 output	 that	 the	 queue/	 directory	was	 last	modified	 on
July	5th	at	01:50.	This	correlates	very	nicely	with	our	 issues	and	at	minimum,
proves	that	the	custom	application	was	running	prior	to	the	reboot.

Tip

The	 timestamp	 of	 when	 this	 directory	 was	 last	 updated	 and	 the	 fact	 that	 this
application	was	running	are	both	items	we	will	notate	in	our	summary.

Based	on	the	preceding	information	we	can,	at	 this	point,	safely	say	that	at	 the
time	of	the	incident,	the	custom	application	was	running,	and	had	created	enough
files	to	fill	up	the	filesystem.

We	can	also	say	that	around	the	time	the	filesystem	reached	100	percent	utilized,
the	load	average	of	the	server	spiked	suddenly.

From	these	facts,	we	can	create	a	hypothesis;	our	current	working	theory	is	that
once	 the	 application	 filled	 the	 filesystem,	 it	was	no	 longer	 able	 to	create	 files.
This	might	have	caused	the	same	application	to	block	CPU	time	or	spawn	many
CPU	tasks,	which	caused	a	high	load	average.

Why	wasn't	the	queue	directory	processed?
Since	we	know	the	custom	application	was	the	source	of	the	filesystem	issue,	we
also	need	to	answer	why.

In	 earlier	 chapters,	 you	 learned	 that	 this	 application's	 queue	 directory	 is
processed	by	a	cronjob	that	runs	as	the	"vagrant"	user.	Let's	take	a	look	at	when
that	cron	job	last	ran	by	looking	through	the	/var/log/cron	log	file:

Jun		6	15:28:01	localhost	CROND[3115]:	(vagrant)	CMD	
(/opt/myapp/bin/processor	--debug	--config	
/opt/myapp/conf/config.yml	>	/dev/null)

According	 to	 the	/var/log/cron	 directory,	 the	 last	 time	 the	 job	 ran	was	June
6th.	 This	 timeline	 coincides	 roughly	when	 this	 process	was	moved	 to	 another
system,	after	this	the	server	ran	out	of	memory.

Could	 it	 be	 that	 the	 processor	 job	 was	 stopped	 but	 the	 application	 was	 not?
Possibly,	we	know	the	application	was	running	but	let's	check	on	the	processor
job.

We	 can	 check	 if	 the	 processor	 job	 has	 been	 removed	 with	 the	 crontab
command:

#	crontab	-l	-u	vagrant
#*/4	*	*	*	*	/opt/myapp/bin/processor	--debug	--config	
/opt/myapp/conf/config.yml	>	/dev/null

The	–l	 (list)	 flag	will	cause	 the	crontab	command	 to	print	or	 list	 the	cronjobs
defined	for	the	user	executing	it.	When	the	-u	(user)	flag	is	added,	it	allows	us	to
specify	a	user	to	list	the	cronjobs	for,	in	this	case,	the	vagrant	user.

It	appears	from	the	list	that	the	processor	job	hasn't	been	removed,	but	rather,	it
has	been	disabled.	We	can	 see	 that	 it	has	been	disabled	because	 the	 line	 starts
with	an	#,	which	is	used	to	specify	comments	in	the	crontab	file.

This	essentially	turns	the	job	into	a	comment,	rather	than	a	scheduled	job.	This
means	that	the	crond	process	will	not	execute	this	job.

A	checkpoint	on	what	you	learned
At	this	point,	let's	do	a	checkpoint	on	what	we	were	able	to	identify	and	gather.

After	 logging	 into	 the	 system,	 we	were	 able	 to	 determine	 that	 the	 server	 had
rebooted.	We	were	able	to	see	in	/var/log/messages	that	the	watchdog	process
was	responsible	for	rebooting	the	server:

Jul		5	01:50:02	localhost	watchdog[608]:	loadavg	25	9	3	is	higher	
than	the	given	threshold	24	18	12!

Based	 on	 the	 log	 messages	 in	 /var/log/messages,	 the	 watchdog	 process
rebooted	the	server	because	of	a	high	load.	From	sar,	we	could	see	that	the	load
average	went	from	0	to	25	in	a	matter	of	a	few	minutes.

While	 performing	 our	 investigation,	 we	 were	 also	 able	 to	 identify	 that	 the
server's	/	(root)	filesystem	is	full.	Not	only	is	it	full	but	also	interestingly	enough
it	 was	 roughly	 100	 percent	 utilized	 just	 a	 few	 minutes	 before	 the	 system
rebooted.

The	 reason	 the	 filesystem	 was	 in	 this	 condition	 was	 because	 the	 custom
application	 in	 /opt/myapp	 was	 still	 running	 and	 creating	 files	 in
/opt/myapp/queue.	However,	 the	 job	 to	clear	 this	queue	was	not	 running	as	 it
has	been	commented	out	in	the	vagrant	user's	crontab.

Based	on	this,	we	can	say	that	the	root	cause	of	our	issue	is	most	likely	due	to
the	 filesystem	 filling	 up,	 which	 is	 due	 to	 the	 application	 running	 but	 not
processing	messages.

Sometimes	you	cannot	prove	everything

At	this	point,	we	have	identified	about	everything	we	can	as	to	what	caused	the
high	 load	 average.	 Since	 we	 don't	 have	 a	 snapshot	 of	 what	 processes	 were
running	 at	 the	 time	 of	 the	 incident,	 we	 cannot	 say	 for	 certain	 that	 it	 was	 the
custom	application.	We	also	cannot	say	for	certain	based	on	the	information	we
could	gather	that	it	was	triggered	because	of	the	filesystem	filling	up.

We	could	test	this	theory	by	duplicating	this	scenario	in	another	system,	but	that
is	not	necessarily	something	to	take	on	at	2:00	A.M.	on	a	weekend.	Duplicating

an	issue	to	that	degree	is	usually	something	to	perform	as	a	follow	up	activity.

At	this	point	given	the	data	we	could	find,	we	can	be	reasonably	certain	as	to	the
root	cause.	In	many	cases,	this	is	as	close	as	you	will	get	as	you	might	run	out	of
time	to	gather	or	simply	not	have	data	to	base	your	root	cause	on.

Preventing	reoccurrence
Since	we	 feel	 pretty	 confident	 about	 our	 hypothesis	 as	 to	what	 happened,	 we
now	 can	move	 on	 to	 the	 final	 step	 of	 our	 root	 cause	 analysis;	 preventing	 the
issue	from	reoccurring.

As	we	discussed	 in	 the	beginning	of	our	chapter,	all	useful	 root	cause	analysis
reports	include	a	plan	of	action.	Sometimes,	this	plan	of	action	is	something	to
be	performed	immediately	at	the	time	of	the	issue.	Sometimes,	this	plan	is	to	be
performed	later	as	a	long-term	resolution.

For	 our	 issue,	 we	 are	 going	 to	 have	 both,	 immediate	 actions	 and	 long-term
actions.

Immediate	action
The	first	immediate	action	we	need	to	take	is	to	ensure	that	the	systems	primary
function	 is	 healthy.	 In	 this	 case,	 the	 server's	 primary	 function	 is	 to	 serve	 the
company's	blog.

This	is	easy	enough	to	check	by	going	to	the	blog	address	in	a	browser.	We	can
see	from	the	preceding	screenshot	 that	 the	blog	is	working	as	expected.	Just	 to
be	sure,	we	can	validate	that	the	Apache	service	is	running	as	well:

#	systemctl	status	httpd
httpd.service	-	The	Apache	HTTP	Server
			Loaded:	loaded	(/usr/lib/systemd/system/httpd.service;	enabled)
			Active:	active	(running)	since	Sun	2015-07-05	01:50:36	UTC;	3	
days	ago
	Main	PID:	1015	(httpd)
			Status:	"Total	requests:	0;	Current	requests/sec:	0;	Current	
traffic:			0	B/sec"

			CGroup:	/system.slice/httpd.service
											├─1015	/usr/sbin/httpd	-DFOREGROUND
											├─2315	/usr/sbin/httpd	-DFOREGROUND
											├─2316	/usr/sbin/httpd	-DFOREGROUND
											├─2318	/usr/sbin/httpd	-DFOREGROUND
											├─2319	/usr/sbin/httpd	-DFOREGROUND
											├─2321	/usr/sbin/httpd	-DFOREGROUND
											└─5687	/usr/sbin/httpd	-DFOREGROUND

Jul	05	01:50:36	blog.example.com	systemd[1]:	Started	The	Apache	
HTTP	Server.

