

Beginning the
Linux Command Line

Sander van Vugt

Beginning the Linux Command Line
Copyright © 2009 by Sander van Vugt
All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1889-0

ISBN-13 (electronic): 978-1-4302-1890-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Michelle Lowman
Technical Reviewer: Mary Ann C. Tan
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,

Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper,
Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Beth Christmas
Copy Editor: Ami Knox
Associate Production Director: Kari Brooks-Copony
Production Editor: Elizabeth Berry
Compositor: Linda Weidemann, Wolf Creek Publishing Services
Proofreader: Nancy Sixsmith
Indexer: Brenda Miller, Odessa&Cie
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail , or
visit .

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail , or visit

.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at .

The information in this book is distributed on an “as is” basis, without warranty. Although every pre-
caution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

iii

Contents at a Glance

About the Author . xiii

About the Technical Reviewer . xv

Introduction . xvii

CHAPTER 1 Starting Linux Command-Line Administration . 1

CHAPTER 2 Performing Essential Command-Line Tasks. 27

CHAPTER 3 Administering the Linux File System . 47

CHAPTER 4 Working with Text Files . 69

CHAPTER 5 Managing Partitions and Logical Volumes . 91

CHAPTER 6 Managing Users and Groups . 133

CHAPTER 7 Managing Permissions . 163

CHAPTER 8 Managing Software . 179

CHAPTER 9 Process and System Management . 197

CHAPTER 10 System Logging . 217

CHAPTER 11 Configuring the Network . 237

CHAPTER 12 Configuring a File Server . 277

CHAPTER 13 Working with the Kernel . 299

CHAPTER 14 Introduction to Bash Shell Scripting . 319

APPENDIX Installing Linux . 353

INDEX . 361

v

Contents

About the Author . xiii

About the Technical Reviewer . xv

Introduction . xvii

CHAPTER 1 Starting Linux Command-Line Administration 1

Linux Distributions . 1
Linux History . 1
Open Source . 2
The First Distributions . 2
Linux Turning Mainstream . 2

Logging In and Out . 4
Different Login Interfaces . 5
Working with a User Account . 7

Command-Line Basics . 8
The Command Interpreter . 9
Commands, Options, and Arguments . 9

Piping and Redirection . 12
Piping . 12
Redirection . 14

Getting Help . 16
Using man to Get Help. 16
Using the --help Option . 19
Getting Information on Installed Packages . 20

Working with the Shell . 20
Using the Shell to Best Effect . 21
Managing Bash with Key Sequences . 25

Summary . 26

CONTENTSvi

CHAPTER 2 Performing Essential Command-Line Tasks 27

Changing Your Password . 27
Working with Virtual Consoles . 28
Becoming Another User . 29
Obtaining Information About Other Users . 30
Communicating with Other Users . 31

Real-Time Communication . 31
Sending Mail from the Command Line . 33

Finding Your Way in the File System . 35
Default Directories . 35

Working with the Linux File System . 38
Working with Directories . 38
Working with Files . 39

Cool Commands . 43
Displaying a Calendar with cal . 44
Clearing Your Screen with clear . 44
Displaying System Information with uname and hostname 44
Counting Words, Lines, and Characters with wc 45
Changing and Showing Date and Time with date 45

Summary . 45

CHAPTER 3 Administering the Linux File System . 47

Mounting Disks . 47
Using the mount Command . 47
Unmounting Devices . 52
Automating Mounts with /etc/fstab . 53

Checking File System Integrity . 56
Creating Backups. 57

Making File Backups with tar. 57
Making Device Backups Using dd . 62

Working with Links . 63
Why Use Links? . 64
Working with Symbolic Links . 64
Working with Hard Links . 67
Links Recap. 67

Summary . 68

CONTENTS vii

CHAPTER 4 Working with Text Files . 69

Working with Vi . 69
Vi Modes . 70
Saving and Quitting . 71
Cutting, Copying, and Pasting . 72
Deleting Text . 72
Moving Through Text Files . 72
Changing All Occurrences of a String in a Text File 73
Vi Summarized . 73

Displaying Contents of Text Files . 74
Showing File Contents with cat and tac . 74
Showing a File’s Last Lines with tail . 75
Displaying the First Lines in a File with head 76
Browsing File Contents with less and more . 76

Cool Text File Manipulation Tools . 77
Changing Contents in a Batch with tr . 77
Sorting Text Files with sort . 78
Finding Differences Between Text Files with diff 78
Checking Whether a Line Exists Twice with uniq 79
Getting Specific Information with cut . 80

Advanced Text File Filtering and Processing . 81
Working with Basic Regular Expressions . 81
Working with Programmable Filters . 84

Printing Files . 87
Managing CUPS Print Queues . 87

Finding Files . 88
Summary . 90

CHAPTER 5 Managing Partitions and Logical Volumes 91

Addressing Storage Devices . 91
File System Labels . 91
udev Device Names . 92

Creating Partitions . 93
Understanding Partitions . 94
Managing Partitions with fdisk . 95
Working with cfdisk . 103
Recovering Lost Partitions with gpart . 104

CONTENTSviii

Creating Logical Volumes . 106
Understanding Logical Volumes . 106
Setting Up a Disk with Logical Volume Manager 107
Working with Snapshots . 112
Basic LVM Troubleshooting . 113

Working with File Systems . 116
Understanding File Systems . 117
Formatting File Systems . 122
Maintaining File Systems . 122
Resizing File Systems . 127
Working with Windows File Systems . 129

Cloning Devices . 129
Summary . 130

CHAPTER 6 Managing Users and Groups . 133

Setting Up User Accounts . 133
Understanding Users and Their Properties . 133
Commands for User Management . 135
Working with Default Values for User Management 137

Managing Passwords . 139
Performing Account Maintenance with passwd 139
Managing Password Expiration . 140
Behind the Commands: Configuration Files 140

Group Membership . 143
Creating Groups . 143
The Use of Group Passwords . 145

Managing the User’s Shell Environment . 145
Creating Shell Login Scripts . 145
Showing Messages to Users Logging In . 146

Applying Quota to Allow a Maximum Amount of Files 146
Installing the Quota Software . 147
Preparing the File System for Quota . 147
Initializing Quota . 148
Setting Quota for Users and Groups . 149

CONTENTS ix

Techniques Behind Authentication . 151
Understanding Pluggable Authentication Modules 151
Discovering PAM Modules . 153
The role of /etc/nsswitch.conf . 156

Configuring Administrator Tasks with sudo . 158
Summary . 160

CHAPTER 7 Managing Permissions . 163

Setting Ownership . 163
Displaying Ownership . 163
Changing User Ownership . 164
Changing Group Ownership . 164
Default Ownership . 165

Basic Permissions: Read, Write, and Execute . 166
Understanding Read, Write, and Execute Permissions 166
Applying Read, Write, and Execute Permissions 167

Advanced Permissions . 168
Understanding Advanced Permissions . 168
Applying Advanced Permissions . 170

Working with Access Control Lists . 171
Understanding ACLs . 171
Preparing Your File System for ACLs . 172
Changing and Viewing ACL Settings with setfacl and getfacl 172

Setting Default Permissions . 175
Working with Attributes . 176
Summary . 178

CHAPTER 8 Managing Software . 179

Understanding Software Management . 179
Managing RPM Packages . 180

Working with RPM . 180
Working with yum . 181
Working with zypper . 186

Managing DEB Packages . 188
Managing .deb Software Repositories . 188
Ubuntu Package Management Utilities . 190

Summary . 196

CONTENTSx

CHAPTER 9 Process and System Management . 197

Understanding Linux Processes . 197
Monitoring Processes . 199

Monitoring Processes with top . 199
Finding Processes with ps . 204
Finding PIDs with pgrep . 207
Showing Parent-Child Relations with pstree 207
Displaying Memory Usage with free . 210

Managing Processes . 210
Killing Processes with kill, pkill, and killall . 210
Adjusting Process Priority with nice . 212
Process Management from top . 213

Scheduling Processes . 213
Summary . 215

CHAPTER 10 System Logging . 217

Understanding Logging . 217
Monitoring Log Files . 219
Configuring the syslog Service . 220
Passing Startup Parameters to syslog and syslog-ng 224
Configuring syslog-ng . 226
Sending Logs Yourself with logger . 232
Rotating Old Log Files . 232
Summary . 235

CHAPTER 11 Configuring the Network . 237

A Quick Introduction to Computer Networking . 237
Setting the IP Address . 238

Using ifconfig . 238
Using the ip Tool. 242

Storing Address Configuration . 245
Storing IP Address Configuration on Ubuntu 245
Storing IP Address Configuration on Fedora 246
Storing IP Address Configuration on SUSE . 248

Configuring Routing . 249
Managing the Default Route with route . 249
Managing the Default Route with the ip Tool 250
Storing Routing Information . 250

CONTENTS xi

Resolving DNS Names to IP Addresses . 251
The Role of the /etc/nsswitch.conf File . 251
Using the /etc/hosts File . 252

Tuning the Network Card with ethtool . 253
Analyzing Network Connections . 255

Testing Connectivity . 255
Testing Routing . 257
Testing Availability of Services . 258

Connecting Remotely with Secure Shell . 262
Working with Public/Private Key Pairs . 263
Working with Secure Shell . 264

Configuring SSH . 266
Using SSH Key-Based Authentication . 268
Caching Keys with ssh-agent . 271
Tunneling Traffic with SSH . 272

Summary . 274

CHAPTER 12 Configuring a File Server . 277

Creating a Samba File Server . 277
Background of the Samba Project. 277
Configuring a Samba File Server . 277
Accessing a Samba File Server . 286
Basic Samba Troubleshooting . 289

Configuring an NFS Server . 291
NFS Backgrounds. 291
Understanding NFS Processes . 291
Configuring an NFS Server . 293
Configuring an NFS Client . 295

Summary . 297

CHAPTER 13 Working with the Kernel . 299

Understanding the Kernel . 299
Managing Kernel Modules . 300

Listing Modules with lsmod . 300
Loading and Unloading Modules with modprobe 301
Displaying Module Properties with modinfo 301
Changing Module Options. 302
Managing Module Dependencies . 303
Legacy Commands for Module Management 303

CONTENTSxii

Tuning Kernel Parameters . 303
Writing Changes to /proc . 304
Some Useful /proc Parameters . 306

Compiling Your Own Kernel and Kernel Modules . 307
Understanding Make . 307
Modifying and Compiling the Kernel . 308
Compiling Modules . 311

Managing the GRUB Boot Loader . 312
The GRUB Configuration File . 313
Working with the GRUB Boot Menu . 315

Summary . 317

CHAPTER 14 Introduction to Bash Shell Scripting . 319

Basic Shell Script Components . 319
Elements of a Good Shell Script . 319
Executing the Script . 321

Working with Variables and Input . 322
Understanding Variables . 323
Variables, Subshells, and Sourcing . 324
Working with Script Arguments . 326
Asking for Input . 329
Using Command Substitution . 331
Substitution Operators. 331
Changing Variable Content with Pattern Matching 334
Performing Calculations . 336

Using Control Structures . 339
Using if ... then ... else . 340
Case . 344
Using while . 345
Using until . 346
Using for . 347

Summary . 350

APPENDIX Installing Linux . 353

INDEX . 361

xiii

About the Author

SANDER VAN VUGT is an independent trainer and consultant who lives in
the Netherlands and works in the extended EMEA (Europe, Middle East,
and Africa) area. Sander has been a speaker at major Linux conferences
worldwide, such as LinuxWorld in San Francisco and Linux.conf.au in
Australia. He specializes in Linux high availability, storage solutions, and
performance problems, and has successfully implemented Linux clusters
across the globe. Sander has written several books about Linux-related
subjects, including The Definitive Guide to SUSE Linux Enterprise Server
(Apress, 2006), Beginning Ubuntu Server Administration (Apress, 2008),

and Pro Ubuntu Server Administration (Apress, 2008).
Sander’s articles can be found on several international web sites and in magazines such as

SearchEnterpriseLinux.com, Linux Journal, and Linux Magazine. He works as a volunteer for
the Linux Professional Institute (LPI), contributing topics for different certification levels. Most
important, Sander is the father of Alex and Franck, and is the loving husband of Florence. For
more information, consult Sander’s web site: . Sander can be reached
by e-mail at .

xv

About the Technical Reviewer

MARY ANN C. TAN has experience in many fields, including slinging
regular expressions, watching Linux servers, writing telecom billing
systems, being an obsessive-compulsive spreadsheet user, and arguing
about machine learning. She is learning Italian, has forgotten most of her
Mandarin, trains cats using Cat-Kwan-Do, and sings videoke to survive
the Manila night. She currently does GUI development for a telecom test-
ing company as her day job.

xvii

Introduction

This book is for anyone who wants to master Linux from the command line. When writing it,
I had in mind system administrators, software developers, and enthusiastic users who want to
get things going from the Linux command line. For beginning users, this may be a daunting
task, as Linux commands often have many options documented only in pages that are not
that easy to understand.

This book is distribution agnostic. That is, while writing it, I’ve checked all items against
Ubuntu, Red Hat, and SUSE. Since most distributions are quite similar to one of these three,
this book should help you with other distributions as well. There is only one item in the book
that is not distribution agnostic: the Appendix, which explains how to install OpenSUSE.
I’ve chosen to cover installation of just one distribution, because if you don’t have any Linux
installed yet, you probably don’t care what you install. If you do care what distribution to work
with, you probably have it installed already.

The book begins with an introduction to exactly what I’m talking about when discussing
Linux and its different appearances: the distributions. In Chapter 1, you’ll also find essential
information on how to log on to the computer and how to find out more about the way a
command should be used. Chapter 2 follows with some essential Linux commands. After read-
ing this chapter, you’ll already start to feel at ease on the Linux command line; among other
things, it teaches you how to work with files and directories and how to communicate with
other users. Chapter 3 moves the focus to one of the most important tasks you’ll perform when
working with Linux: working with files. In this chapter, you’ll learn not only how to copy files
and make directories, but also how to mount devices to your Linux system.

Working with Linux from the command line means working with text files. In Chapter 4,
you’ll learn about the tools that are at your disposal to do this. You’ll get familiar with some of
the classic tools, such as and , and also with some of the more advanced tools, such
as and . Following that, in Chapter 5 you’ll learn more about partitions, logical volumes,
and other advanced file system management tasks. After reading this chapter, you’ll start
feeling at ease on the Linux command line. Chapters 6 and 7 move on to two other essential
subjects: the management of users and permissions.

Chapter 8 covers a topic that seems to be handled differently by all the Linux distribu-
tions: software management. This chapter teaches you about generic ways to install and
manage software packages, such as rpm and dpkg, and also about some of the distribution-
specific ways to deal with these tasks, such as apt-get, rpm, and zypper. Chapters 9 and 10
cover tasks that are important for system administration. In these chapters, you’ll learn how
to manage processes and how to handle logging on your computer.

By the time you reach Chapters 11 and 12, you’re ready to explore network-related tasks.
In these chapters, you’ll learn how to configure a network interface and how to set up the
Samba and NFS file services. Chapters 13 and 14 cover two advanced but useful topics: kernel

INTRODUCTIONxviii

management and shell scripting. After you finish the last chapter, you’ll have all the knowledge
you need to work with Linux from the command line.

There are exercises available for this book as well, which you can download from
. These exercises provide an excellent solution for learning Linux

in a classroom environment.
I hope you enjoy reading this book and that it prepares you for getting things done from

the Linux command line!

C H A P T E R 1

Starting Linux Command-Line
Administration

To unleash the full power of Linux, as a Linux administrator you will spend most of your time
typing commands on the Linux command line, the so-called shell prompt. For someone who
is new to the command line, the things that advanced users do there may look like magic. In
this chapter, you’ll learn about the following topics:

 and

Linux Distributions
For someone new to Linux, the operating system may appear a little bit strange. For instance,

versions (the so-called distributions) of Linux. After some Linux history, this chapter teaches
you about the differences and similarities between these distributions.

Linux History
Linux started around 1991 all because the Finnish student Linus Torvalds wasn’t too happy
with

kernel (which is the heart of the oper-

kernel and gave it the name Linux.
Possibly the smartest thing that Torvalds did when starting his initiative was decide not

to do it alone. To find other people who wanted to work with him, he posted a message on

1

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION2

people and get help from other people.
The initiative by Torvalds didn’t stand on its own. Many other software developers had

thing that really was missing at that moment was a kernel that was stable enough to go into
production.

Open Source
Right from the start, Torvalds released his software as open source software—that is, software
whose computer code is freely available to anyone. This open source initiative fitted well into
many other open source programs that were a part of the

-

experience.

can be used and modified by anyone, as long as the person modifying this software makes sure

-

The First Distributions

the early days, people who wanted to start using Linux had to go on the Internet and down-
load these software programs themselves. Often, after downloading them, they even had to
compile them for themselves. This compilation process was necessary to convert the program
files, which were published as source code files only, to executable programs that users could
execute on their computer.

to create collections that consisted of the Linux kernel and some other useful programs. One
of the first persons to do so was
1993. In those days, this distribution consisted of different software categories, all put together
on no fewer than 43 diskettes. Volkerding was perhaps the first who made a successful Linux
distribution that started to get used on servers all around the world.

Linux Turning Mainstream
The years between 1993 and 1998 marked the rise of the Linux operating system. One of the
most important reasons for this is that it provided a very affordable alternative for the expen-

popularity, during this period the most important Linux distributions were created.
-

gram that made working with Linux easy, other Linux distributions soon started to add value

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION 3

collection, others by creating programs and adding that to their distribution, and some hired
developers to optimize the open source programs. The result is that nowadays hundreds of
Linux distributions are available for new Linux users. Of all these Linux distributions, only
some really matter. In this book, I’ve focused on the three most important distributions: Red

the quality of the other distributions; however, it makes sense to focus on these three as they
make up more than 90% of the Linux market. Following are short descriptions of these three
distributions.

Red Hat

-
tor added support for Linux. At one level, this is support of different hardware and software
programs, which means that users of the supported hardware and software programs were

as a commercial added value to Linux.

is -

Fedora Linux is
available for free download at .

.

SUSE

-
able software, thus trying to make money out of it.

period still dominated the market.
-

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION4

at .

open source product. This version also offers a stable Linux distribution, but at the same

.

Ubuntu
a relatively new Linux distribution. It has become quite successful because its

.

success of the desktop version has become quite popular (though not yet as popular as the

version that currently is released every 18 months. The special thing about this version is the
extended period of support that is offered. For desktops this is 5 years, and for servers its 7
years.

Note This book focuses on Red Hat, SUSE, and Ubuntu Linux. You will notice, however, that 98% of the
commands and configuration files covered in this book are available on other Linux distributions as well. This
means that no matter what Linux distribution you use, the information in this book will be useful for you.

Logging In and Out
can do anything on a Linux computer, you have to log in. In this section, you’ll

learn about usernames and different ways you can use to make yourself known to your Linux
computer.

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION 5

Different Login Interfaces

with this, Linux offers you a login prompt. This can be either a graphical or a nongraphical
prompt. If you are working on a Linux desktop, you are likely to see a graphical environment.

In Linux, there often is a choice between different solutions. This means there is not

graphical login screen for that reason will be different between the distributions. In Figure 1-1,

Figure 1-1. The graphical login screen on SUSE

-
vides you with the login screen. More specifically, it is the process that starts the graphical

 process.
If you are working on a server, the graphical environment doesn’t matter and is normally

not started by default. That is because the graphical environment consumes resources, and
these resources on server systems are better reserved for other purposes. Therefore, servers
normally offer a text-based login prompt only. In Figure 1-2, you can see what this sort of login
prompt looks like.

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION6

Figure 1-2. The text-based login prompt

There are other ways of connecting to a Linux machine as well. If you are a server admin-
istrator, your server will probably be installed in an air-conditioned cold server room that
you enter only if really necessary. Therefore, as a server administrator, you may use a remote
access tool like

Note PuTTY is the de facto standard for accessing Linux machines from a Windows desktop. You can
download PuTTY for free from . To use it, you need SSH on your Linux computer as well.
SSH is covered in detail in Chapter 11.

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION 7

Figure 1-3. PuTTY is the de facto standard for accessing a Linux console remotely from a
Windows workstation.

As you can see, there are many ways to connect to a Linux machine. In all cases, you do
need to provide user credentials. The next section gives more information about that.

Working with a User Account
To log
already know what username to use if you installed the machine yourself. If someone else
installed the machine for you, ask him or her what username you should use. This username
will also have a password. At the login prompt, you need to provide the username and pass-
word to make yourself known to the machine. This procedure is also known as authentication.

Note There are alternatives to passwords for authentication. For instance, you may use a smart card to
authenticate on your machine. However, this is not very common, and for this reason, in this book I will focus
on password authentication.

can authenticate as a normal user, but you can authenticate with the account of the system
administrator as well. The username for this account is root. On every Linux computer, there
is a user with the name root, and this user account has no restrictions. The user root really
is almighty. If you are a system administrator, it makes sense to authenticate as root; after

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION8

all, you need to do system administration, and for that purpose you need all the permissions
there are. If, however, you are a normal user, you shouldn’t make a habit of logging in as root
by default. Just log in with your normal user account, and use or to become root when

authenticated.

Command-Line Basics
The command line is important, because a system administrator can do anything from it.
Linux has many, many commands, more than you will ever know, and new commands are
added on a regular basis. All of these commands, though, share a common way of working. In
this section, you’ll learn about common elements that you will encounter in any Linux com-

we’ll talk about characters that you can and can’t use in Linux commands. Figure 1-4 shows
what a command line looks like, when started as a terminal from a graphical environment.

Figure 1-4. The command line as seen from a terminal window

The command line offers you a prompt that consists of different parts. The first part of
the prompt, as you can see in Figure 1-4, is the name of the computer you are working on.
In this case, the computer name is
in the file system where the user is at right now. In Figure 1-4, you can see a sign instead
of the name of a directory. This sign refers to the home directory, which is the folder in the
file system where the user can store his or her personal files. Last, the sign in this prompt

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION 9

indicates that the current user is root, the mighty system administrator. If you see anything
other than
that if this is the case, some commands have limited use. For instance, on Linux a normal
user cannot format hard disks.

Note Since in open source there are no rules, a developer can do as he or she likes. Therefore, words like
“always” and “every” are not applicable in Linux, as there are often exceptions to the rules that are used in
Linux. To keep this book readable, I will, however, use these words anyway. Just keep in mind that when you
see the terms “every” and “always,” it should read “almost every” and “almost always.”

The Command Interpreter
on the command line, as an administrator you will be dealing with the shell.

The shell is the command interpreter: it is responsible for making something out of the things

abilities of the shell. The shell itself is a program that your server starts automatically after
you log in on your server, no matter if you’ve done so directly on the server console or via a

command-line administrator, you don’t really care which shell is used—both work in the same

most important and most useful features.

Commands, Options, and Arguments
A Linux command normally consists of three parts: the command itself, the command
options, and its arguments. For instance, the following example shows what a Linux command
looks like:

This example consists of three parts, , which is the command; and sales,
which are both options; and , which is a generic argument. Further on in this section, I’ll
explain these components in more detail.

The command itself is the character string you type to activate a certain task. For instance,
the command (see Listing 1-1) lists files. In Listing 1-1, you see the result of this command

functionality is defined for this command. Linux has many commands, as mentioned previ-

detailed usage information about them by using the command.

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION10

Listing 1-1. Using the Command Without Options Shows Files in the Current Directory

Options
Most commands
behavior of the commands. For instance, the
the current directory, as you can see in Listing 1-1. If you want to see details, such as the file
size, the permissions that are set for it, and information about the creation date, you can
add the option . In Listing 1-2, you can see how this option modifies the behavior of the

 command.

Listing 1-2. By Adding an Option to a Command, You Modify Its Behavior

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION 11

Options provide you a method that is defined within the command code to modify the
behavior of the command. This means that as a user or an administrator, you cannot add
options yourself. The only way of doing this is to change the source code of the command.

and other commands can have more than 50. The command normally gives you a com-
plete list of all options that are available.

Many commands offer two different methods of working with options: the short option
and the long option. For example, you can use the command , which makes the
command present its output in a human-readable way by showing kilobytes, megabytes, and

 in a long way, written as
. In Listing 1-3, you can see this option at work, combined with the option

, which makes sure that the output of
long alternative for the short option .)

Listing 1-3. Most Linux Commands Work with Short As Well As Long Options

 sign, and you can add more than one short option after
the sign. For instance, you can combine the options and from the example in Listing
1-4 as . Long options are preceded by the sign. For instance,
executes the . If by mistake you

 in front of a long option, the long option is not interpreted as a long option, but
as a collection of short options. This means that would be interpreted as

.

Arguments
Apart from options, many Linux commands have arguments. These are additional specifica-
tions that you can add to the command to tell it more precisely what to do, but the argument

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION12

is typically not defined in the command code itself. For example, consider the command
:

In this example, is the argument. As you can imagine, you can use any other
file name instead of , and this is typical for arguments. They are not fixed, and you
can use any argument you like as long as it is relevant in the context of the command. In this
book, I’ll make a very clear distinction between options and arguments.

arguments as well. For example, consider the following command:

This command consists of four different parts:

: The command itself

: The option that tells the

: The argument of the option , which specifies what exactly you want to do with
the option

: The argument of the command, which in this case makes clear to whom to send
the mail message

As a rule of thumb, arguments at the end of the command are normally command argu-

how to find out the differences between command arguments and arguments for options, but
-

ate the two argument types.

Piping and Redirection
piping, you can send the result of a command to another command, and by using redirection,
you can determine where the command should send its results.

Piping
Piping offers -
bine the abilities of two or more commands to create a kind of super command that offers

advanced Linux administrator, a command such as the following is pretty common (after
reading all the chapters in this book, you should be able to understand what this command
is doing):

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION 13

As a Linux administrator, you absolutely need to know about piping, so let’s start with
an easy example. If you try a command like , you will see that it gives a lot of output
that scrolls over your screen without stopping. On Linux, there is a very useful command,
named , that you can use as a viewer for text files. For example, try
(see Listing 1-4); this will open the file in to show the contents of the file
(use to quit).

Note The file contains a list of IP addresses and the matching host name. In a small net-
work, you can use it as an alternative to using DNS for resolving host names.

Listing 1-4. You Can Use As a Viewer to Read Text Files

The
, the

command executes and sends its result to the command. will function as a pager
in this situation and show you the output of the first command screen by screen (see Listing
1-5). It will also show you the current position that you are at; this is indicated by ,
which you see at the end of the example file. Press the spacebar to proceed to the next screen
of output.

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION14

Listing 1-5. By Piping to , You Can Display the Results of a Command That Gives a Large
Amount of Output Screen by Screen

Redirection
Another operator that is very useful in the Linux command shell is the redirection operator, .

also say that the shell will send the result of a command to standard output, abbreviated to
-

where else.

Tip If possible, try all commands described in this section immediately after reading about them. Without
trying them yourself, it may be quite hard to understand what they are doing.

Let’s use the command
, you’ll tell the com-

mand to send its output somewhere else, in this case to a file that has the name .
This file will be created in the current directory if it doesn’t exist. If a file with this name already

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION 15

exists, you will overwrite it by using this command. In case you want to add to an existing file
instead of overwriting it, use . The double redirector tells the command to
append to the contents of the file instead of overwriting it. If the file doesn’t already exist, the

when using redirection, use at all times instead of .
error messages apart from output. The good thing is that

you can redirect these error messages also. To do this, use instead of gives
you a lot of error messages as well (which isn’t very likely, but you never know), you can
send all of them to the file , which will be created in the current directory if you use

. And it is even possible to redirect the standard output of a command in
one direction, while sending the error output somewhere else. For instance, the command

 will create two files, the file for the regular output and the
file for the error output.

Instead of sending the results of a command to a file, you can redirect to some of the

device file. For instance, there is the device file , which can be used as a digital waste

system, you can redirect the error messages to the device. The following example
shows how to do so:

won’t see error messages anymore.
Apart from output, you can also use redirection on input for a command. This is used

not as often, but can be useful for commands that open an interactive prompt where you are
expected to provide input for the command. An example of this is the Linux command
that you can use on the command line.

Tip You can use the command for some simple mail handling from a terminal screen, but if your
server is configured properly, you can even use it to send mail to other users on the Internet. The only thing
you need to do is set up DNS on your server.

. This command opens a command prompt
that will allow you to compose a mail message to the user root (whose name is provided as the
argument to the command). The option . In
Listing 1-6, you can see the result of this command.

Listing 1-6. Composing a Mail Message with

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION16

 command is that when used in this way, it opens an inter-

feed the dot immediately to the command, which allows you to run the command without any
interruption from the command line.

The difference between Listing 1-6, where opens a command prompt, and the pre-
ceding example, where input redirection is used, is that in the example with input redirection,

use, and that’s all.

Getting Help
Linux offers many ways to get help. Let’s start with a short overview:

 command offers documentation for most commands that are available on
your system.

available options that can be used with the command.

can use the command to find out more about them. For example, use to
.

Note Want to find out whether a command is an internal command or not? Use . For example, try
; the result will show you what kind of command is, in this case a Bash internal command.

Using to Get Help
The most important source of information about commands on your Linux system is ,

 is to type
 followed by the command you want information about. For example, type to

get more information about the
pager, as shown in Listing 1-7.

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION 17

Listing 1-7. Example of a Page

 page consists of the following elements.

Name: This is the name of the command. It briefly describes the purpose of the
command.

Synopsis
all available options and indicate whether an option is optional (shown between
square brackets) or mandatory (not between brackets).

Description: This describes what the command is doing. Read it to get a clear and com-
plete picture of the purpose of the command.

Options: This is a complete list of all options that are available, and it documents the
use of all of them.

Files: If it exists, this section provides a brief list of files that are related to the command
you want more information about.

See also: This is a list of related commands.

Author: This indicates the author and also provides the mail address of the person who
wrote the page.

 Sections
In the early days, nine different
system. This structure of separate books (nowadays called sections) is still present in the
command. Table 1-1 lists the available sections and the type of help you can find in them.

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION18

Table 1-1. Sections and What They Cover

Section Topic Description
 and contain

generic code that can be used by your programs.

 or shell commands normally documents all commands that can be used.

-
quent basis. The system calls are functions that are provided
by the kernel. It’s all very interesting if you are a kernel debug-
ger, but normal administrators won’t need this information.

3 Library calls A library is a piece of shared code that can be used by several
different programs. Typically, pages that are documented
in section 3 are relevant for programmers, not so much for
Linux users and system administrators.

 are documented.
These files are needed to access devices in a computer. This
section can be useful for learning more about the workings of
specific devices and how to address them using device files.

configuration files on your server. If, for example, you want
to know more about the way is organized, use
the entry for in this section by issuing the command

.

information.

7 Miscellaneous This section contains some information on macro packages
used on your server.

 tion commands commands you will use on a frequent basis to change settings

on your Linux machine.

9 Kernel routines This is documentation that isn’t even included as part of the
standard install and optionally contains information about
kernel routines.

8. Mostly you don’t need to know anything about the other sections, but sometimes an entry
can be found in more than one section. For example, information on an item called

, you’ll see the content
of the first entry that finds. If you want to make sure that all the information you need
is displayed, use . This makes sure that browses all sections to
see whether it can find anything about . If you know what section to look in,
specify the section number as well, as in , which will open the item from
section 5 directly.

 is a very useful tool for getting more information on how to use a given com-
mand. On its own, however, it is useful only if you know the name of the command you want
to read about. If you don’t have that information and need to locate the proper command,
you will like . The option allows you to locate the command you need by looking at
keywords.

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION 19

Note is very useful. Instead of using , you may also use the command, which
does exactly the same thing.

 often produces a very long list of commands from all sections of the pages,
and in most cases you don’t need to see all that information; the commands that are rel-

for a configuration file, section 5 should be browsed as well. Therefore, it’s good to pipe the
output of through the utility, which can be used for filtering. For example, use

 to show only lines from
description.

Tip It may happen that provides only a message stating that nothing is appropriate. If this is the
case, run the command. This will create the database that is necessary to search the indexes.

Using the Option
The option is pretty straightforward. Most commands accept this option, although

the option, it will give you a short summary on how to use the command anyway because it
doesn’t understand what you want it to do. Although the purpose of the command is to pro-
vide a short overview of the way it should be used, you should be aware that the information is
often still too long to fit on one screen. If this is the case, pipe it through to view the infor-
mation page by page. In Listing 1-8, you see what happens when you do that.

Listing 1-8. Displaying Information Screen by Screen by Piping Through

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION20

Getting Information on Installed Packages
Another nice source for information that is often overlooked is the documentation you
can install for software packages in the directory . This information is not
installed by default on all distributions; you’ll probably need to install the

information. In some cases, the information is really short and not very good, but in other
cases, thorough and helpful information is available. Often this information is available in

 or any other utility that is capable of handling
clear text.

In many cases, the information in
can recognize this format by the extension . To read files in this format, you can use
and pipe the output of that to , which allows you to browse through it page by page. For
example, if you see a file with the name , use to read it.

-
played properly with a browser. If this is the case, it is good to know that you don’t necessarily

comes with the browser, which is designed to run from a nongraphical environment. In
 you can use the arrow keys to browse between hyperlinks. To quit the utility, use the

 command.

Working with the Shell
Linux uses the kernel to address and control the machine’s hardware. The kernel can be con-
sidered the heart of the Linux operating system. On top of this kernel, as shown in Figure 1-5,
Linux gives users the shell interface to tell this kernel and the services running on top of it what
they should do. This interface interprets the commands that users enter and translates them to
machine code.

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION 21

Figure 1-5. Overview of the relation between kernel and shell

1970s, was the . Another
popular shell is -

uses another shell, named -

tcsh: A

zsh: A

sash: The stand-alone shell. This is a very minimal shell that runs in almost all environ-
ments. It is thus well suited for troubleshooting systems.

Using the Shell to Best Effect

tasks he or she wants to perform. An example of such a command is , which can be used to

line commands as easy as possible.

everything
commands, but also file names and shell variables.

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION22

Working with Files and Directories
that when working in the shell, you’ll often be manipulating files and directories.

A directory is the folder in which files are stored that are related to one another; for instance,
in the directory
you can also create directories yourself. To do this, use . For instance, the following
command would create a directory with the name in the root of the file system:

In a directory, you’ll find files. These can be text configuration files, program files, and
documents; all that is stored on a Linux machine is stored in a file in some directory. In some
cases, it can be useful to create a dummy text file that allows you to test functionality. To do
this, use the command. The following command shows how to use to create an
empty text file in the current directory:

Using Automatic Command Completion
feature is as simple as pressing the Tab key. For example, the line command

-
rent directory, is cat thi and then press the

completes the name of the file. If the directory has other files that start with the same letters,

is a file in the current directory with the name and another with the name

and no further. To display a list of possibilities, you then press the Tab key again. This allows
you to manually enter more information. Of course, you can then press the Tab key again to
use the completion feature once more.

Tip Working with the Tab key really makes the command-line interface much easier. Imagine that you
need to manage logical volumes on your server, and you remember only that the command for that starts
with . In this case, you can type lv and press the Tab key twice. The result will be a nice list of all com-
mands that start with , from which you’ll probably recognize the command that you need.

Working with Variables
A variable is simply a common value that is used often enough by the shell that it is stored with
a name. Many system variables are available from the moment your system boots, but you
can set variables yourself as well. For instance, when you use the command on the

-

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION 23

ables yourself is mainly interesting when writing shell scripts; you’ll read much more about

Apart from the variables that you would define yourself, there are system variables as
well. These system variables are stored in the user’s environment and help make it easier to
work from the shell. An example of such a variable is , which stores a list of directories
that should be searched when a user enters a command. To refer to the contents of a variable,
prefix a sign before the name of the variable. For example, the command displays

On any Linux system, you’ll get quite a few variables automatically when logging in. For
an overview of all of them, you can use the (short for environment) command. Listing 1-9
shows the result of this command.

Listing 1-9. The Command Shows All Variables That Are Defined in Your Shell Environment

-

: A lists of directories where your system will look for pages.

: A list of directories that your system will search for executable files.

: The -
able from the file .

: The current prompt layout that your computer uses.

: The name of the shell the current user is using.

: The terminal type that is used. This is an important variable, because it defines
how text on your console is displayed.

: The name of the current user.

: The current language settings and what language is used to display items like
 pages. This variable is important for international users. is the setting for

to .

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION24

The most important source of new variables is the file, a script that is processed
-

must, however, log in as the system administrator root if you want to do this, if you have some
code you want to apply to . Also be aware that changes you make to
only become active after you log out and back in to the system.

If you want to make sure that your variable experiments don’t cause harm to all users on
your system, use the command to change to your home directory, and in the directory,
create a file with the name . All users can have such a file in their home directories,
and it will be treated as an addition to
will be executed only for the user in whose home directory you inserted this file.

Working with Bash History
Another useful -
mands you have recently used. Many distributions will remember the last 1,000 commands
that a user has used; in fact the number of commands the shell remembers is defined in a
variable itself. The name of this variable is . The history feature is useful for sessions
beyond even the current one. A file, named , is created in the home direc-
tory of every user, and this file records the last 1,000 commands that the user has entered.

-
ing 1-10 is an example of this list.

Note In addition to the command, you can also use the up/down arrow keys, page up/down
keys, and Ctrl+P/Ctrl+N to browse the history.

Listing 1-10. The Command Shows a List of All Commands That You Recently Used

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION 25

The history feature is especially useful because you can reissue any command from this
list without typing it all over again. If you want to run any of the listed (and numbered) com-
mands again, simply type its number preceded by an exclamation mark. In this example, typ-
ing !198 would run again.

A user can also erase his or her history by using the command. The most impor-
, which clears the history list for that

user. This is especially useful because everything that a user types at the command line—such
 to make sure your history is cleared if you’d

rather not have others knowing what you’ve been up to. Once you use this option, however,
you can’t use the up arrow key to access previous commands, because those are all erased.

in your home directory, I recommend never entering a plain-text password in the first place,

-
ger on your Linux system!

Managing Bash with Key Sequences
-

pens at all or something totally unexpected happens. In such an event, it’s good to know that

the most useful key sequences:

Ctrl+C this key sequence to quit a command that is not responding (or simply
takes too long to complete). This key sequence works in most scenarios where the

want to terminate the command that’s running in your shell. If used in the shell itself, it
will close the shell as well.

Ctrl+D: This key sequence is used to send the
-

CHAPTER 1 STARTING L INUX COMMAND-LINE ADMINISTRATION26

Ctrl+R: This is the

longer commands. As before, type the first characters of the command, and you will
see the last command you’ve used that started with the same characters.

Ctrl+Z
the console (in the foreground). Although it does stop the command, it does not ter-
minate
easily start it in the background using the command or in the foreground again
with the -

-

never to use this key sequence if you want to
stop a command!

Summary
In this chapter, you have learned about the essentials you’ll need to know to work with Linux.
The following topics were covered:

 and

to start using some commands. In the next chapter, you’ll learn about some useful commands
and the way they work.

C H A P T E R 2

Performing Essential
Command-Line Tasks

A t this point, you know the basics to get around. One very important topic that you’ve
learned in Chapter 1 is how to get help. Now it’s time to expand your command-line skills by
exploring some essential Linux commands. In this chapter, you’ll learn about the following
topics:

Changing Your Password
As a user, you have a password that protects your account. This account includes all your
personal settings and files, and therefore needs serious protection. Hence, it is a good idea
to change your password regularly to minimize the risk that someone else gets to know your

it meets the following minimal requirements:

difficult to guess as possible.

-
ers use “dictionary attacks” in which they feed the entire contents of a dictionary to
a brute-force password cracker, and if your password is in the dictionary, they will
crack it.

27

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS28

Changing your password is not too hard—just use the command. Then, you first
have to enter your old password. This is to prevent others from changing your password. Next,

otherwise it will not be changed. In Listing 2-1, you can see what happens when changing your
password.

Listing 2-1. Changing Your Password

If you are logged in as root, you can also change the password of other users. If you just
want to change the password, that’s easy: type passwd followed by the name of the user whose
password you need to change. There are also some options that you can use when changing a
user’s password. Following are the most useful of these options:

: Removes the password for the specified user account.

period.

.

: Forces the user to change his or her password at the next login.

Working with Virtual Consoles
On your Linux system, you work from a console. This is either a graphical or a text-based con-
sole. All distributions by default offer more than just this one console. They do this by using
virtual consoles. You can consider a virtual console similar to the dumb terminal that was quite
popular in the 1980s. Virtual consoles offer you more than one login environment, which is
especially useful in a nongraphical environment.

Also for a modern Linux user, a virtual console can be very practical. Imagine a system
administrator who wants to test a new setting and verify that it works for the user accounts. He
or she can use one virtual console to change the setting as system administrator, while testing
the setting by logging in as a normal user at another virtual console. Or imagine a developer
tweaking the source code of a new program on one virtual console, while debugging the same
program at another virtual console.

are tty1 through tty6. You can activate them using Ctrl+Alt+function key. So, to access virtual
console number tty4, you need to press Ctrl+Alt+F4. If your system has started a graphical
environment as well, you can use Ctrl+Alt+F7 to get back to the graphical environment.

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS 29

Note In a nongraphical environment, you can skip the Ctrl key. So, to switch between tty1 and tty2,
pressing Alt+F2 also works.

You may notice that some distributions also use some of the higher-numbered virtual
consoles for logging. Therefore, you should always at least check what happens at the higher-

which can be useful when troubleshooting a problem.

Becoming Another User
There are basically two ways to authenticate to your Linux system: as the root or as a nonroot
user. It is good habit not to use root by default. Since root can do anything, a small mistake
may have big consequences. As root, you can accidentally destroy everything on your system,
and Linux won’t ask whether you are sure about this action before wiping out everything on
your hard drive (or whatever mistake you are about to make). Therefore, it is a good idea to log
in as a normal user and get root permissions only when you really need them. To write a text
document, you don’t need root permissions (unless it’s a configuration file). To change your IP
address, however, you do need root permissions.

To temporary change your identity, you can use the (substitute user) command.
 followed by the name

of the user through whose identity you want to work. For instance:

would switch your current user account to the user account linda. If you are a normal user,
you next have to enter a password. If you are root, this is not necessary (root is almighty,
remember?). If you omit the name of the user you want to to, the command assumes you
want to become root. It will next prompt you to enter a password, which in this case is the
password of the user root.

Tip If you’re on Ubuntu, you can’t use just like that. Ubuntu uses the mechanism instead, which
is covered in Chapter 6 of this book. Here’s a quick-and-dirty method that helps you in using , even on
Ubuntu. It will enable you to execute privileged commands from now on. First, use the command .
When asked for a password, enter the password assigned to your user account. Next, use the command

 to give the user root a password. From this moment on, you can also log in as root on Ubuntu. If for
security reasons you don’t like the fact that you can do so, read Chapter 6 for information on how to disable
this feature. Until then, the goal is to help you work on the command line, and to do that, you will need root
permissions from time to time.

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS30

, it is a good idea to use the option at all times. This option will give you
a login shell instead of a subshell. If you don’t use the option , you may still work with some
settings that belong to the old user account. To prevent this, use at all times. This ensures
that you work in the complete environment of the user you are switching to. In Listing 2-2, you
can see what happens when a normal user uses to take the identity of user root.

Listing 2-2. Switching Identity with

. This brings you back to your
original user environment.

Obtaining Information About Other Users
If you are using Linux on your personal computer at home, you are probably the only user who
is logged in to it. However, if you are a Linux user at the Linux server in your company, there
can be other users as well. In the latter case, it is good to know that several commands are
available to help you in getting information about users who are currently connected to the
same machine. To start, there is the command. This command shows a short list of all
users currently authenticated with no further details:

If you want more information about the users who are logged in, is a better option.

logged in from and at what time they logged in. Listing 2-3 shows the output of when used
without additional options.

Listing 2-3. Gives More Detailed Information About What Users Are Doing

The fact that shows the IP address of remote users is particularly useful. If, for exam-
ple, a user is misbehaving himself or herself, the administrator knows from which IP address
that user is working, which makes it easier to take corrective measures.

If you want to see what a user is doing, the command is helpful. This command shows
you the names of users, where they are logged in from and at what time, current usage statis-
tics, and what program they currently are using (or have used as the last program). Listing 2-4
gives an overview of output.

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS 31

Listing 2-4. Use If You Want to See What a User Is Doing

If you want to get to know as much as possible about other users, try
command really gives much privacy-related information, it is disabled by default on some
distributions. This is not the case on all distributions, which means that you can query the
system to find out what a user has been doing recently. The command even shows you

Listing 2-5. Because It Shows Much Privacy-Related Data, the Command Is Disabled on
Many Distributions

Communicating with Other Users
From the Linux command line, you have some communication options as well. Some com-
mands allow you to communicate in real time, providing chat functionality, while others are
provided to allow you to send e-mail.

Real-Time Communication
On Linux, there are two options to communicate with other users in real time. You can use

 to talk to an individual user. If you want to send a message to all users, you can use .
If you don’t want to receive messages from other users, use the command to switch mes-
sage reception off or on.

Individual Chat Sessions with
If you want to chat in real time with another user on the system, you can use . This com-
mand is provided for communication between two users. Its use is fairly simple: initiate a

 session to another by using the command followed by the name of the user you
want to talk to. For instance, the following command would initiate a session from the current
user to user linda:

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS32

Next, opens a prompt after which the user can type text. This text is displayed line
by line on the terminal of the other user. No matter what the user is doing, the text will be
displayed, as long as the user has a terminal session that is open. If a user receives a
message from another user, he or she can reply to that by opening his or her own ses-
sion. As an illustration, the following procedure demonstrates how root and linda initiate and
terminate a session:

 1. session to root, using the command . This opens
the prompt, from which linda can type her text:

 2. At this moment, root receives linda’s message at his console. To reply, he has to press
.

Next, he can type his message, thereby establishing an active chat session with linda:

 3. At the end of the session, both parties that are involved have to use the Ctrl+C key
sequence to terminate the session. This will bring them back to their prompts, where
they can continue their normal work.

Writing to All Users
Another tool for real-time communication is . This stands for write all, and you can prob-
ably guess that this tool is used to write a message to all users. It works in more or less the
same way as : after entering , the user who invokes writes a message, which is
terminated by using the Ctrl+D key sequence. This message will show on the console of all
users who are currently logged in. It needs no explanation that you should use this tool with
care, as it is very annoying for users to receive messages frequently. In Listing 2-6, you can
see an example of a session.

Listing 2-6. Writing a Message to All Users with

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS 33

, you can also send the contents of a text file to other users. For instance,
 would send the contents of to all users who are cur-

rently connected. This function is useful for a system administrator who wants to send a
longer message to all users.

Disabling Real-Time Messages
If you don’t want to receive any messages from other users, use the command. This
command works with two arguments only. makes sure that no one can write mes-
sages to your console. If you want to open your console again for messages from other users,
use .

Sending Mail from the Command Line
You may think that in order to send mail, you need a full-scale mail client, such as Thunder-

which you can invoke from the command line by using the command. I wouldn’t rec-
ommend replacing your normal mail client by , but if you want to send a message to an
Internet or local user, or if you want to read system mail, the command offers an excellent
solution to do that.

Note You can use the command to send mail to Internet users, but this requires DNS to be set up
properly on your Linux machine and an SMTP process running. Most Linux computers meet these require-
ments after a default installation.

To send a mail message to another user, you invoke the command as , where
 is the name of a local user (e.g.,) or a user on the Internet (e.g.,

). Next, the program opens an interface where you first enter the

delivering it to the correct user. In Listing 2-7, you can see what happens when using the
command from the command line.

Listing 2-7. Sending Messages with the Utility

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS34

You can also run the utility completely from the command line, without it opening
an interface that has you input text. This, for example, is very useful if you want shell scripts
or scheduled jobs to send a message automatically if a certain error condition occurs. In these

mail message with a certain subject to the user. The next command shows you how to do this:
it sends a message with the text “something is wrong” to the user root. Also, take notice of the

 construction. Normally, the command would expect a dot on a line on its own to indi-
, the dot is provided on

the command line.

The command has some other useful options as well for sending mail:

: Allows you to add a file as an attachment to your message.

: Specifies the name of a user you want to send a copy of the message to.

: Sends a blind copy to a user. The recipient of the mail cannot see that
you’ve sent a copy to this user also.

: Allows you to specify the reply address. A reply to this mail message is
automatically sent to this reply address.

Apart from sending mail, you can read mail messages also with the utility. The utility,

-
sages, you should just type mail. In reply, the mail client shows a list of mail messages that are
waiting for you (see Listing 2-8).

Listing 2-8. Just Type mail to Display a List of All Mail Messages That Are Waiting for You

reading the message, press to quit. After closing a message that you’ve read, you can type the
 command from within the mail interface to send a reply to the user who sent the mes-

sage, or type , followed by the message number to delete the message from your system.
Next, type to exit the mail interface.

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS 35

Finding Your Way in the File System
Now that you know how to log in to your server, it is time to get more familiar with the way a

-
ment, you must know where you can find all important files on your server. Knowing where to
find files and directories will absolutely make working on the Linux command line easier.

Default Directories
All Linux distributions use more or less the same approach in organizing the directory struc-
ture on a system. This means that certain directories will always be present, no matter what
distribution you are using. You may encounter small differences between distributions
though. In this section, you’ll learn what default directories exist and what kinds of files you’ll
find in these directories.

On most Linux systems, you’ll find the following default directories (notice that minor dif-
ferences may exist between distributions):

: The root directory is the starting point of your Linux file system. All other directories
on your system exist in the root directory.

: This is the location where you find program files (binaries) accessible to all users.
These are essential binaries that must be available at all times, even if there is a prob-
lem with other parts of your system. For that reason, the directory is always on the
root partition. In it you will find essential utilities and commands like (the
shell), (used to copy files), and many more.

: In this directory you will find binaries for the system administrator. These are
critical binaries that must be available at all times in case you need to repair your sys-
tem. In this directory, you will find commands and utilities you’d rather not see in the
hands of your users, like the general system management tool , or the partitioning
tool .

: This directory contains everything you need to boot your server. One of the

the name . (On some distributions, the version number is appended to the file
name.) Other vital components are present as well, and the thing all of these have in
common is that your server needs them to start.

: On a Linux system, all hardware you work with corresponds with a file on your
system. If you want to address the hardware, you have to address the corresponding
file. You can find all these device files in the directory . You will find, for example,
a device called that refers to the optical drive that might be present in your
system. Other important device files are , which typically refers to your hard
disk, or , which you can use to redirect error messages to.

services running on Linux use an ASCII text file to store all necessary con-
figuration. These text files are kept in the directory . In this directory, you will find
some important configuration files like , which contains the database of
local Linux users.

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS36

: The personal files of a user are stored in his or her home directory, no matter if
you are working on a Linux server or a personal desktop. The directory is used

put this directory on a partition on its own to separate user data files from operating
system components. That minimizes the risk that you’ll lose all your personal files if
something happens to the installation of your operating system.

programs that are used in a Linux environment share some of their code.
This shared code is stored in different library files. All the libraries needed by binaries
that are in a subdirectory of your file system root are in the directory . You will also
find some other important modules in this directory, like the driver modules that are
used by the kernel of your server.

: On a Linux system, to access files that are not on the hard disk of your compu-
ter, you need to make the medium accessible. You do this by mounting it (mounting

example, you connect it to a directory on your file system. This must be a directory that
exists before you start mounting anything. The default directory that is used for regu-
lar mounts on most distributions is . In this directory, a subdirectory is created

appear here (and on the graphical desktop as well) once they are mounted with the
label of the device used as the name of the directory where the device is mounted.

: On older Linux systems, was the default directory for mounting devices. On
more recent systems, this has been replaced by the directory. However,
still has a purpose: it is used for mounts that don’t occur very often, such as a mount to
a server that has to be accessed only once.

: This directory is probably the largest directory on your system. Here you can find
almost all user-accessible files. Some people like to compare it to the

it you will find an entire structure of subdirectories, including , in which most

, where you can put the source files of the open source programs and kernel
 directory, it is quite usual to put it

on its own partition.

Tip Have you always wanted to find out how much space a directory occupies on your hard disk? Use
 from a console environment. It will show you the disk usage of a specified directory. The normal

output of this command is in blocks; the parameter presents the output in a human-readable form. The
option makes sure that you see the summary for the selected directory only, and not how much disk
space every individual file uses. For example, use to find out exactly how much space is
occupied by . In Listing 2-9, you can see the result of the command.

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS 37

Listing 2-9. Use to Find Out How Much Disk Space a Directory and Its Contents
Occupy

: In
Normally, large software installations, such as office suites and other large programs,
are stored in . For example, the Gnome graphical interface, the OpenOffice suite,
or the Oracle database (if installed) could be subdirectories of this directory.

: This is a strange directory, because it doesn’t really exist on the hard disk of your
computer. is an interface to the memory of your computer. An advanced admin-
istrator can use it to tune the workings of the computer and get information about its
current status. You can find a lot of information about your computer in the files in this
directory. For example, try the command to show the contents of
the text file (you must be root to do this). This command will show you
a lot of information about the processor(s) in your computer, as you can see in Listing
2-10.

Listing 2-10. Use to Get Information About Features Your Computer’s
CPU Is Using

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS38

: Ordinary users have their home directories in . A system administrator

respectfully called “superuser.” Since this user may have some important tools in his or
her home directory, this directory is not in with those of the other users. Instead,
the user root uses as his or her home directory. There is a good reason for this: on
many servers the directory is on a separate partition. If for any reason you can-
not access this partition anymore, user root at least still has access to his or her home
directory, in which he or she has probably stored some important files.

: On many distributions, you will find all files from some important services in this
directory. For example, it is used to store your entire web server and FTP server file
structures. If you were to run, say, an Apache web server on your computer, this is the

: This directory can be used to store information about the state of your system. Its
use is like the use of , with the difference that the information in is kept on
the hard disk of your server, so it is still available after you have rebooted it. The infor-
mation in is more directly related to the hardware you are using on your server,
whereas is used to store information about the current state of the kernel.

: As the name suggests, is used for temporary files. This is the only direc-
tory on the entire system where every user can write to. This is, however, a bad idea,
because the content of this directory can be wiped out automatically by any process or
user without any warning being issued before that happens.

: This last directory you will find on any Linux computer. This directory contains
mostly files that are created by your system whose content can grow very fast. For
example, think of spooling of print jobs—these are found in this directory.

Working with the Linux File System
On a
by pointing to a file (which, for your information, has the name in most cases).
Therefore, to handle Linux well, it is important that you can find your way in the Linux file sys-
tem. In this section, you’ll learn the basics of working with the file system (more details are in
Chapter 3). The following subjects are covered:

Working with Directories
On Linux, directories are used as is the case with
normally organized in directories, it is important that you know how to handle them. This
involves a few commands:

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS 39

this to show your current directory. It will display the complete directory path
reference, which always starts at the root directory:

: Once you know what your current directory is, you can change to another directory
using the , you should be aware of some features in the
Linux file system:

case sensitive. Hence, and are not the

to put a
to find the directory as a subdirectory in the current directory.

 The command has one argument only: the name of the directory you want to go to.
For instance, the following command brings you to the directory , which is
directly under the root directory of the file system:

Tip Switching between directories? Use to return to the last directory you were in. Also good to
know: if you just type cd, the command brings you to your home directory.

: If you need to create a new directory, use . For instance, the following
would create a directory named in the directory :

 you can create a complete directory structure in one command as well,
which is something you can’t do on other operating systems. For example, the com-
mand will fail if does not already exist. In that case, you
can force to create as well: do this by using the
command.

: The command is used to remove directories. However, this isn’t the most
useful command, because it works only on directories that are already empty. If the
directory still has files and/or subdirectories in it, use , or better, , which
makes sure that you’ll never get a prompt for confirmation. It’s best to be sure what
you’re doing when using this option

Working with Files
An important task from the command line is managing the files in the directories. Four impor-
tant commands are used for this purpose:

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS40

 lists files.

 removes files.

 copies files.

 moves files.

Listing Files with
The generic syntax of is not too hard:

For instance, the following would show all files in the directory , displaying their
properties as well:

See Listing 2-11 for an example. In this example you can see that different columns are
used to show the attributes of the files:

File type: The very first letter shows the file type. If a is displayed, it is a regular file.
In this example, you can see one file that has the type. This is not a regular file, but a
directory.

Permissions: Directly after the file type, you can see the permissions assigned to the file.
There are nine positions that show you the file permissions. In Chapter 7, you’ll learn
much more about them.

Ownership: On Linux, every file has a user owner and a group owner. In the following
example, they are set to user root and group root for all files.

File size: Next to the group owner, the size of the file is displayed.

Creation date and time: For every file, creation date and time are shown as well.

File name: In the last column of output, you can see the name of the file.

Listing 2-11. Example Output of

Apart from the option , has many other options as well. An especially useful one is
the command,
wildcards can be used. So, will show a list of all files in the current directory,

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS 41

will show a list of all files in the directory that have an “a” followed by a dot somewhere
in the file name, and will show a list of all files whose names start with either an “a,”

. If a
directory matches the wildcard pattern, the entire contents of that directory are displayed as
well. This doesn’t really have any useful application, so you should always use the option
with when using wildcards. Some of the most useful options that you can use with are
listed here:

: Also show files whose name starts with a dot. Normal users will not see these by
default, as files whose names start with a dot are hidden files.

: Provide a long listing. This shows properties of files as well, not just file names.

: Shows the names of directories and not their contents.

: Shows the contents of subdirectories as well.

: Sort files by access time.

: Indicates human readable. This mentions file sizes in kilobytes, megabytes, or

 option only.

: Sorts files by file size. This option is useful only when used together with the
option .

Note A hidden file is a file whose name starts with a period. Most configuration files that are stored in
user home directories are created as hidden files to prevent the user from deleting the file by accident.

Removing Files with
Cleaning up the file system is another task that needs to be performed regularly, and for this
you’ll use the command. For example, removes from the
directory. If you are root or if you have all the proper permissions on the file, you will suc-
ceed without any problem. (See Chapter 7 for more on permissions.) Removing files can be
a delicate operation (imagine removing the wrong files), so it may be necessary to push the

 command a little to convince it that it really has to remove everything. You can do this by
using the (force) switch (but only if you really are quite sure you want to do so). For exam-
ple, use if the command complains that cannot be removed for some
reason. Conversely, to stay on the safe side, you can also use the option to , which makes

 will ask for every file that it is about to
remove if you really want to remove it.

The
option has to be used. If this option is combined with the option, the command will become
very powerful and even dangerous. For example, use to clear out the entire
content of , including the directory itself.

Obviously, you should be very careful when using this way, especially because a
small typing mistake can have serious consequences. Imagine, for example, that you type

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS42

 (with a space between / and) instead of . The
 command will first remove everything in the root of the file system, represented by the

directory and, when it is finished with that, it will remove as well. Hopefully, you
understand that the second part of the command is no longer required once the first part of
the command has completed.

The command also has some useful options:

: Recursive, removes files from all subdirectories as well

: Force, doesn’t ask anything, just removes what the user asks to remove

: Interactive, asks before removing a file

: Verbose, shows what is happening

In Listing 2-12, you can see what happens when removing the contents of a directory
with all its subdirectories with the options . As you can see, it is not a very practical way of
removing all files, but at least you’ll be sure not to remove anything by accident.

Listing 2-12. Removing Files with

Caution Be very careful using potentially destructive commands like . There is no good undelete
mechanism for the Linux command line, and, if you ask Linux to do something, it doesn’t ask whether you to
confirm (unless you use the option).

Copying Files with
If you need to copy files from one location in the file system to another, use the command.

follows:

As , you typically specify the name of a directory, files, or a file pattern (like to
refer to all files). For example, use to copy all files from your home directory to

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS 43

the directory. As you can see, in this example I introduced a new item: the tilde (). The
shell interprets this symbol as a way to refer to the current user’s home directory (normally

 for ordinary users and for the user root). If subdirectories and their con-
tents need to be included in the command as well, use the option .

The command has some useful options, some of which are listed here:

copied as well.

 command will overwrite an existing destination file, this option
makes sure that a backup is created of this destination file first.

will force the copy. This means that the destination file is overwritten and tries
again.

 asks before overwriting an existing file at the
destination location.

 makes sure that attributes of the file, such as
owners and permissions, are copied as well.

source file, or if the destination file does not exist.

Moving Files with
Sometimes you need to copy your files, at other times you need to move them to a new loca-
tion. This means that the file is removed from its source location and placed in the target
location. The syntax of the command that you use for this purpose is comparable to the
syntax of :

For example, use to move the file to . If a
subdirectory with the name already exists in the directory, will be
created in this subdirectory. If has no directory with this name, the command will save
the contents of the original under its new name in the directory.

The command also does more than just move files. You can use it to rename
files, as well as directories, regardless of whether there are any files in those directo-
ries. If, for example, you need to rename the directory to , use

.

Cool Commands
Some commands don’t really fit into a certain theme, but are just cool and useful. In this
final section, you’ll learn about these commands. I’ll give a short description of the following
commands:

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS44

Displaying a Calendar with
know if Christmas 2018 is in a weekend? Linux has a cool utility to help you with that:

. If you just type cal, this utility will show you the calendar of the current month. You can,
however, also include a year or a month and a year as its arguments to display the calendar for
a given month or a specific year. For example, the command shows you the calen-
dar for December 2018 (see Listing 2-13).

Listing 2-13. With You Can Show the Calendar for a Specific Month or Year

Clearing Your Screen with

to do that. This command takes no argument—just typing clear will do the job. You may also
prefer to use the key sequence Ctrl+L, which does exactly the same.

Displaying System Information with and
In some cases you need to know more about your system. For this purpose, you can use the

-
nel you are using. This will normally be a Linux kernel, and that information might not be too
useful as you probably already were aware of using Linux. However, you can also use
to display what kernel version you are using (), or what type of
(). And if you just want to see all there is to show about your computer, use .
An example of this command is shown in Listing 2-14.

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS 45

Listing 2-14. Showing System Information with

You may have noticed that shows a lot of information, but it doesn’t tell you what
the name of your computer is. For this purpose, better use the command. If you use
it without arguments, it just shows the short host name, which is probably the same as what
you already see at your computer’s shell prompt. If you also want to see the name of the DNS
domain that your computer is in, use .

Counting Words, Lines, and Characters with
In some situations, it is useful to know how many words there are in a file. For this purpose,
Linux has the (wordcount) command. It will not only show you words, but also characters
and lines that are in the target file. Its use is easy:

number of words and the number of characters in the file.

Listing 2-15. Counting Lines, Words, and Characters in a File with

Changing and Showing Date and Time with
At the end of the working day, you probably want to know when it is time to go home. The

the current date and time, but you can also use arguments to change the time or date. For
instance, sets the time to 2:48 p.m. You can also work with an argu-
ment to change month, date, hour, and minute. For instance, the command
sets the current date and time to 2:49 on December 11.

Summary
In this chapter, you’ve acquired some important basic skills to work with Linux on the
command line. You have first learned all there is to know about your session on the Linux
computer. This includes logging in and out, working with virtual consoles, and working as
another user. Next, you’ve learned how to work together with other users. You’ve read how
you can find out which users are connected to the system and how you can communicate with
those users. Following that, you’ve read how to work with files and directories. Finally, at the
end of this chapter, you’ve learned about some other useful commands. The following com-
mands were covered in this chapter:

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS46

: Change passwords.

: See who is connected.

: See who is connected.

: See who is connected.

: Get information about a user.

: Send a real-time message to one user.

: Send a real-time message to all users.

: Disable or enable reception of real-time messages.

: Send e-mail to other users.

: See how much disk space a directory occupies.

: Show contents of a text file.

: Print working directory.

: Change to another directory.

: Remove a directory.

: List files.

: Remove files.

: Copy files.

: Show a calendar.

: Clear screen.

: Show system information.

: Count words, lines, and characters in a text file.

: Show and change current date and time.

In the next chapter, you’ll get some more details about working with the Linux file system.

C H A P T E R 3

Administering the
Linux File System

In Chapter 2, you’ve read about some of the basic tasks that you may want to accomplish
when working with a Linux system. In this chapter, you’ll read about some of the more
advanced tasks. Typically, these are tasks that you would use to administer and tune your
Linux computer. First, you’ll learn how to mount devices on your computer and how to make
sure that devices are mounted automatically when booting. Next, you’ll read how to create
backups of files and directories with the utility, and of complete devices using . At the
end of this chapter, you’ll discover the benefits of working with links.

Mounting Disks
On a Linux computer, devices are not always mounted automatically. Therefore, you must
know how to mount a device manually. Especially if you are a server administrator who needs
to connect his or her computer to external storage, knowledge about the mount procedure is
very important. This also holds true for more common situations, for instance, when you have
to connect a USB key and it doesn’t mount automatically.

Using the Command
To mount devices manually, you use the command. The basic syntax of this command is
easy to understand:

For the part, you specify a device name, and, for the part, you provide a direc-
tory. In principle, any directory can be used, but it doesn’t make sense to mount a device just
anywhere (for example, on) because doing so will temporarily make all other files in that
directory unavailable.

Therefore, on Linux, two directories are created as default mount points. These are the
directories that you would typically use to mount devices. The first of these is the directory

. This is typically the directory that you would use for a mount that happens only occa-
sionally, such as if you want to test whether some device is really mountable. The second of
these directories is , where you would mount devices that are connected on a more
regular basis. You would mount a CD or DVD in that directory with the following command:

47

CHAPTER 3 ADMINISTERING THE L INUX F ILE SYSTEM 48

The command lets you mount devices like CDs or DVDs, but network shares can
also be mounted with this command. You just have to be more specific. If, for example, you
want to mount a share named that is offered by a Windows computer named , you
would use the following command:

Note The syntax in the preceding command can be used to access a share that is offered by a Windows
computer, but you can also use it to access a share that is offered by a Samba file server. Samba is a pro-
cess that you can run on top of any Linux computer to offer Windows-like file services.

You’ll notice in this last example that some extra options were used:

 command is perfectly capable
of determining the file system for local devices by just looking at the administration
that exists in the beginning of every file system. But, if you’re trying to mount a share
that is offered by a computer on the network, you really need to specify the file system.
This is because the command needs to know what type of file system it is before
being able to access it. In the example of the share on a Windows machine, because
you want to mount on a Windows file system, the file system type is used. You can
use this file system type also to access shares on a Samba server.

user who performs the mount. This must be the name of a valid user account on the
other system.

) is
used, but, if your system has problems working with computer names, an IP address
can be used just as well. The computer name is followed by the name of the share.

example, I’ve mounted it on , because this is a mount that you would perform only
occasionally. If it were a mount you used on a more regular basis, you would create a
subdirectory under (would make sense here) and create the mount
in that subdirectory.