From	this,	it	looks	like	our	web	server	has	been	online	since	the	reboot,	 this	 is
good	as	it	means	the	blog	has	been	working	since	the	reboot	as	well.

Tip

Sometimes,	depending	on	the	criticality	of	the	system,	it	might	be	important	to
first	 validate	 that	 the	 system	 is	 up	 and	 running	 before	 even	 investigating	 the
issue.	As	with	anything,	this	really	depends	on	the	environment	as	there	are	hard
and	fast	rules	about	which	comes	first.

Now	that	we	know	the	blog	is	working	as	expected,	we	need	to	resolve	the	disk
being	full.

#	ls	-la	/opt/myapp/queue/	|	wc	-l
495151

As	with	earlier	chapters,	it	seems	the	queue	directory	has	quite	a	few	messages
waiting	to	be	processed.	In	order	to	clear	this	properly,	we	will	need	to	run	the
processor	command	manually,	but	there	are	a	few	extra	steps	we	must	take	as
well:

#	sysctl	-w	fs.file-max=500000
fs.file-max	=	500000

The	 first	 step	we	must	 take	 is	 to	 increase	 the	 number	 of	 files	 this	 system	 can
have	 open	 at	 a	 time.	 We	 know	 this	 from	 past	 experience	 with	 the	 processor
application	and	large	amounts	of	messages.

#	su	-	vagrant
$	ulimit	-n	500000
$	ulimit	-a

core	file	size										(blocks,	-c)	0
data	seg	size											(kbytes,	-d)	unlimited
scheduling	priority													(-e)	0
file	size															(blocks,	-f)	unlimited
pending	signals																	(-i)	7855
max	locked	memory							(kbytes,	-l)	64
max	memory	size									(kbytes,	-m)	unlimited
open	files																						(-n)	500000
pipe	size												(512	bytes,	-p)	8
POSIX	message	queues					(bytes,	-q)	819200
real-time	priority														(-r)	0
stack	size														(kbytes,	-s)	8192
cpu	time															(seconds,	-t)	unlimited
max	user	processes														(-u)	4096
virtual	memory										(kbytes,	-v)	unlimited
file	locks																						(-x)	unlimited

The	second	step	is	to	increase	the	user	limitations	imposed	on	the	vagrant	user;
specifically,	the	number	of	open	files	limitation.	This	step	needs	to	be	performed
in	the	same	shell	session	that	we	will	execute	the	processor	command	in.	Once
the	 step	 is	 complete,	 we	 can	 manually	 execute	 the	 processor	 command	 to
process	the	queued	messages:

$	/opt/myapp/bin/processor	--debug	--config	
/opt/myapp/conf/config.yml
Initializing	with	configuration	file	/opt/myapp/conf/config.yml
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Starting	message	processing	job
Added	495151	to	queue
Processing	495151	messages
Processed	495151	messages

Now	 that	 the	 messages	 have	 been	 processed,	 we	 can	 recheck	 the	 filesystem
utilization	with	the	df	command:

#	df	-h
Filesystem															Size		Used	Avail	Use%	Mounted	on
/dev/mapper/centos-root			39G		3.8G			35G		10%	/
devtmpfs																	491M					0		491M			0%	/dev
tmpfs																				498M					0		498M			0%	/dev/shm
tmpfs																				498M			13M		485M			3%	/run
tmpfs																				498M					0		498M			0%	/sys/fs/cgroup
/dev/sda1																497M		104M		394M		21%	/boot

As	we	can	see,	the	/	filesystem	is	down	to	10	percent	utilization.

To	ensure	that	we	do	not	fill	up	this	filesystem	again,	we	validate	that	the	custom
application	is	currently	stopped:

#	ps	-elf	|	grep	myapp
0	R	root						6535		2537		0		80			0	-	28160	-						15:09	pts/0				
00:00:00	grep	--color=auto	myapp

Since	we	cannot	see	any	processes	running	under	the	name	application,	we	can
be	assured	that	the	application	is	not	running	currently.

Long-term	actions
This	brings	us	to	our	long-term	actions.	The	long-term	actions	are	actions	that
we	will	recommend	in	our	root	cause	summary,	but	aren't	taken	at	this	moment.

The	 first	 long-term	 action	 to	 recommend	 is	 that	 the	 custom	 application	 be
permanently	removed	from	this	system.	Since	we	know	that	the	application	has
been	migrated	 to	another	system,	 it	 should	no	 longer	be	needed	on	 this	server.
However,	the	removal	of	this	application	is	not	something	we	should	take	on	at	2
A.M.	or	without	validating	that	it	is	truly	no	longer	required.

The	 second	 long-term	 action	 would	 be	 to	 investigate	 adding	 monitoring
solutions,	 which	 can	 take	 periodic	 snapshots	 of	 running	 processes	 and	 the
CPU/state	of	those	processes.	If	we	had	that	information	available	to	us	during
this	 RCA	 investigation,	 we	 would	 be	 able	 to	 prove,	 without	 a	 doubt,	 which
process	was	causing	a	high	load.	Since	that	information	is	not	available,	we	are
left	to	make	an	educated	guess.

Again,	this	would	not	be	a	task	that	we	would	want	to	take	on	during	a	late	night
call	but	rather	something	for	a	standard	work	day.

A	sample	Root	Cause	Analysis
Now	 that	 we	 have	 all	 of	 the	 information	 we	 need,	 let's	 create	 a	 root	 cause
analysis	 report.	 This	 report	 can	 be	 in	 any	 format,	 really,	 but	 I've	 found	 that
something	along	the	following	lines	works	well.

Problem	summary
At	 approximately	 1:50	 A.M.	 on	 July	 5,	 2015	 the	 server	 blog.example.com
unexpectedly	rebooted.	The	watchdog	process	initiated	the	reboot	process	due	to
a	high	load	average	on	the	server.

After	 investigation,	 the	high	 load	average	appears	 to	be	caused	by	a	custom	e-
mail	 application,	 which	 was	 left	 in	 a	 running	 state	 even	 though	 it	 has	 been
migrated	to	another	server.

From	 the	data	available,	 it	 seems	 the	application	consumed	100	percent	of	 the
root	filesystem.

While	I	was	unable	to	obtain	process	states	from	before	the	reboot,	it	appears	the
high	load	average	might	have	also	been	due	to	the	same	application	being	unable
to	write	to	the	disk.

Problem	details
The	time	at	which	the	incident	was	reported—07/05/2015	at	01:52

The	timeline	of	the	incident	would	be:

An	 SMS	 alert	 came	 through	 at	 01:52	 stating	 blog.example.com	 was
unreachable	via	the	ICMP	ping.
The	first	troubleshooting	step	performed	was	a	ping	of	the	server:

The	ping	showed	that	the	server	was	online
Logged	 into	 the	 server	 at	 01:59	 and	 determined	 that	 the	 server	 had
rebooted.
Searched	 the	 /var/log/messages	 file	 and	 identified	 that	 the	 watchdog
process	had	rebooted	the	server	at	01:50:12:

Watchdog	 started	 the	 reboot	 process	 due	 to	 the	 high	 load	 average	 at
01:50:02
During	investigation,	we	found	that	no	users	were	logged	in	at	the	time
of	the	incident
The	server	started	the	boot	process	at	01:50:32

During	 the	 investigation,	 it	 was	 identified	 that	 the	 server	 had	 run	 out	 of
available	disk	space	at	01:48:01.
The	 load	 average	 of	 this	 system	 started	 to	 increase	 at	 approximately	 the
same	time	reaching	25	at	01:50:05.
We	 identified	 that	 the	 /opt/myapp/queue	 directory	 was	 last	 modified	 at
01:50	 and	 contained	 roughly	 34	 GB	 of	 data	 creating	 100	 percent	 disk
utilization:

This	suggests	that	the	custom	e-mail	application	was	running	until	the
server	rebooted

We	found	that	the	processor	job	has	not	run	since	June	6th,	which	means
that	the	messages	were	not	processed.

Root	cause
The	 filesystem	 reached	 100	 percent	 utilization	 due	 to	 the	 custom	 application
running	without	the	processor	 job	being	executed	via	cron.	The	data	collected
suggests	this	caused	a	high	load	average,	which	trigged	the	watchdog	process	to
reboot	the	server.