In Table 3-1, you can see a list of some of the most popular devices that you typically want
to mount on a regular basis.

CHAPTER 3 ADMINISTERING THE L INUX F ILE SYSTEM 49

Table 3-1. Mounting Popular Devices

Device Address As Remarks
Floppy disk Because modern computers rarely have more than one

floppy device drive, the floppy drive (if present) will be
. If more than one drive is available, use , and

so on.

Hard drives , Depending on the bus the hard drive is installed on,
you will see it as (IDE) or (SCSI and
SATA). X is replaced by “a” for the first drive, “b” for the
second drive, and so on. Notice that normally you don’t
mount a complete hard drive, but a file system on a
partition on the hard drive. The partition on the drive is
referred to by a number, for the first partition
on an SCSI hard drive, and so on. In Chapter 5, you’ll
find more information about partitions and ways to lay
out your hard drive.

USB drives USB drives (including USB keys) appear on the SCSI
bus. Typically, you’ll see them as “the next” SCSI disk.
So, if you already have an , the USB device will
appear as . The USB drive normally has a parti-
tion on it. To mount it, you must mount this partition.
The numbering of partitions on USB drives works like
the numbering of partitions on normal hard drives
(from the Linux kernel perspective, there isn’t really a
difference between these two different device types).
So to mount the partition on a USB drive that has
become available as , you would typically use

 (don’t forget to replace
 with the name of an existing directory).

Optical drives , If the optical drive is installed on the IDE interface, it is
typically or , depending on other IDE
devices already present. On modern computers, you’ll
find the optical drive more often as . To make
it easier for you, your distribution will create a symbolic
link (you can compare this to a shortcut) with the name

 or . By addressing this symbolic
link, you can address the real name of the device.

Tape drives Typically, a tape drive is installed at the SCSI bus and
can be mounted as .

Windows shares Use followed by the computer name, followed by
the share. Additional options are required, such as

 to indicate the type of file system to be used
and to specify the name of
the user account that you want to use.

NFS shares Add to indicate that it is an NFS (Network File
System) server.

CHAPTER 3 ADMINISTERING THE L INUX F ILE SYSTEM 50

Options for the Command
The command offers many options, and some of these are rather advanced. One of the
most important options for is the option, which specifies the file system type you
want to use. Your computer normally would detect what file system to use by itself, but some-
times you need to help it because this file system self-check isn’t working properly. Table 3-2
lists some file systems that you may encounter on your computer (or other Linux systems).

Table 3-2. Linux File System Types

Type Description
 This is the mother of all Linux file systems. It was used in the earliest Linux version.

Because it has some serious limitations, like the inability to work with partitions greater
than 32MB, it isn’t used much anymore. Occasionally, it can still be seen on very small
media, like boot diskettes.

 This has been the default Linux file system for a very long time, and it was first devel-
oped in the early 1990s. The Ext2 file system is a completely POSIX-compliant file
system, which means it supports all the properties of a typical UNIX environment.
However, it has one serious drawback: it doesn’t support journaling, and therefore is
being replaced by journaling file systems like Ext3 and ReiserFS.

 Basically, Ext3 is Ext2 with a journal added to it. The major advantage of Ext3 is that it
is completely backward-compatible with Ext2. Its major disadvantage is that it is based
on Ext2, an elderly file system that was never designed for a world in which partitions
of several hundreds of gigabytes are used. It is, however, the most stable file system we
have today, and therefore is used as the default file system on Linux.

 ReiserFS is another journaling file system. It was developed by Hans Reiser as a
completely new file system in the late 1990s. ReiserFS was only used as the default file
system on SUSE Linux, but even SUSE has changed to Ext3 as its default because there
just isn’t enough community support for ReiserFS.

 Ext4 is the successor to Ext3, and it fixes some of the most important shortcomings of
Ext3. For example, Ext4 will use a strong indexing system that helps you work with lots
of files in one single directory. At the time of writing, Ext4 is still experimental, so I will
not discuss it in this book.

 The XFS file system was created as an open source file system by supercomputer
manufacturer SGI. It has some excellent tuning options, which makes it a very good file
system for storing your data. You’ll read some more about this file system and its op-
tions later in this chapter.

 If, for example, you need to read a floppy disk with files on it that were created on a
computer using MS-DOS, you can mount it with the file system type. This is,
however, something of a legacy file system that has been replaced with .

 The vfat file system is used for all Windows and DOS file systems that use a FAT file
system. Use it for accessing files from a Windows-formatted diskette or optical media.

 On Windows systems, NTFS is now the default file system. Not so long ago, Linux didn't
have a stable open source solution for writing to NTFS. On older distributions, write
support for NTFS is still missing. Modern distributions, however, offer complete read/
write support. You'll also find some excellent NTFS tools on live cds like Knoppix.

 This is the file system that is used to mount CDs. Normally, you don’t need to specify
that you want to use this file system, as it will be detected automatically when you
insert a CD.

CHAPTER 3 ADMINISTERING THE L INUX F ILE SYSTEM 51

Type Description
 When working on a network, the cifs file system is very important. This file system al-

lows you to make a connection over the network to a share that is offered by a Windows
computer, as in the previous example. Linux computers also can offer shares that use
this protocol, by using the Samba service (see Chapter 12 for more details). In the past,
the file system type was used to address these shares, but, because offers a
better solution, it has replaced on modern Linux distributions. In case mounting
a Samba share doesn’t work with cifs, try smbfs.

 NFS is used to make connections between UNIX computers. See Chapter 12 for more
information about NFS and Samba.

Apart from , the command has many other options as well, which can be prefixed
by using the option. Most of these options are file-system dependent, so no generic list of
these options is provided here. You’ll find information that is specific for your file system in
the page of the command.

Getting an Overview of Mounted Devices
Every device that is mounted is recorded in the configuration file . You can browse
the content of this file with a utility like or . You can also use the command to
get an overview of file systems that are currently mounted. If this command is used without
any other parameters, it reads the contents of and displays a list of all mounted file
systems that it can find, as shown in Listing 3-1.

Listing 3-1. The Command Gives an Overview of All Devices Currently Mounted

As you can see in Listing 3-1, gives you information not only about mounted parti-
tions, but also about system devices. For now, I’ll ignore all lines about these system devices
and just focus on the two lines where and are mounted. In these lines,
you can see the name of the device first. Next, they show the name of the directory on which
they are mounted. Following that, the file system type is mentioned, and lastly, the options
that were used when mounting the device are listed. You can see that both and are
mounted with the option, which means they are accessible for reads and writes. Also, these
two file systems have the and options. These options, which are on by default

CHAPTER 3 ADMINISTERING THE L INUX F ILE SYSTEM 52

on most distributions, allow you to use some advanced security on the file system. You’ll learn
more about these options in Chapter 7, which discusses working with permissions.

In Listing 3-1 you can also see a , which is mounted. If you see this device,
chances are that it refers to your optical disk device, which is also the case here. You can also
see that by the file system type that is used, , which typically is the file system used on
CD devices.

The last two lines (they read as one line, but due to printing limitations are displayed as
two lines) show the device that is mounted. This is a USB key that was inserted into
the system. The Linux kernel has recognized it automatically at the moment it was connected
and mounted it, using all the options needed to do so. Don’t worry about the specific mean-
ing of these options; the Linux kernel has detected automatically what exactly was needed to
mount this device.

Unmounting Devices
On a Linux system, when you want to disconnect a device from your computer, you have to
unmount it first. Unmounting devices ensures that all of the data that is still in cache and has
not yet been written to the device is written to the file system before it is disconnected. You’ll
use the command to do this. The command can take two arguments: either the name
of the device or the name of the directory where the device is mounted. So
and will both work for a CD device that is mounted on the directory .

When using the command, you may get the message “Device is busy,” and the
dismount fails. This is likely because a file on the device is open, and the reason you’re not
allowed to disconnect the device is probably obvious: disconnecting a mounted device
may lead to data loss. So first make sure that the device has no open files. The solution is
sometimes simple: if you want to dismount a CD, but you are currently in the directory

, it is not possible to disconnect the device. Browse to another directory and try
again. Sometimes, however, the situation can be more complex, and you’ll need to first find
out which processes are currently using the device.

To do this, you can use the command. This command displays the IDs of processes
(PIDs) using specified files or file systems. For example, displays a list of all
processes that currently have open files in . Based on these PIDs, you can now manu-
ally terminate the processes using the command. Listing 3-2 shows you how you can use

 to list the PIDs of processes that have files open in , and how you can use the
command next to terminate these processes. For much more information about process man-
agement, read Chapter 9.

Listing 3-2. With and , You Can Trace and Terminate Processes That Prevent
Dismounting a Device

The command also allows you to kill these open files automatically. For open files
on , use . Be careful when using the option: if you are
root, it may blindly kill important processes and make your computer unreadable.

CHAPTER 3 ADMINISTERING THE L INUX F ILE SYSTEM 53

As an alternative to the command, you can use as well. This also provides a list
of all processes that currently are using files on a given file system, but it provides more infor-
mation about these processes. Whereas just gives the PID of a process, also gives
information like the name of the process and the user who owns the process. Listing 3-3 shows
what the result of looks like.

Listing 3-3. If You Need More Details About Processes Preventing You from Performing a
Dismount, Use

The example from Listing 3-3 was taken on a computer where a Bash shell was open and
had its current prompt set to the directory. As you can see, this starts different pro-
cesses, of which the PID number is in the second column. You’ll need this PID to manage the
process; more on that is in Chapter 9.

After using with the switch on the directory to kill active processes, you
should always make sure that the processes are really terminated by using
again, as this will show you whether there are still processes with open files.

Another way of forcing the command to do its work is to use the option as fol-
lows: . This option is especially intended for use on an NFS network
mount that has become unreachable and does not work on other file systems, so you will not
have much success if you try it on a local file system.

If you want to minimize the impact of unmounting a device, you can use with the
 option, which performs a “lazy unmount” by detaching the file system from the file system

hierarchy and cleaning up all references to the file system as soon as it is no longer busy. Using
this option lets you do an unmount right away, even if the file system is busy. But it may take
some time to complete. This option allows you to unmount a busy file system in a very safe
way, as it won’t shut down any processes immediately.

Tip The command is a very easy way to dismount and eject optical media. This command will
open the CD or DVD drive and eject the optical media that is currently in the drive. All you have to do is
remove it. And then you can use to close the optical drive drawer.

Automating Mounts with
When starting your computer, some mounts need to be issued automatically. For this purpose,
Linux uses the file to specify how and where these file systems must be mounted.
This file contains a list of all mounts that have to occur on a regular basis. In , you
can state per mount whether it has to happen automatically when your system starts. Listing
3-4 shows the contents of a sample file.

CHAPTER 3 ADMINISTERING THE L INUX F ILE SYSTEM 54

Listing 3-4. The File Makes Sure That File Systems Are Mounted During System Boot

Note Some distributions use advanced features like a universal unique ID (UUID) or LVM logical volumes
to mount devices from . In this section, I explain based on normal partitions. You can find more
information about these advanced features in Chapter 6 of this book.

In the listing, you can see that not only real file systems are specified in . Some
system file systems are listed as well.

Note The file is used at system boot, but you can also use it from the command line: enter
the command to mount all file systems in that are currently not mounted and have
the option set to mount them automatically. Also, if a device is defined in with its most com-
mon mount options, you don’t need to specify all mount options on the command line. For example, if the

 device is in , you can mount it by using a shortened com-
mand instead of the complete command.

In , each file system is described on a separate line, and the fields in these lines are
separated by tabs or spaces. The following fields are always present:

File system: This first field describes the device or the remote file system to be mounted.
Typically, you will see names like or on this line. The former
is used to refer to a local partition, whereas the latter is used to refer to a network share
that is offered by another computer.

Mount point: The second field is used to describe the mount point for the file system.
This is normally a directory where the file system must be mounted. Some file systems
(such as the swap file system) don’t work with a specific directory as their mount point.
In the case of swap partitions, just is used as the mount point instead.

CHAPTER 3 ADMINISTERING THE L INUX F ILE SYSTEM 55

Tip On most file systems, the device name can be replaced with a label, like “ROOT”. On an Ext2 or Ext3
file system, these labels can be created with the command, or with on an XFS sys-
tem. Using labels makes the system more robust and avoids the situation in which adding a SCSI disk adds
all the device names. Labels are static and are not changed automatically when a disk is added. Most of the
recent Linux distributions don’t use labels anymore. Nowadays, an alternative system, using UUIDs, allows
you to use unique device naming. In Chapter 5 you can read more about this system.

File system type: The third field is used to specify the file system type you can use. As
you learned earlier, many file systems are available for use on Linux. No specific kernel
configuration is needed to use them, as most file systems can be activated as a kernel
module that is loaded automatically when needed. Instead of the name of a file system,
you can also use in this field. This is useful to show a disk partition that is cur-
rently not in use. To determine the file system type automatically, use the option .
This is what you want to use on removable media like CDs and diskettes. Don’t use it,
however, on fixed media like partitions and logical volumes because it may lead to a
failure in mounting the file system when booting your computer.

Mount options: The fourth field is used to specify the options that should be used when
mounting the file system. Many options are available, and of these, many are file-
system specific. For most file systems, the option is used, which makes sure the
file system is mounted automatically when the computer boots and prohibits normal
users from disconnecting the mount. Also, the options , , , , and
are used. The following list describes some of the most used options. Note that you can
also use these options as arguments when using the command:

: Does not write to the file system synchronously but through the write cache
mechanism. This ensures that file writes are performed in the most efficient way,
but you risk losing data if contact with the file system is suddenly lost.

: Treats block and character devices on the file system as devices and not as reg-
ular files. For security reasons, it’s a good idea to avoid using this option on devices
that can be mounted by ordinary users.

: Permits execution of binary files.

: Does not report errors for this device if it does not currently exist. This
makes sense for hot-pluggable devices like USB media.

: Does not update the access times on this file system every time a file is
opened. This option makes your file system somewhat faster if many reads are
performed on it. It is a good idea to switch this option on as a default for all file sys-
tems your computer is mounting.

: Does not mount the file system automatically when the system boots or if a
user uses the command to mount everything in automatically.

CHAPTER 3 ADMINISTERING THE L INUX F ILE SYSTEM 56

: Sets a permission mode (see Chapter 7) for new files that are created on the
file system.

: Remounts a file system that is already mounted. It only makes sense to
use this option from the command line.

: Allows a user to mount the file system. This option is normally used only for
removable devices like diskettes and CDs.

: Makes sure the content of the file system is synchronized with the medium
before the device is dismounted.

Dump status: This field is for use of the command, which is a way of making back-
ups of your file system. The field determines which file systems need to be dumped
when the command is called. If the value of this field is set to , it will not be
dumped; if set to , it will be dumped when is invoked. Make sure that the value is
set to on all file systems that contain important data that should always be included
when making backups with .

Note You may never use the command yourself to create backups, but some backup utilities do. So
if you want to make sure that your backup utilities are successful, give all file systems that contain important
data the value in this column.

Fsck status: This last field in determines how a file system needs to be checked
with the command. At boot time, the boot loader will always check whether a file
system has to be checked with or not. If this is the case, the root file system must
always be checked first and therefore has the value . Other file systems should have
the number . If the file systems have the same number, they will be checked
sequentially. If the files are on different drives, they can be checked in parallel. If the
value is set to , no automatic check will occur.

Checking File System Integrity
When a system crashes unexpectedly, any file systems that are open can be damaged, which
may prevent you from using these file systems in a normal way. If this happens, the consis-
tency of these file systems needs to be checked, and you’d do this with the command.
While booting, Linux always will perform a quick check of your file systems automatically.
In some cases, this will fail, and you will need to do a manual check of your computer file
systems. If this happens, the boot procedure will stop, and you will see a text-based login
shell. This section assumes that you work from such a text-based login shell to repair your
file systems.

CHAPTER 3 ADMINISTERING THE L INUX F ILE SYSTEM 57

Caution Never use on a mounted file system, as it may severely damage the file system! If a file
system has no open files, you can remount it as read-only using the option with . For
instance, to remount the file system on as read-only, use .

You can start the command with the name of the device you want to check as its
argument: for example, use to check files on . If you run the com-
mand without any options, will check all file systems in one by one, according
to the setting in the field in . Normally, this will always happen when
booting your system.

Nowadays, a system administrator does not have to regularly use because most mod-
ern file systems are journaling file systems. The journal is used to write transactions on files
to a specific log file. Having such a journal makes it possible to recover a damaged file system
very fast. If a journaling file system gets damaged, the journal is checked, and all incomplete
transactions can easily be rolled back. To offer some protection, an Ext2 or Ext3 file system is
checked automatically every once in a while.

Tip On a nonjournaling file system, the command can take a very long time to complete. In this
case, the option can be used when performing a manual check. This option displays a progress bar—
which doesn’t, of course, make it go any faster, but it at least lets you know how long you still have to wait
for the process to complete. Currently, the option is supported only on Ext2 and Ext3 file systems.

Creating Backups
One thing always seems to be true about computers: one day they’ll fail. If the computer in
question is an important server, the failure can cause huge problems. Companies have gone
bankrupt because their vital data was lost. Therefore, making decent backups of your data is
essential. In this section, I’ll cover two different methods of creating backups, both of which
are native Linux solutions: making file backups with and making device backups using .

Making File Backups with
The command-line utility is probably the most popular Linux backup utility. It functions
as a stand-alone utility for writing backups to an archive. This archive can be tape (hence
the name “tar” which stands for tape archiver), but it can also be anything else. For instance,

-based backups are often written to a file instead of a tape, and, if this file is compressed
with a compression utility like or , you’ll get the famous tarball, which is a common
method of delivering software installation archives. In this section, you’ll learn how to create

 archives and how to extract files from them. I’ll also provide some tips and tricks to help
you get the most out of the utility.

CHAPTER 3 ADMINISTERING THE L INUX F ILE SYSTEM 58

Note The command is not used for backup and restore only; on the Internet you’ll find many
packaged software archives as well. Even when working in an environment where a package manager is
used, you’ll find that occasionally you need to unpack archives as well.

Creating an Archive File
In its most basic form, is used to create an archive file. The following command would help
you do this for the directory :

This command will create a backup of and put that in the file . This
archive contains absolute path names, which means that while restoring it, it will always
restore files in the same directory. This method is useful if you want to create a backup
of important system files and directories. For instance, the following command would
create a backup of the directories , , , and and write that to the file

:

Note When using the command, you can put a before the options, but you don’t have to. You will
encounter both syntax styles, and to help you getting used to that, I will use both in this book.

This command has a few arguments. First, you need to indicate what you want to do
with the command. In this case, you want to create an archive. (That’s why the option is
used; the “c” stands for create.)

After that, I’ve used the option (verbose). Although it’s not required, it often comes in
handy because verbose output lets you see what the command is actually doing. I recom-
mend always using this option because sometimes a job can take a really long time. (For
instance, imagine creating a complete archive of everything that’s on your hard drive.) In cases
such as these, it’s nice to be able to monitor what exactly happens, and that’s what the option

 is meant to do.
Next, you need to specify where you want the command to send its output. If you

don’t specify anything here, defaults to the standard output. In other words, it simply
dumps all the data to your computer’s console. This doesn’t accomplish much, so you should
use the option (file) to specify what file or device the output should be written to.

In this example, I’ve written the output to a regular file, but, alternatively, you can write
output to a device file as well. For example, the following command makes a backup of
and writes that to the device, which typically refers to a tape drive:

CHAPTER 3 ADMINISTERING THE L INUX F ILE SYSTEM 59

The last part of the command specifies exactly what you want to put into your
archive. In the example, the directory is archived. It’s easy to forget this option, but, if
you do, will complain that it is “cowardly refusing to create an empty archive.”

You should know a couple of other things about . First, the order of arguments does
matter. So, for example, there is a difference between and

. The order is wrong in the last part, and won’t know
what you want it to do. So, in all cases, first specify what you want to do. In most cases,
it’s either (to create an archive), (to extract an archive), or (to list the contents of the
archive). Then specify how you want to do that; for example, you can use to tell
that it should be verbose. Next, use the option to indicate where you want to write
the backup, and then specify what exactly you want to back up. The following example line
demonstrates this syntax:

Creating an archive with is useful, but you should be aware that doesn’t compress
one single bit of your archive. This is because was originally conceived as a tape stream-
ing utility. It streams data to a file or (typically) a tape device. If you want to compress the
contents of an archive as well, you must tell it to do so. has two options to compress the
archive file:

: Use this option to compress the file with the utility. This is the most popular
compression utility, because it has a pretty decent compression ratio. This means it
would gain quite a lot of disk space when compressing files. Also, it doesn’t take too
long to create a compressed file.

: Use this option to compress the file with the utility. This utility compresses
10 to 20% better than , but at a cost: it takes as twice as long.

So, if you want to create a compressed archive of the directory and write that
backup to a file with the name , you would use the following command:

Note Of course, you can use the and utilities from the command line as well. Use
 to compress . This command produces as its result. To decom-

press that file, use , which gives you the original back. If you want to do
the same with , use to create the compressed file. This creates a file with the name

, which you can decompress using the command .

Relative or Absolute Names
When creating an archive with , there are two ways of putting the files in the archive: with
relative path names or with absolute path names. If you create the backup with the purpose
of putting back the files in the backup at the exact same location, you should use absolute

CHAPTER 3 ADMINISTERING THE L INUX F ILE SYSTEM 60

path names. In this case, the archive would contain the directory name as well, so the files
will always be restored to the same directories. In Listing 3-5, you can see the result of the
command , which would make a backup of containing
absolute file names.

Listing 3-5. Using to Create an Archive That Contains Absolute File Names

If you create the archive with the purpose of extracting it later at any location you like,
it is not the best idea to use absolute file names in the archive. This would, for example, be the
case if you are a developer who wants to distribute his or her new program to users. In such
a case, it is good if the user can extract the archive anywhere he or she wants. To do this, you
have two options:

 to go to the target directory before creating the backup.

 option to tell that it should create an archive file containing relative
file names.

Of these two, I recommend using the latter, as it is more clear and makes it possible to
create an archive that contains files from more than one directory as well. When you create
a backup that has relative file names, you should always put a dot at the end of the com-
mand. This dot tells to make a backup of the contents of the current directory. Without the
dot, tells you that it doesn’t want to create an empty archive. In Listing 3-6, you can see
how an archive is created in this way of the same directory () that was used in the example
command from Listing 3-5.

Listing 3-6. Creating an Archive Containing Relative File Names

Extracting an Archive File
Now that you know how to create an archive file, it’s rather easy to extract it. Basically, the
command-line options that you use to extract an archive file look a lot like the ones you
needed to create it in the first place. The important difference is that, to extract a file, you need
the option (extract), instead of (create). Here are some examples:

CHAPTER 3 ADMINISTERING THE L INUX F ILE SYSTEM 61

: Extracts the contents of to the current directory

: Extracts the contents of the compressed to the cur-
rent directory

: Extracts the contents of to a directory with
the name

Moving a Complete Directory
Most of the time, is used to write a backup of one or more directories to a file. Because of
its excellent handling of special files (such as stale files that are used quite often in databases),

 is also quite often used to move the contents of one directory to another. Let’s assume that
you want to move the contents of the directory to the directory . Some people per-
form this task by first creating a temporary file and then extracting the temporary file into the
new directory. This would involve the following commands:

This is not the easiest way because you need twice the disk space taken by the directory
whose contents you want to move: the size of the original directory plus the space needed for
the temporary file. The good news is that you don’t have to do it this way. Use a pipe, and you
can directly copy the contents of one directory to another directory.

To understand how this works, first try the command . In this command,
the option is used to tell that it should create an archive. The option is used to archive
the contents of the directory using relative path names. Now, as you may have noticed,
in the example, the option isn’t used to specify where the out-
put goes, and so all the output is sent to STDOUT, which is your console. This means that if
you press Enter now, you will see the contents of all files scrolling through the console of your
computer, which is not very useful.

So that’s the first half of the command, and you ended up with a lot of output dumped on
the console. Now, in the second part of the command, you’ll use a pipe to redirect all that out-
put to another command, which is . This command will capture the archive
from STDOUT and extract it to the directory (make sure that exists before you run this
command). You’ll see that this method allows you to create a perfect copy of one directory to
another. So the complete command that you need in this case looks like this:

Creating Incremental Backups
Based on the information in the previous section, you can probably see how to create a
backup of one or more directories. For instance, the
command creates a backup of three directories: , , and . Depending on the size
of these directories, this command may take some time. Because such large backups can take
so long, it’s often useful to make incremental backups; in an incremental backup, the only files
that get written to the backup are those that have changed since the last backup. To do this,
you need the option to create a snapshot file.

CHAPTER 3 ADMINISTERING THE L INUX F ILE SYSTEM 62

An incremental backup always follows a full backup, and so you have to create the full
backup first. In this full backup, you should create a snapshot file, which contains a list of all
files that have been written to the backup. The following command does this for you (make
sure that the directory exists before running the command):

The interesting thing about the snapshot file is that it contains a list of all files that have
been written to the backup. If, two days after the full backup, you want to make a backup of
only the files that have been changed in those two days, you can repeat essentially the same
command. This time, the command will check the snapshot file to find out what files have
changed since the last full backup, and it’ll back up only those changed files. So your Monday
backup would be created by the following command:

These two commands created two files: a small file that contains the incremental backup
and a large file that contains the full backup. In an incremental backup scheme, you’ll need to
make sure that at some point in time a full backup is created. To do this, just remove the snap-
shot file that was used in the preceding example. Since doesn’t find a snapshot file, it will
assume that you need to make a full backup and create the new snapshot file for you.

If you want to restore all files from an incremental backup, you need to restore every sin-
gle file, starting with the first file that was created (typically the full backup) and ending with
the last incremental backup. So, in this example, the following two commands would restore
the file system back to the status at the time that the last incremental backup was created:

In this section you’ve read about different options that you can use with . For your
convenience, the most relevant options are listed here:

: Use this option to create an archive.

: Use this option to let display output verbosely. Useful for longer commands so
that you show what they are doing.

: Use this option to specify the name of the output file that should write to.

: Use this option followed by a directory name to change to this directory before starting
the job.

: Use this option to extract files from an archive.

: Use this option to make an incremental or a differential backup.

: Use this option to compress the file using compression.

: Use this option to compress the file using compression.

Making Device Backups Using
You won’t find a more versatile utility than to create a file system–based backup. In some
cases, however, you don’t need a backup based on a file system; instead, you want to create a
backup of a complete device or parts of it. This is where the command comes in handy.

CHAPTER 3 ADMINISTERING THE L INUX F ILE SYSTEM 63

Tip This may sound rather abstract. You can, however, do very useful things with the command. For
example, imagine the option to clone the entire contents of your hard disk to an external USB hard disk. I do
it every Friday night, just to make sure that if something happens to my hard drive, I just have to install the
cloned hard drive to get my data back. That’s not more than five minutes of work (and a couple of hours of
waiting before all the data is copied)!

The basic use of the command is rather easy because it takes just two arguments:
to specify the input file, and to specify the output file. The arguments to those options can
be either files or block devices. So, the command can be
used as a complicated way to copy a file. I would, however, not recommend using to copy
files; does that in a much simpler way. However, cloning a hard disk, which you would do
with the command , is something that only can do.
(The option specifies that should work on 4K blocks, which offers a much better
performance.)

Note is, strangely enough, short for “convert and copy.” Unfortunately, the command was already
being used by something else, so the developers choose to use instead.

Or what would you think, for example, of the command ?
It helps you create an ISO file of the CD that’s in the drive at that moment. You may wonder
why not just copy the contents of your CD to a file with the name ? Well, the reason
is, a CD, like most other devices, typically contains information that cannot be copied by a
mere file copy. For example, how would you handle the boot sector of a CD? You can’t find
that as a file on the device because it’s just the first sector. Because copies sector by sector,
on the other hand, it will copy that information as well.

Tip Did you know that it’s not hard to mount an ISO file that you created with ? The only thing that you
need to know is that you have to use the option, which allows you to mount a file like any normal
device. So, to mount on the directory, you would need .

Working with Links
A very useful Linux feature—although one that is often misunderstood—is the link. A link can
be compared to a shortcut: it’s basically a pointer to another file. On Linux (as on any UNIX
system), two different kinds of links are supported: the hard link and the symbolic link.

CHAPTER 3 ADMINISTERING THE L INUX F ILE SYSTEM 64

Why Use Links?
Basically, a link makes it easier to find files you need. You can create links for the operating
system and program files that you use on that operating system, and you can use them to
make life easier for users as well. Imagine that some users belong to the group and
you want the group members to create files that are readable by all other group members
in the directory . To do this, you can ask the users to change to the
proper directory every time they want to save a file. Or you can create a link for each user
in his or her home directory. Such a link can have the name and can be placed in
the home directory of all users who need to save work in the shared directory for the group
account, and it’s easy to see how this link makes it a lot easier for the users to save their files
to the proper location.

Another example of why links can be useful comes from the world of FHS, the Filesystem
Hierarchy Standard. This standard prescribes in which directory a Linux system should store
files of a particular kind. In the old days, the X Windowing System had all its binaries installed
in the directory. Later, the name of the directory where the X Windowing System
stored its configuration files was changed to . Now imagine what would happen
if an application referred to the directory after this change. It would naturally fail
because that directory no longer exists. A link is the solution here as well. If the administrator
just creates a link with the name that points to the directory, all applica-
tions that refer to can still be used.

On a Linux system, links are everywhere. After Linux is installed, several links already
exist, and, as an administrator, it’s easy for you to add new ones. To do so, you should under-
stand the difference between a symbolic link and a hard link, which is explained in the next
two sections, “Working with Symbolic Links” and “Working with Hard Links.”

Working with Symbolic Links
As mentioned previously, a link can refer to two different things: a symbolic link and a hard
link. A symbolic link is a link that refers to the name of a file. Its most important advantage
is that it can be used to refer to a file that is anywhere, even on a computer on the other side
of the world. The symbolic link will still work. However, the biggest disadvantage is that the
symbolic link is naturally dependent on the original file. If the original file is removed, the
symbolic link will no longer work.

To create a symbolic link, use the command with the option . When using the
command, make sure that you first refer to the name of the original file and then to the name
of the link you want to create. If, for example, you want to create a symbolic link with the
name in your home directory that refers to the file , use the following
command:

As a result, a shortcut with the name will be created in your home direc-
tory. This shortcut refers to . Therefore, any time you open the file,
you would really be working in the file. Listing 3-7 shows you that in the output

CHAPTER 3 ADMINISTERING THE L INUX F ILE SYSTEM 65

of , you can actually see that the resulting file is not a file by itself, but a symbolic link.
This is indicated by the letter in the first position of the output and also by the arrow
at the end of the listing, which indicates the file the name is referring to.

Listing 3-7. With You Can See That the File Actually Is a Symbolic Link

Understanding Inodes
To understand the difference between a hard link and a symbolic link, you should understand
the role of inodes on a Linux file system. Every Linux file or directory (from a technical point of
view, there’s no real difference between them) has an inode, and this inode contains all of the
file’s metadata (that is, all the administrative data needed to read a file is stored in its inode).
For example, the inode contains a list of all the blocks in which a file is stored, the owner infor-
mation for that file, permissions, and all other attributes that are set for the file. In a sense,
you could say that a file really is the inode, and names are attached to these inodes to make it
easier for humans to work with them.

If you want to have a look at inodes, on an Ext2 or Ext3 file system you can use the (poten-
tially dangerous!) command . This opens a low-level file system debugger from which
you can issue advanced repair commands. You can also just check the properties of the file
system and files that are used in it (which is not dangerous at all). The following procedure
shows how to display the inode for a given file using this file system debugger on Ext2 or Ext3.

Note Only the Ext2/Ext3 command offers you the possibility to show inodes. The fact that this
file system has powerful utilities like this one helps in making it a very popular file system.

 1. Use the command to find the inode number of the file . As you can
see in Listing 3-8, the inode number is the first item mentioned in the output of this
command.

Listing 3-8. The Command Shows the Inode Number of a File

 2. As root, open the file system debugger. While starting it, use as an argument the name
of the Ext2 or Ext3 file system on which your file resides. For example, our example
file is on a partition with the name , so the command would be

. This opens the interactive prompt.

CHAPTER 3 ADMINISTERING THE L INUX F ILE SYSTEM 66

 3. Now use the command to display the contents of the inode that you want
to examine. For example, in this case you would type stat <15024138>. The result of
this command is similar to what you see in Listing 3-9.

Listing 3-9. Showing the Contents of an Inode

 4. Use the command to close the interface.

Understanding the Differences Between Hard and Symbolic Links
When comparing the symbolic link and the original file, you will notice a clear difference
between them. First, the symbolic link and the original file have different inodes: the original
file is just a name that is connected directly to the inode, and the symbolic link refers to the
name. The latter can be seen from the output of (displays the inode number): after
the name of the symbolic link, an arrow is used to indicate what file you are really working on.
Also, you can see that the size of the symbolic link is significantly different from the size of the
real file. The size of the symbolic link is the number of bytes in the name of the file it refers to,
because no other information is available in the symbolic link. As well, you can see that the
permissions on the symbolic link are completely open. This is because the permissions are not
managed here, but on the original file instead. Finally, you can see that the file type of the sym-
bolic link is set to , which indicates that it is a symbolic link (see Listing 3-10).

Listing 3-10. Showing the Differences Between Symbolic and Hard Links

CHAPTER 3 ADMINISTERING THE L INUX F ILE SYSTEM 67

You may ask what happens to the symbolic link when the original file is removed. Well,
that isn’t hard to predict! The symbolic link fails. Linux will show this when displaying file
properties with the command; you’ll get a “File not found” error message when you try to
open it.

Working with Hard Links
Every file on a Linux file system has an inode. As explained earlier, all of a file’s administrative
data is kept in its inode. Your computer actually works entirely with inodes, and the file names
are only a convenience for people who are not too good at remembering numbers. Every name
that is connected to an inode can be considered a hard link. So, when you create a hard link
for a file, all you really do is add a new name to an inode. To do this, use the command. The
interesting thing about hard links is that there is no difference between the original file and the
link: they are just two names connected to the same inode. The disadvantage of using them
is that hard links must exist on the same device, which is rather limiting. But, if possible, you
should always create a hard link instead of a symbolic link because they are faster.

Figure 3-1 depicts the relationship between inodes, hard links, and symbolic links.

Inode

Hard Link Hard Link

Symbolic Link Symbolic Link

Figure 3-1. Relationship between inodes, hard links, and symbolic links

Links Recap
If you really want to understand what a link is all about, you do need to know about the role of
the inodes. If you just want a basic knowledge of links, remember the following:

-
ily. However, it breaks if you remove the original file.

-
ference between the original file and the hard link; they both refer to the same blocks.

CHAPTER 3 ADMINISTERING THE L INUX F ILE SYSTEM 68

Summary
In this chapter, you have learned about some of the more advanced features and mainte-
nance tasks on the Linux file systems. You have read how to use the command to access
devices. You’ve also learned how to automate mounting of devices by using the /
file. Next, the command was discussed to teach you how to check and, if necessary, repair
a file system. Following that, you’ve read how to create backups of files and complete devices,
using and . In the last part of this chapter, you’ve seen how to work with links to make
your Linux file system more versatile. The following commands and configuration files were
discussed in this chapter:

: Mounts a device to a directory. Mounting devices is mandatory in Linux; without
mounting a device, you can’t use it.

: Indicates a configuration file in that is used to automate mounting of
devices on system startup.

: Indicates a configuration file in that keeps track of the current mount status
of devices.

: Disconnects a mounted device.

: Shows you what files are currently open in a directory.

: Like fuser, but shows more detail.

: Checks the integrity of the file system.

: Archives files. This means that it puts together multiple files into one big file.

: Compresses files. Often used in conjunction with .

: Decompresses files that were compressed with . Often used in conjunction
with .

: Alternative for .

: Alternative for .

: Utility that helps you in cloning devices.

: Creates links.

In the next chapter, you’ll learn how to work with text files.

C H A P T E R 4

Working with Text Files

A n important part of working on the Linux command line consists of working with text files.
If you need to configure services, they’ll store their configuration in text files. If you need to
write program code, you’ll do that in a text file as well. Linux text files are all over your com-
puter, and to be good at the Linux command line, you’ll have to know how to handle them.
In this chapter, you’ll learn how to work with text files. Different methods are discussed for
manipulating the contents of them. First, you’ll learn about the only editor that matters on
Linux, Vi. Next, I’ll explain different ways of displaying the contents of text files. After that,
we’ll talk about some useful utilities that help you in sorting and comparing the contents of
different text files—and more. You’ll then learn how regular expressions can help you in find-
ing text patterns in a file in a clever way. You’ll also read how the programmable filters and

 can help you batch-manipulate text files. At the end of this chapter, you’ll also get familiar
with some of the most useful commands in command-line printing.

Working with Vi
For your day-to-day management tasks from the command line, you’ll often need a text edi-
tor to change ASCII text files. Although many editors are available for Linux, Vi is still the most
popular and probably the most used editor as well. It is a rather complicated editor, however,
and most Linux distributions fortunately include Vim, which stands for Vi Improved, the user-
friendly version of Vi. When talking about Vi in this book, I’ll assume that you are using Vim.

Note Most distributions use Vim, not Vi, and will start Vim when you enter the command . Clear, huh?
If the commands that I describe in this chapter don’t work for you, you’re probably working with Vi, not Vim.
In that case, use the following command as root: . This makes
sure that after the next time you log in to your computer, Vim is started, not Vi.

Even if Vi looks quite difficult to first time users, seen in its historical context, it was quite
an improvement in the year 1976 when it was invented. In those days, only line editors such as
ex were available. These editors didn’t give a complete overview of a text file a user was work-
ing with, but just the current line the user was at, like an old typewriter. Vi, which stands for
visual, was the first editor that worked in a mode where the complete text file was displayed.

Everyone who wants to work from the Linux command line should be capable of work-
ing with Vi. Why? You’ll find it on every Linux distribution and every version of UNIX. Another

69

CHAPTER 4 WORKING WITH TEXT F ILES70

important reason why you should get used to working with Vi is that some other commands,
especially commands that are important for a Linux administrator, are based on it. For exam-
ple, to edit quota (which limits available disk space) for the users on your server, you would
use , which is just a macro built on Vi. If you want to set permissions for the com-
mand, use which, as you likely guessed, is another macro that is built on top of Vi. Or if
you want to schedule a task to run at a given moment in time, use , which is based
on Vi as well.

Note Well, to tell you the truth, there is a variable setting. The name of the variable is . Only when
this variable is set to () will commands like and use Vi. If it is set to some-
thing else, they will use that something else instead.

In this section, I’ll provide the bare minimum of information that you need to work with
Vi. The goal here is just to get you started. You’ll learn more about Vi if you really start working
with it on a daily basis.

Vi Modes
One of the hardest things to get used to when working with Vi is that it uses two modes: com-
mand mode, which is used to enter new commands, and insert mode (also referred to as the
input mode), which is used to enter text. Before being able to enter text, you need to enter
insert mode, because, as its name suggests, command mode will just allow you to enter com-
mands. Notice that these commands also include cursor movement. The nice thing about Vi is
that it offers you many choices. For example, you can use many methods to enter insert mode.
I’ll list just four of them:

 to insert text at the current position of the cursor.

 to append text after the current position of the cursor.

 to open a new line under the current position of the cursor (my favorite option).

 to open a new line above the current position of the cursor.

After entering insert mode, you can enter text, and Vi will work just like any other
editor. Now if you want to save your work, you should next get back to command mode and

Esc key returns you to command mode from
insert mode.

Tip When starting Vi, always give as an argument the name of the file you want to create with it or the
name of an existing file you would like to modify. If you don’t do that, Vi will display help text, and you will
have the problem of finding out how to get out of this help text. Of course, you can always just read the entire
help text to find out how that works (or just type :q to get out there).

CHAPTER 4 WORKING WITH TEXT F ILES 71

Saving and Quitting
After activating command mode, you can use commands to save your work. The most com-
mon method is to use the command, which performs several tasks at once. First, a colon
is used just because it is part of the command. Then, is used to save the text you have typed
so far. Because no file name is specified after the , the text will be saved under the same file
name that was used when opening the file. If you want to save it under a new file name, just
enter the new name after the command (not that you have to start the command with a
colon also); for instance, the following would save your file with the name :

Next in the command is , which makes sure that the editor is quit as well. Last, the
exclamation mark tells Vi that it shouldn’t complain, but just do its work. Vi has a tendency to
get smart with remarks like “A file with this name already exists” (see Listing 4-1), so you are
probably going to like the exclamation mark. After all, this is Linux, and you want your Linux
system to do as you tell it, not to second-guess you all the time.

Listing 4-1. Vi Will Tell You If It Doesn’t Understand What You Want It to Do

As you have just learned, you can use to write and quit Vi. You can also use the parts
of this command separately. For example, use if you just want to write changes while work-
ing on a file without quitting it, or use to quit the file without writing changes. The latter
option is a nice panic key if something has happened that you absolutely don’t want to store

CHAPTER 4 WORKING WITH TEXT F ILES72

on your system. This is useful because Vi will sometimes work magic with the content of your
file when you hit the wrong keys. Alternatively, you can recover by using the command to
undo the most recent changes you made to the file.

Cutting, Copying, and Pasting
You don’t need a graphical interface to use cut, copy, and paste features; Vi could do this back
in the ’70s. But you have two ways of using cut, copy, and paste: the easy way and the hard
way. If you want to do it the easy way, you can use the command to enter visual mode, from
which you can select a block of text by using the arrow keys. After selecting the block, you can
cut, copy, and paste it.

 to cut (in fact, delete) the selection. This will remove the selection and place it in
a buffer.

 to copy the selection to the area designated for that purpose in your server’s
memory.

 to paste the selection. This will copy the selection you have just placed in the
reserved area of your server’s memory back into your document. It will always paste
the selection at the cursor’s current position.

Deleting Text
Deleting text is another thing you’ll have to do often when working with Vi, and you can use
many different methods to delete text. The easiest, however, is from insert mode: just use
the Delete key to delete any text. This works in the exact same way as in a word processor.
As usual, you have some options from Vi command mode as well:

 to delete a single character. This has the same effect as using the Delete key while
in insert mode.

 to delete the rest of the word. That is, will delete everything from the cursor’s
current position of the end of the word.

 to delete a complete line. This is a very useful option that you will probably like
a lot.

That’s enough of Vi for now because I don’t want to bother you with any other commands. Let
me show you how to display the contents of text files next.

Moving Through Text Files
Vi also offers some possibilities to move through text files. The following commands are used
to search for text and to manipulate your cursor through a text file:

 key twice to go to the beginning of a text file.

 key twice, you can go directly to the end of a text file.

CHAPTER 4 WORKING WITH TEXT F ILES 73

, followed by the text you are searching. For instance, the
command would find the first occurrence of the text root in the current file. This
command would search from the current position down in the text file. To repeat this
search action, use (for next). To repeat the search in the opposite direction, use .

, followed by text you are using to search text from the current position in the
text upward in the text file. For example, the command would search for the text
“root” from the current position in the text upward. To repeat this search action, use
for next. To repeat the search in the opposite direction, use .

Tip To work with advanced search patterns, Vi supports regular expressions as well. Read the section
“Working with Basic Regular Expressions” later in this chapter to find out all about these.

Changing All Occurrences of a String in a Text File
When working with Vi, it may happen that you need to change all occurrences of a given word
in a text file. Vi has a useful option for this, which is referred to as the global substitute. The
basic syntax of a global substitution is as follows:

This command starts with , which tells Vi that it should make a substitution. Next, it
mentions the old text string, in this case , which in turn is followed by the new text string,

. At the end of the command, the tells Vi that this is a global action; it will make sure that
the substitution is used all over the text file.

I recommend that you analyze your text file carefully after applying a global substitution.
Did it work out well? Then save the changes to your text file. If it didn’t work out so well, use
the command to undo the global substitution and restore the original situation.

Vi Summarized
In this section you’ve learned how to work with Vi. Although there are many more commands
that you can use when working with Vi, the commands that I’ve covered in this section will
help you perform all basic tasks with Vi. Table 4-1 summarizes all commands that were treated
in this section.

Table 4-1. Summary of Vi Commands

Command Explanation
 Opens insert mode for editing. Inserts text after the current cursor position.

 Returns to command mode.

 Opens insert mode for editing. Inserts text at the current cursor position.

 Opens insert mode for editing. Opens a new line after the current line where the
cursor is.

Continued

CHAPTER 4 WORKING WITH TEXT F ILES74

Table 4-1. Continued

Command Explanation
 Opens insert mode for editing. Opens a new line before the current line where the

cursor is.

 Writes and quits the current document. Suppresses any warnings.

 Writes the current file using the same name. Appends a file name to write the file
with another name.

 Quits without saving. Ignores any warnings.

 Undoes the last command.

 Enters visual mode to mark a block on which you can use commands.

 Deletes the current selection.

 Yanks (copies) the current selection.

 Goes to the top of the current text file.

 Goes to the bottom of the current text file.

 Searches from the current position of the cursor downward.

 Searches from the current position of the cursor upward.

Displaying Contents of Text Files
When working on the command line, you will find that you often need to modify configuration
files, which take the form of ASCII text files. Therefore, it’s very important to be able to browse
the content of these files. You have several ways of doing this:

: Displays the contents of a file

: Does the same as , but displays the contents in reverse order

: Shows just the last lines of a text file

: Displays the first lines of a file

: Opens an advanced file viewer

: Like , but not as advanced

Showing File Contents with and
First is the command. This command just dumps the contents of a file on the screen
(see Listing 4-2). This can be useful, but, if the contents of the file do not fit on the screen,
you’ll see some text scrolling by, and when it stops, you’ll only see the last lines of the file dis-
played on the screen. As an alternative to , you can use as well. Not only is its name the
opposite of , its result is too. This command will dump the contents of a file to the screen,
but it reverses the file contents.

CHAPTER 4 WORKING WITH TEXT F ILES 75

Listing 4-2. The Command Is Used to Display the Contents of a Text File

Showing a File’s Last Lines with
Another very useful command is . If no options are used, this command will show the last
ten lines of a text file. You can also modify the command to show any number of lines on the
bottom of a file; for example, will display the last two lines of the configu-
ration file in which usernames are stored.

Also very useful for monitoring what happens on your system in real time is the option ,
which keeps open and refreshes the output as soon as new lines are added. For example,
if you use , the most generic log file on your system is opened, and,
when a new line is written to the bottom of that file, you will see it immediately. Use Ctrl+C
to get out of a file that you’ve opened using . Listing 4-3 shows you what the result of

 may look like. In particular, the last two lines here are of interest;
you can see that user sander has tried to work as root using the command, but failed in
doing so.

Listing 4-3. Monitoring System Events in Real Time with

CHAPTER 4 WORKING WITH TEXT F ILES76

Displaying the First Lines in a File with
The opposite of is the command, which displays the top lines of a text file. As with

, this command is useful in a shell script, if you want to display only the first line of a file,
for instance. You can even combine and to specify exactly which line in a file you
want to display. Consider the example file that you see in Listing 4-4.

Listing 4-4. Example Text File

Imagine that, for some reason, you need to see the name of the first user only. You
wouldn’t get that by just using or by just using . If, however, you first take the of
the first two lines, and next the of the result of that, you would get the required result:

As you can see in this example, once again, by using a pipe you get a command that has
some powerful additional options.

Browsing File Contents with and
The last two commands used to view the contents of text files are and . The most
important thing you need to remember about them is that you can do more with . Con-
trary to common sense, the command is actually the improved version of . Both
commands will open your ASCII text file in a viewer as you can see in Listing 4-5, which shows
the contents of the

offers the option to browse up as well. Also, both commands have a search facility. If the
utility is open and displays the contents of your file, use from within the viewer
to locate in the file. Useful to remember: both utilities are based on the Vi editor;
therefore, many key strokes that you can use in Vi will work in and as well. To quit
both utilities, use the command.

Listing 4-5. You Can Use the Command As a Viewer to View File Contents

CHAPTER 4 WORKING WITH TEXT F ILES 77

Cool Text File Manipulation Tools
To change the contents of text files, you can use an editor. Apart from editors that oblige you to
make changes word by word, you can also use some automated tools to do batch changes. The
tools mentioned in the following text are all classical tools from the UNIX era, and you can use
them to apply batch changes. You will notice though that these tools don’t make their changes
in the files you’re working on but show the modifications on the standard output. This means
that in all cases, you’ll have to work with redirection to write the changes to a new file. You will
see some examples explaining how this works.

Changing Contents in a Batch with
The utility is used to translate or delete characters from a file. Since it doesn’t have any
options to work with input or output files, you have to using piping and redirection to apply
changes to files when using . A classical use of is to translate lowercase into uppercase.
In the example in Listing 4-6, you can see the contents of the file before and after it is
translated with .

Listing 4-6. Changing Lowercase into Uppercase with

As you can see, in this example the command is used first to display the contents of
the file , and the result of the command is piped to the command, which translates
a–z into A–Z. The result, however, is written to the standard output only, and not to a file. To
write the result of the command from Listing 4-6 to a text file with the name , you can
use the following:

Instead of working with and a pipe that has process the results of the command,
you can also work with the input redirector, . The next command shows an alternative for the
preceding command that translates and next writes the results to a new text file:

CHAPTER 4 WORKING WITH TEXT F ILES78

Sorting Text Files with
Imagine that you have a list of users, and you want to sort that list. In this case, you can use the

 command. For instance, if applied to the file from Listing 4-6, would
give you the result that you see in Listing 4-7.

Listing 4-7. Sorting File Contents with

At first sight, appears to be a simple utility that is pretty straightforward. You may be
surprised, though. For instance, consider the example in Listing 4-8, in which another
file is sorted.

Listing 4-8. Sorting in Alphabetical Order?

As you can see, in the example from Listing 4-8, first gives names that start in
uppercase, and next it gives all lowercase names. This is because by default it doesn’t respect
alphabetical order, but it takes the order as defined in the ASCII table. Fortunately, has
the option, which allows you to apply real alphabetical order and ignore case. Also useful is
the option , which makes sure that numbers are sorted correctly. Without the option,
would consider 8, 88, 9 the correct order. With this option applied, you can make sure that the
numbers are sorted as 8, 9, 88.

Finding Differences Between Text Files with
If you want to find out differences between files, the utility is very useful. Typically, you
would use to compare an old version with a newer version of a file. For instance, if you
make a copy of the user database in to , you can compare these
files later by using the utility to see whether any differences have occurred. Listing 4-9
gives an easy-to-understand example of the utility.

CHAPTER 4 WORKING WITH TEXT F ILES 79

Listing 4-9. Comparing Files with

In the example in Listing 4-9, there is only one difference between the two files that are
compared: one file contains a line that reads , whereas the other line doesn’t. The
utility uses the coordinates to indicate where it has found differences. In these coordi-
nates, it uses a to indicate that a line was deleted from the first file. The following indicators
can be used in the coordinates:

: Line was deleted from the first file

: Line was added to the first file

: Line was changed in the first file

The number to the left of the letter corresponds to the line number found in the first file.
The number to the right of the letter corresponds to the line in the second file used during
comparison. Since finds the longest common sequence in both files, means that the
line was deleted from the first file to make it the same as the second file.

 and are also clear indications of where the differences can be found. refers to the first
file, while refers to the second file.

Another way of presenting the output given by is to use the option as
well, to show the contents of both files and where exactly the differences are. You can see an
example of this in Listing 4-10.

Listing 4-10. Use the Option to Clearly See Differences

Checking Whether a Line Exists Twice with
When working on a text configuration file, it is a rather common error to have a given
configuration parameter twice. The risk of getting this is very real, especially if you have a con-
figuration file that contains hundreds of lines of configuration parameters. By using the
utility, you’ll find these lines easily. Let’s consider the input file , which is displayed in
Listing 4-11.

CHAPTER 4 WORKING WITH TEXT F ILES80

Listing 4-11. Test Input File

As you can see, some of the lines in this input file occur twice. If, however, you use the
 command, the command shows you unique lines only. That is, if a given line

occurs twice, you will only see the first occurrence of that line as you can see in Listing 4-12.

Listing 4-12. Displaying Unique Lines Only

Like most other commands, has some specific switches as well that allow you to tell
it exactly what you need it to do. For instance, use to find out which
lines occur repeatedly in .

Getting Specific Information with
Another very useful command is . This command allows you to get fields from structured
files. To do this, it helps if you tell what the field delimiter is. In Listing 4-13, you see an
example. First, I’ve displayed the last seven lines of the file in which user accounts
are stored, and next, I’ve piped this to the command to filter out the third column.

CHAPTER 4 WORKING WITH TEXT F ILES 81

Listing 4-13. Filtering a Specific Column from the User Database

In this example command, the option is used with to specify the field delimiter,
which is a in the . Next, with the option , learns that it should filter
out the third field. You can really benefit from the options that has to offer, if you combine
it with other commands in a pipe. Listing 4-13 already shows an example of this, but you can
go beyond this example. For instance, the command
would display a sorted list of user IDs from the file.

Advanced Text File Filtering and Processing
Up to now, we’ve talked about the simple text-processing tools only. There are some
advanced tools as well, among which are the old and versatile and . Although these
are complicated tools, you may benefit from some basic knowledge about these tools. In the
next sections, you’ll learn about their basics. Before diving into and details, you’ll
read about an advanced way to work with text patterns by using regular expressions. Each
of these three subjects merits a book on its own; consider what I give here just a very basic
introduction to these complex matters.

Working with Basic Regular Expressions
Many programs discussed in this chapter are used to search for and work with text patterns
in files. Because working with text patterns is so important in Linux, a method is needed to
refer to text patterns in a flexible way that goes beyond just quoting the text pattern literally.
For instance, try a command like ; it will give you a huge result because every
word that contains the text “host” (think, for example, about words like) would
give a match. By using a regular expression, you can be much more specific about what you
are looking for. For instance, you can tell that it should look only for lines that start with
the word .

CHAPTER 4 WORKING WITH TEXT F ILES82

Regular expressions are not available for all commands; the command that you use must
be programmed to work with regular expressions. The most common examples of such com-
mands are the and utilities. Other utilities, like and , which are covered later in
this section, can also work with regular expressions.

An example of the use of a regular expression is in the following command:

In this example, the dot in the regular expression has a special meaning; it
means every character at that particular position in the text string is seen as a match. To pre-
vent interpretation problems, I advise you to always put regular expressions between single
quotes. By doing this, you’ll prevent the shell from interpreting the regular expression.

As mentioned in the introduction of this section, you can do many things with regular
expressions. In the following list, I give examples of some of the most common and useful
regular expressions:

: Indicates that the text string has to be at the beginning of a line. For instance, to
find only lines that have the text at the beginning of a line, use the following
command:

: Refers to the end of a line. For instance, to find only lines that have the text at
the end of the line, use the following command:

Tip You can combine and in a regular expression. For instance, to find lines that contain only the word
“yes,” you would use .

: Serves as a wildcard to refer to any character, with the exception of a newline char-
acter. To find lines that contain the text , , , or , for instance, use the
following command:

: Indicates characters in the regular expression that should be interpreted as alterna-
tives. For instance, you would use the following command to find users who have the
name pinda or linda:

: Ignores all characters that you put between square brackets after the sign. For
instance, the following command would find all lines that have the text in them,
but not lines that contain the text or :

CHAPTER 4 WORKING WITH TEXT F ILES 83

: Refers to a class or a range of characters. You have already seen an example of this
in the command where the following was used to translate all lowercase letters into
uppercase letters:

 Likewise, you could use a regular expression to find all files that have lines that start
with a number, using the following command:

 and : Search for patterns at the beginning of a word or at the end of a word. For
instance, the following would show lines that have text beginning with :

 These regular expressions have two disadvantages though. First is that they don’t find
lines that start with the provided regular expression. The other disadvantage is that
they are not supported by all utilities, though Vi and do work with them.

: Makes sure that a character that has a special meaning in a regular expression is not
interpreted. For instance, the following command will search a text string that starts
with any character, followed by the text :

 If, however, you need to find a text string that has a dot at the first position, which is
followed by the text , you need the following regular expression:

The regular expressions just discussed help you find words that contain certain text
strings. You can also use regular expressions to specify how often a given string should occur
in a word by using regular expression repetition operators. For instance, you can use a regular
expression to search for files containing the username linda exactly three times. When working
with repetition operators, you must make sure that the entire regular expression is in quotes;
otherwise, you may end up with the shell interpreting your repetition operator. Next is a list of
the most important repetition operators:

: The asterisk is used to indicate that the preceding regular expression may occur
once, more than once, or not at all. It is not the most useful character in a regular
expression, but I mainly mention it so that you don’t try to use it as a in the shell. In
a shell environment, stands for any character; in regular expressions, it just indicates
that the preceding regular expression may exist.

: The question mark is used to indicate that there may be a character at this position,
but there doesn’t have to be a character. Consider the following example, where both
the words “color” and “colour” will be found:

CHAPTER 4 WORKING WITH TEXT F ILES84

: The preceding character or regular expression has to be present at least once.

: The preceding character or regular expression occurs at least times. This is
useful in a regular expression where you are looking for a number, say, between 100
and 999, as in the following command:

Working with Programmable Filters
In the first part of this chapter, you’ve read about utilities that you can use to manipulate text
files. Most of the utilities discussed so far are in some way limited in use. If they just don’t do
what you need them to do, you may need more powerful utilities. In that case, programmable
filters such as and may offer what you need.

Once you start working with power tools like and , you may end up using program-
ming languages such as
extension to the powerful and , with more options and more possibilities that allow you
to process text files in real time, something that is quite important if, for instance, you want
to offer dynamic web pages to end users. In this chapter, we won’t go that far. You’ll just get a
basic introduction to working with and , with the purpose of making text file processing
easier for you.

Working with
In fact , which stands for Stream EDitor, is just a further development of the old editor .
With , you can automate commands on text files. To do this, processes the text file line
by line to see whether a command has to be executed on these lines. By default, will write
its result to standard output. This means you must redirect it somewhere else if you also really
need to do something with this standard output.

The basic syntax is as follows:

Normally, will walk through the files it has to work on line by line, apply its commands
to each line, and then write the output to the standard output. Let’s have a look at an example
involving a file with the name , shown in Listing 4-14.

Listing 4-14. Example Text File

CHAPTER 4 WORKING WITH TEXT F ILES 85

If you just want to display, say, the first two lines from this file, you can use the com-
mand . With this command, you tell to show two lines, and then quit (). Listing 4-15
shows the results of this command.

Listing 4-15. Showing the First Two Lines with and Quitting

Basically, to edit lines with automatically, you need to find the proper way to address
lines. To do this, you can just refer to the line number you want to display, but far more useful
is to have search for lines that contain a certain string and execute an operation on that
line. To refer to a string in a certain line, you can use regular expressions, which have to be
between slashes. An example of this is in the following command, where only lines con-
taining the string are displayed:

In this example, the option is used to suppress automatic printing of pattern space.
Without this option, you would see every matching line twice. Next, specifies the text
you are looking for, and the command is used on this text to print it. As the last part, the
name of the file on which should do its work is mentioned. Following is a list of examples
where regular expressions are used in combination with on the example text file from
Listing 4-14:

: Gives the line that contains the text ; only those lines that
contain the literal string are displayed.

: Doesn’t give any result, as there are no lines starting with the
text .

: Gives all lines; the dot refers to any character, so all lines give
a match.

: Still gives all lines. Since no quotes are used in the regular
expression, the shell interprets the sign before can treat it as part of the regular
expression. Therefore, the dot refers to any character, and all lines from the example
file are displayed.

: Shows only lines that contain a dot. Since these don’t exist in the
example file, no result is given.

: Shows the lines containing the text and . The regular
expression in this example uses , which means that in this case searches for
the literal string . Note that this command would also fail without the quotes.

Up to now, you have read about line addressing only, and just one command was dis-
played, which is the command for print. has many other commands as well, of which the

 (substitute) command is without a doubt the single most popular. By using the command,
you can substitute a string with another string. In the next example you can see how the

CHAPTER 4 WORKING WITH TEXT F ILES86

command is used to replace with in the example file from Listing 4-14. See also
Listing 4-16 for the complete results of this command:

Note that in this command, the first element that is used is the command itself. Then
follow two addresses: the name of the string to search for and the name of the string this
should be replaced with. Next, the command tells this is a global command, meaning
that it will perform the replace action all over the file. Last, the name of the file on which
should work is given.

The result of this command is written to STDOUT by default, and therefore is not saved
in any file. If you want to save it, make sure to use redirection to write the result to a file (e.g.,

).

Listing 4-16. Using the Substitute Command to Replace Text

Manipulating Text Files with
Another powerful tool to manipulate text files is . Like , is also a programming lan-

utility that helps you to get the information you need fast and easy.
As is the case with , each command also works with a pattern that specifies what to

look for. Next, you’ll use a command to specify what to do with it. Typically, the patterns are
put between slashes, and the actions that you want to perform are put in braces. Since also
works with regular expressions, it is wise to put patterns between single quotes as well, to
avoid the shell from interpreting them by accident. The global structure of an command is
as follows:

In case you don’t specify a pattern, the action is performed on every line in the file. You
can interpret this as “every line that matches the pattern null.” If no action is specified, just
shows you the lines that match the pattern; hence, there is no big difference with a tool such as

. An example of this is shown in Listing 4-17, where displays lines containing the text

.

Listing 4-17. Displaying Lines That Contain a Given Text Pattern with

CHAPTER 4 WORKING WITH TEXT F ILES 87

The utility becomes really interesting combined with its abilities to filter columns
or fields out of a text file. The default field separator is a space, but you can tell to use
something else instead by using the option followed by the character you want to use as a
separator. In the next example line, the command and the colon field separator are
used to find the user ID of user lori from the file:

In the preceding example, you see that is used to refer to the third field in the file. You
can also use to refer to the entire record. Because is able to refer to specific fields, it’s
possible as well to compare fields with one another. The following operators are available for
this purpose:

: Equals (searches for a field that has the same value)

: Not equals

: Smaller than

: Smaller than or equal to

: Bigger than

: Bigger than or equal to

With these operators, you can make some useful calculations on text files. For instance,
the following example would search the file and show all lines where the third
field contains a value bigger than :

Tip The preceding example allows you to find all names of user accounts that have a UID bigger than 999
(you’ll learn more about commands like this in Chapter 6, which discusses user management). Typically, this
gives you real usernames, and not the names of system accounts.

Printing Files
On Linux, the
printing environment with the management tools that are provided with your distribution, so
I won’t cover that here. Once installed, you can use several command-line tools to send jobs to

Managing CUPS Print Queues

queues. The flow of a print job is easy: a print job is placed in the printer queue, where it waits
for the printer process to get it out of there and have it served by a printer. If you have worked

CHAPTER 4 WORKING WITH TEXT F ILES88

Berkeley UNIX dialect as well as the System V UNIX dialect. Since the Berkeley UNIX dialect is
more common, in this subsection I will focus on the Berkeley tools.

Creating Print Jobs
To create a print job from the command line, you need the tool. With this tool, you can send a
file directly to a printer. In its most basic configuration, you can issue the command ;
this command will send to the default printer. If you want to specify the printer where
the file is sent to, you can use the option followed by the name of the print queue. For example,
use to send to the queue for . Want to print to a remote
printer? That’s also possible using ; use to send
to the queue named at .

Tuning Print Jobs
From time to time, as an administrator it is useful to display print job information. For this
purpose, you can use the command. To get a list of all print jobs in the default queue, just
issue . Want to show print jobs in another queue? Specify the name of the queue you want
to monitor, like . This will get you a fairly high-level overview of the jobs and
their properties. Want to see more detail? Use . The option lets you
check print jobs in all queues—just issue .

Removing Print Jobs
Have you ever sent a print job to a queue that wasn’t supposed to be sent after all? Good news:
if you are fast enough, you can remove that job using the command. This command can
be used in many different ways. The most brute-force way of using it is with the option and
nothing else. This will remove all jobs that you have submitted to the queue, and if you are the
root user, it will remove all jobs from the queue. You can be more specific as well; for example,

 would remove job number 3 from the queue . To find out what job
number your queue is using, you can use the command.

Tip When hacking CUPS from the command line, it can happen that changes are not automatically
activated. If you’ve made a change, but you don’t see any result, use the restart command to
restart CUPS.

Finding Files
Since Linux is a very file-oriented operating system, it is important that you know how to find
files. The utility used for this purpose, , allows you to find files based on any of the file
properties that were used when storing the file on disk. Let’s start with an example: the follow-
ing command helps you find all files with names that start with on the entire hard
drive of the computer:

CHAPTER 4 WORKING WITH TEXT F ILES 89

One cool thing about is that it allows you to do a lot more than just find files based on
their file names. For instance, you can find files based on their size, owner, permissions, and
much more. Following is a short list of file properties that you can use to find files:

: Finds all files that were last accessed less than minutes ago. For instance,
 would give all files that were accessed less than five minutes ago.

: Finds all files that are executable.

: Shows all files that have as their group owner. (Read Chapter 7
for more information about ownership.)

: Shows all files that were last modified less than minutes ago.

: Shows all files that are newer than .

, : Show all files that do not have a group or a user owner.

: Finds all files that have a specific permission mode set. (See Chap-
ter 7 for more details about permissions.)

: Finds all files of a specific size. With this parameter, you can also find files big-
ger than or smaller than a specific size. For instance, would find all
files larger than 2 gigabytes. When using this parameter, use , , and for kilobytes,
megabytes, and gigabytes, respectively. Use the sign to indicate that you want to see
files greater than a specific size.

: Finds files of a specific type. The most interesting file types that you can
search for using this option are for directory or for a regular file (which is any file
that is not a directory).

The interesting part of is that you can combine different options as well. For exam-
ple, you can run a command that finds all files owned by user linda that are larger than
100MB using the following command:

Even more interesting is that you can issue any other command on the result of your
command using the statement. Let’s have a look at an example where is used to
find all files owned by jerry and next moves these files to the directory :

Here you can see some specific items are used with the command you start with
. For instance, normally the command would refer to the name of some files, as in

. In this specific case, has to work on the result of the previous command.
You refer to this result by using . Next, you have to close the statement. To do this, use

 at the end each time you open .
Let’s have a look at one more example. This file first looks up all files that are owned by user

linda and next executes to look in these files to see whether any of them contains the text :

As you can see, is a useful tool that helps you in finding files, no matter what proper-
ties the file may have.