Action	plan
We	should	have	the	following	steps	in	place:

Validated	that	Apache	is	running	and	Blog	is	accessible
Validated	that	the	custom	application	is	not	running	after	system	reboot
Executed	the	processor	job	manually	at	02:15	resolving	disk	space	issues

Further	actions	to	be	taken
Remove	 the	custom	application	 from	 the	server	 to	prevent	 the	application
from	accidently	starting
Investigate	 the	 addition	 of	 process	 list	 monitoring	 to	 capture	 which
processes	are	utilizing	the	CPU	time	during	similar	issues:

Will	help	in	resolution	of	any	similar	situations	should	they	occur

As	you	can	see	in	the	preceding	report,	we	have	a	high-level	 timeline	showing
what	we	were	able	to	identify,	how	we	identified	it,	and	the	actions	we	took	to
resolve	the	issue.	All	key	components	of	a	good	root	cause	analysis.

Summary
In	 this	 chapter,	 we	 covered	 how	 to	 respond	 to	 a	 very	 difficult	 issue:	 an
unexpected	reboot.	We	used	the	tools	and	methodologies	we	saw	throughout	this
book	to	identify	the	root	cause	and	create	a	root	cause	report.

We	used	log	files	heavily	throughout	this	book;	in	this	chapter,	we	were	able	to
use	these	logs	to	identify	the	process	that	rebooted	the	server.	We	also	identified
the	reason	watchdog	decided	to	reboot	the	server,	which	was	due	to	a	high	load
average.

We	were	able	to	use	tools	such	as	sar,	df,	du,	and	ls	to	determine	the	timing	and
cause	 of	 the	 high	 load	 average.	 All	 of	 these	 tools	 are	 commands	 you	 learned
about	throughout	this	book.

With	this	last	chapter,	we	covered	quite	a	few	examples	that	were	covered	earlier
in	 this	 book.	 You	 learned	 how	 to	 troubleshoot	 web	 applications,	 performance
issues,	 custom	applications,	 and	hardware	problems.	We	did	 all	 of	 these	using
real-world	examples	with	real-world	solutions.

While	this	book	covers	quite	a	few	topics,	the	goal	of	this	book	was	to	show	you
the	concepts	of	 troubleshooting	 issues	with	Red	Hat	Enterprise	Linux	systems.
The	examples	might	be	commonplace	or	somewhat	rare	but	the	commands	used
in	these	examples	are	commands	that	are	used	daily	during	troubleshooting.	The
topics	covered	all	provide	a	core	competency	with	Linux	and	will	provide	you
with	the	knowledge	necessary	to	troubleshoot	issues	not	directly	covered	in	this
book.

Index
A

Adaptor
about	/	The	Adaptor

Adaptor	troubleshooter	/	Troubleshooting	from	historic	issues
alert

about	/	A	late	night	alert
Apache	/	Validate	the	web	server
Apache	logs

about	/	Apache	logs
location,	finding	of	/	Finding	the	location	of	Apache's	logs
reviewing	/	Reviewing	the	logs

application
configuration	file,	using	/	A	wealth	of	information	in	the	configuration
file
running	status,	verifying	/	Checking	whether	the	application	is	already
running
about	/	Finding	out	more	about	the	application
tracing,	with	strace	/	Tracing	an	application	with	strace

application,	issues	of	starting
about	/	When	the	application	won't	start
exit	code	/	Exit	codes
script	failing	/	Is	the	script	failing,	or	the	application?
application	failing	/	Is	the	script	failing,	or	the	application?

application	programming	interface	(API)	/	Understanding	file	descriptors
arrays

drives,	re-adding	to	/	Re-adding	the	drives	to	the	arrays

B
bash	one-liner

about	/	Searching	the	messages	log
breaking	down	/	Breaking	down	this	useful	one-liner

basic	troubleshooting
about	/	Basic	troubleshooting
MariaDB	service,	validating	/	Validating	the	MariaDB	service

Bind
about	/	A	bit	about	/etc/hosts

bound	/	Back	to	troubleshooting	our	RAID
buffers

about	/	free	–	Looking	at	free	and	used	memory
bytes	/	Viewing	iptables	counters

C
Cached	memory

about	/	free	–	Looking	at	free	and	used	memory
caches

about	/	Linux	memory	buffers	and	caches
captured	data

reading	/	Reading	the	captured	data
Character	special	file	(CHR)	/	Getting	back	to	the	lsof	output
command-line	basics

about	/	Command-line	basics
command	flags	/	Command	flags
command	output,	piping	/	The	piping	command	output

command	flags
about	/	Command	flags

command	output
piping	/	The	piping	command	output

common	log	files
about	/	Common	log	files

configuration
checking,	 of	 application	 /	 Checking	 the	 application's	 configuration,
Other	examples

configuration	files
about	/	Configuration	files
default	system	configuration	directory	 /	Default	 system	configuration
directory
finding	/	Finding	configuration	files
finding,	rpm	command	used	/	Using	the	rpm	command
finding,	find	command	used	/	Using	the	find	command

conflict
resolving	/	Resolving	the	conflict

connectivity
testing,	 from	 db.example.com	 /	 Testing	 connectivity	 from
db.example.com

connectivity,	testing
about	/	Testing	connectivity
telnet	 command,	 executing	 from	 blog.example.com	 /	 Telnet	 from

blog.example.com
telnet	command,	executing	from	laptop	/	Telnet	from	our	laptop

cores
about	/	Threads	and	Cores

cpuinfo	file
about	/	Threads	and	Cores

CPU	performance
issues,	identifying	/	A	quick	look	with	top,	Digging	deeper	with	ps

CPU	statistics
viewing,	with	sar	command	/	CPU

CPU	utilization
investigating	/	CPU
number	of	CPUs	available,	determining	 /	Determining	 the	number	of
CPUs	available

cron	daemon	/	Background	questions
cron	job

running	status,	checking	/	Is	the	cron	job	even	running?
cronjobs

about	/	Troubleshooting	the	NFS	server,	again
cURL

port	connectivity,	testing	with	/	Testing	port	connectivity	with	cURL
curl	command

used,	 for	 calling	 web	 application	 /	 Using	 curl	 to	 call	 our	 web
application

current	network	connections
displaying,	 netstat	 command	 used	 /	 Showing	 current	 network
connections	with	netstat

current	RAID	status
checking	/	Checking	the	current	RAID	status

cut	command
about	/	The	cut	command

D
/dev/cdrom	/	More	than	just	disk	drives
/dev/console	/	More	than	just	disk	drives
/dev/cpu	/	More	than	just	disk	drives
/dev/	directory

about	/	More	than	just	disk	drives
/dev/md	/	More	than	just	disk	drives
/dev/random	/	More	than	just	disk	drives
/dev/sdb2

checking	/	Checking	/dev/sdb2
/dev/urandom	/	More	than	just	disk	drives
/dev	directory

about	/	Understanding	/dev
database,	data	gathering

verifying	/	Verifying	the	database
WordPress	database,	verifying	/	Verifying	the	WordPress	database

database	connectivity	issues
about	/	Database	connectivity	issues

database	data	files
about	/	Understanding	database	data	files

database	service
validating	/	Validating	the	database	service

database	validation
about	/	What	we	learned	from	the	database	validation

data	collection
about	/	Data	collection
issue,	duplicating	/	Duplicating	the	issue
database	server,	finding	/	Finding	the	database	server
connectivity,	testing	/	Testing	connectivity
ping	command,	using	/	Ping
DNS,	troubleshooting	/	Troubleshooting	DNS
pinging,	from	other	location	/	Pinging	from	another	location
reviewing	/	Reviewing	collected	data