CHAPTER 4 WORKING WITH TEXT F ILES90

Summary
In this chapter, you’ve learned about commands that help you in manipulating text files. Apart
from these commands, you have learned how to work with regular expressions that help you
in finding text patterns in a clever way. Following is a short list in which all commands that are
covered in this chapter are summarized:

: Brings up a text editor that allows you to create and modify text files

: Displays the contents of a text file

: Displays the contents of a text file, but inversed

: Shows the last n lines of a text file

: Shows the first n lines of a text file

: Allows you to walk page by page through a text file

: Substitutes characters, for instance, changing all lowercase letters to uppercase

: Finds differences between files

: Sorts files into alphabetical or any other order

: Finds a line that has multiple occurrences in a file

: Filters fields from a structured file with clearly marked field separators

: Brings up a stream editor, especially useful for finding and replacing text

: Applies a programmable filter, especially useful for displaying specific fields from
files that contain specific text

: Allows you to send files to a printer

: Helps you in monitoring files that are waiting to be printed

: Removes jobs from the print queue

In the next chapter, you’ll learn how to manage a Linux file system.

C H A P T E R 5

Managing Partitions and
Logical Volumes

To work with files, you need to store them. In most situations, you’ll need to create a logical
storage unit before you do so. Creating such a storage unit makes it easier to configure your
hard drive in a flexible way. In Linux, you can choose between two solutions: partitions and
logical volumes. Choose partitions if you want to work easily and you don’t have very specific
needs for what you do with your hard drive. If, however, you need maximal flexibility and easy
resizing, working with logical volumes is a better solution. In this chapter, you’ll read how to
create partitions and logical volumes, how to make a file system on them, and how to manage
that file system.

Addressing Storage Devices
Up to now, you’ve read how to address devices based on device names such as and

. There is a problem though with these device names: they are not guaranteed to be
unique. This is because normally the device name is determined at the moment the kernel
finds out that a new device has been attached to the system. The following example explains
the problem.

Imagine that your computer currently has a local hard disk as the only storage device.
The name of this hard disk will most likely be . Imagine that you have two USB drives,
a 1GB USB key and an 80GB USB hard disk. Say you attach the 1GB USB key first to your
computer. The computer will give it the device name , as the devices are named in
sequential order. If after that you attach the 80GB USB hard disk, it becomes . Now
imagine you do the opposite and first attach the 80GB hard disk. You can probably guess what
happens—it becomes instead of , which it was before. So you cannot be sure
that these device names are always unique.

To guarantee uniqueness of device names, there are two solutions. When creating the
file system with , you can put a label in the file system. You can also work with the unique
device names that are created automatically in the directory. The next two sections
give more details about both.

File System Labels
The oldest method to refer to devices in always the same way is by adding a file system label.
This label is stored in the file system and not in the metadata. Using file system labels is useful

91

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES92

for mounting devices, as the command will check for a label. However, you cannot
depend on it in situations where you need to address the device itself and not the file system
that is in it.

Typically, you will add a label to a file system when formatting it. For instance, to add a
label to an Ext3 file system, you would use the following command:

On most file systems, you can also set a label to an existing file system. On Ext2/Ext3, you
would do this using the utility:

There is more information on the use of these commands later in this chapter.
Once the file system label is set, you can use it when mounting the device. Just replace the

name of the device by to do this. For instance, the following command would
mount the file system that has the label :

 Device Names
File system labels are useful, but only in situations where you need to address the file system
that is on the device. If you need to address the device itself, they will not do. Modern Linux
distributions have an alternative. This alternative is created by the process, which is
started on all modern Linux distributions automatically. is the process that detects device
changes on the hardware bus and is responsible for creating device names. Not only does
it create the device names and so on, but for each storage device it also creates a
unique device name in the directory . In Listing 5-1, you can see an example of these
device names.

Listing 5-1. Creates Unique Device Names for All Storage Devices

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES 93

As you can see in Listing 5-1, under are three subdirectories; there could be
more, depending on the hardware you are using. These subdirectories are , ,
and , and each of them provides a unique way of addressing the device. The
devices refer to the hardware path the device is using. The devices in the subdirectory
use the unique hardware ID of the device, and the devices in use the universal unique
ID that is assigned to the device. If you want to use a file system–independent way to refer to a
device, a way that also will never change, pick one of these device names. In case of doubt, to
find out which device is which, you can use ; the device names are all symbolic links,
and shows you what device these links are referring to, as you can see in Listing 5-1.

Creating Partitions
The partition is the basic building block on a computer hard drive. As an alternative to using
partitions, you could use logical volumes as well to create your computer’s file systems. In
this section, you’ll learn everything you need to know about partitions. First, you’ll see how

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES94

partitions are used on the computer’s hard drive. Following that, you’ll learn how to create
them using and , the two most important partition management utilities. As the
last part in this section, you’ll learn how to recover lost partitions.

Understanding Partitions
Compare the hard disk in your computer to a pizza. To do something with it, you’ll need a file
system on the hard drive. You can put the file system directly on the hard drive, which is like
cooking a pepperoni pizza: the ingredients are the same throughout. On Linux, different file
systems have to be used on the same hard drive, which is basically like cooking a pizza quattro
stagioni, four different pizzas in one—you don’t want everything mixed together. To make it
easier to make such a pizza, you could consider cutting the pizza into slices. The same goes for
computer hard drives, but rather than slices, you divide a drive into partitions. In this section,
you’ll learn how your computer works with partitions from the moment it boots.

If you were to put just one file system on your computer hard drive, there would be no
need to create partitions. You can do this, for instance, with a USB key. If there is just one hard
drive in your computer, however, you normally need to create different file systems on it. The
least you would need is a swap file system and a “normal” file system. Therefore, you will need
to create partitions on your hard drive.

When a computer boots, it reads the Master Boot Record (MBR) from the hard drive that
is marked as primary in the BIOS. From the MBR, it starts the boot loader, which is typically
GRUB. Next, it checks the partition table, which is also in the MBR, to find out about the file
systems that it can use. In the MBR, 64 bytes are reserved for partitions. This is 16 bytes per
partition, just enough to store the begin and end cylinders, the partition type, and info indi-
cating whether the partition is active. You can also display this information by issuing the
command on your hard drive; for instance, shows a list of all par-
titions that have been created on hard drive . Listing 5-2 shows what the result of this
command looks like.

Listing 5-2. With , You Can Show Basic Properties of Your Partitions

A special role is played by the active partition. The boot loader will check the 512-byte
boot sector that it finds at the beginning of this partition to find out whether a boot loader is

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES 95

stored in it. For the rest, all you need to access a partition is the start and end cylinders. This
tells the kernel of the operating system where exactly it has to look to find the file system
within the partition.

In the 64 bytes that are allocated in the MBR to create partitions, you can create four parti-
tions only. As this may not be enough, you can create one of these partitions as an extended
partition. In an extended partition, you can create logical partitions. These have the same role
as normal partitions, with one exception only: they are not stored in the MBR, but in the boot
sectors of the four primary partitions. You can create a maximum of 56 logical partitions.

Every partition has a specific partition type. This partition type is used to indicate what
type of data is found in it. As an administrator, you should make sure that the partition types
are correct, because some utilities depend on the correct partition type being set and will
refuse services if this is not the case. Four partition types are of particular interest in a Linux
environment:

83 (Linux): This is the native Linux partition type. You can use it for any Linux file
system.

82 (Linux swap): Use this partition type for Linux swap partitions.

8e (Linux LVM): Use this partition type for working with LVM logical volumes (see the
section “Creating Logical Volumes” later in this chapter).

5 (Extended): Use this for extended partitions.

Managing Partitions with
The most common, though rather old, utility for creating partitions on Linux is .
offers a command-line interface that allows you to perform all partition manipulations that
you can think of. In the following procedure description, you’ll read how to work with .

Creating Partitions
In this procedure, you’ll see how to create partitions with . This procedure assumes that
you are working on a hard drive that is completely available and contains no important data.
If you want to test the steps as described in this procedure, I recommend using an empty
USB key. After attaching it to your computer, it will show up as in most cases.

Since making a mistake about the hard drive on which you create partitions would be
fatal, let’s have a look first at how to recognize which drive is which on your computer. If
you’ve just attached an external medium like a USB drive to your computer and want to find
out the device name of this medium, use the utility. In Listing 5-3, you can see the last
part of its output, right after I’ve attached a USB key to my computer. As you can see, the ker-
nel recognizes the USB key and initializes it as .

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES96

Listing 5-3. Using , It Is Easy to Find Out How the Kernel Recognizes Your USB Key

After connecting the USB key to your system, it will have multiple drives attached. There
are two ways of getting an overview of all of them. If you are using a modern system that has
devices only and no devices (which refer to old parallel ATA IDE drives), you can use .
This command lists all drives that are using the SCSI driver. This includes not only SCSI drives
(which are pretty rare in end-user computers), but also SATA drives and USB drives. Listing
5-4 gives an overview of what the result of this command could look like.

Listing 5-4. Use to Get an Overview of All SCSI, SATA, and USB Disks on Your Computer

If your computer also uses older parallel IDE attached drives, you can use the
command. This command will give you a list of all drives attached to your computer. When
using , look specifically for and devices, as this command may give you informa-
tion on other devices as well.

At this point you should be able to find out which is which on your computer hard drives.
Time to start configuring partitions. The next procedure describes how to do this with .
In this procedure, I’ll assume that you are working on a USB disk that is attached as .
If needed, replace / with the actual name of the disk you are working on.

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES 97

 1. Before you start creating partitions, check whether your disk already contains some
partitions. To do this, open on the disk by using the command.
Next, type to print the current partition table. This gives you a result such as the one
in Listing 5-5. The error messages are returned because this is a completely empty disk
device, on which not even a partition table exists.

Listing 5-5. Displaying Partition Information with

 2. As you can see in Listing 5-5, no partitions exist yet. To create a new partition, press
 now. will first ask you what type of partition you want to create. As no parti-

tions exist yet, you can type to create a primary partition. Next, provide the partition
number that you want to create. Since nothing exists yet, type to create the first par-
tition. Now asks for the start cylinder. It will suggest you use the first available
cylinder it has found, which is a good idea, so press Enter to accept this suggestion.
Next, it asks what you want to use as the end cylinder. You can enter a cylinder number
here, but it is more convenient to enter the size of the partition that you want to cre-
ate. Start this size with a sign, next specify the amount, and following that use or
for megabytes or gigabytes; for instance, entering would create a 1GB partition. In
Listing 5-6, you can see the code for this procedure.

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES98

Listing 5-6. Creating a New Partition in

 3. As doesn’t show you the result, it is a good idea to use the command now; this
will give you an overview of currently existing partitions.

 4. When you have finished creating partitions, you would normally write the partitions
to the partition table. Before doing so, I will first show you how to create an extended
partition with a logical partition inside, and how to change the partition type. So with
the interface still open, type now to create another new partition. Next, type
to create an extended partition. You would normally use an extended partition to fill
up the rest of the available disk space with logical partitions; therefore, you can press
Enter twice now to use all remaining disk space for the extended partition.

 5. After creating the extended partition, you can now create logical partitions inside it.
To do this, type again to start creating a new partition. now asks whether you
want to create a logical or a primary partition. Type now for logical partition. Next,
as when creating a normal partition, you need to specify the start cylinder and size of
the partition. When you have done that, type again for the partition overview. You’ll
now see that the first logical partition is created as , and it has the Linux
partition type.

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES 99

 6. In some cases, you have to change the default partition type. Every partition that you
create is automatically defined as type 83 (Linux). For instance, if you need to create
a swap partition, you have to change this partition type. In most cases, however, the
default Linux partition type works well, as you can format any Linux file system on it.
Let’s have a look now at how to change the default partition type. To do this, enter the

 command to display a list of all supported partition types. This shows you that for a
Linux swap, you have to use partition type 82. To apply this partition type, use the
command now. Next, enter the partition number and the partition type you want to
use on that partition to change it. will now tell you that it has sucessfully changed
the partition type (see Listing 5-7).

Listing 5-7. In Some Situations, You Need to Change the Partition Type

 7. Once you have made all changes that you want to apply to your partitions, it’s time
to write the changes if you are happy with them, or just quit if you are not sure about
the parameters you have changed. Before doing anything, use the command again.
This shows you the current changes in the partition table. Are they what you wanted?
Use to write the changes to disk. If you’ve made an error and don’t want to mess
up the current partitioning on your hard drive, use to bail out safely. When using

, nothing is changed, and the drive remains as it existed before you started working
with .

Telling the Kernel About the New Partitions
You have now written the new partition table to the MBR. If you changed partitions on a
device that was in use at the moment you changed the partition parameters, you will have
seen an error message indicating the device was busy and that you have to reboot to apply
the changes you’ve made to the partition table. This is because has updated the parti-
tion table, but by default it doesn’t tell the kernel about the updated partition table. You can
check this in the file , which contains a list of all the partitions that the kernel
knows about (see Listing 5-8).

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES100

Listing 5-8. The File Contains a List of All Partitions That the Kernel
Knows About

If the device on which you have changed partitions has mounted partitions on it, the
 file doesn’t get updated automatically. Fortunately, there is a command

that you can use to force an update: . Issuing this command tells the kernel about
updated partitions, even for devices that were in use when you were manipulating the parti-
tion table.

Caution The utility works very well for adding new partitions. It doesn't work so well if
you've also removed partitions. To make sure that your computer knows that some partitions have disap-
peared, you better reboot your computer after removing partitions.

Deleting Partitions
If you know how to create a partition, deleting a partition is not hard. You use the same

 interface, only with a different command. There is only one thing that you should be
aware of: when deleting a logical partition, you risk changing the order of the remaining
logical partitions. Assume that you have partitions and . After deleting

, the partition will be renumbered to , and all partitions after
 will also get renumbered. This will cause problems accessing the remaining parti-

tions, so be very careful when removing logical partitions! Fortunately, this problem only
exists for logical partitions; the number that is assigned to a primary or an extended parti-
tion will never change.

The next procedure shows you how to delete a partition.

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES 101

 1. Open on the device where you want to delete a partition; for instance, use
 if you want to delete a partition from the device. Next, use to display a

list of all partitions that exist on the device.

 2. Determine the number of the partition that you want to delete, and enter that number
to delete it from your hard disk.

 3. Use the command again to verify that you have deleted the right partition. If so, use
to write the changes to disk. If not, use to quit without saving changes.

Tip If you have deleted the wrong partition, it doesn't necessarily mean that all your data is lost. As long
as you haven't created another file system at this partition, just re-create it with the same parameters—this
allows you to access the data in that partition again without any problems.

Fixing the Partition Order
In some cases, you will need to use some of the advanced partition options to change partition
parameters. You might, for instance, have to change the order of partitions. By deleting and re-
creating logical partitions, you may accidentally change the partition order. In Listing 5-9, you
can see an example in which this has happened.

Listing 5-9. Occasionally, You Will See Problems Like a Wrong Partition Order

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES102

The fact that the partitions are out of order will severely disturb some utilities. Therefore,
this is a problem that you should fix. makes this possible through some of its advanced
options. The following procedure describes how to fix this problem:

 1. Start on the hard disk where you want to modify the partition table.

 2. Type x to enter expert mode. In this mode, you’ll have access to some advanced
options. Listing 5-10 gives an overview of the options in expert mode.

Listing 5-10. In Expert Mode, You Will Get Access to Advanced Options

 3. From the expert interface, use to fix the partition order. replies with a simple
“done” to tell you that it has finished doing so. You can now use to return to the main
menu, and from there, use to print the current partition layout. If you are happy with
the changes, use to write them to disk and exit .

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES 103

Working with
If you don’t like the interface, another partitioning utility is available for you to try as
well: . This utility is not as advanced as and lacks several options, but if you just
want to perform basic partition operations, you may like it. Listing 5-11 shows the
interface.

Listing 5-11. Offers an Easier Interface to Perform Basic Partitioning Actions

 offers a menu interface that gives you different options that are context sensitive.
That is, based on the current partition type that you have selected by manipulating the arrow
keys, you’ll see different options. To navigate between the different options, use the Tab key.
Following are short descriptions of these options:

: Use this option to mark a partition as bootable. This is equivalent to the
 option to mark the active partition.

: Use this option to create a new partition in unallocated disk space.

: Use this option to remove a partition.

: This option shows usage information about .

: With this option, you can increase the size of a partition on a disk where
unallocated cylinders are still available. Note that after using this option, you should
increase the file system in that partition also.

: This option gives you three different choices for printing partition information;
you can print the raw partition information, information about partitions sectors, and
the contents of the partition table.

: Use this option to close the interface.

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES104

: With this option, you can change the partition type.

: This option changes the units in which the partition sizes are displayed.

: Use this option to write changes to the partition table to disk and exit.

Recovering Lost Partitions with
Occasionally, something may go terribly wrong, and you may lose all partitions on your hard
disk. The good news is that a partition is just a marker for the start and end of a file system that
exists within the partition. If you lose the information in the partition table, it doesn’t neces-
sarily mean that you also lose the file system that exists in it. Therefore, in many cases, if you
re-create the lost partition with the same partition boundaries, you will be able to access the
file systems that existed in the partition as well. So if you have good documentation of how the
partition table once was structured, you can just re-create it accordingly.

On the other hand, if you have no documentation that shows you how the partitioning
on your hard disk once was, you can use the utility. This utility analyzes the entire hard
disk to see whether it can recognize the start of a file system. By finding the start of a file sys-
tem, it automatically also finds the partition in which the file system was created. However,

 doesn’t always succeed in its work, especially on extended partitions, where it may fail
to detect the original partitioning. Let’s have a look at how well it does its work based on the
partition table in Listing 5-12.

Listing 5-12. The Original Partition Table for This Example

 does have some options, but you may find that those options don’t really add much
to its functionality. It just tries to read what it finds on your hard drive, and that’s it. In Listing
5-13, you can see how well it did in trying to find the partition table from Listing 5-12.

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES 105

Listing 5-13. Results

As you can see, did a pretty good job in this case, but you can’t just take the infor-
mation as is when re-creating the partitions. When using , you should start by analyzing
the first part of the output. This part gives you a list of all partitions that it has found,
including their sizes. As works primarily on cylinders, you may find the end of the
output more usable. The four indicators refer to either primary or extended

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES106

partitions that are normally stored in the MBR. Also very useful: it gives you (cylinder/
head/sector) information, telling you exactly the first cylinder and the last cylinder used by the
partition. By using the information, tells you exactly on which cylinder, head, and
sector the partition started, which helps you in re-creating the partition. Be aware, however,
that calls the first cylinder on a disk cylinder 1, whereas calls it cylinder 0. There-
fore, when re-creating the partitions, add 1 to the list of cylinders as displayed by to
re-create the right partition sizes.

Creating Logical Volumes
In the first part of this chapter, you have read about partitions. Working with partitions is
fine if you have a simple setup without any special requirements. However, if you need more
flexibility, you may need another solution. Such a solution is offered by the Logical Volume
Manager (LVM) system. Some distributions, such as Red Hat and derived distributions, even
use LVM as their default hard disk layout. Working with LVM offers some benefits, of which
the most important are listed here:

makes it possible to make a stable backup of a versatile file system.

may access the same volumes.

traditional partitions.

In the next sections, you’ll read about the way logical volumes are organized and the man-
agement of logical volumes.

Understanding Logical Volumes
The Linux LVM uses a three-layer architecture. At the bottom layer are the storage devices.
In LVM terminology, these are referred to as physical volumes. These can be hard disks, RAID
arrays, and partitions, and you can even use sparse files (these are files that are completely
filled with zeroes to have them occupy disk space) as the storage back end. In order to use
the storage back end in an LVM setup, you need to run the command, which tells
the LVM subsystem that it can use this device to create logical volumes. If you want to put
a partition in an LVM setup, you need to create that partition is type 8e as well. The section
“Understanding Partitions” earlier in the chapter described how to do so with .

Based on the physical volumes, you can create the second level, which consists of volume
groups. These are just collections of storage devices. You can use a one-on-one solution in
which one physical volume represents one volume group. You can also use a multiple-on-one
solution, which means you can put multiple storage devices in one volume group and cre-
ate multiple volume groups on one storage device. However, the former solution is not such
a good idea. If you have multiple storage devices in one volume group, the volume group will

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES 107

break if one of the devices in it fails. So better not to do it that way, and make sure that you
have some redundancy at this level.

The third level consists of the logical volumes. These are the flexible storage units that you
are going to create and on which you are going to put a file system. A logical volume is always
created on top of a volume group, and you can create multiple logical volumes from one vol-
ume group or just one logical volume on each volume group—whichever you prefer. In the
next section, you’ll learn how to set up an LVM environment.

Setting Up a Disk with Logical Volume Manager
Setting up an environment that uses logical volumes is a three-step procedure. First you need
to set up the physical volumes. Next, you have to create the volume group. Finally, you need to
create the logical volumes themselves.

Creating Physical Volumes
Creating the physical volume is not too hard—you just need to run the command
on the storage device that you want to use. If this storage device is a partition, don’t forget to
change its partition type to 8e before you start. Next, use the command, followed by
the name of the storage device. The following line creates a physical volume for the partition

:

After creating it, you can use to show the properties of the physical
volume that you’ve just created. Listing 5-14 shows the results of both commands.

Listing 5-14. Creating a Physical Volume and Showing Its Properties

The command shows information about the different properties of the physical
volume:

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES108

: The name of the physical volume.

: The name of the volume group, if any, that is already using this physical
volume.

: The size of the physical volume.

: Indicator of whether this physical volume is usable or not.

: The size of the physical extents. Physical extents are the building blocks of
physical volumes, as blocks are the building blocks on a computer hard drive.

: The total number of physical extents that is available.

: The number of physical extents that is still unused.

: The number of physical extents that is already in use.

: A random generated unique ID for the physical volume.

Creating Volume Groups
Now that you have created the physical volume, you can use it in a volume group. To do this,
you need the command. This command does have some options that you will nor-
mally never use; to create the volume group, it’s usually enough to specify the name of the
volume group and the name of the physical volume(s) that you want to use for them. If you
don’t want to use the entire volume group, you may use the option as well, to specify the
size you want to use. And if you want to use the volume group in a clustered environment, you
should use the option to tell the cluster manager that other nodes may access this volume.

Also, you can specify the size of the physical extents that are used in building the volume.
As mentioned previously, physical extents are the building blocks for logical volumes, and you
set the size of these building blocks when creating the volume group. The default size of the
physical extent is 4MB, which allows you to create LVM volumes with a maximal size of 256GB.
If you need bigger volumes, you need bigger physical extents. For example, to create an LVM
volume with a size of 1TB, you would need a physical extent size of 16MB. In the following
example, you can see how to create a volume group that uses a physical extent size of 16MB:

After creating your volume group, you may want to verify its properties. You can do this by
using the command. Listing 5-15 shows the result of this command.

Listing 5-15. Showing Properties of a Volume Group with

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES 109

As you can see, the command shows you what size is allocated currently to the
volume group. Since it is a new volume group, this size is set to (). It also
shows you how many physical volumes are assigned to this volume group (). To get
more details about which physical volumes these are, use the command again with-
out arguments. This will show all available physical volumes, and also to which volume group
they currently are assigned.

Creating Logical Volumes
Now that you have created the physical volumes as well as the volume group, it’s time to cre-
ate the logical volumes. As shown when issuing (see Listing 5-16), there are
many options that you can use with .

Listing 5-16. When Creating Logical Volumes, There Are Many Options You Can Use

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES110

For example, you can use the parameter to configure read-ahead, an option
that will enhance the performance of file reads on the logical volume. There are, however, only
a few options that are really useful:

: Use this option to specify the size that you want to assign to the logical volume. You
can do this in kilobytes, megabytes, gigabytes, terabytes, petabytes, or exabytes, as well
as bits. Alternatively, you can use to specify the volume size in extents, the build-
ing blocks for logical volumes. Typically, these extents have a size of 4MB, which is set
when creating the volume group. It is mandatory to use either or .

: The optional option allows you to specify a name for the logical volume. If you
don’t specify a name, the volume will get its name automatically, and typically, this
name will be lv1 for the first volume you create, lv2 for the second volume, and so on.
To use a name that has more meaning, use .

: This is a mandatory parameter that has you specify in which volume
group you want to create the logical volume.

: This optional parameter allows you to specify exactly on which
physical volume you want to create the logical volume. This option is useful if your vol-
ume group has more than one physical volume. By using this option, you can ensure
that the logical volume still works if the physical volume that doesn’t contain the logi-
cal volume goes down.

Based on this information, you can create a logical volume. For example, if you want
to create a logical volume that has the name , uses the physical volume , and
is created in the volume group volgroup with a size of 500MB, you would use the following
command:

After creating a logical volume, you can display its properties using . To do this,
you need to use the complete device name of the logical volume. In this device name, you’ll
first use the name of the device directory , followed by the name of the volume group,
which in turn is followed by the name of the logical volume. For instance, the logical volume

 in volume group volgroup would use the device name . In Listing
5-17, you can see an example of the output of this command.

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES 111

Listing 5-17. Showing the Properties of a Logical Volume with

In Listing 5-17, the following information is provided:

: The name of the logical volume.

: The name of the volume group.

: A unique ID that is given to the volume.

: The read/write status of the volume. As you can see, users who have
enough file system permissions can write to this volume.

: The current status of the volume. This should read ; otherwise, the
volume cannot be used.

: The number of files that are open on the volume.

: The size of the volume.

: The number of logical extents. A logical extent is the logical representation
of the physical extent in the volume.

: The number of physical devices on which this volume is contained.

: The current allocation status. This parameter should be set to .

: The number of sectors the operating system should read ahead
on a volume. For performance optimization, you can set this number. That is, if the
operating system asks for the information in section 13 and the
parameter is set to , it would read sectors 13 to 17. Although this sounds like some-
thing you would want to do, on modern hardware the controller of the storage device
takes care of this, so there is no need to set this parameter.

: The address that the kernel uses to find this volume.

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES112

At this point, you have logical volumes. As the next step, you need to create file systems on
them. Read the section “Working with File Systems” later in this chapter for information how
to do that.

Working with Snapshots
Among the many things you can do with logical volumes is the option to work with snapshots.
For instance, snapshots can be useful when creating a backup of a volume that has many open
files. Normally, backup software will fail to back up a file that is open. Working with snapshots
allows the backup software to back up the snapshot instead of the actual files, and by doing
this it will never fail on open files.

A snapshot freezes the current status of a volume. It does so by initially copying the meta-
data of the volume into the snapshot volume. This metadata tells the file system driver where
it can find the blocks in which the files are stored. When the snapshot is initially created, the
metadata redirects the file system to the original blocks that the file system uses. This means
that by reading the snapshot, you follow pointers to the original volume to read the blocks of
this volume. Only when a file gets changed do the original blocks get copied to the snapshot
volume, which at that moment grows. This also means that the longer the snapshot volume
exists, the bigger it will grow. Therefore, you should make sure to use snapshots as a temporary
measure only; otherwise they may trash your original volume as well.

Caution A snapshot is meant to be a temporary solution, not a permanent solution. Make sure that you
remove it after some time, or it may trash the associated volume.

Before creating a snapshot, you have to determine the approximate size that it’s going to
have. Ultimately, this depends on the time you think the snapshot is going to be around and
the amount of data that you expect will change within that time frame. A good starting point
is to create it with a size that is 10% larger than the original volume. However, if you think it’s
going to be around longer, make sure that it is bigger so that it can keep all data that changes
on the original volume from the moment that you have created the snapshot.

Creating a snapshot volume works basically the same as creating a normal volume. There
are two differences though: you need to use the option to indicate that it is a snapshot vol-
ume, and you need to indicate the original volume that you want to make the snapshot for.
The next line shows how you can create a snapshot with the name for the volume

:

After creating the snapshot, you can access it like any other volume device. This means
you can mount it or have your backup software take a copy of it. Don’t forget that when you
are done with it and don’t need it anymore, you have to remove it. To do that for a snapshot
with the name , use the following command:

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES 113

Caution Failing to remove your snapshot volume may make the original volume inaccessible. So never
forget to remove your snapshot after usage!

Basic LVM Troubleshooting
Occasionally, you may run into trouble when working with LVM. The first problem arises when
the computer fails to initialize the logical volumes when booting. This may occur when the
service that scans for logical volumes comes up when your devices are not all connected yet. If
that happens, you need to initialize the logical volumes manually. In the following procedure,
to show you how to fix this problem, I have attached a device containing logical volumes after
booting the computer. First, I will show you that the device is not activated as a physical vol-
ume automatically, and following that, you’ll read how you can activate it manually.

 1. If you have just attached the device that contains logical volumes, use the com-
mand. This command shows you kernel messages and will display which device was
connected last. Listing 5-18 shows you the last part of its output.

Listing 5-18. Use to Show the Name of the Device That You’ve Just Connected

 . As you can see from the output, I have connected a 4GB USB key to the system
that has obtained the device name .

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES114

 2. Use the command to show a list of all physical volumes that the system knows
about at the moment. This gives a result like the one in Listing 5-19.

Listing 5-19. Use to Show a List of All Known Physical Volumes

 . As you can see, some physical volumes are known to the system, but is not
among them.

 3. At this point, you should tell the LVM subsystem to scan for physical volumes. To do
this, use the command. This command will check all currently connected stor-
age devices and show you all physical volumes that it has found on them. As a result, it
will now also see the device. Listing 5-20 shows you what the result looks like.

Listing 5-20. With You Scan All Storage Devices for the Occurence of
Physical Volumes

 4. Now that the physical volumes have been initialized, it’s time to go up in the stack and
see what volume groups your computer knows about. For this purpose, use the
command (see Listing 5-21).

Listing 5-21. The Command Gives a List of All Available Volume Groups

 5. At this point, if you don’t see all the volume groups that you’ve expected, use the
 command to tell your computer to scan all physical volumes for volume groups.

Listing 5-21 shows you what the result of this command looks like. For instance, the
volume volgroup is not listed. Running will fix this problem, as you can see in
Listing 5-22.

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES 115

Listing 5-22. The Command Scans All Physical Devices for Volume Groups

 6. Now that all volume groups are available, it’s time for the last task: to see whether you
can access the logical volumes that exist in them. To do this, first use the command
(see Listing 5-23).

Listing 5-23. Use the Command for a List of All Logical Volumes

 7. In case there are missing logical volumes, use to scan all devices for logical
volumes. This should now activate all volumes that you’ve got.

 8. At this point, all logical volumes are available, but they probably are not activated
yet. To confirm if this is the case, use the command on the volume group
that you’ve just activated. For instance, if the name of the volume group is group,

 shows you the current status of the volumes in it. As you can see in
Listing 5-24, all logical volumes have the status inactive.

Listing 5-24. After Scanning for Volumes Manually, They Still Are in an Inactive State

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES116

 9. At this point, you need to activate the logical volumes. You can do that by using the
 command to change the status of the volume group the volumes are in. So if

the name of the volume group is group, use to change the group
status to active (see Listing 5-25).

Listing 5-25. Use to Change the Group Status to Active

 10. Using has activated all logical volumes. At this point, you can mount them
and use the file systems that are on them.

Working with File Systems
Working with file systems is a very important task for the Linux administrator. Different file
systems are available; you have to choose the best file system for the tasks that you want to
perform, and make sure that it is available and performing well. In this section, you’ll learn
about the different file systems and how to format them. Next, you will find information

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES 117

on maintaining, tuning, and resizing them. At the end of this section, you will also find infor-
mation on how to work with Windows file systems.

Understanding File Systems
A file system is the structure that is used to access logical blocks on a storage device. For
Linux, different file systems are available, of which Ext2, Ext3, XFS, and to some extent
ReiserFS are the most important ones. What they have in common is that all organize logical
blocks on the storage device in a certain way. All also have in common that inodes and direc-
tories play a key role in allocating files. Other distinguishing features play a role as well. In
the following sections, you’ll learn about common elements and distinguishing features that
file systems are using.

About Inodes and Directories
The basic building block of a file system is the block. This is a storage allocation unit on disk
your file system is using. Typically, it exists on a logical volume or a traditional partition. To
access these data blocks, the file system collects information on where the blocks of any given
file are stored. This information is written to the inode. Every file on a Linux file system has
an inode, and the inode almost contains the complete administration of your files. To give
you an impression, in Listing 5-26 you can see the contents of an inode as it exists on an Ext2
file system, as shown with the utility. Use the following procedure to display this
information:

 1. Locate an Ext2 or Ext3 file system on your machine. Make sure files on the file system
cannot be accessed while working in . You could consider remounting the file
system using .

 2. Open a directory on the device that you want to monitor and use the command
to display a list of all file names and their inode numbers. Every file has one inode
that contains its complete administration. Make sure that you’ll remember the inode
number later, as you will need it in step 4 of this procedure.

 3. Use the command to access the file system on your device in debug mode. For
example, if your file system is , you would use .

 4. Use the command that is available in the file system debugger to show the con-
tents of the inode. When done, use to close the environment.

Listing 5-26. The Ext2/Ext3 Tool Allows You to Show the Contents of an Inode

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES118

If you look hard enough at the information that is displayed by using the command
in , you’ll recognize some of the information that is displayed when using on
a give file. For instance, the parameter tells you what permissions are set, and the
and parameters give information about the user and group that are owners of the file.
The utility adds some information to that. For instance, in its output you can see the
blocks that are in use by your file as well, and that may come handy when restoring a file that
has been deleted by accident.

The interesting thing about the inode is that within the inode, there is no information
about the name of the file. This is because from the perspective of the operating system, the
name is not important. Names are for users who normally can’t handle inodes too well. To
store names, Linux uses a directory tree.

A directory is a special kind of file, containing a list of files that are in the directory, plus
the inode that is needed to access these files. Directories themselves have an inode number as
well; the only directory that has a fixed location is . This guarantees that your file system can
always start locating files.

If, for example, a user wants to read the file , the operating system will first look
in the root directory (which always is found at the same location) for the inode of the directory

. Once it has the inode for , it can check what blocks are used by this inode. Once the
blocks of the directory are found, the file system can see what files are in the directory. Next,
it checks what inode it needs to open the file and will present the data to the user.
This procedure works the same for every file system that can be used.

In a very basic file system such as Ext2, it works exactly in the way just described.
Advanced file systems may offer options to make the process of allocating files somewhat
easier. For instance, the file system can work with extents. An extent is a large number of con-
tiguous blocks that are allocated by the file system as one unit. This makes handling large files
a lot easier. Since 2006, there is a patch that enhances Ext3 to support extent allocation. You
can see the result immediately, when comparing the result of Listing 5-26 with Listing 5-27.
This is the inode for the same file after it has been copied from the Ext2 volume to the Ext3 vol-
ume. As you can see, it has lots fewer blocks to manage.

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES 119

Listing 5-27. A File System That Supports Extents Has Fewer Individual Blocks to Manage and
Therefore Is Faster

A file system may use other techniques to work faster as well, such as allocation groups.
By using allocation groups, a file system divides the available space into chunks and manages
each chunk of disk space individually. By doing this, the file system can achieve a much higher
I/O performance. All Linux file systems use this technique; some even use the allocation group
to store backups of vital file system administration data.

About Superblocks, Inode Bitmaps, and Block Bitmaps
To mount a file system, you need a file system superblock. Typically, this is the first block on
a file system, and it contains generic information about the file system. You can make it vis-
ible using the command from a environment. In Listing 5-28, the logical volume

 is first opened with , and next the utility is used to display
information from the file system superblock.

Listing 5-28. Example of an Ext3 Superblock

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES120

Without the superblock, you cannot mount the file system, and therefore most file systems
keep backup superblocks at different locations in the file system. If the real file system gets bro-
ken, you can mount using the backup superblock and still access the file system anyway.

Apart from the superblocks, the file system contains an inode bitmap and a block bitmap.
By using these bitmaps, the file system driver can determine easily whether a given block or
inode is available. When creating a file, the inode and blocks used by the file are marked as in
use; when deleting a file, they will be marked as available and can be overwritten by new files.

After the inode and block bitmaps, the inode table is stored. This contains the administra-
tion of all files on your file system. Since it normally is big (an inode is at least 128 bytes), there
is no backup of the inode table.

Journaling
For modern computers, journaling is an important feature. With the exception of Ext2, all cur-
rent Linux file systems support journaling. The journal is used to track changes. This concerns
changes to files and changes to metadata as well. The goal of using a journal is to make sure that
transactions are processed properly. This is especially the case for situations involving a power
outage. In those cases, the file system will check the journal when it comes back up again, and
depending on the journaling style that is configured, do a rollback of the original data or a check
on the data that was open while the computer crashed. Using a journal is essential on large file
systems where lots of files get written to. Only if a file system is very small or writes hardly ever
occur on the file system can you configure the file system without a journal.

Tip An average journal takes about 40MB of disk space. If you need to configure a very small file system,
such as the 100MB partition, it doesn't make sense to create a journal on it. Use Ext2 in those cases.

When using journaling, you can specify three different journaling modes for the file sys-
tem. All of these are specified as options while mounting the file system, which allows you to
use different journaling modes on different file systems.

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES 121

First, there is the option, which you can use by adding the option to
. To activate it, use a command like the following:

When using this option, only metadata is journaled, and barriers are enabled by default.
This way, data is forced to be written to hard disk as fast as possible, which reduces chances of
things going wrong. This journaling mode uses the optimal balance between performance and
data security.

In case you want the best possible performance, use the option. This
option only journals metadata, but does not guarantee data integrity. This means that based
on the information in the journal, when your computer crashes, the file system can try to
repair the data but may fail, in which case you will end up with the old data after a system
crash. At least it guarantees fast recovery after a system crash, and for many environments,
that is good enough.

If you want the best guarantees for your data, use the option. When using
this option, data and metadata are journaled. This ensures the best data integrity, but gives
bad performance because all data has to be written twice—first to the journal, and then to
the disk when it is committed to disk. If you need this journaling option, you should always
make sure that the journal is written to a dedicated disk. Every file system has options to
accomplish that.

Indexing
When file systems were still small, no indexing was used. You don’t need an index to get a file
from a list of a couple of hundreds of files. Nowadays, directories can contain many thou-
sands, sometimes even millions of files, and to manage these amounts of files, you can’t do
without an index.

Basically, there are two approaches to indexing. The easiest approach, directory indexing,
is used by the Ext3 file system; it adds an index to all directories and thus makes the file system
faster when many files exist in a directory. This, however, is not the best way of performing
indexing, because it doesn’t offer any significant increase of performance if your file system
uses many directories and subdirectories.

For optimal performance, it is better to work with a balanced tree (also referred to as
b-tree), which is integrated in the heart of the file system itself. In such a balanced tree, every
file is a node in the tree, and every node can have child nodes. Because of this method where
every file is represented in the indexing tree, the file system is capable of finding files in a
very fast way, no matter how many files there are in a directory. Using a b-tree for indexing
makes the file system also a lot more complicated. If things go wrong, the risk exists that you
have to rebuild the entire file system, and that can take a lot of time. In this process, you even
risk losing all data on your file system. Therefore, when choosing a file system that is built on
top of a b-tree index, make sure it is a stable file system. Currently, XFS and ReiserFS have an
internal b-tree index. Of these two, ReiserFS isn’t considered a very stable file system, so better
use XFS if you want indexing.

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES122

Choosing the Best File System
Based on the information in the preceding sections, you should now be able to choose the
file system that fits your needs best. Table 5-1 gives an overview of the most important fea-
tures to help you compare the file systems. In this table, performance and stability are rated
on a scale from 1 to 10, where 1 is very bad and 10 is excellent. Although opinions about the
ratings may differ slightly, they give a general impression of the performance and stability of
these file systems.

Table 5-1. File System Features

File System Journaling Indexing Performance Rating Stability Rating
Ext2 No None 7 9

Ext3 Yes H-tree 8 9

XFS Yes B-tree 9 8

ReiserFS Yes B-tree 9 3

Formatting File Systems
Now that you know more about the different file systems and their properties, you can make
a choice for the file system that best addresses your needs. After making that choice, you can
format the file system. In the next sections, you will read how to do this for the different file
systems.

The basic utility to create a file system is . This utility works with modules to address
different file systems. You can choose the module that you want to employ by using the
option, followed by the file system type that you want to create. Alternatively, you can use

, followed by a dot and the name of the file system that you want to create. In this way, you
can create every file system that is supported; for instance, is used to create an Ext3
file system, and is used to create an XFS file system.

Maintaining File Systems
Normally, your file systems will work just fine. Occasionally, you may run into problems, and
instead of mounting the file system properly, you’ll get a message indicating that there is a
problem that you have to fix. If this happens, different tools are at your disposal, depending
on the file system that you are using. Ext2/Ext3 offers the most extensive tools, but there are
options for ReiserFS and XFS as well.

Analyzing and Repairing Ext2/Ext3
In some situations, problems will occur on your Ext2/Ext3 file system. If that happens, the file
system offers some commands that can help you in analyzing and repairing the file system.
The first command is , the file system check utility that works on Ext2 as well as Ext3.
If you think that anything may be wrong with your file system, run . You should make
sure though that the file system on which you run it is not currently mounted. Since this is
hard to accomplish if you want to run it on your root file system, it is not a bad idea to use the

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES 123

automatic check that occurs every once in a while when mounting an Ext2/Ext3 file system.
This check is on by default, so don’t switch it off!

When running on an Ext3 file system, the utility will check the journal and repair
any inconsistencies. Only if the superblock indicates that there is a problem with the file sys-
tem will the utility check data as well. On Ext2 it will always check data, since this is the only
option. Normally, it will automatically repair all errors it finds, unless a certain error requires
human intervention. In that case, will notify you, and you can use one of the advanced
options. Table 5-2 gives an overview of the most useful options that has to offer.

Table 5-2. Most Useful Options

Option Description
 Use this option to read one of the backup superblocks. Contrary to the

 command, you can refer to the normal block position where the
file system can find the backup superblock, which will be block 32768 in
most cases.

 This option lets check for bad blocks. If it finds them, it will write
them to a specific inode reserved for this purpose. In the future, the file
system will avoid using any of these blocks. Be aware though that bad
blocks are often an indication of real problems on your hard drive. Use
the option with as a temporary solution until you replace your
hard drive.

 This option forces checking, even if the file system seems to be without
problems.

 Use this option to specify where the external journal can be found. You’ll
need this option if your file system uses an external journal.

 This option automatically repairs everything that can be repaired without
human intervention.

 Use this to have assume an answer of yes to all questions. This
goes further than default behavior and will also automatically enter
yes on questions that normally require human intervention.

In some situations, may not do its work properly. If that is the case, there are two
useful utilities to analyze a little bit further what is happening. The first of them is .
This utility dumps the contents of the superblock and also the information about all block
group descriptors. The latter is information that you will hardly ever find useful at all; therefore
I recommend you use with the option, which makes it more readable. In List-
ing 5-29, you can see what the output of this command looks like.

Listing 5-29. The Utility Shows the Contents of the Superblock and All Group
Descriptors

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES124

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES 125

If you see a parameter that you don’t like when using , you can use to
change it. Basically, works on the same options as , so you won’t have a hard
time understanding its options. For instance, in the preceding listing, the maximum mount
count is set to . That means that after being mounted 30 times, on the next mount the file
system will be checked automatically, which may take a lot of time. To change this, use the
option with . For instance, the following command would set the maximum mount
count to on :

If you really are ready for a deep dive into your file system, is the utility you need.
Before starting with it, make sure that you use it on an unmounted file system. The
tool is working at a very deep level and may severely interfere with other processes that try to
access files while you are debugging them. So if necessary, take your live CD and use
from there.

After starting , you’ll find yourself in the interface. In this environment,
some specific commands are available for you. You will also recognize some generic Linux
commands that you know from a Bash environment, but as you will find out, they work a bit
differently in a environment. For example, the command in will not only
show you file names, but also the number in blocks in use by this item and the inode of this
item, which is very useful information if you really need to start troubleshooting. In Listing
5-30, you can see what happens when using the command from the interface.

Listing 5-30. The Command in Gives Information Other Than What You Are Used to
from It

In case you wonder how this information may be useful to you, imagine a situation where
you can’t access one of the directories in the root file system anymore. This information gives
you the inode that contains the administration of the item. Next, you can dump the inode
from the interface to a normal file. For instance, the command
would create a file with the name in the root of your file system and fill that with the

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES126

contents of inode 24580. That allows you to access the data that file occupies again and may
help in troubleshooting.

This information may also help when recovering deleted files. Imagine that a user comes
to see you and tells you that he or she has created a few files, of which one has been lost. Say
the names of these files are , , and .
Imagine that was deleted by accident and no matter what, the user needs to get it back.
The first thing you can do is use the command from the interface. Chances are
it gives you a list of deleted inodes, including their original size and deletion time; see List-
ing 5-31 for an example.

Listing 5-31. ’ Can Give You an Overview of Deleted Files

As you can see, the information that gives you includes the inode number, origi-
nal owner, size in blocks and—most important—the time the file was deleted. Based on that,
it’s easy to recover the original file. If it was the file in inode 233030, from the inter-
face, use to recover it. Unfortunately, due to some differences
between Ext2 and Ext3, works well on Ext2 and rarely on Ext3.

Given the fact that the user in our example has created some files, it may be interesting
to see what inodes were used. Let’s say still uses inode 123, uses 127, and
is removed, so you can’t find that information anymore. Chances are, however, that the
inode that has used was not too far away from inode 127, so you can try and dump all
inodes between inode 128 and 140. This likely allows you to recover the original file, thanks to

.
There are many other commands available from as well. I recommend you at least

take a look at these commands. The command from within the interface will give
you a complete list. Have a look at these commands, and try to get an impression of the pos-
sibilities they offer—you may need them some day.

Analyzing and Repairing XFS File Systems
Since it is a completely different file system, the XFS file system offers options that are totally
different from the Ext2/Ext3 options. There are four commands that are useful when getting
into trouble with XFS. The first and most important of them is . As its name sug-
gests, this command will check you XFS file system and report whether it has found any errors.
Before running , you must unmount the file system on which you want to run it.
Next, just run the command without additional arguments; it will tell you whether some seri-

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES 127

ous errors were found. For instance, the following command would check the XFS file system
that has been created in :

If no problems were found, will report nothing. If problems were found, it will
indicate what problems these are and try to give an indication of what you can do about them
as well. The next step would then be to run the utility. Again, you can run this util-
ity on an unmounted file system only. This utility does have some advanced options, which
you would use in specific situations only. Normally, by just running on the device
that you want to check, you should be able to fix most issues. For instance, the following
example command would try to repair all issues on the XFS file system in :

Basically, if with these commands you can’t fix the issue, you are lost. But XFS also has
an advanced option to dump the file system metadata to a file, which you can send over for
support. However, this is not an option that you are very likely to use, as it requires extensive
knowledge of the file system that normally only one of the file system developers would have.

Resizing File Systems
When resizing file systems, you should be aware that the procedure always involves two steps.
You have to resize the storage device on which you have created the file system as well as the
file system itself. It is possible to resize logical volumes. If you want to resize a partition, you
have to use a special utility with the name GParted. I will first explain how to resize a file sys-
tem that is in a logical volume. All file systems can be resized without problems.

Resizing a File System in a Logical Volume
The following procedure details how the volume is first brought offline and then the file sys-
tem that sits on the volume is resized. It is presumed that the volume you want to shrink is
called , and it is using an Ext3 file system. It is mounted on the directory .

Caution Online resizing of a file system is possible in some cases. For example, the command
 makes it possible to resize a live file system. However, because resizing file systems is very

labor intensive, I wouldn’t recommend doing it this way. There’s always a risk that it won’t work out simply
because of all of the work that has to be done. So, to stay on the safe side, your volume before resiz-
ing it.

 1. Use to unmount the volume from the directory .

 2. Before shrinking the volume itself, you must shrink the file system used on it. Use
 to make it a 2GB file system.

 3. Now you have to resize the volume itself: use .

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES128

 4. Finally, you can mount the volume again. Use .

 5. Use the command to show the current size of the file system. It should be a giga-
byte smaller than it was before.

In this procedure, you learned how to shrink a volume, and of course you can increase its
size as well. When increasing a volume, you just have to invert the order of the steps. First, you
need to extend the size of the volume, and then the size of the file system can be increased as
well. After dismounting the volume, this is a two-step procedure:

 1. Use to add 10GB of available disk space from the
volume group to the volume.

 2. Next, use . This command will automatically
increase the ReiserFS file system that is sitting in the volume to the maximum amount
of available disk space.

You now know how to resize a volume with a ReiserFS file system in it. Of course, you
can resize Ext3 and Ext2 as well. To increase the size of an Ext3 file system, you would use

.

Resizing Partitions with GParted
This book is about command-line administration. GParted is not a command-line adminis-
tration tool, and therefore I will not cover it in a step-by-step description. It does need to be
mentioned though, as it offers an easy-to-use interface that helps you in resizing partitions.
You can install it locally on your Linux computer, but to unleash its full power, it’s better to
download the GParted live CD at . Reboot your computer
from this live CD and start GParted to resize any partition on your computer, Windows as well
as Linux partitions. As you can see in Figure 5-1, GParted shows a graphical representation of
all partitions on your computer. To resize a partition, click the partition border, and drag it to
the new intended size.

Figure 5-1. GParted helps you to resize partitions from an easy-to-use graphical interface.

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES 129

Working with Windows File Systems
On Linux, you can work with Windows file systems as well. For all FAT-based needs, the vfat file
system is the best option. Almost all Linux distributions have support for this file system built in
by default. This means that if you connect a USB key that is formatted with FAT32 to your sys-
tem, for instance, it will mount automatically, and you will be able to read and write files on it.

The support for NTFS is a different story. Until recently, most Linux distributions did
include only the read-only ntfs driver, because stable write support for NTFS is a recent devel-
opment. Therefore, if you can’t write to an NTFS device, make sure to upgrade to the latest
driver that is available. Also, with the new version of NTFS, some cool utilities have become
available. Following is a short list of the most important of these utilities:

: This is the utility you need to create an NTFS file system.

: Use this utility to resize an NTFS file system. Using this, you can resize an
NTFS partition on Windows as well.

 : Use this to clone an NTFS partition. This utility makes sure that the cloned
partition has a unique ID, which is required for all NTFS file systems.

: Use this tool to fix issues on an NTFS file system. This also works to repair
Windows file systems that have errors.

: Use this to recover files that you have deleted by accident from an NTFS
file system.

: This utility cleans out all data from an NTFS file system. Use it if you want to
make sure that recovery of your NTFS data is never possible.

Cloning Devices
If you need to clone a device, you can use . For instance, you can use it to write the contents
of an optical drive to an ISO file or to make an exact copy of one disk to another. The com-
mand has two mandatory options. Use to specify the input device. Next, by using , you
specify what output device to use. For optimal efficiency, it is a good idea to add the parameter

. Most file systems work with 4K blocks, and this option makes sure that the copy is
made block by block instead of byte by byte. It will offer you a performance that is about four
times better than without using the option.

To clone an entire hard drive with , use the following:

This command assumes that there is a second hard drive available in your computer,
which has the name . It will completely overwrite all data on this with data
from . Because this command will make an exact copy of , you must make
sure that the drive you are writing to is as least as big as the original drive. If the destination
drive is bigger, you’ll later have to resize the file systems on that drive.

Using , you can also write the contents of an optical disk to an ISO file (or make boot
floppies in the old days). The following command shows how to do this, assuming that your
optical disk is available via the device:

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES130

Summary
In this chapter, you have read all about management of the information on your hard disk.
You have read how to manage partitions, volumes, and file systems. Based on this infor-
mation, you will be able to use the best possible configuration on your disk. The following
commands have been covered:

: Creates partitions.

: Creates partitions. This is not as easy to use as , but it does have an inter-
face that is easier to use.

: Creates LVM physical volumes.

: Displays properties of LVM physical volumes.

: Creates LVM volume groups.

: Displays properties of LVM volume groups.

: Creates LVM logical volumes.

: Displays the properties of an LVM logical volume.

: Shows a short list of all present LVM physical volumes.

: Scans storage devices for the presence of LVM physical volumes.

: Scans storage devices for the presence of LVM volume groups.

: Shows a list of LVM volume groups.

: Scans storage devices for the presence of LVM logical volumes.

: Shows a list of LVM logical volumes.

: Changes the status from LVM volume groups and the volumes in it from
active to inactive and vice versa.

: Serves as an advanced debugger for the Ext2/Ext3 file systems.

: Checks the integrity of the Ext2/Ext3 file systems.

: Changes the properties of the Ext2/Ext3 file systems.

: Shows the properties of the Ext2/Ext3 file systems.

: Checks the integrity of a ReiserFS file system.

: Changes the properties of a ReiserFS file system.

: Resizes a ReiserFS file system.

: Shows the properties of the ReiserFS file system.

: Creates file systems.

: Checks the integrity of an XFS file system.

: Repairs an XFS file system that has errors.

: Resizes an Ext2/Ext3 file system without taking it offline.

CHAPTER 5 MANAGING PARTIT IONS AND LOGICAL VOLUMES 131

: Serves as an offline Ext2/Ext3 resizing utility.

: Extends the size of an LVM logical volume.

: Creates an NTFS file system.

: Resizes an NTFS file system.

: Clones an NTFS file system.

: Fixes the integrity of a damaged NTFS file system.

: Undeletes a file in an NTFS file system.

: Wipes all data in an NTFS file system, without the possibility to undelete the
data.

In the next chapter, you’ll learn how to manage users and groups.

C H A P T E R 6

Managing Users and Groups

This chapter is about the user environment. You will learn how to set up a user account,
which is an important task, even if you are not a computer administrator. You will also learn
about the way authentication is handled using the PAM (pluggable authentication module)
and nsswitch systems, as well as explore the configuration files that contain the definition of
the working environment for your users. For instance, you will see how to provide a user with
default settings by using the file and all related files. Also, you will get a look at
the mechanism, which allows you to work as root without needing to log in as root.

Setting Up User Accounts
There are different ways to create a user. You can use one of the commands that are available,
like or . (is the default utility; some distributions have a utility named

, which in most cases is just a symbolic link to .) It is also possible to create a
user by editing the user database directly. This database is stored in the two configuration files,

 en , and you can modify it using the command, or just plain .
If you decide to change the configuration files directly, it’s a good idea to use , not plain

. The command does a check on the consistency of the configuration files once you are
done, which is not the case for .

Before taking your first steps in user management, you need to understand a little bit
more about users and their properties. In the following sections, you’ll first learn which
properties a user has. Following that, you’ll read how to manage users using commands like

 and , and how to modify the user database directly.

Understanding Users and Their Properties
Before starting to create users, it makes sense to know about the different properties that
Linux users typically have. These properties are stored in the and
files. Based on this knowledge, you’ll be better able to create the user according to your spe-
cific needs. When creating a user, you need to provide a value for the following properties,
which you can read more about in the next sections:

133

CHAPTER 6 MANAGING USERS AND GROUPS134

Username
Every user has a unique username. This name is used when the user authenticates to the sys-
tem. In most cases, it will be a real name, like lori, but you can use a numeric name as well,
such as an employee number. I recommend using letters and numbers only in the username.
After installation, your computer will already have some usernames. One of them is the user-
name root, which is used for system administration purposes. You’ll also find that some other
system accounts are created by default. These are needed for system tasks and services, and
you should never change or remove them. The names of these accounts depend on the ser-
vices that are installed on your computer. In general, you can recognize them because they

Password
Every user should have a password. This is required for authentication to the Linux system.
When choosing a password, make sure that it is strong. A strong password is a password that
can’t be found in any dictionary and is a combination of upper- and lowercase letters as well

to use passwords shorter than six characters. When setting a password, the administrator can
set some properties for the password as well, such as the expiration date of the password. The
user root can also disable the password if he or she doesn’t want the user to log in anymore.
As an administrator, you can determine how long it takes before the user password expires.
Related settings are in the file, which is covered later in this chapter.

UID
is another major piece of information when creating a user. For your computer, this

is the only way to identify a user; usernames are just a convenience for humans (who can’t

-

the maximum number of local users that your computer will support. If you exceed this limit,

system accounts that your computer needs to start services such as a web server or the print-

Group Membership
On Linux, all users must be a member of at least one group. This is referred to as the primary
group assignment. Apart from the primary group, users can be a member of additional groups
as well. The primary group setting is stored in the file, and secondary groups are
in the file, which is discussed later in this chapter.

CHAPTER 6 MANAGING USERS AND GROUPS 135

Gecos Field
The official -
hensive Operating System (Gecos) field, and it is used to include some comment to make it
easier to identify the user. It is a good habit to put a description of the user account in this
field, although you can do without it as well. The
content of the Gecos field if someone requests information about a user. You can put in any
description you like.

Home Directory
Most users have a home directory. This directory, which typically resides in , is where
users can store private files. You will also find that some default configuration files often exist
in the user’s home directory. These configuration files make the user’s default environment.
Also, some subdirectories are created that allow users to store different types of files. Apart
from the home directory, the only directory where users are allowed to write files is . You

is , with all of the default files that were copied into that directory.

Listing 6-1. Example of a Home Directory and Its Contents

Shell
Any user who needs to log in to your computer needs a shell. The shell will enable the user’s

 as the default shell, where
 shell. Most users won’t notice the difference; after all, the shell is

just a command interpreter.
You should know that not every user needs a shell. A user with a shell is allowed to log

in locally to your system and access any files and directories stored on that system. If you’re
using your system as a Samba file server, for example, the user will typically never need to log
in to your system directly. In this case, it is a good idea to use as the default shell;
this will prohibit users from ever logging in to your system.

Commands for User Management
For user management, your distribution provides some commands. If you want to add users
from the command line, is just the ticket. You can use this command to add a user and
all of the properties mentioned previously. The other commands for user management are just
as convenient. Following is an overview of all commands available to manage user accounts:

CHAPTER 6 MANAGING USERS AND GROUPS136

: Adds users to the local authentication system

: Modifies properties for users

users from a system

: Modifies passwords for users

 is simple. In its easiest form, it just takes the name of a user as its argument;
thus creates a user called zeina to the system. It is a good idea, however, to use
the option as well, because if you don’t, that user will be without a home directory, which in
most cases is useless.

Note It’s a good idea to create an alias so that creates home directories automatically. To do
this, add the following line to the file in user root’s home directory:

-
tem permissions.) In most cases, a user should have a home directory because it allows that
person to store files somewhere, and it allows the administrator to put the configuration files
for the user somewhere.

Following is a list of the most important options that you can use with :

: Allows you to enter a comment field to the user account. If this comment
has white spaces or other special characters, make sure that they are in quotations.
Information set this way can be requested with the command, and this com-
ment field typically is used for the user’s name. You will notice that for some of the
system processes, this field gives a short description of the process that is responsible
for the user account.

-

the date.

: Makes the user a member of some additional groups. By default, the user
becomes a member of only those groups listed in .

: Sets the primary group of a user (see the section “Group Membership” later in
this chapter for more details).

creating a user named linda, the home directory that is created is .

CHAPTER 6 MANAGING USERS AND GROUPS 137

Note The command also has the option . If you read the page, you’ll notice that this
option can be used to change the password of a user. There is a catch though; the option can only be
used to specify a password that is already encrypted by a program that uses the function. This is
not typically the way you want to change a password, so use the command instead.

If you understand the command, it’s not hard to understand as well. This
command works on the same user properties as
options are not available with . For instance, you can’t use to create a home
directory for a user who doesn’t have a home directory yet.

If a user account is no longer needed, you can use as follows: to remove a user
with the name chris, issue . By default, does not remove the home direc-
tory and mail spool for the user. If you want these to be removed as well, use the option . So,

 removes chris and his home directory as well. You will notice that this does
not work if in chris’s home directory files exist that are not owned by this user. If you are sure
that you want to remove these as well, add the option.

Tip Before removing a user and his or her home directory, it might be a good idea to make a backup
of that home directory and all other files that the user has created first. The following command shows
how to do this. It uses to locate all files that are owned by user chris and copies them to the direc-
tory . This location ensures that no one else but root has permissions to read and, if needed,
recover these files:

Chapter 4 has more details on the command.

Working with Default Values for User Management
When managing users, two configuration files are involved that allow you to specify default
settings for users. First is / , which specifies default values for the
command. Next is , which is used to specify the default user environment.

Setting Default Values Using
As you have seen, a few options come with the command. If an option isn’t speci-
fied, will read its configuration file in , where it finds some
default values such as what groups the user should become a member of and where to create
the user’s home directory. When using an option with , you will always overwrite the

CHAPTER 6 MANAGING USERS AND GROUPS138

Listing 6-2. Default Options for Creating Users in the Configuration File

In this example file, the following options are used:

default primary group.

: Specifies that user home directories must be created in .

: Makes sure that the user account is set to inactive, until the moment that
someone sets a password for the user.

: Makes sure that the user password expires after a given number of days.

: Specifies what to use as the default shell for new users.

: Specifies the name of the skeleton directory that has some default
configuration files for new users. When creating a user who has a home directory
with , the contents of this skeleton directory are copied to the user’s home
directory.

: Ensures that new users will have a directory in /
where the mail process can store mail messages. If your users don’t need to work with
the internal Linux mail facility (for more about this, see the section “Sending Mail from

.

Creating a Default Environment Using
The file is a configuration file that relates to the user environment but is used
only in the background. This file defines some generic settings that determine all kinds of things
relating to user login. The file is a readable configuration file that contains variables.
Each line in this file corresponds to one variable and its value. The variable relates to logging in
or to the way in which certain commands are used. This file must exist on every system because
you would otherwise experience unexpected behavior. The following list contains some of the
more interesting variables that you can use in the file:

: By default, a user will be allowed to log in, even if his or her home direc-
tory does not exist. If you don’t want that, change this parameter’s default value of to
the value .

: This variable contains the default search path that’s applied for all users who

CHAPTER 6 MANAGING USERS AND GROUPS 139

: This variable works in the same manner as , but for root.

: After a login failure, it will take a few seconds before a new login prompt is
generated. This variable, set to by default, specifies how many seconds it takes.

 and
by the
chapter).

: If enabled by setting the Boolean value to , specifies that
all successful logins must be logged to the file . This only works if the

 file also exists. (If it doesn’t, create it by using .)

: This is the minimum number of characters that must be used for new
passwords.

 and
adding users with the command.

Managing Passwords
If your user really needs to do anything on your system, he or she needs a password. By
default, login for a user you create is denied, and no password is supplied. Basically, your
freshly created user can’t do anything on your computer because the password is disabled.

 command will let the user get to work. If the user uses the com-
mand to change his or her password, he or she will be prompted for the old password and then
the new one. It’s also possible for the root user to change passwords as well. Only the user root
can change passwords for other users. To do this, root can specify the name of the user he or
she wants to change the password for as the argument of the command. For example,
root can use the command to change the password for user linda, which is
always useful in case of forgotten user passwords.

The command can be used in three ways. First, you can use it for password main-
tenance (such as changing a password, as you have just seen). Second, it can also be used to
set an expiration date for the password. Third, the command can be used for account
maintenance. For example, an administrator can use it to lock a user’s account so that login is
temporarily disabled. In the next section, you’ll learn more about password management.

Performing Account Maintenance with
In an environment in which many users use the same computer, it’s crucial that you per-
form some basic account maintenance. These tasks include locking accounts when they are
unneeded for a longer time, unlocking an account, and reporting password status. Also, an
administrator can force a user to change his or her password after logging in for the first time.
To perform these tasks, the command has the following options:

: Enables an administrator to lock an account. For example, locks
the account for user jeroen.

which was locked in the previous example, would be unlocked with the command
.

CHAPTER 6 MANAGING USERS AND GROUPS140

: Reports the status of the password for a given account:

 This status line contains the following information:

: Forces the user to change his or her password upon next login.

Managing Password Expiration
Although not many people are aware of the password expiration feature, it allows you to
manage the maximum number of days that a user can use the same password. The
command has four options to manage expirations:

: This rarely used option is applied to set the minimum number of days that a
user must use his or her password. If this option is not used, the user can change his or
her password anytime.

: With this option, you can set the maximum number of days that the user can
use his or her password without changing it.

about to expire. The argument of this option specifies how many days the user is
warned before his or her password expires.

used for a given period. The argument of this option specifies the exact duration in
days of this period.

Caution By default, a password can be used for 99,999 days. So, if you do nothing, a user may use his
or her password for 273 years without changing it. If you don’t want that, make sure you use the option.

Behind the Commands: Configuration Files
In the previous section, you learned about the commands to manage users from a console
environment. All of these commands put user-related information into the user database,
which is stored in the configuration files , , and . The aim
of this section is to give you some insight into these configuration files.

CHAPTER 6 MANAGING USERS AND GROUPS 141

The first and probably most important of all user-related configuration files is ,
which is the primary database for user information: everything except the user password is

Listing 6-3. Contents of the User Database File

You can see that uses different fields to store user properties. These fields are
separated with a colon. The following list gives the order of fields from left to right; see the sec-

As an administrator, you can manually edit and the related . If
 instead. This tailored version of

the Vi editor is specifically designed for editing these critical files. Any error can have serious
consequences, such as no one being able to log in. Therefore, if you make manual changes to
any of these files, you should check their integrity. Besides , another way to do this is to
use the command, which you can run without any options to see whether there are any

 on a healthy user environ-
ment. As you can see, it notifies you about nonexisting directories, and if it finds a line that
contains a serious error, it proposes to remove that line.

CHAPTER 6 MANAGING USERS AND GROUPS142

Listing 6-4. To Check the Integrity of the User Database, Use the Command

Encrypted user passwords are stored in the file. The file also stores information
about

Listing 6-5. Example Contents of the File

Just as in , the lines in are divided into several fields as well. The
first two fields matter especially for the typical administrator. The first field stores the name
of the user, and the second field stores the encrypted password. Note that in the encrypted
password field, the and characters can be used as well. The denotes the login is currently
disabled, and the denotes a system account that can be used to start services but that is not
allowed for interactive shell login (so basically it has the same effect as the). Following is a
short list of all the fields in command to change these fields:

CHAPTER 6 MANAGING USERS AND GROUPS 143

time that a user must use the same password.)

amount of time that a user may use the same password.)

administrator intervention is required to unlock the password.)

 not used).

Group Membership
In any Linux environment, a user can be a member of two different kinds of groups. First,
there’s the primary group, which every user has. (If a user doesn’t have a primary group, he or
she won’t be able to log in.) The primary group is the group that is specified in the fourth field
of .

get their own private groups as their primary groups, and this private group has the same

members to that group.
A user can be a member of more than just the primary group and will automatically

primary group will automatically become group owner of any new file that a user creates. If
a user has his or her own private group, this won’t be a great challenge for your computer’s
security settings (as the user is the only member). If, however, a scheme is used where all
users are member of the same group, this means that everyone has access to all files this
user creates by default.

Creating Groups
As you’ve already learned, all users require group membership. You’ve read about the differ-
ences between the primary group and the other groups, so let’s have a look at how to create
these groups. We’ll discuss the commands that you can run from the shell and the related
configuration files.