Data	Collector
about	/	The	Data	Collector
characteristics	/	The	Data	Collector

/	Troubleshooting	from	historic	issues
data	file	issues

resolving	/	Resolving	data	file	issues
validating	/	Validating

data	gathering
about	/	Data	gathering
questions,	asking	/	Asking	questions
issue,	duplicating	/	Duplicating	the	issue
environment	/	Understanding	the	environment
looking,	for	error	messages	/	Looking	for	error	messages
database,	verifying	/	Verifying	the	database

db.example.com
connectivity,	testing	from	/	Testing	connectivity	from	db.example.com

default	allow	policy	/	Default	policies
default	deny	policy	/	Default	policies
default	location,	log	files	/	The	default	location
default	 system	 configuration	 directory	 /	 Default	 system	 configuration
directory
delimiter

about	/	The	cut	command
device	configuration

viewing	/	Viewing	device	configuration
device	mapper

about	/	Identifying	devices
device	messages,	with	dmesg	/	Device	messages	with	dmesg
df	command

about	/	df	–	report	file	system	space	usage
available	inodes,	displaying	/	Showing	available	inodes

dig	/	What	about	ping,	dig,	or	other	tools?
Dig

DNS,	checking	with	/	Checking	DNS	with	dig
dig	command

about	/	What	did	dig	and	nslookup	tell	us?
disk	device

adding	/	Adding	a	new	disk	device
disk	statistics

displaying	/	Disk

disk	utilization
about	/	Disk

dmesg	command
used,	 for	 troubleshooting	 hardware	 issues	 /	 Device	 messages	 with
dmesg
about	/	Summarizing	what	dmesg	has	provided

DNS
troubleshooting	/	Troubleshooting	DNS
checking,	with	Dig	/	Checking	DNS	with	dig
looking	up,	with	nslookup	command	/	Looking	up	DNS	with	nslookup
about	/	DNS	summary

documentation,	troubleshooting	process	/	Documentation
drives

re-adding,	to	arrays	/	Re-adding	the	drives	to	the	arrays
du	command

about	/	The	du	command
Déjà	vu

about	/	Déjà	vu

E
/etc/hosts

about	/	A	bit	about	/etc/hosts
Educated	Guesser

about	/	The	Educated	Guesser
characteristics	/	The	Educated	Guesser

Educated	Gusser	troubleshooter	/	Troubleshooting	from	historic	issues
environment

about	/	Understanding	your	environment
environment,	data	gathering

about	 /	 Understanding	 the	 environment,	 Ok,	 it's	 within	 our
environment;	now	what?
location,	 for	 hosting	 blog	 /	Where	 is	 this	 blog	 hosted?,	What	 about
ping,	dig,	or	other	tools?
installed	services,	running	/	What	services	are	installed	and	running?

error	messages,	data	gathering
looking	for	/	Looking	for	error	messages

exit	code	/	Exit	codes

F
fdisk	command

used,	 for	 listing	 available	 partitions	 /	 Using	 fdisk	 to	 list	 available
partitions

File	Descriptor	(FD)
about	/	Understanding	file	descriptors

file	size	limit	/	The	file	size	limit
filesystem

recovering	/	Recovering	the	filesystem
unmounting	/	Unmounting	the	filesystem
repairing	/	How	do	these	tools	repair	a	filesystem?,	Repairing	the	other
filesystems
mounting	/	Mounting	the	filesystem
investigating	/	Investigating	the	filesystem	being	full

filesystem,	options
rw	/	Using	fdisk	to	list	available	partitions
seclabel	/	Using	fdisk	to	list	available	partitions
relatime	/	Using	fdisk	to	list	available	partitions
attr2	/	Using	fdisk	to	list	available	partitions
inode64	/	Using	fdisk	to	list	available	partitions
noquota	/	Using	fdisk	to	list	available	partitions

filesystem	checks
performing,	with	fsck	command	/	Filesystem	checks	with	fsck

filesystem	errors
diagnosing	/	Diagnosing	filesystem	errors
troubleshooting	/	Back	to	troubleshooting

Filesystem	Hierarchy	Standard	(FHS)
about	/	The	default	location
URL	/	The	default	location

find	command
using	/	Using	the	find	command
used,	for	finding	configuration	files	/	Using	the	find	command

firewalls
diagnosing	/	Diagnosing	firewalls

formatting	options,	ps	command
%mem	/	ps	-	Checking	individual	processes	memory	utilization

rss	/	ps	-	Checking	individual	processes	memory	utilization
vsize	/	ps	-	Checking	individual	processes	memory	utilization
comm	/	ps	-	Checking	individual	processes	memory	utilization

free	command
about	 /	 free	–	display	memory	utilization,	 free	–	Looking	at	 free	and
used	memory
memory	utilization,	displaying	/	What	is	free,	is	not	always	free
used,	 for	 verifying	 memory	 utilization	 /	 free	 –	 Looking	 at	 free	 and
used	memory

fsck	command
filesystem	checks,	performing	with	/	Filesystem	checks	with	fsck

fsck	filesystem
about	/	The	fsck	and	xfs	filesystems

G
general	information,	gathering

about	/	Gathering	general	information
w	 command	 used	 /	 w	 –	 show	 who	 is	 logged	 on	 and	 what	 they	 are
doing

generated	log	entries
reviewing	/	Reviewing	generated	log	entries

Google
about	/	Google

H
high	load	average

causes	/	What	caused	the	high	load	average?
historical	metrics

comparing	/	Comparing	historical	metrics,	Review	what	we	learned	by
comparing	historical	statistics

home-grown	applications
versus	 open	 source	 applications	 /	 Open	 source	 versus	 home-grown
applications

httpd	logs	/	What	we	learned	from	httpd	logs
hypothesis

about	/	Hypothesis
hypothesis	establishment

about	/	Establishing	a	hypothesis,	Establishing	a	hypothesis
patterns,	putting	together	/	Putting	together	patterns

I
I/O	utilization

identifying	/	Who	is	writing	to	these	devices?
ICMP

about	/	Understanding	ICMP
connection	rejections	/	Understanding	connection	rejections

ICMP	echo	reply	/	Basic	troubleshooting
ICMP	echo	request	/	Basic	troubleshooting
ICMP	packet	/	Troubleshooting	with	tcpdump
ICMP	pings

about	/	Identifying	the	issue
ifstat	command

used,	 for	 reviewing	 interface	 statistics	 /	 ifstat	 –	 Review	 interface
statistics

information
finding	/	Finding	useful	information

Initial	Round-trip	Time	/	Viewing	the	routing	table
inodes

about	/	Showing	available	inodes
interface

specifying,	with	tcpdump	/	Specifying	the	interface	with	tcpdump
interface	statistics

reviewing,	ifstat	command	used	/	ifstat	–	Review	interface	statistics
iostat	command

about	/	iostat	–	report	I/O	and	CPU	statistics,	iostat	–	CPU	and	device
input/output	statistics
output,	manipulating	/	Manipulating	the	output
CPU	statistics,	displaying	/	CPU	details
I/O	statistics,	reviewing	/	Reviewing	I/O	statistics
devices,	identifying	/	Identifying	devices
used,	 for	 identifying	 bandwidth	 problem	 /	 Using	 iostat	 to	 determine
whether	there	is	a	I/O	bandwidth	problem

iotop	command
about	/	iotop	–	a	simple	top-like	I/O	monitor
used,	 for	 identifying	I/O	utilization	by	processes	 /	 iotop	–	A	 top	 top-
like	command	for	disk	i/o

used,	 for	 determining	 processes	 for	 disk	 bandwidth	 consumption	 /
Using	 iotop	 to	 determine	 which	 processes	 are	 consuming	 disk
bandwidth

IP
utilizing,	for	displaying	routing	table	/	Utilizing	IP	to	show	the	routing
table

ip	command
about	/	ip	–	show	and	manipulate	network	settings
IP	 address,	 displaying	 for	 specific	 device	 /	 Show	 IP	 address
configuration	for	a	specific	device
routing	information,	displaying	/	Show	routing	configuration
network	 statistics,	 displaying	 for	 specificed	 device	 /	 Show	 network
statistics	for	a	specified	device

iptables
Linux	 firewall,	 managing	 with	 /	 Managing	 the	 Linux	 firewall	 with
iptables
running,	service	command	used	/	Verify	that	iptables	is	running

iptables	counters
viewing	/	Viewing	iptables	counters

iptables	rule	ordering
correcting	/	Correcting	the	iptables	rule	ordering

iptables	rules
displaying	/	Show	iptables	rules	being	enforced
about	/	Understanding	iptables	rules
ordering	/	Ordering	matters
default	policies	/	Default	policies
breaking	/	Breaking	down	the	iptables	rules
putting,	together	/	Putting	the	rules	together
applying	/	How	iptables	rules	are	applied
modifying	/	Modifying	iptables	rules
changes,	testing	/	Testing	our	changes

issue
resolving	/	Resolving	the	issue
identifying	/	Identifying	a	bigger	issue

issue,	identifying
about	/	Identifying	the	issue
server,	rebooting	/	Did	someone	reboot	this	server?

logs	/	What	do	the	logs	tell	us?