Commands for Group Management
Basically, you manage the groups in your environment with three commands: ,

, and . So, as you can see, group management follows the same patterns as

CHAPTER 6 MANAGING USERS AND GROUPS144

user management. And, there’s some overlap between the two as well. For example, as
well as can be used to make a user a member of some group. The basic structure for
the command is simple: , where of course is the name
of the group you want to create. Also, the options are largely self-explanatory: it probably
doesn’t surprise you that the option
you want to use for this group. Because groups don’t have many properties, there are no other
important options.

Behind the Commands:
When a group is created with , the information entered needs to be stored some-
where, and that’s the
has just a few fields for each group definition.

Listing 6-6. Content of

The first field in is reserved for the name of the group. The second field stores
the password for the group (an signifies that no password is allowed for this group). You
can see that most groups have an in the password field, and this refers to the

because it is very uncommon to work with group passwords. The third field of pro-

These names are only required for users for whom this is not the primary group; primary

CHAPTER 6 MANAGING USERS AND GROUPS 145

group membership itself is managed from the
want to make sure that a user is added to an additional group, you have to do it here or use

.

The Use of Group Passwords
As mentioned, group passwords are used so rarely, you probably won’t ever need them.
But what can they be used for anyway? In all cases, a user has a primary group. When the
user creates a file, this group is assigned as the group owner for that file automatically. This
means that all members of the same group can normally access the file. If a user wants to
create files that have a group owner different from their primary group, the user can use the

 command.
For example, would set the primary group of a user to the group sales.

enter a password. This password is the password that needs to be assigned to that group. To
set a group password, you need the command. Because this feature is hardly ever
used, you’ll find that this feature is not available on all Linux distributions.

Managing the User’s Shell Environment
To make sure that a user account can do its work properly, the user needs a decent shell
environment as well. When creating a user, a shell environment is created as well, and this
environment will do in most situations. Sometimes, however, a user has specific needs, and
you need to create a specific environment for him or her.

Without going into detail about specific shell commands, this section provides an over-
view of how you create a shell environment. I’ll first explain about the files that can be used as
login scripts for the user, and next you’ll learn about files that are used to display messages for
users logging in to your system.

Note The tasks described next are typically ones that you would perform on a file server that is accessed
by users directly. However, if a user never logs in to the computer, there is no need to perform these tasks.

Creating Shell Login Scripts
When a user logs in to a system, the configuration file is used. This generic shell
script (which can be considered a login script) defines environment settings for users. Also,
commands can be included that need to be issued when the user first logs in to a computer.
The file is a generic file processed by all users logging in to the system. It also has
a user-specific version () that can be created in the home directory of the user. The
user-specific of the shell login script is executed last, so if there is a conflict in set-
tings between the two files, the settings that are user specific will always be used. In general,

CHAPTER 6 MANAGING USERS AND GROUPS146

it isn’t a good idea to give a login file to too many individual users; instead, work it all out in
. This makes configuring settings for your users as easy as possible.

Note If you are working on SUSE Linux, you shouldn’t modify the file. When updating the
computer, the update process may overwrite your current . Instead, make your modifications
to , which is included when logging in.

Now and the user-specific are not the only files that can be pro-
cessed when starting a shell. If a user starts a subshell from a current environment, such as by
executing a command or by using the command again, the administrator may choose
to define additional settings for that. The name of this configuration file is , and it
also has a user-specific version, . On some distributions the most important part of
the default shell settings is in and ; other distributions use and
to store these settings.

After making changes to these configuration files, you can source them to activate the new
settings. To do this, you can use the command or its equivalent, the (dot) command.
The advantage of this technique is that you don’t have to log out and in again to activate the
changes. The following two example lines show how to do this:

Showing Messages to Users Logging In
It may
works if a user logs in to a nongraphical desktop. On a graphical desktop, the user is not able
to see messages that are in these files. You can use two files for this: and .
The first, , is a text file whose content is displayed to users before they log in. To
process this file, the program, which is responsible for creating login terminals,
reads it and displays the content. You may, for example, use the file to display a message
instructing users how to log in to your system, or include a message if login has been disabled
on a temporary basis.

Another way to show messages to users logging in is by using . This file shows
messages to users after they complete the login procedure. Typically, this file can be used to
display messages related to day-to-day system maintenance.

Applying Quota to Allow a Maximum Amount
of Files
As a part of maintaining the user environment, you should know about user quota. This can be

procedure:

 1. Install the quota software.

CHAPTER 6 MANAGING USERS AND GROUPS 147

 2. Prepare the file system where you want to use quota.

 3. Initialize the quota system.

 4. Apply quota to users and groups.

 5. Start the quota service.

Quotas are always user or group related and apply to a complete volume or partition.
That is, if you have one disk in your computer, with one partition on it that holds your com-

not allow you to limit the maximal amount of data that a directory can contain. If you want
to accomplish that, put the directory on a separate partition or volume and limit the size of
the volume.

The quota system works with a hard limit, a soft limit, and a grace period:

create more data than the quota allows on a temporary basis. That means that the soft
limit is a limit that you shouldn’t surpass, but if you do, the quota system tolerates it on
a temporary basis.

-
porarily exceed the soft limit.

elapses, whichever is sooner), the user will not be permitted to create new files. So
users can never create more files than specified in the hard limit.

Working with soft and hard limits is confusing at first glance, but it has some advantages:
if a user has more data than the soft limit allows, he or she still can create new files and isn’t
stopped in his or her work immediately. The user will, however, get a warning to create some
space before the hard limit is reached.

Installing the Quota Software
Most distributions don’t install the quota software by default. It’s easy to find out whether the
quota software is installed on your system: if you try to use one of the quota management utili-
ties (such as) when the quota software has yet not been installed, you’ll see a message

you can read more about software installation.

Preparing the File System for Quota
Before you can use the quota software to limit the amount of disk space that a user can use
on a given file system, you must add an option to for all file systems that must
support quota.

CHAPTER 6 MANAGING USERS AND GROUPS148

Tip If it’s not possible to restart your server at this moment so that the file system can be mounted
with the newly added options, you can use instead. For
example, if you need to apply the quota options to your root file system and can’t reboot now, just use

. At the same time, change your as well to make sure
that the new settings will also be applied when your server reboots.

:

 1. Open with an editor.

 2. Select the column with options. Add the option if you want to apply quota
to users and for groups. Repeat this procedure for all file systems where you
want to use quota.

 3. Remount all partitions in which quota has been applied (or restart your computer).

Initializing Quota
Now that you’ve finished the preliminary steps, you need to initialize the quota system. This is
necessary because all file systems have to be searched for files that have already been created,
and for a reason that’s probably obvious: existing files count toward each user’s quota, and so
a report must be created in which the quota system can see which user owns which files. The
report generated by this quota initialization is saved in two files that should be in the root of
the mount point where you want to apply the quota: is created to register user
quotas, and is created for group quotas.

To initialize a file system for the use of quotas (which will also create the quota files
for you), you need to use the command. This command can be used with some
options, and I’ll list only the most important ones here:

: This option ensures that all file systems are searched when initializing the quota
system.

: This option ensures that user information is searched. This information will be writ-
ten to the file.

: This option ensures that group information is searched as well. This information is
written to the file.

currently mounted.

: This option ensures that the command will work in verbose mode to show exactly
what it is doing.

So, the best way to initialize the quota system is to use the command,
which (after a while) creates the files and to list all quota informa-
tion for current users. This can take a few minutes on a large file system, as the quota system
has to calculate current file usage on the file system where you want to create the quota. So if

CHAPTER 6 MANAGING USERS AND GROUPS 149

you want to apply quota to where is on the dedicated partition , which

 1. Include the following line in :

 2. Activate the new setting using the following command:

 3. Run the command to generate the quota files automatically.

 4. Make sure that the quota files are in and .

Setting Quota for Users and Groups
Now that the quota databases have been created, it’s time for the real work because you’re
ready to apply quota to all users and groups on your system. You’ll do this with the
command, which uses the editor to create a temporary file. This temporary file is where
you’ll enter the soft and hard limits you’ve decided upon for your users and groups. If, for

user florence, follow these steps:

 1. The command works only with blocks and not bytes, kilobytes, or anything
else. So, to set quota properly, you need to know the block size that’s currently used. To
find that, use the command. You’ll find the block size in the second
screen.

 2. Issue the command . This opens the user’s quota file in the quota

Listing 6-7. Example User Quota File

CHAPTER 6 MANAGING USERS AND GROUPS150

 3.
file systems on your computer. The first of these numbers is the number of blocks that
are currently being used by the user you’re creating the quota file for. The second and
third numbers are important as well: the second number is the soft limit for the num-
ber of blocks, and the third number is the hard limit on blocks in kilobytes. The fifth
and sixth numbers do the same for inodes, which roughly equal the number of files
you can create on your file system. The first and fourth numbers are used to record the
number of blocks and inodes that are currently being used for this user.

 4.

In this procedure, you learned that quota can be applied to the number of inodes and
blocks. If quotas are used on inodes, they specify the maximum number of files that can be
created. Most administrators think it doesn’t make sense to work this way, so they set the val-
ues for these to . A value of indicates that this item currently has no limitation.

After setting the quota, if the soft limit and hard limit are not set to the same value, you
need to use the command to set the grace time. This command opens another
temporary file in which you can specify the grace time you want to use, either in hours or in
days. The grace time is set per file system, so there’s no option to specify different grace time
settings for different users.

Once you have set quotas for one user, you may want to apply them to other users. Instead
of following the same procedure for all users on your system, you can use the com-
mand. For example, copies the quotas currently applied for user
florence to user alex.

Caution To set quotas, the user you are setting quotas for must be known to the quota system. This is
not done automatically. To make sure that new users are known to the quota system, you must initialize the
quota system again after creating the new users. I recommend setting up a job (see Chapter 9) to do
this automatically.

When all the quotas have been set the way you want, you can use the command
to monitor the current quota settings for your users. For example, the command
shows current quota settings for all users and groups on all volumes. You can see an example of

the quota service, and you’ll do this with the command.

Listing 6-8. Use to Show a List of Current Quota Usage

CHAPTER 6 MANAGING USERS AND GROUPS 151

Techniques Behind Authentication
When a user authenticates, a lot of settings have to be applied. For instance, the system needs
to know where to get the login information from and what restrictions apply to the user. To
do this, your system uses a pluggable authentication module, or PAM. PAM modules make
authentication modular; by using PAM modules, you can enable functionality for specific situ-
ations. Also, your system needs to know where it has to read information about users. For this
purpose, it uses the file. In this file, it reads—among other things—what
files to consult to get user information. On the following pages, you can read how to configure
both of these systems for viable user authentication.

Understanding Pluggable Authentication Modules
Normally, the local user database in the Linux files and is checked
at login to a Linux workstation. In a network environment, however, the login program must

-
cation information? That’s where PAM modules come in.

PAM modules are what make the login procedure on your workstation flexible. With a
PAM, you can redirect any application that has anything to do with authentication to any ser-
vice that handles authentication. A PAM is used, for example, if you want to authenticate with

CHAPTER 6 MANAGING USERS AND GROUPS152

from establishing a telnet session, and in many other situations. The cool thing about a PAM
is that it defines not only how to handle the login procedure, but also authentication for all
services that have something to do with authentication. The only requirement is a PAM that
supports your authentication method.

The main advantage of a PAM is its modularity. In a PAM infrastructure, anything can be
used for authentication, provided there’s a PAM module for it. So, if you want to implement
some kind of strong authentication, ask your supplier for a PAM module, and it will work. PAM
modules are stored in the directory , and the configuration files specifying how
these modules must be used (and by which procedures) are in
example of just such a configuration file, in which the login procedure learns that it first has

Listing 6-9. Sample PAM Configuration File

The authentication process features four different instances, and these are reflected in

the keyword
checked, followed by the validity of the account and other account-related parameters (such
as login time restrictions). This happens in the lines that start with . Then, all settings
relating to the password are verified (the lines that start with). Last, the settings relat-
ing to the establishment of a session with resources are defined, and this happens in the lines
that start with .

The procedure that will be followed upon completion of these four instances is defined by
calling the different PAM modules. This occurs in the last column of the example configuration

 can be used to verify that the user
root is not logging in to a Linux computer via an insecure terminal. Think of a remote connec-
tion where user root tries to log in with telnet, which by default uses unencrypted passwords.

The keywords , , , and are used to qualify the degree
of importance that the conditions in a certain module are met. Except for the first four lines

CHAPTER 6 MANAGING USERS AND GROUPS 153

services and work with the option), conditions defined in all modules must be met;
they are all . Without going into detail, this means that authentication will fail if one of
the conditions implied by the specified module is not met.

By default, many services on Linux work with PAM, and you can see this from a simple
command in the directory , which will show you that there is a PAM file for ,

, , and many other programs.
The true flexibility of PAM is in its modules, which you can find in . Each of

these modules has a specific function. The next section provides a short description of some of
the more interesting modules.

Discovering PAM Modules
The usefulness of a system like PAM is entirely determined by its modules. Some of these mod-
ules are still experimental, and others are pretty mature and can be used to configure a Linux
system. I’ll discuss some of the most important modules.

The module can be used to deny all access. It’s very useful if used as a default policy
to deny access to the system. If you ever think there is a security hole in one of the PAM-
enabled services, use this module to deny all access.

The module is used to create a default environment for users when logging in. In
this default environment, several system variables are set to determine what the environ-
ment a user is working in looks like. For example, there is a definition of a variable in
which some directories are included that must be in the search path of the user. To create
these variables, uses a configuration file in . In this file,
several variables are defined, each with its own value to define essential items like the
environment variable.

Some situations require an environment in which limits are set to the system resources that a
user can access. Think, for example, of an environment in which a user can use no more than
a given number of files at the same time. To configure these limitations, you would modify the

 file. To make sure that the limitations you set in
 are applied, use the module.

In , limits can be set for individual users as well as groups. The
limits can be applied to different items, some of which are listed here:

: Maximum file size

: Maximum number of open files

: Maximum number of processes

: Maximum number of times this user can log in simultaneously

CHAPTER 6 MANAGING USERS AND GROUPS154

The following code presents two examples of how these limitations can be applied. In the
first line, the user ftp is limited to start a maximum of one process simultaneously. Next, every-
one who is a member of the group student is allowed to log in four times simultaneously.

When applying these limitations, you should remind yourself of the difference between
hard and soft limits: a hard limit is absolute, and a user cannot exceed it. A soft limit can be
exceeded, but only within the settings that the administrator has applied for these soft limits.
If you want to set the hard limit to the same as the soft limit, use a character as shown in the
previous code example for the group student.

The useful module looks at the user’s mail directory and indicates whether there is
any new mail. It is typically applied when a user logs in to the system with the following line in
the relevant PAM configuration file:

If a user authenticates to a machine for the first time and doesn’t have a home directory yet,
 can be applied to create this home directory automatically. This module will

also make sure that the files in are copied to the new home directory. This module is
especially useful in a network environment in which users authenticate through an authenti-
cation server and do not always work on the same machine.

If an administrator needs to conduct system maintenance like installing new hardware, and
the computer must be brought down for a few moments, the module may prove
useful. This module makes sure that no users can log in when the file exists. So,
before performing any maintenance, make sure to create this file. The user root will always be
allowed to log in to the system, regardless of whether this file exists or not.

 is by far the most insecure PAM service available. It does only one thing, and that’s
to grant access—always—no matter who tries to log in. All security mechanisms will be com-
pletely bypassed in this case, and even users who don’t have a valid user account can use the
services that are configured to use . The only sensible use of is to test
the PAM awareness of a certain module or to disable account management completely and
create a system that is wide open to everyone.

CHAPTER 6 MANAGING USERS AND GROUPS 155

The module lets user root access services without entering a password. It’s used,
for example, by the utility to make sure the user root can to any account, without having
to enter a password for that user account.

In the old days when telnet connections were still very common, it was important for the user
root never to use a telnet session for login because telnet sends passwords in clear text over
the network. For this purpose, the mechanism was created: the file
can be created to provide a list of all TTYs from which root can log in. By default, these only

which means that you can limit the TTYs where root can log in by manipulating this file. List-

Listing 6-10. The File Is Used to Limit the Terminals Where Root Can
Authenticate

The useful module can be used to keep track of attempts to access the system. It
also allows the administrator to deny access if too many attempts fail. works with an
application that uses the same name, , which can be used to set the maximum num-
ber of failed logins that are allowed. All attempts are logged by default in the
file. If this module is called from a configuration file, be sure to at least use the options
and . The first determines the maximum number of login attempts a user can make,
and the second determines how long an account will be locked after that number of login
attempts has been reached. The value given to is expressed in seconds by default.

CHAPTER 6 MANAGING USERS AND GROUPS156

Based upon the configuration file , the module is used to
limit the times between which users can log in to the system. You can use this module to limit
access for certain users to specific times of the day. Also, access can be further limited to ser-
vices and specific TTYs that the user logs in from. The configuration file uses lines
with the following form:

The next line is an example of a configuration line from that denies access to all
users except root (the character in front of the times is used to deny access). This might be a
perfect solution to prevent users from breaking into a system that they shouldn’t be trying to
log in to anyway.

 is probably the most important of all modules: it is used to redirect authentication
requests through the and files. The module can be used with sev-
eral arguments, such as and . The argument allows a user with
an empty password to connect to a service, and the argument will always
try the password a user has already used (if a password is asked for again). Notice that many
PAM configuration files include a line to call the common configuration file . The

 file is called from here.

The module is particularly useful with log errors: its primary purpose is to enable log-
ging information about proposed authentication or password modification. For example, it
can be used in conjunction with the module to log information about users trying to
connect to your system.

The role of
Whereas PAM is used to determine what exactly is allowed and what is not during the authen-
tication process, is used to tell different Linux services where they should
look for specific services. These services include authentication services, but other services as

else, like the file. The nsswitch mechanism is used not only while authenticating,
but also at other moments. The only requirement is that the service in question has to be pro-
grammed to use nsswitch. You don’t have to worry about that though; this is the responsibility
of the person who wrote the program.

CHAPTER 6 MANAGING USERS AND GROUPS 157

Listing 6-11. Lines Related to Authentication

CHAPTER 6 MANAGING USERS AND GROUPS158

As you can see, for different subsystems, the file tells where to look for con-
figuration. The following specifications are available:

 and),

: Serves as an alternative way to tell the authentication processes only that they
should look in the and

,

: Specifies that host- and network-specific information must be looked up

Configuring Administrator Tasks with
If you
this has some security risks, the most important of which is that you might make a mistake and
thus by accident remove everything from your computer. Therefore, on some Linux distribu-

so you cannot log in as root after a default installation. To perform tasks for which root privi-
leges are required, use the mechanism instead.

Even if the account for user root is not disabled by default, it may still be a good idea to
use . This is especially true for environments where specific users or groups of users need
root permissions to accomplish a limited set of tasks. Imagine the developer who needs root
permissions to compile new programs, the network administrator who just needs to be able to
modify network parameters, or the help desk employee who needs to be able to reset a pass-
word for a user.

The idea of is that specific administrator tasks can be defined for specific users. If
one such user wants to execute one of the commands that he or she has been granted
access to, that user has to run it with . For example, where normally the user root would
enter to add the user caroline if the user would work with root per-
missions, a user with privileges would enter , thus telling

 that he or she needs to run a task. Next, the user enters his or her password, and

another user in this way.

Listing 6-12. Adding a User with

CHAPTER 6 MANAGING USERS AND GROUPS 159

As you can see, the user first uses the command, followed by the complete path to
the command he or she needs to use. That is because the user needs to run a command from
the directory, and this directory is not in the default user search path. Next, the user
sees a message that indicates he or she should be careful and following that, the user needs
to enter his or her password. This password is cached for the duration of the session, which
means that if a short while later the user wants to use again, he or she doesn’t have to
enter his or her password again.

To create a configuration, you need to use the editor . This editor is used to
open a temporary file with the name . In this file, you can define all tasks
that must be available on your computer. You should never open the file for
editing directly because that involves the risk of completely locking yourself out if you make
an error.

Tip On Ubuntu, uses the text editor by default. If you are a Linux veteran who is used to Vi,
you’ll probably won’t like this. Want to use Vi instead of ? Then use the command .
Like what you see? Put it as the last line in or your own , and from now on, every
time you use either or , Vi is started instead of . In this book, I’m using the Vi alterna-
tive because it automatically saves all files in the locations where they have to be saved.

 looks like.

Listing 6-13. Default Configuration in

CHAPTER 6 MANAGING USERS AND GROUPS160

It’s really just two lines of configuration. The first line is , which speci-
fies that user root has the right to run all commands from all machines. Next, you can see that
the same is true for all users who belong to the user group . If, for example, you would
like to specify that user linda is allowed to run the command , no matter what
host she is connecting from, add the following line:

This line consists of three parts. In the first part, the username is entered. Instead of the
name of a specific user, you can refer to groups as well, but if you do that, make sure to put a
sign before the group name. The second part— in this example—refers to the name of the

the name of a specific machine to minimize the risk of abuse by outsiders. Next, the command
that this user is allowed to use (, no options) is specified. This means that the
user is allowed to run all options that can be used with this command. If you want to allow the
user just one option, you need to include that option in the command line. If that’s the case,
all options that do not match the pattern you have specified in are specifically denied.

Now that the configuration is in place, the specified user can run his or her com-
mands. To do this, the complete command should be referred to because the directories that
typically house the root commands (,) are not in the search path for normal
users. So, user linda should use the following command to shut down the machine:

Summary
In this chapter, you have learned how to manage the user environment. First, you have read
about management of users, passwords, and groups. You’ve also learned how to manage the
default user environment in the shell files and . Next, you’ve learned
how to use the quota system to limit the amount of disk space available to a user. After that,
you’ve read how PAM and are used to determine where your Linux computer
gets user-related information from. At the end of this chapter, you saw how to use to
allow nonroot users to perform administration tasks with root permissions. The following
commands were covered in this chapter:

: Adds new users

: Modifies user properties

: Sets or changes user passwords

: Adds new groups

: Modifies group properties

CHAPTER 6 MANAGING USERS AND GROUPS 161

: Enables quotas on all file systems that have the quota options

: Opens editor to change user quota settings

: Generates a report of current quota usage

: Allows end users to execute tasks with root permissions

In the next chapter, you’ll learn how to create a secure environment, working with Linux
permissions.

C H A P T E R 7

Managing Permissions

On a Linux system, permissions are used to secure access. In this chapter, you’ll learn how to
modify ownership to accommodate permissions. To begin with, the basic read, write, and exe-
cute permissions are covered. Next, you’ll learn how to apply advanced Linux permissions for
some extra security. Finally, at the end of this chapter you’ll learn how to create Access Control
Lists to give permissions to more than one user or group and how to work with attributes to
add an extra layer of protection to files.

Setting Ownership
File and directory ownership is vital for working with permissions. In this section, you’ll learn
how you can determine ownership, as well as how to change user and group ownership for
files and directories.

Displaying Ownership
On Linux, every file and every directory has an owner. To determine whether you as a user
have permissions to a file or a directory, the shell checks ownership. First, it will see whether
you are the user owner, which is also referred to as the user of the file. If you are the user, you
will get the permissions that are set for the user, and the shell looks no further. If you are not
the user owner, the shell will check whether you are a member of the group owner, which is
also referred to as the group of the file. If you are a member of the group, you will get access to
the file with the permissions of the group, and the shell looks no further. If you are neither the
user nor the group owner, you’ll get the permissions of others.

Note Unless specifically mentioned otherwise, in this chapter all that is true for files is true for directories
as well. So if you read about a file, you can assume that it also goes for a directory.

To see current ownership assignments, you can use the command. This command
shows the user as well as the group owner. In Listing 7-1, you can see the ownership settings
for directories in the directory on a system that uses the public group approach where all
users are members of the same group, . In this output, you can see the name of the user
owner in the third column, followed by the name of the group in the fourth column.

163

CHAPTER 7 MANAGING PERMISSIONS164

Listing 7-1. Use to Show User and Group Ownership

With , you can display ownership for files in a given directory. It may on occasion be
useful to get a list of all files on the system that have a given user or group as owner. To do
this, you may use together with its argument. For instance, the following com-
mand would show all files that have user linda as their owner:

You can also use to search for files that have a specific group as their owner. For
instance, the following command would search for all files that are owned by the group :

Changing User Ownership
When working with permissions, it is important to know how to change them. For this pur-
pose, there is the command. The syntax of this command is not hard to understand:

For instance, the following command would change ownership for the file to
user julie:

The command has one important option: . You may guess what it does, as this
option is available for many other commands as well; it allows you to set ownership recur-
sively, which allows you to set ownership of the current directory and everything below. This
includes files as well as directories. The following command would change ownership for the
directory and everything beneath it to user julie:

Changing Group Ownership
You actually have two ways to change group ownership. You can do it with , but there’s
also a specific command with the name that does the job. If you want to use the
command, use a or in front of the group name. The following would change the group
owner of directory to the group :

CHAPTER 7 MANAGING PERMISSIONS 165

To see how to use the command to change group ownership, imagine the follow-
ing example in which sets group ownership for the directory to the group

:

As is the case for , you can use the option with to change group ownership
recursively. If you need to change user ownership as well as group ownership, offers you
that option. After specifying the options, specify the username followed by a dot or a colon,
and immediately after that the name of the group you want to set as the owner. As the last part
of the command, mention the name of the file or the directory you want to set ownership for.
For example, the following command would set user linda and group as the owner in
one command:

Default Ownership
You may have noticed that when a user creates a file, default ownership is applied. The user
who creates the file will automatically become user owner, and the primary group automati-
cally becomes group owner. Normally, this will be the group that is set in the file
as the user’s primary group. However, if the user is a member of more groups, he or she can
change the effective primary group.

To show the current effective primary group, a user can use the command. The
group that is effective as the primary group at that moment is listed first, followed by the
names of all other groups the user is a member of. Following is an example:

If the current user linda wants to change the effective primary group, she can use the
 command, followed by the name of the group she wants to set as the new effective pri-

mary group. In Listing 7-2, you can see how user linda uses this command to make her
effective primary group.

Listing 7-2. Using to Change the Effective Primary Group

After changing the effective primary group, all new files that the user creates will get this
group as their group owner. To return to the original primary group setting, use . This will
bring you back to the previous effective primary group setting.

CHAPTER 7 MANAGING PERMISSIONS166

Basic Permissions: Read, Write, and Execute
The Linux permissions system was invented in the 1970s. Since computing needs were limited
in those years, the basic permission system that was created then was rather limited as well.
This system consists of three permissions that you can apply to files and directories. In this
section, you’ll learn how the system works and how to modify these permissions.

Before doing this, let’s have a look at how to read the current permissions. The best
method to do so is by using , which will show you a list of all files and directories in the
current directory. The first character indicates the type of file. For instance, it gives if it is a
directory or if it is a symbolic link. Next are nine characters to specify the permissions that
are set to the file or directory. The first set of three are the user permissions, the next set of
three are the group permissions, and the last set of three refer to the permissions granted to
others. So in the example command listing that follows, user linda has , group owner
has , and others have no permissions at all:

Understanding Read, Write, and Execute Permissions
The three basic permissions allow you to read, write, and execute files. The effect of these
permissions will be different when applied to files or directories. If applied to a file, the read
permission gives you the right to open the file for reading. This means that you can read its
contents, but it also means that your computer can open the file to do something with it.
A program file that needs access to a library might require, for example, read access to that
library. From this, it follows that the read permission is the most basic permission you need to
work with files.

If applied to a directory, read permission allows you to list the contents of that directory.
You should be aware that this permission does not allow you to read files in the directory as
well. The Linux permission system does not know inheritance, and the only way to read a file
is by using the read permissions on that file. To open a file for reading, however, you do need
read permissions to the directory, because you wouldn’t see the file otherwise.

As you can probably guess, the write permission, if applied to a file, allows you to write in
the file. Stated otherwise, write allows you to modify the contents of existing files. However, it
does not allow you to create new files or delete existing files. To do that, you need write per-
mission on the directory where you want to create the file. On directories, this permission also
allows you to create and remove new subdirectories.

The execute permission is what you need to execute a file. It will never be set by default,
which makes Linux almost immune to viruses. Only someone with administrative rights to a
directory will be capable of applying the execute permission. Typically, this would be the user
root, but also a user who is owner of a directory has the right to change permissions in that
directory.

CHAPTER 7 MANAGING PERMISSIONS 167

Note Although there are almost no viruses for Linux, it doesn’t mean that you are immune from secu-
rity problems when using Linux. The Linux alternative for a virus is called a root kit. You can compare
a root kit to a trojan in the Windows world: a root kit is a back door that allows others to take control of
your computer. The best security measure to protect against root kits is not to work with root permissions
unless it is really necessary.

Whereas the execute permission on files allows the user to run a program file, if applied to
a directory, the user is allowed to use the command to go to that directory. This means that
execute is an important permission for directories, and you will see that it is normally applied
as the default permission to directories. Without it, there is no way to change to that directory!
So if you want to have read permission on a directory, you must have execute permission as
well. It makes no sense just to give a user read permission on a directory. Table 7-1 summa-
rizes the use of the basic permissions.

Table 7-1. Use of Read, Write, and Execute Permissions

Permission Applied to Files Applied to Directories
Read Open a file List contents of a directory

Write Change contents of a file Create and delete files

Execute Run a program file Change to the directory

Applying Read, Write, and Execute Permissions
To apply permissions, you use the command. When using , you can set permis-
sions for user, group, and others. You can use this command in two modes: relative mode and
absolute mode. In absolute mode, three digits are used to set the basic permissions. Table 7-2
gives an overview of the permissions and their numerical representation.

Table 7-2. Numerical Representation of Permissions

Permission Numerical Representation
Read 4

Write 2

Execute 1

When setting permissions, you should calculate the value that you need. For example, if
you want to set read, write, and execute permissions for the user, read and execute permis-
sions for the group, and read and execute permissions for others on the file , you
would use the following command:

CHAPTER 7 MANAGING PERMISSIONS168

When using in this way, all current permissions are replaced by the permissions you
set. If you want to modify permissions relative to the current permissions, you can use
in relative mode. When using in relative mode, you work with three indicators to specify
what you want to do. First, you’ll specify for whom you want to change permissions. To do
this, you can choose between user (), group (), and others (). Next, you use an operator to
add or subtract permissions from the current mode, or set them in an absolute way. At the
end, you use , , and to specify what permissions you want to set.

Note You will set read and write permissions quite often. This is not the case for the execute permission.
Though you will set it on directories all the time, you will rarely apply execute permission to files, unless they
are files that should be run as program files.

When changing permissions in relative mode, you may omit the “to whom” part to add or
remove a permission for all entities. For instance, the following would add the execute permis-
sion for all users:

When working in relative mode, you may use more complex commands as well. For
instance, the following would add the write permission to the group and remove read for
others:

Advanced Permissions
Apart from the basic permissions that you’ve just read about, Linux has a set of advanced
permissions as well. These are not permissions that you would set by default, but on some
occasions they provide a useful addition. In this section, you’ll learn what they are and how
to set them.

Understanding Advanced Permissions
There are three advanced permissions. The first is the Set User ID (SUID) permission. On some
specific occasions, you may want to apply this permission to executable files. By default, a user
who runs an executable file runs this file with his or her own permissions (provided that user
has all permissions needed to run this file). For normal users, this normally means the use
of the program is restricted. In some cases, however, the user needs special permissions just
for the execution of a certain task. Consider, for example, the situation where a user needs to
change his or her password. To do this, the user needs to write his or her new password to the

 file. This file, however, is not writable for users with nonroot permissions:

CHAPTER 7 MANAGING PERMISSIONS 169

The SUID permission offers a solution for this problem. On the utility,
this permission is applied by default. So when changing his or her password, the user tempo-
rarily has root permissions, which allow the user to write to the file. You can see
the SUID permission with as an at the position where normally you would expect to
see the for the user permissions:

The SUID permission may look useful—and it is—but at the same time, it is potentially
dangerous. If applied wrongly, you may give away root permissions by accident. I therefore
recommend you use it with greatest care only. Let me explain why.

Imagine a shell script with the name that has the following contents:

Now imagine that user linda finds this shell script and tries to execute it. What will hap-
pen? She will remove her own files only. That is because for all the other files, she doesn’t have
enough permissions to remove them. Now imagine that this shell script has root as its owner
and the SUID permission set. So on this script would give the following:

What if linda tries to run this script in this scenario? Can you imagine what would happen?
It would actually remove all files on the hard drive of this computer. This is because user root
is owner of the script, and the SUID permission is set. So linda would run it as root, and given
this, she would have more than enough permissions to perform her destructive command.

The second special permission is Set Group ID (SGID). This permission has two effects.
If applied on an executable file, it gives the user who executes the file the permissions of the
group owner of that file. So SGID can accomplish more or less the same thing that SUID does.
For this purpose, however, SGID is hardly used.

When applied to a directory, SGID may be useful, as you can use it to set default group
ownership on files and subdirectories created in that directory. By default, when a user cre-
ates a file, his or her effective primary group is set as the owner for that file. For example, if you
have a shared group environment, this is not very useful.

Imagine a situation where users linda and lori work for the accounting department and
are both members of the group accounting. For security reasons, however, the administrator
has decided to work with private primary groups. That means that linda is the only member of
her primary group, linda, and lori is the only member of her primary group, . Both users,
however, are members of the group as well, but as a secondary group setting.

The default situation would be that when either of these users creates a file, the primary
group becomes owner. However, if you create a shared group directory (say,)
and make sure that the SGID permission is applied to that directory and that the group
accounting is set as the group owner for the directory, all files created in this directory and all
of its subdirectories would also get the group as the default group owner.