J
job

running	/	Running	the	job	again
running,	for	last	time	/	Running	the	job	one	last	time

K
kernel-doc	package	/	Red	Hat	kernel	docs
kernel	parameter

finding,	for	open	files	/	Finding	the	kernel	parameter	for	open	files
kernel	tunables

about	/	Kernel	tunables
modifying	/	Changing	kernel	tunables

L
limits.conf	file

about	/	The	limits.conf	file
Linux	firewall

managing,	with	iptables	/	Managing	the	Linux	firewall	with	iptables
Linux	system

running	out	of	memory	/	What	happens	when	a	Linux	system	runs	out
of	memory?,	Minimum	free	memory

load	average
about	/	What	are	the	run	queue	and	load	average?,	Load	average

load	average	measurements
about	/	What	caused	the	high	load	average?

Location	HTTP	header	/	Using	curl	to	call	our	web	application
log	entry

starting	with	/	Starting	with	a	log	entry
log	files

about	/	Log	files
default	location	/	The	default	location
watching,	during	startup	/	Watching	log	files	during	startup

logs
finding	/	Finding	logs	that	are	not	in	the	default	location

long-term	actions
about	/	Long-term	actions

long-term	resolution
resolving	/	Long-term	resolution

lscpu	command
about	/	lscpu	–	Another	way	to	look	at	CPU	info

lsof
used,	 for	 checking	 previously	 running	 process	 /	Using	 lsof	 to	 check
whether	we	have	a	previously	running	process

lsof	command	/	Checking	open	files
lsof	output	/	Getting	back	to	the	lsof	output

M
/mnt	filesystem

unmounting	/	Unmounting	the	/mnt	filesystem
man	pages

about	/	Man	pages
reading	/	Reading	a	man	page
Name	section	/	Name
Synopsis	section	/	Synopsis
Description	section	/	Description
Examples	section	/	Examples
additional	sections	/	Additional	sections
info	documentation	/	Info	documentation
referencing,	more	than	commands	/	Referencing	more	than	commands
installing	/	Installing	man	pages

MariaDB
about	 /	 Validating	 the	 database	 service,	 Validating	 the	 MariaDB
service

MariaDB	data	folder
finding	/	Finding	the	MariaDB	data	folder

MariaDB	service
validating	/	Validating	the	MariaDB	service

maximum	segment	size	/	Viewing	the	routing	table
max	user	processes	limit	/	The	max	user	processes	limit
md127

about	/	Back	to	troubleshooting	our	RAID
mdadm

using	/	Using	both	/proc/mdstat	and	mdadm
mdadm	command

used,	 for	 examining	 superblock	 /	 Using	 mdadm	 to	 examine	 the
superblock

md	status
viewing,	with	/proc/mdstat	/	Looking	at	md	status	with	/proc/mdstat

MemAvailable	/	The	/proc/meminfo	file
memory	buffers

about	/	Linux	memory	buffers	and	caches
memory	statistics

displaying,	sar	command	used	/	Memory
memory	utilization

about	/	Memory
messages	log

searching	/	Searching	the	messages	log
mirroring	/	RAID	1	–	mirroring
mount	command

used,	 for	 listing	mounted	 filesystems	 /	Using	 the	mount	command	 to
list	mounted	filesystems

mounted	filesystems
listing,	 mount	 command	 used	 /	 Using	 the	 mount	 command	 to	 list
mounted	filesystems
about	/	A	mounted	filesystem

mounts
making,	permanent	/	Making	mounts	permanent

multiple	device	driver	(md)	/	Starting	with	a	log	entry

N
Netfilter

about	/	Managing	the	Linux	firewall	with	iptables
netstat	command

about	/	netstat	–	network	statistics
network	connections,	printing	/	Printing	network	connections
ports,	printing	for	tcp	connections	/	Printing	all	ports	listening	for	tcp
connections
delay	option	/	Delay
used,	 for	 displaying	 current	 network	 connections	 /	 Showing	 current
network	connections	with	netstat
used,	 for	watching	new	connections	 /	Using	netstat	 to	watch	for	new
connections
connections,	viewing	with	/	Looking	for	connections	with	netstat

netstat	command,	states
ESTABLISHED	/	Breakdown	of	netstat	states
SYN_SENT	/	Breakdown	of	netstat	states
SYN_RECV	/	Breakdown	of	netstat	states
FIN_WAIT1	/	Breakdown	of	netstat	states
FIN_WAIT2	/	Breakdown	of	netstat	states
TIME_WAIT	/	Breakdown	of	netstat	states
CLOSE	/	Breakdown	of	netstat	states
CLOSE_WAIT	/	Breakdown	of	netstat	states
LAST_ACK	/	Breakdown	of	netstat	states
LISTEN	/	Breakdown	of	netstat	states
CLOSING	/	Breakdown	of	netstat	states
UNKNOWN	/	Breakdown	of	netstat	states

network	configuration
identifying	/	Identifying	the	network	configuration

network	connections
tracing,	with	tcpdump	/	Tracing	network	connections	with	tcpdump

network	connectivity
and	NFS	/	NFS	and	network	connectivity

networking	commands
about	/	Networking
ip	/	ip	–	show	and	manipulate	network	settings

netstat	/	netstat	–	network	statistics
network	interface

viewing,	of	server	/	Taking	a	look	at	the	server's	network	interfaces
about	/	What	is	a	network	interface?

Network	Operations	Center	(NOC)	/	The	reported	issue
network	statistics

displaying,	sar	command	used	/	Network
network	traffic

capturing,	with	tcpdump	/	Capturing	network	traffic	with	tcpdump
new	connections

watching,	 netstat	 command	 used	 /	 Using	 netstat	 to	 watch	 for	 new
connections

NFS
about	/	NFS	–	Network	Filesystem
and	network	connectivity	/	NFS	and	network	connectivity
testing,	from	another	client	/	Testing	NFS	from	another	client

NFS	log	messages
finding	/	Finding	the	NFS	log	messages

NFS	server
troubleshooting	/	Troubleshooting	the	NFS	server,	again

NFS	server	configuration
about	/	NFS	server	configuration
/etc/exports,	exporting	/	Exploring	/etc/exports
current	exports,	identifying	/	Identifying	the	current	exports

Nginx	/	Validate	the	web	server
niceness	value	(NI)	/	Printing	every	process	in	long	format
non-PHP	page

requesting	/	Requesting	a	non-PHP	page
nslookup	command

about	/	Lookup	IPs	with	nslookup,	What	did	dig	and	nslookup	tell	us?
used,	for	looking	up	with	DNS	/	Looking	up	DNS	with	nslookup

O
on	call	rotation

about	/	A	late	night	alert
oom-kill

about	/	What	happens	when	a	Linux	system	runs	out	of	memory?
process,	killing	/	Determining	whether	our	process	was	killed	by	oom-
kill

oom-kill	process
working	/	How	oom-kill	works

oom	score
adjusting	/	Adjusting	the	oom	score

open	files
checking	/	Checking	open	files
kernel	parameter,	 finding	for	 /	Finding	 the	kernel	parameter	 for	open
files

open	files	limit	/	The	open	files	limit
open	source	applications

versus	 home-grown	 applications	 /	 Open	 source	 versus	 home-grown
applications

out	of	memory	killer	(oomkill)
checking	for	/	Checking	for	oomkill

P
/proc/mdstat

md	status,	viewing	with	/	Looking	at	md	status	with	/proc/mdstat
using	/	Using	both	/proc/mdstat	and	mdadm

/proc/meminfo	file	/	The	/proc/meminfo	file
/proc/mounts	file,	columns

device	/	A	mounted	filesystem
mount	point	/	A	mounted	filesystem
filesystem	type	/	A	mounted	filesystem
options	/	A	mounted	filesystem

package	verification
using	/	Using	package	verification

parent	process	ID	(PPID)	/	Printing	every	process	in	long	format
performance	commands

about	/	Performance
iotop	/	iotop	–	a	simple	top-like	I/O	monitor
iostat	/	iostat	–	report	I/O	and	CPU	statistics,	Manipulating	the	output
vmstat	/	vmstat	–	report	virtual	memory	statistics
sar	 /	 sar	 –	 collect,	 report,	 or	 save	 system	activity	 information,	Using
the	sar	command

performance	issues
about	/	Performance	issues,	It's	slow

performance	issues,	areas
application	/	Application
CPU	/	CPU
memory	/	Memory
disk	/	Disk
network	/	Network

PHP
validating	/	Validating	PHP

physical	memory
about	/	free	–	Looking	at	free	and	used	memory

ping	/	What	about	ping,	dig,	or	other	tools?
ping	command

using	/	Ping
pkts	/	Viewing	iptables	counters

port	connectivity
testing,	with	cURL	/	Testing	port	connectivity	with	cURL

priority	(PRI)	/	Printing	every	process	in	long	format
problem	statement

about	/	Understanding	the	problem	statement
questions,	asking	/	Asking	questions
issue	duplication,	attempting	/	Attempting	to	duplicate	the	issue
investigatory	commands,	running	/	Running	investigatory	commands

process	CPU	utilization
determining,	ps	command	used	/	Using	ps	 to	determine	process	CPU
utilization

processes
about	/	Learning	about	new	processes	and	services

proc	filesystem
about	/	The	proc	filesystem

ps	command
about	/	ps	–	report	a	snapshot	of	current	running	processes
process,	printing	in	long	format	/	Printing	every	process	in	long	format
specific	user's	processes,	printing	/	Printing	a	specific	user's	processes
process,	printing	by	process	ID	/	Printing	a	process	by	process	ID
processes,	printing	with	performance	information	/	Printing	processes
with	performance	information
using	/	ps	–	Drill	down	deeper	on	individual	processes	with	ps
used,	for	determining	process	CPU	utilization	/	Using	ps	to	determine
process	CPU	utilization
individual	 processes	 memory	 utilization,	 checking	 /	 ps	 -	 Checking
individual	processes	memory	utilization
formatting	 options	 /	 ps	 -	 Checking	 individual	 processes	 memory
utilization
used,	 for	 finding	 most	 memory	 utilization	 processes	 /	 Finding	 the
processes	that	utilize	the	most	memory	with	ps
used,	for	identifying	processes	utilizing	I/O	/	ps	–	Using	ps	to	identify
processes	utilizing	I/O
states	/	ps	–	Using	ps	to	identify	processes	utilizing	I/O
used,	 for	 identifying	 processes	 /	Using	 ps	 to	 understand	more	 about
processes

Push	(PSH)	packets	/	A	quick	primer	on	TCP

Q
questions,	problem	statement

tickets	/	Tickets
humans	/	Humans

queue	directory
reasons,	 for	 issues	 in	 processing	 /	 Why	 wasn't	 the	 queue	 directory
processed?

R
/	(root)	filesystem

recovering	/	Recovering	the	/	(root)	filesystem
RAID

about	/	What	is	a	RAID?
troubleshooting	/	Back	to	troubleshooting	our	RAID

RAID	0
about	/	RAID	0	–	striping

RAID	1
about	/	RAID	1	–	mirroring

RAID	5
about	/	RAID	5	–	striping	with	distributed	parity

RAID	6
about	/	RAID	6	–	striping	with	double	distributed	parity

RAID	10
about	/	RAID	10	–	mirrored	and	striped

RAID	recovery
working	/	How	RAID	recovery	works

read-only	filesystems
about	/	Read-only	filesystems,	Read-only	filesystems
rw	option	/	Read-only	filesystems
ro	option	/	Read-only	filesystems
disk	issues,	identifying	/	Identifying	disk	issues

rebuild	status
watching	/	Another	way	to	watch	the	rebuild	status

Red	Hat	kernel	docs	/	Red	Hat	kernel	docs
Red	Hat	package	manager	(RPM)

about	/	rpm	–	RPM	package	manager
reoccurrence,	preventing

about	/	Preventing	reoccurrence
immediate	action	/	Immediate	action
long-term	actions	/	Long-term	actions

reported	issue
about	/	The	reported	issue,	A	reported	issue

reported	issue,	resolving
about	/	A	look	back

open	files	limitation	/	Too	many	open	files
sysctl	command,	executing	/	A	bit	of	clean	up

reported	problem
about	/	The	reported	problem
Apache,	validating	for	down	service	/	Is	Apache	really	down?
reason,	finding	for	down	service	of	Apache	/	Why	is	it	down?

RESET	packet	/	Understanding	connection	rejections
Resident	Memory	Size	(SZ)	/	Printing	every	process	in	long	format
resources,	troubleshooting	process

about	/	Getting	help
books	/	Books
Team	Wikis	/	Team	Wikis	or	Runbooks
Runbooks	/	Team	Wikis	or	Runbooks
Google	/	Google
man	pages	/	Man	pages
Red	Hat	kernel	docs	/	Red	Hat	kernel	docs
people	/	People,	Following	up

RHEL	7
reference	link,	for	naming	schema	/	Show	IP	address	configuration	for
a	specific	device

root	cause
establishing	/	Establishing	a	root	cause

Root	Cause	Analysis	(RCA)
about	/	Documentation,	Root	cause	analysis,	Why	is	it	down?
anatomy	 /	 The	 anatomy	 of	 a	 good	 RCA,	 The	 problem	 as	 it	 was
reported
timeline,	of	events	/	A	timeline	of	events	and	actions	taken
actions,	taken	/	A	timeline	of	events	and	actions	taken
key	 data	 points,	 for	 validating	 /	Any	 key	 data	 points	 to	 validate	 the
root	cause
plan	of	action,	for	preventing	incident	/	A	plan	of	action	to	prevent	the
incident	from	reoccurring

root	user	/	Verifying	the	database
routing

about	/	Routing
routing	misconfigurations

looking	for	/	Looking	for	routing	misconfigurations

routing	table
about	/	Routing
viewing	/	Viewing	the	routing	table

rpm	command
used,	for	finding	configuration	files	/	Using	the	rpm	command
about	/	rpm	–	RPM	package	manager
installed	packages,	listing	/	Listing	all	packages	installed
files	 deployed	 by	 packages,	 listing	 /	 Listing	 all	 files	 deployed	 by	 a
package

rsyslog	configuration	files	/	Checking	syslog	configuration
Runbooks

about	/	Team	Wikis	or	Runbooks
run	queue

about	 /	What	caused	 the	high	 load	average?,	What	are	 the	 run	queue
and	load	average?

S
sample	Root	Cause	Analysis

about	/	A	sample	Root	Cause	Analysis
problem	summary	/	Problem	summary
problem	details	/	Problem	details
root	cause	/	Root	cause
action	plan	/	Action	plan

sar	command
about	/	sar	–	collect,	report,	or	save	system	activity	information,	sar	–
System	activity	report
using	/	Using	the	sar	command
flags	/	Using	the	sar	command
CPU	statistics,	viewing	with	/	CPU
used,	for	displaying	memory	statistics	/	Memory
used,	for	displaying	network	statistics	/	Network

scheduled	job
proofing	/	Future	proofing	the	scheduled	job

scheduled	job,	failing
reasons	/	Why	is	the	job	failing?
background	questions	/	Background	questions

Secure	Shell	(SSH)	/	Ok,	it's	within	our	environment;	now	what?
server

network	interfaces,	viewing	of	/	Taking	a	look	at	the	server's	network
interfaces

service	command
used,	for	running	iptables	/	Verify	that	iptables	is	running

services
about	/	Learning	about	new	processes	and	services

shared	memory
about	/	free	–	Looking	at	free	and	used	memory

short-term	resolution
resolving	/	Short-term	resolution

showmount	command
using	/	Using	the	showmount	command

sort	command	/	The	sort	command
startup

log	files,	watching	during	/	Watching	log	files	during	startup
states,	ps	command

Uninterruptible	sleep	(D)	/	ps	–	Using	ps	to	identify	processes	utilizing
I/O
Running	or	Runnable	(R)	/	ps	–	Using	ps	to	identify	processes	utilizing
I/O
Interruptible	 sleep	 (S)	 /	 ps	 –	Using	 ps	 to	 identify	 processes	 utilizing
I/O
Stopped	(T)	/	ps	–	Using	ps	to	identify	processes	utilizing	I/O
Paging	(P)	/	ps	–	Using	ps	to	identify	processes	utilizing	I/O
Dead	(X)	/	ps	–	Using	ps	to	identify	processes	utilizing	I/O
Defunct	(Z)	/	ps	–	Using	ps	to	identify	processes	utilizing	I/O

strace
application,	tracing	with	/	Tracing	an	application	with	strace
using	/	Using	strace	to	identify	why	the	application	will	not	start

striping	/	RAID	0	–	striping
with	distributed	parity	/	RAID	5	–	striping	with	distributed	parity
with	 double	 distributed	 parity	 /	 RAID	 6	 –	 striping	 with	 double
distributed	parity

Structured	Query	Language	(SQL)	/	Validating	the	database	structure
superblock

examining,	mdadm	used	/	Using	mdadm	to	examine	the	superblock
swapped	memory

about	/	Swapped	memory
Synchronize	 Acknowledgement	 (SYN-ACK)packet	 /	 A	 quick	 primer	 on
TCP
syslog	configuration

checking	/	Checking	syslog	configuration
system

running	out	of	memory,	determining	/	Why	did	the	system	run	out	of
memory?

system	call
about	/	What	is	a	system	call?

T
tcpdump

network	 traffic,	 capturing	 with	 /	 Capturing	 network	 traffic	 with
tcpdump
interface,	specifying	with	/	Specifying	the	interface	with	tcpdump
network	connections,	tracing	with	/	Tracing	network	connections	with
tcpdump
used,	for	troubleshooting	/	Troubleshooting	with	tcpdump

TCP	packets
types	/	Types	of	TCP	packet
SYN-	[S]	/	Types	of	TCP	packet
SYN-ACK-	[S.]	/	Types	of	TCP	packet
ACK-	[.]	/	Types	of	TCP	packet
PSH-	[P]	/	Types	of	TCP	packet
PSH-ACK-	[P.]	/	Types	of	TCP	packet
FIN-	[F]	/	Types	of	TCP	packet
FIN-ACK-	[F.]	/	Types	of	TCP	packet
RST-	[R]	/	Types	of	TCP	packet
RST-ACK	-[R.]	/	Types	of	TCP	packet

Team	Wikis
about	/	Team	Wikis	or	Runbooks

threads
about	/	Threads	and	Cores

top	command
used,	 for	 investigating	CPU	utilization	 /	Top	–	 a	 single	 command	 to
look	at	everything
individual	processes	/	Individual	processes	from	top

Transmission	Control	Protocol	(TCP)
about	/	A	quick	primer	on	TCP

trial	and	error
about	/	Trial	and	error
invalid	route,	removing	/	Removing	the	invalid	route
configuration	files	/	Configuration	files

trial	and	error	method
about	/	Trial	and	error
backup,	creating	/	Start	by	creating	a	backup

troubleshooting,	from	historic	issues
about	/	Troubleshooting	from	historic	issues

troubleshooting,	styles
about	/	Styles	of	troubleshooting
Data	Collector	/	The	Data	Collector
Educated	Guesser	/	The	Educated	Guesser
Adaptor	/	The	Adaptor
appropriate	style,	selecting	/	Choosing	the	appropriate	style

troubleshooting	commands
about	/	Troubleshooting	commands
command-line	basics	/	Command-line	basics
general	information,	gathering	/	Gathering	general	information
networking	/	Networking
performance	/	Performance

troubleshooting	steps
about	/	Troubleshooting	steps
problem	statement	/	Understanding	the	problem	statement
hypothesis,	establishing	/	Establishing	a	hypothesis
trial	and	error	/	Trial	and	error
resources	/	Getting	help
documentation	/	Documentation

tunable
modifying,	permanently	/	Permanently	changing	a	tunable
modifying,	temporarily	/	Temporarily	changing	a	tunable

tunable	parameter
about	/	Kernel	tunables

U
uniq	command

about	/	The	uniq	command
user	crontabs	/	User	crontabs
user	limits

about	/	Understanding	user	limits
file	size	limit	/	The	file	size	limit
max	user	processes	limit	/	The	max	user	processes	limit
open	files	limit	/	The	open	files	limit
modifying	/	Changing	user	limits

V
/var/log/messages

reading	/	Reading	/var/log/messages
validation

about	/	Validation
values,	top	command

us	/	Top	–	a	single	command	to	look	at	everything
sy	/	Top	–	a	single	command	to	look	at	everything
ni	/	Top	–	a	single	command	to	look	at	everything
id	/	Top	–	a	single	command	to	look	at	everything
wa	/	Top	–	a	single	command	to	look	at	everything
hi	/	Top	–	a	single	command	to	look	at	everything
si	/	Top	–	a	single	command	to	look	at	everything
st	/	Top	–	a	single	command	to	look	at	everything

vmstat	command
about	 /	 vmstat	 –	 report	 virtual	 memory	 statistics,	 Watch	 what	 is
happening	with	vmstat
memory	 allocation,	 monitoring	 /	 vmstat	 –	 Monitoring	 memory
allocation	and	swapping

W
w	command

using	/	w	–	show	who	is	logged	on	and	what	they	are	doing
web	application

calling,	curl	command	used	/	Using	curl	to	call	our	web	application
web	server

validating	/	Validate	the	web	server
WordPress

URL,	for	requisites	/	What	services	are	installed	and	running?
URL,	for	documentation	/	Validating	the	database	structure

WordPress	database
structure,	validating	/	Validating	the	database	structure

WordPress	database,	verifying
about	/	Verifying	the	WordPress	database
installation	path,	finding	/	Finding	the	installation	path	for	WordPress
database	credentials,	finding	/	Finding	the	database	credentials

WordPress	user
connecting	as	/	Connecting	as	the	WordPress	user

X
X-Powered-By	header	/	Using	curl	to	call	our	web	application
xfs	filesystem

about	/	The	fsck	and	xfs	filesystems

	Red Hat Enterprise Linux Troubleshooting Guide
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Troubleshooting Best Practices
	Styles of troubleshooting
	The Data Collector
	The Educated Guesser
	The Adaptor
	Choosing the appropriate style
	Troubleshooting steps
	Understanding the problem statement
	Asking questions
	Tickets
	Humans
	Attempting to duplicate the issue
	Running investigatory commands
	Establishing a hypothesis
	Putting together patterns
	Is this something that I've encountered before?
	Trial and error
	Start by creating a backup
	Getting help
	Books
	Team Wikis or Runbooks
	Google
	Man pages
	Reading a man page
	Name
	Synopsis
	Description
	Examples
	Additional sections
	Info documentation
	Referencing more than commands
	Installing man pages
	Red Hat kernel docs
	People
	Following up
	Documentation
	Root cause analysis
	The anatomy of a good RCA
	The problem as it was reported
	The actual root cause of the problem
	A timeline of events and actions taken
	Any key data points to validate the root cause
	A plan of action to prevent the incident from reoccurring
	Establishing a root cause
	Sometimes you must sacrifice a root cause analysis
	Understanding your environment
	Summary
	2. Troubleshooting Commands and Sources of Useful Information
	Finding useful information
	Log files
	The default location
	Common log files
	Finding logs that are not in the default location
	Checking syslog configuration
	Checking the application's configuration
	Other examples
	Using the find command
	Configuration files
	Default system configuration directory
	Finding configuration files
	Using the rpm command
	Using the find command
	The proc filesystem
	Troubleshooting commands
	Command-line basics
	Command flags
	The piping command output
	Gathering general information
	w – show who is logged on and what they are doing
	rpm – RPM package manager
	Listing all packages installed
	Listing all files deployed by a package
	Using package verification
	df – report file system space usage
	Showing available inodes
	free – display memory utilization
	What is free, is not always free
	The /proc/meminfo file
	ps – report a snapshot of current running processes
	Printing every process in long format
	Printing a specific user's processes
	Printing a process by process ID
	Printing processes with performance information
	Networking
	ip – show and manipulate network settings
	Show IP address configuration for a specific device
	Show routing configuration
	Show network statistics for a specified device
	netstat – network statistics
	Printing network connections
	Printing all ports listening for tcp connections
	Delay
	Performance
	iotop – a simple top-like I/O monitor
	iostat – report I/O and CPU statistics
	Manipulating the output
	vmstat – report virtual memory statistics
	sar – collect, report, or save system activity information
	Using the sar command
	Summary
	3. Troubleshooting a Web Application
	A small back story
	The reported issue
	Data gathering
	Asking questions
	Duplicating the issue
	Understanding the environment
	Where is this blog hosted?
	Lookup IPs with nslookup
	What about ping, dig, or other tools?
	Ok, it's within our environment; now what?
	What services are installed and running?
	Validate the web server
	Validating the database service
	Validating PHP
	A summary of installed and running services
	Looking for error messages
	Apache logs
	Finding the location of Apache's logs
	Reviewing the logs
	Using curl to call our web application
	Requesting a non-PHP page
	Reviewing generated log entries
	What we learned from httpd logs
	Verifying the database
	Verifying the WordPress database
	Finding the installation path for WordPress
	Checking the default configuration
	Finding the database credentials
	Connecting as the WordPress user
	Validating the database structure
	What we learned from the database validation
	Establishing a hypothesis
	Resolving the issue
	Understanding database data files
	Finding the MariaDB data folder
	Resolving data file issues
	Validating
	Final validation
	Summary
	4. Troubleshooting Performance Issues
	Performance issues
	It's slow
	Performance
	Application
	CPU
	Top – a single command to look at everything
	What does this output tell us about our issue?
	Individual processes from top
	Determining the number of CPUs available
	Threads and Cores
	lscpu – Another way to look at CPU info
	ps – Drill down deeper on individual processes with ps
	Using ps to determine process CPU utilization
	Putting it all together
	A quick look with top
	Digging deeper with ps
	Memory
	free – Looking at free and used memory
	Linux memory buffers and caches
	Swapped memory
	What free tells us about our system
	Checking for oomkill
	ps - Checking individual processes memory utilization
	vmstat – Monitoring memory allocation and swapping
	Putting it all together
	Taking a look at the system's memory utilization with free
	Watch what is happening with vmstat
	Finding the processes that utilize the most memory with ps
	Disk
	iostat – CPU and device input/output statistics
	CPU details
	Reviewing I/O statistics
	Identifying devices
	Who is writing to these devices?
	ps – Using ps to identify processes utilizing I/O
	iotop – A top top-like command for disk i/o
	Putting it all together
	Using iostat to determine whether there is a I/O bandwidth problem
	Using iotop to determine which processes are consuming disk bandwidth
	Using ps to understand more about processes
	Network
	ifstat – Review interface statistics
	Quick review of what we have identified
	Comparing historical metrics
	sar – System activity report
	CPU
	Memory
	Disk
	Network
	Review what we learned by comparing historical statistics
	Summary
	5. Network Troubleshooting
	Database connectivity issues
	Data collection
	Duplicating the issue
	Finding the database server
	Testing connectivity
	Telnet from blog.example.com
	Telnet from our laptop
	Ping
	Troubleshooting DNS
	Checking DNS with dig
	Looking up DNS with nslookup
	What did dig and nslookup tell us?
	A bit about /etc/hosts
	DNS summary
	Pinging from another location
	Testing port connectivity with cURL
	Showing current network connections with netstat
	Using netstat to watch for new connections
	Breakdown of netstat states
	Capturing network traffic with tcpdump
	Taking a look at the server's network interfaces
	What is a network interface?
	Viewing device configuration
	Specifying the interface with tcpdump
	Reading the captured data
	A quick primer on TCP
	Types of TCP packet
	Reviewing collected data
	Taking a look on the other side
	Identifying the network configuration
	Testing connectivity from db.example.com
	Looking for connections with netstat
	Tracing network connections with tcpdump
	Routing
	Viewing the routing table
	The default route
	Utilizing IP to show the routing table
	Looking for routing misconfigurations
	More specific routes win
	Hypothesis
	Trial and error
	Removing the invalid route
	Configuration files
	Summary
	6. Diagnosing and Correcting Firewall Issues
	Diagnosing firewalls
	Déjà vu
	Troubleshooting from historic issues
	Basic troubleshooting
	Validating the MariaDB service
	Troubleshooting with tcpdump
	Understanding ICMP
	Understanding connection rejections
	A quick summary of what you have learned so far
	Managing the Linux firewall with iptables
	Verify that iptables is running
	Show iptables rules being enforced
	Understanding iptables rules
	Ordering matters
	Default policies
	Breaking down the iptables rules
	Putting the rules together
	Viewing iptables counters
	Correcting the iptables rule ordering
	How iptables rules are applied
	Modifying iptables rules
	Testing our changes
	Summary
	7. Filesystem Errors and Recovery
	Diagnosing filesystem errors
	Read-only filesystems
	Using the mount command to list mounted filesystems
	A mounted filesystem
	Using fdisk to list available partitions
	Back to troubleshooting
	NFS – Network Filesystem
	NFS and network connectivity
	Using the showmount command
	NFS server configuration
	Exploring /etc/exports
	Identifying the current exports
	Testing NFS from another client
	Making mounts permanent
	Unmounting the /mnt filesystem
	Troubleshooting the NFS server, again
	Finding the NFS log messages
	Reading /var/log/messages
	Read-only filesystems
	Identifying disk issues
	Recovering the filesystem
	Unmounting the filesystem
	Filesystem checks with fsck
	The fsck and xfs filesystems
	How do these tools repair a filesystem?
	Mounting the filesystem
	Repairing the other filesystems
	Recovering the / (root) filesystem
	Validation
	Summary
	8. Hardware Troubleshooting
	Starting with a log entry
	What is a RAID?
	RAID 0 – striping
	RAID 1 – mirroring
	RAID 5 – striping with distributed parity
	RAID 6 – striping with double distributed parity
	RAID 10 – mirrored and striped
	Back to troubleshooting our RAID
	How RAID recovery works
	Checking the current RAID status
	Summarizing the key information
	Looking at md status with /proc/mdstat
	Using both /proc/mdstat and mdadm
	Identifying a bigger issue
	Understanding /dev
	More than just disk drives
	Device messages with dmesg
	Summarizing what dmesg has provided
	Using mdadm to examine the superblock
	Checking /dev/sdb2
	What we have learned so far
	Re-adding the drives to the arrays
	Adding a new disk device
	When disks are not added cleanly
	Another way to watch the rebuild status
	Summary
	9. Using System Tools to Troubleshoot Applications
	Open source versus home-grown applications
	When the application won't start
	Exit codes
	Is the script failing, or the application?
	A wealth of information in the configuration file
	Watching log files during startup
	Checking whether the application is already running
	Checking open files
	Understanding file descriptors
	Getting back to the lsof output
	Using lsof to check whether we have a previously running process
	Finding out more about the application
	Tracing an application with strace
	What is a system call?
	Using strace to identify why the application will not start
	Resolving the conflict
	Summary
	10. Understanding Linux User and Kernel Limits
	A reported issue
	Why is the job failing?
	Background questions
	Is the cron job even running?
	User crontabs
	Understanding user limits
	The file size limit
	The max user processes limit
	The open files limit
	Changing user limits
	The limits.conf file
	Future proofing the scheduled job
	Running the job again
	Kernel tunables
	Finding the kernel parameter for open files
	Changing kernel tunables
	Permanently changing a tunable
	Temporarily changing a tunable
	Running the job one last time
	A look back
	Too many open files
	A bit of clean up
	Summary
	11. Recovering from Common Failures
	The reported problem
	Is Apache really down?
	Why is it down?
	What else was happening at that time?
	Searching the messages log
	Breaking down this useful one-liner
	The cut command
	The sort command
	The uniq command
	Tying it all together
	What happens when a Linux system runs out of memory?
	Minimum free memory
	A quick recap
	How oom-kill works
	Adjusting the oom score
	Determining whether our process was killed by oom-kill
	Why did the system run out of memory?
	Resolving the issue in the long-term and short-term
	Long-term resolution
	Short-term resolution
	Summary
	12. Root Cause Analysis of an Unexpected Reboot
	A late night alert
	Identifying the issue
	Did someone reboot this server?
	What do the logs tell us?
	Learning about new processes and services
	What caused the high load average?
	What are the run queue and load average?
	Load average
	Investigating the filesystem being full
	The du command
	Why wasn't the queue directory processed?
	A checkpoint on what you learned
	Sometimes you cannot prove everything
	Preventing reoccurrence
	Immediate action
	Long-term actions
	A sample Root Cause Analysis
	Problem summary
	Problem details
	Root cause
	Action plan
	Further actions to be taken
	Summary
	Index