CHAPTER 7 MANAGING PERMISSIONS170

The SGID permission shows in the output of with an at the position where you
normally find the group execute permission:

The third of the special permissions is sticky bit. This permission is useful to protect files
against accidental deletion in an environment where multiple users can create files in the
same directory. It is for that reason applied as a default permission to the directory.

Without the sticky bit permission, if a user can create files in a directory, he or she can also
delete files from that directory. In a shared group environment, this may be annoying. Imagine
users linda and lori both have write permissions to the directory because of
their membership in the group . This means that linda is capable of deleting files
that lori has created and vice versa. This may not be an ideal situation.

When applying the sticky bit permission, a user can delete files only if either of the follow-
ing is true:

When using , you can see sticky bit as a at the position where you normally see the
execute permission for others:

Applying Advanced Permissions
To apply SUID, SGID, and sticky bit, you can use as well. SUID has numerical value 4,
SGID has numerical value 2, and sticky bit has numerical value 1. If you want to apply these
permissions, you need to add a four-digit argument to , of which the first digit refers to
the special permissions. The following line, for example, would add the SGID permission to a
directory, and set for the user and for the group and others:

It is rather impractical if you have to look up the current permissions that are set before
working with in absolute mode (you would risk overwriting permissions if you didn’t).
Therefore, I recommend working in relative mode if you need to apply any of the special per-
missions. For SUID, use ; for SGID, use ; and for sticky bit, use
followed by the name of the file or the directory that you want to set the permissions on.
Table 7-3 presents all you need to know about these special permissions.

CHAPTER 7 MANAGING PERMISSIONS 171

Table 7-3. Working with SUID, SGID, and Sticky Bit

 Numerical Relative
Permission Value Value On Files On Directories
SUID 4 u+s User executes file with No meaning.
 permissions of file owner.

SGID 2 g+s User executes file with File created in directory
 permissions of group gets the same group
 owner. owner.

Sticky bit 1 +t No meaning. Users are prevented from
deleting files from other
users.

When applying these permissions with in absolute mode, you’ll use four digits (nor-
mally you would use three only) to set the permissions. Of these four digits, the first relates to
the special permissions. So in the command , the SUID permission is set
to , and in , SGID as well as sticky bit are applied.

Working with Access Control Lists
Even with the additional features that were added with SUID, SGID, and sticky bit, serious
functionality was still missing in the Linux permission scheme. For that reason, Access Control
Lists (ACLs) were added. In this section, you’ll learn what ACLs are and how to apply them.

Understanding ACLs
The Linux permissions system without ACLs has two serious shortcomings:

These shortcomings are addressed by the ACL subsystem. By adding this feature to your
file system, you can make it possible to grant permissions to additional entities on your file
systems and work with inheritance as well.

Although the ACL subsystem adds great functionality to your server, there is one draw-
back: not all utilities support it. This means that you may lose ACL settings when copying
or moving files, and also that your backup software may not be capable of backing up ACL
settings. This doesn’t have to be a problem though. ACLs are often applied to directories to
make sure that new files that are created in a directory will get the permissions you want
them to have automatically. You will rarely set these on individual files. This means you
won’t have lots of ACLs, just a few applied on smart places in the file system. Hence, it will
be relatively easy to restore the original ACLs you were working with, even if your backup
software doesn’t support them.

CHAPTER 7 MANAGING PERMISSIONS172

Preparing Your File System for ACLs
Before starting to work with ACLs, you must prepare your file system for ACL support. As the
file system metadata needs to be extended, there is no default support for ACLs in the file sys-
tem itself. To fix this, you need to make sure your file system is mounted with the option
(which most distributions will do automatically for you). For a mounted file system, you can
do that by remounting the file system with the option. The following line shows how to do
that for the root file system:

The more elegant solution is to put the ACL option in so that it is activated at all
times when your system reboots. Listing 7-3 shows how this is done by default on a SUSE
system.

Listing 7-3. To Work with ACLs, You Need to Mount File Systems with ACL Support

Once your file system is remounted with ACL support, you can use the command
to set ACLs.

Changing and Viewing ACL Settings with and
To work with ACLs, you need the command. This command has many options, some
of them rather confusing. In this section, I’ll just discuss the useful options, which are not too
hard to understand. The basic syntax of is as follows:

In this example, the following components are used:

Options: Use this part for specific options to moderate the way does its work. A
few options can be useful:

: Use this option to set a default ACL. This is an ACL setting that is inherited by
subdirectories and files as well.

: Use this option to remove a default ACL.

: Use this option to apply the ACL setting recursively.

Note The difference between a default ACL (option) and the option to set the ACL recursively may not
be clear. A default ACL is for new files and does not influence existing files. All new files will get the permis-
sion as you set them in the default ACL. Basically, by using the option , you enable permission inheritance.
The option works on existing files only and does nothing for new files.

CHAPTER 7 MANAGING PERMISSIONS 173

Operation: The operation tells to either add or remove an ACL setting. The
following operations are available:

: Use this operation to set an ACL. It will replace any existing ACL, so use it
with care.

: If you need to modify an ACL, use . It will not replace an existing ACL, instead
adding to the current settings.

: Use this option to remove an existing ACL.

Entity and entity name: These two define for whom you want to set the ACL. There are
two types of entity: for user and for group. After specifying the type of entity, you
need to specify the name of the entity.

Permissions: These are the permissions that you want to set using ACLs. Use the Linux
permissions as discussed previously.

: This is the name of the file or the directory to which you want to apply the ACLs.

Based on this information, it’s time to have a look at some examples, starting with some
easy ones. Assume you want to add the group as someone who has rights (this is called
a trustee) to the directory . The command to do this would be as follows:

However, it does not make sense to start working on ACLs without having a look at the
current permissions first. Therefore, in Listing 7-4, you can see the permission settings for the
directory before and after I’ve changed the ACL.

Listing 7-4. Permission Settings Before and After Changing the ACL

As you can see, there was already a group owner, , and this group owner was not
touched by changing the ACLs with . The only thing indicating that something is going
on is the sign that is shown directly after the permission listing in . This indicates that
an ACL is effective.

To see the ACLs themselves, you need the command. In Listing 7-5, you can see
what this command shows for the directory on which I’ve just applied an ACL.

CHAPTER 7 MANAGING PERMISSIONS174

Listing 7-5. Showing ACL Settings with

As you can see in the output of , this command shows you the names of user and
group owners and the permissions that are set for them. Following that, it shows there is also
a group account that has permissions. Just ignore the information that is shown in the
line; ACL masks are a complex and confusing feature that you only need to compensate for in
a bad directory structure design, and therefore I will ignore it in this book. On the last line, the
permissions of others are displayed as well.

In the second example, I’ll show you how to modify an existing ACL so that it becomes
a default ACL. Basically, you use the same command that you’ve seen before, but with the
option added to it. Also, the command adds a second group in the ACL setting by using
a comma to separate the names of the two groups:

At this moment, you have a default ACL. This means that all files and all directories cre-
ated under will get the same ACL setting. You can show this with the
command, as demonstrated in Listing 7-6.

Listing 7-6. Using to Show Default ACL Settings

CHAPTER 7 MANAGING PERMISSIONS 175

As you can see, shown are not only the user and group owner names, but also their per-
missions and the default settings that will be applied to new files. You should notice that at
this point, however, an interesting mix exists between the normal Linux permission scheme
and the ACL settings. This shows when user linda, who belongs to the group , creates a
subdirectory in the directory . You can see the result on that direc-
tory in Listing 7-7: for the “normal” user and group owners, the normal rules of ownership are
applied, and the ACL settings are added to that. This means that when you are working with
default ACLs, you should always carefully plan what you want to do before applying them!

Listing 7-7. ACLs and Normal Ownership Rules Are Both Effective

You have now learned how to work with an ACL. This is a useful feature if you need to
enhance the capabilities of Linux file system permissions. I personally rely on it a lot when
configuring a Linux file server, which typically is an environment where one group has
requirements different from another group. I’ve also used it on a web server environment to
grant access to a developer to all the files in the HTML document root without changing the
default permissions in that environment, which could have negative impact on the working
of the web server. Use this feature sparsely though, because a Linux system that has too many
ACLs applied is a Linux system that is more difficult to understand.

Setting Default Permissions
In the discussion about ACLs, you have learned how to work with default ACLs. If you don’t
use ACLs, there is a shell setting that determines the default permissions that you will get:

. In this section, you’ll learn how to modify default permissions using this setting.
You have probably noticed that when creating a new file, some default permissions are

set. These permissions are determined by the setting, a shell setting that is applied
to all users when logging in to the system. In the setting, a numeric value is used that

CHAPTER 7 MANAGING PERMISSIONS176

is subtracted from the maximum permissions that can be set automatically on a file; the
maximum setting for files is and for directories is . In other words, to derive numeric
permissions from the , subtract the from for files and from for directories.

There are, however, some exceptions to this rule; you can find a complete overview
of settings in Table 7-4. Of the digits used in the , like with the numeric argu-
ments for the command, the first digit refers to end-user permissions, the second digit
refers to the group permissions, and the last refers to default permissions set for others. The
default setting of gives for all new files and for all new directories that are
created on your server.

Table 7-4. Values and Their Result

Value Applied to Files Applied to Directories
 Read and write Everything

 Read and write Read and write

 Read Read and execute

 Read Read

 Write Write and execute

 Write Write

 Nothing Execute

 Nothing Nothing

There are two ways to change the setting: for all users and for individual users. If
you want to set the for all users, you must make sure the setting is entered in the
configuration file . If the is changed in this file, it applies to all users after
logging in to your server. You can set a default by just adding a line like the following to

:

An alternative to setting the umask in , where it is applied to all users logging
in to the system, is to change the settings in a file with the name , which is cre-
ated in the home directory of an individual user. Settings applied in this file are applied for the
individual user only; therefore this is a nice method if you need more granularity. I personally
like this feature to change the default for user root to , whereas normal users work
with the default umask on many distributions.

Working with Attributes
Permissions always relate to a trustee, which is a user or a group who has permissions to a file
or directory. Attributes offer a different way to specify what can be done to a file. Attributes
do their work, regardless of the user who accesses the file. Of course, there is a difference: the
owner of a file can set file attributes, whereas other users (except for root who is almighty)
cannot do that.

CHAPTER 7 MANAGING PERMISSIONS 177

For file attributes as well, an option must be provided in before they can
be used. This is the option that can be seen in the example in Listing 7-3
earlier in this chapter. Some attributes are available, but not yet implemented. Don’t use
them, because they bring you no benefit. Following are the most useful attributes that can
be applied:

: This attribute ensures that the access time of the file is not modified. Normally, every
time a file is opened, the file access time must be written to the file’s metadata. This
affects performance in a negative way; therefore, on files that are accessed on a regular
basis, the attribute can be used to disable this feature.

: This attribute allows a file to be added to, but not to be removed. For example, you
could use it on log files as an additional layer of security that ensures that entries can
be added, but the log file cannot be removed by accident.

: If you are using a file system where volume-level compression is supported, this file
attribute makes sure the file is compressed the first time the compression engine gets
active.

: This attribute makes sure that changes to files are written to disk immediately, and
not to cache first. This is a useful attribute on important database files to make sure
that they don’t get lost between file cache and hard disk.

: This attribute makes sure the file is not backed up in backups where the utility is
used.

: This attribute enables indexing for the directory where it is enabled (see Chapter 5
for more details on indexing). This allows faster file access for primitive file systems like
Ext3 that don’t use a b-tree database for fast access to files.

: This attribute ensures that on an Ext3 file system the file is first written to the jour-
nal and only after that to the data blocks on the hard disk. Use this to make sure that
the journal offers maximum protection, and the chance of losing data is reduced to a
minimum.

: This overwrites the blocks where the file was stored with zeros after the file has
been deleted. This makes sure that recovery of the file is not possible after it has been
deleted.

: This attribute saves undelete information. This allows a utility to be developed that
works with that information to salvage deleted files.

Note Although there are quite a few attributes that can be used, you should be aware that most attri-
butes are rather experimental and only of any use if an application is employed that can work with the given
attribute. For example, it doesn’t make sense to apply the attribute as long as no application has been
developed that can use this attribute to recover deleted files.

CHAPTER 7 MANAGING PERMISSIONS178

If you want to apply attributes, you can use the command. For example, use
 to apply the attribute to . Need to remove the attribute again?

Then use , and it will be removed. To get an overview of all attributes that
are currently applied, use the command.

Summary
In this chapter, you have learned how to work with permissions. You’ve first discovered the
role of ownership when determining your effective permissions. Next, you have learned about
the three basic permissions: read, write, and execute. Following that, you have seen how to
work with advanced features such as the SUID, SGID, and sticky bit permissions as well as
ACLs. You’ve also read how to apply file attributes to add an additional layer of security to your
file system. In this chapter, the following commands have been discussed:

: Change ownership of files and directories.

: Change group ownership of files and directories.

: List group ownership for users.

: Temporarily change the effective primary group for a user.

: Change permission mode on files and directories.

: Set ACLs.

: Read current ACLs.

: Change file attributes.

: List file attributes.

In the next chapter, you will learn about process management.

C H A P T E R 8

Managing Software

By default, your Linux distribution will come with lots of software packages. Even if lots of
packages are available by default, you will encounter soon enough a situation where you need
to install new packages. In this chapter, you’ll learn how to do this. First, I’ll tell you about the
different ways that software management is handled on Linux. Next, you’ll read about how to
work with RPM-based packages. Then you’ll learn how to install packages that are delivered
in the format. You’ll also learn about software and package management tools such as
yum, apt-get, and zypper; tracking and finding software packages; and managing updates and
patches.

Note Quite often, software packages are delivered as archives. Refer to Chapter 3 for additional
information about .

Understanding Software Management
Linux software packages are very modular. This means that everything you need is rarely in
one software package. Most software packages have dependencies. These dependencies are
packages that also need to be installed for your software package to function well.

Managing these software package dependencies is among the greatest challenges when
working with software packages in Linux. If you choose a solution that doesn’t know how to
handle dependencies, you may see error messages indicating that in order to install package A,
you also need to install packages B, C, and D. This is also referred to as dependency hell, and in
the past it has been a very good reason for people not to use Linux.

Nowadays, all Linux distributions have some solution to manage these dependencies.
These solutions are based on software repositories. A repository contains a list of all installable
packages. This means that your distribution’s software management solution knows which
software packages are available and installs dependencies automatically. By default, your
installation medium will be a repository; to add new software, you will find yourself adding
new repositories regularly.

179

CHAPTER 8 MANAGING SOFTWARE180

Managing RPM Packages
RPM is the package management standard that was invented by Red Hat, and nowadays it
is used by important distributions like Red Hat itself, SUSE, and Mandriva. RPM is based on
packages that have the extension . These packages typically include name, version, and
architecture of the software you are about to install. In this section, I’ll show you how to man-
age the package , which contains a useful utility that allows you to
monitor your network card. This package name tells you not only the name and version, but
also the processor architecture that the software is written for. Make sure that you select the
package that is written for your architecture. You will see packages that are written for
as well. These are installable on all hardware platforms.

Working with RPM
The most basic way to handle RPM packages is by using the command. Although this com-
mand provides an easy method for package management, it doesn’t care about dependencies.
This means that you may need to install all dependencies themselves. However, if you just
want to install a simple package, this command does provide a decent solution. First, you may
use it to install packages. To do this, use the option as in the following example command:

If all goes well, this command just installs the package without showing any output. If
some condition exists that prevents your package from installing smoothly, however, this
command will complain and stop installing immediately, which you can see in the following
example:

A common reason why package installation may fail is that a package with the same name
is already installed, which was the case in the second attempt to install the package iftop. It’s
easy to avoid that problem: instead of using , better use .

If a package with the name of the package you are trying to install is already installed, it
will be upgraded by using the option . If it’s not installed yet, the command will install
it. Therefore, I’d recommend always using this command and not . The other options
are used to show more output to the user. The option adds verbosity, meaning it will show
what the command is actually doing. Finally, the option shows hashes, meaning you’ll
be able to see progress while installing the software. Listing 8-1 shows two examples where

 is used.

Listing 8-1. Using to Install Packages

CHAPTER 8 MANAGING SOFTWARE 181

Apart from installing packages, you can also use to remove packages. To do this, issue
 with the option , as demonstrated in the following command:

Although the command offers an easy solution for installing individual packages, you
may not want to use it as your preferred package management solution. There are two pack-
age management interfaces that make package management really easier, yum and zypper,
and you can read more about them in the next two sections.

Working with yum
The yum system makes working with RPM packages easy. This package management interface
works with repositories that contain lists of installable software. As an administrator, your first
task is to make sure that you have all the software repositories you need in your configuration.
Based on this repository list, the command is used to perform all kinds of software package
management tasks.

Managing yum Repositories
Managing yum all starts with managing software repositories. For this purpose, your dis-
tribution provides the configuration file; most distributions also include the
directory , which can contain configuration files for individual software
repositories. In Listing 8-2, you can see what the default repository configuration for Fedora
software packages looks like.

Listing 8-2. Default Software Repository Configuration for Fedora

CHAPTER 8 MANAGING SOFTWARE182

As you can see, each of the package sources contains a few common items:

Name of the repository: This is just the identification for your repository. Make sure that
it is unique.

Failover method: It is possible to configure repositories in a failover configuration.
This means you refer to two or more different repositories that contain the same soft-
ware. This is useful for creating some redundancy for repositories: if one repository
fails, the other one will take over. If you choose to do that, this line indicates whether
this is the repository with priority.

Base URL: This is the base URL that brings you to the repository. As you can see, the
URL mentioned here is commented out, which ensures that only the mirrors as speci-
fied in the mirror list are used.

Mirror list: This line refers to a location where a list of mirror servers is found.

Enabled status: This indicates whether this repository is on or off. You can see that on
installation of the Fedora software, three repositories are listed in this file, but of these
three, only one has the value of and is on.

GPG configuration: To check the integrity of software packages, GPG is used. The line
 switches this feature on. In the line , there is an indication of what

GPG key to use.

Note GPG offers PGP (Pretty Good Privacy)–based integrity checking of software packages. GPG is just
the GNU version of PGP, which is available for free usage.

Note that on some Linux distributions, only online package repositories are used. This
ensures that you’ll always get the latest version of the package you need to install, and it also
makes sure that you can update your software smoothly. If you have already installed soft-
ware from the online repositories, it is a bad idea to install packages from the installation
media later, as you may end up with the wrong version of the package and some installation

CHAPTER 8 MANAGING SOFTWARE 183

problems. If you are sure that you will never do online package management on a particular
system, however, it is a good idea to configure yum to work with the local installation media
only. The following procedure describes how you can do this for a Fedora system:

 1. Before working with yum, make sure that the installation media is mounted at a fixed
mount point. In this example, I’ll assume that you have configured your system to
mount the installation media on . You need to not only configure for this
purpose, but also make sure that it is actually mounted at this moment.

 2. Open the file and make sure that you switch off PGP checking. The fol-
lowing line accomplishes this:

 3. Open the repository files one by one and disable all online repositories. Just check for a
repository that has and change that to .

 4. In any of the repository files (you can create a new file in or include
this information in one of the existing files), include the following lines:

At this point, you have configured your system to look on the installation DVD only. Don’t
forget to switch the online resources back on again if you ever intend to connect this system
to the Internet to install software packages. You can do so by changing the value for the
parameter that you used in step 3 of the procedure back to .

Managing Software Packages with yum
Based on the software repositories you have installed, you can use the command. This
command is written to be intuitive. You want to install a package? Use . Need to
update? will help. Following are some examples of the most important arguments
that you can use with :

: Use this to install a package. For instance, would search
the software repositories for the nmap package and, if found, install it (see Listing 8-3).
This installation is interactive; will first show you what it found and next install that
for you.

Listing 8-3. Installing Software Packages with

CHAPTER 8 MANAGING SOFTWARE184

: Use if you want to update your entire system. You can also use the
 command on a specific package; for instance, would search

the software repositories to see whether a newer version of nmap is available, and if
this is the case, install it.

: Use this to remove a package from your system. For instance,
would delete the nmap package, including all dependencies that become obsolete after
removing this package.

: This option contacts the repositories to see what packages are available and show
you which are and which are not installed on your system. Just use to see a
complete list of all packages. This command used in combination with allows you
to search for specific packages.

CHAPTER 8 MANAGING SOFTWARE 185

 The command has some specific options itself. By default, it shows all pack-
ages, installed or not, that are available. In case you just want to see a list of packages
that are installed, you can use .

: If you want more information about any of the installed packages on your system,
use , followed by the name of the package. For instance, would
give you all available details about the nmap package (see Listing 8-4). Based on this
information, you can make the decision whether or not you need this package.

Listing 8-4. Use to Get More Information About a Package

: The command tells you what RPM package provides a given
file. Listing 8-5 shows you the result of this command when used to find out where the
file comes from.

CHAPTER 8 MANAGING SOFTWARE186

Listing 8-5. Use to Find Out What RPM Package a Given File Comes From

: The command allows you to search for a specific package, based on
a search string that is composed as a regular expression. For instance,
would give you the names of all packages whose name contains the text .

Working with zypper
On SUSE Linux, an alternative to the RPM package manager is used, the zypper package
manager. The intention of this package manager was to provide the same functionality that
yum does, but in a faster way. The zypper package also works with package repositories and
command-line utilities. Novell has developed this utility to work together with its ZENworks
Linux Management Solution, with the command-line utility that it uses on its enterprise
products, but also to work with common RPM repositories such as yum. In some cases, you
will see zypper referring to the , ZEN, and YaST utilities (see Listing 8-6 in the next section
for an example of this); you can safely ignore those messages because zypper also works well
without them.

Managing zypper Software Repositories
In zypper, a repository is called an installation source. Installation sources are kept in the zyp-
per database, which is in . To manage zypper installation sources, you have to
use the command. The most important options that are related to package manage-
ment are listed here:

: The command will add an installation source.
This command is followed by a Universal Resource Identifier (URI), which can be a
web address, but which can also refer to a local directory on your system. For instance,
the command would add the contents of the
directory to the installation sources, as shown in Listing 8-6.

Listing 8-6. Adding an Installation Source with zypper

CHAPTER 8 MANAGING SOFTWARE 187

 As you can see, the command uses URL format. In Listing
8-6, the URL that was used refers to something on the local file system. However,
you can also use zypper to refer to something that is on the Internet. For instance,

 would add an installation
source that is on a web server. zypper uses the same URL syntax that you use when
working with a browser and is therefore intuitive to work with.

: As its name suggests, this command allows you to display a list of all
available zypper installation sources (zypper uses services as a synonym for installation
sources).

: Use this to remove installation sources from the list of available
services.

Managing RPM Packages with zypper
Once the service lists are all configured, you can use zypper at the command line to manage
software packages. In its use, zypper looks a lot like the yum utility; basically, you can just
replace the command by the command in most cases. However, there are also
some useful additions to the command that do not have yum equivalents. Following is
an overview of the most important zypper command-line options:

: Use to install a package. For instance, to install the package
nmap, you would use the command .

: Use to remove a package from your system. For instance, to
remove the package nmap, type .

: Use this to update either your complete system or just one package. To update
the entire system, use ; to update one package only, add the name of the
package you want to update to this command. For instance, if you want to update the
package nmap, use .

: Use this to search for a particular package. By default, zypper will search in
the list of installed packages, as well as the list of packages that haven’t been installed
yet. If you want to modify this behavior, add the option to search in installed
packages only or to search in uninstalled packages only. The argument used with

CHAPTER 8 MANAGING SOFTWARE188

 is interpreted as a regular expression. For instance, the command
 would just look for all packages that have the string in

their name and show a list of these. Listing 8-7 shows what the result of this command
looks like.

Listing 8-7. Use to Get a List of All Packages That Contain a Given String in
Their Name

: This useful command will show a list of all available patches. Use this com-
mand if you not only want to update, but also would like to know what exactly an
update will do to your system.

In some cases, the command will give you a lot of information. To filter out only
the parts you need, use the utility.

Managing DEB Packages
RPM is not the only way to package software for Linux. Another very popular package format
is the format. This format was originally developed on Debian Linux but is now also the
default package format for other distributions, of which Ubuntu is the most important. In
this section, you’ll learn how to manage packages in this format. I’ve based this section on
Ubuntu; you may therefore find some differences with the way other distributions handle
packages.

Managing Software Repositories
On an Ubuntu system, a list of all these installation sources is kept in the file

. Although the most important software repositories are added to this file

CHAPTER 8 MANAGING SOFTWARE 189

automatically, you may occasionally want to add other software repositories to this list. To
understand how this works, it is useful to distinguish between the different package categories
that Ubuntu uses. This will tell you more about the current status of a package, for example,
if the package is considered safe or if it has licensing that doesn’t comply to common open
source standards.

In all repositories, you’ll always find the following five package categories:

Main: The main category portion of the software repository contains software that is
officially supported by Canonical, the company behind Ubuntu. The software that is
normally installed to your server is in this category. By working with only this software,
you can make sure that your system remains as stable as possible and—very important
for an enterprise environment—that you can get support for it at all times.

Restricted: The restricted category is basically for supported software that uses a license
that is not freely available, such as drivers for specific hardware components that use a
specific license agreement, or software that you have to purchase. You’ll typically find
restricted software in a specific subdirectory on the installation media.

Universe: The universe category contains free software that is not officially supported.
You can use it, and it is likely to work without problems, but you won’t be able to get
support from Canonical for software components in this category.

Multiverse: The multiverse component contains unsupported software that falls under
license restrictions that are not considered free.

Backports: In this category, you’ll find bleeding-edge software. If you want to work with
the latest software available, you should definitely get it here. Never use it if your goal is
to install a stable server.

When installing software with the utility, it will look for installation sources in the
configuration file . Listing 8-8 shows a part of its contents.

Listing 8-8. Definition of Installation Sources in

As you can see, the same format is used in all lines of the file. The first field
in these lines specifies the package format to be used. Two different package formats are used
by default: for binary packages (basically precompiled program files) and for
packages in source file format. Next, the URI is mentioned. This typically is an HTTP or FTP
URL, but it can be something else as well. For instance, it can refer to installation files that you
have on an installation CD or in a directory on your computer. After that you’ll see the name of

CHAPTER 8 MANAGING SOFTWARE190

the distribution (hardy-security), and you’ll always see the current distribution version there.
Last, every line refers to the available package categories. As you can see, most package catego-
ries are in the list by default. Only installation sources for security patches have been included
in the partial listing of sources in Listing 8-8. For a complete overview, take a look at the con-
figuration file itself.

Now that you understand how the file is organized, it follows almost auto-
matically what should happen if you want to add some additional installation sources to this
list: make sure that all required components are specified in a line, and add any line you like
referring to an additional installation source. Once an additional installation source has been
added, it will be automatically checked when working on software packages. For example, if
you should use the command to update the current state of your system, the
package manager will check your new installation sources as well.

A second important management component used by package managers on your com-
puter is the package database. The most fundamental package database is the database,
which is managed by the Debian utility . On Ubuntu as well as Debian, however, the
Advanced Packaging Tools () set is used for package management. These Ubuntu tools
add functionality to package management that the traditional approach typically can-
not offer. Because of this added functionality, the tools use their own database, which is
stored in . By communicating with this database, the package manager can query
the system for installed software, and this enables your server to automatically solve package-
dependency problems.

Every time a package is installed, a list of all installed files is added to the package data-
base. By using this database, the package manager can even see whether certain configuration
files have been changed, which is very important if you want to update packages at your
server!

Caution Because working with two different package management databases can be confusing,
 I suggest that you choose the package management system that you want to work with and stick to it.
In this book, I will cover only the utilities for Ubuntu and Debian.

Ubuntu Package Management Utilities
You can use any of several command-line package management utilities on Ubuntu. The most
important of these interact directly with the package database in . You would
typically use the command for installation, updates, and removal of packages, and
so you’ll find yourself working with that utility most of the time. You should also know of the

 utility, which works in two ways. You can use as a command-line utility to
query your server for installed packages, but also has a menu-driven interface that
offers an intuitive way to manage packages.

Another approach to managing packages is the Debian way. Because Ubuntu package
management is based on Debian package management, you can use Debian package man-
agement tools like as well. However, these do not really add anything to what Ubuntu
package management already offers, and so I will not cover the Debian tools in this book.

CHAPTER 8 MANAGING SOFTWARE 191

Understanding
Before you start working on packages in Ubuntu, it is a good idea to decide what tool you want
to use. It’s a good idea because many tools are available for Ubuntu, and each of them uses
its own database to keep track of everything installed. To prevent inconsistencies in software
packages, it’s best to choose your favorite utility and stick to that. In this book, I’ll focus on
the utility, which keeps its database in the directory. This is my favorite
utility because you can run as a very easy and convenient tool from the command line
to perform tasks very quickly. The utility works with commands that are used as its
argument, such as . In this example, is the command you
use to tell what you really want to do. Likewise, you can use some other com-
mands. The following four commands are the most important building blocks when working
with :

: This is the first command you want to use when working with . It
updates the list of packages that are available for installation. Use it to make sure that
you install the most recent version of a package.

: Use this command to perform an upgrade of your server’s software packages.

: This is the command you want to use every time you install software. It’s
rather intuitive. For example, if you want to install the nmap software package, you
would just type .

: You’ve probably guessed already, but you’ll use this one to remove installed
packages from your system.

Showing a List of Installed Packages
Before you start managing packages on Ubuntu Server, you probably want to know what pack-
ages are already installed, and you can do this by issuing the command. It’ll generate a
long list of installed packages. Listing 8-9 shows a partial result of this command.

Note The utility is not the most appropriate way to list installed packages because it can see
only those packages that are installed with . If you have installed a package with (which I would not
recommend), you won’t see it with . So, to make sure that you don’t miss any packages, I recom-
mend using to get a list of all installed packages.

Listing 8-9. The Command Shows Information About Installed Packages

CHAPTER 8 MANAGING SOFTWARE192

The result of the command shows information about packages and their status. The
first character of the package shows the desired status for a package, and this status indicates
what should happen to the package. The following status indicators are used:

: You’ll see this option in most cases, indicating that the package should be installed.

: This option (for “hold”) indicates that the package cannot be modified.

: This option indicates that the package should be purged.

: This option indicates that the package is supposed to be removed without removing
associated configuration files.

: This option indicates that the current desired status is unknown.

The second character reveals the actual state of the package. You’ll find the following
options:

: The package is installed.

: Configuration files of the package are installed, but the package itself is not.

: The package is not guaranteed to be correctly installed.

: The package is partially installed.

: The package is not installed.

: The package did install, but the installation was not finalized because the configura-
tion script was not successfully completed.

The third character indicates any known error state associated with the package. In most
cases you’ll just see a space (so, basically, you don’t see anything at all) indicating that nothing
is wrong. Other options are as follows:

: The package is put on hold by the package management system. This means that
dependency problems were encountered, in which case some required packages are
not installed.

: Reinstallation of the package is required.

: The package requires reinstallation and has been put on hold.

The command can be used to show a list of packages that are already installed in
your system, but you can also use it to display a list of packages that are available to your sys-
tem. The only difference is that you have to provide some information about the package. For
example, the command would provide information about the current instal-
lation status of the package. Listing 8-10 shows the result of this command.

CHAPTER 8 MANAGING SOFTWARE 193

Listing 8-10. Can Be Used to Display a List of Packages That Are Available

As you can see in the output that is provided for each package, the first two positions
show that the package status is currently unknown. In combination with some smart use of
the command, you can even use this construction to find out what packages are available
for installation on your server. In the command , the command
is used to filter out all packages that show a result that starts with the letters , which is very
typical for a package that is not installed.

You can also use the utility to find out what package owns a certain file. This is very
useful information. Imagine that a file is broken and you need to refresh the package’s instal-
lation. To find out what package owns a file, use . The command will
immediately return the name of the package that owns this file.

Using
On Ubuntu, a few solutions are available for package management. One of these is .
The major benefit of this solution is that it is somewhat more user friendly because it can work
with keywords, which are words that occur somewhere in the description of the package. For
example, to get a list of all packages that have (the name of the well-known Linux file
server package that you can use to provide Windows file services on your Linux computer) in
their description, you would use . Listing 8-11 shows the result of this
command.

Listing 8-11. Showing Package Status Based on Keywords

CHAPTER 8 MANAGING SOFTWARE194

Once you have found a package using the command, you can also use it to
show information about the package. To do this, you’ll use the argument. For example,

 will show you exactly what the package is all about (see List-
ing 8-12). As you can see, in some cases very useful information is displayed.

Listing 8-12. The Command Shows What Is Offered by a Package

CHAPTER 8 MANAGING SOFTWARE 195

Adding and Removing Software with
The best tool for Ubuntu and Debian to perform package management from the command
line is . It provides a very convenient way to install, update, or remove software pack-
ages on your machine. It requires root permissions, so you should always start the command
with .

Before you do anything with , you should always use the com-
mand first. Because gets most software packages online, it should always know
about the latest available versions of those packages. The command makes
sure of this, and it caches a list of the most recent version of packages that are available on
your server. Once the update is performed, you can use to install and remove soft-
ware. Installation is rather easy: to install the package , use . The
advantage of the command is that it really tries to understand what you are doing.
This is shown in Listing 8-13, where the command is used to install the Samba
server software.

Listing 8-13. The Command Tries to Understand What You Want to Do

In the example from Listing 8-13, everything went all right because a package with the
name samba exists. In some cases, you’ll see that doesn’t understand what you want
it to do. If that happens, it sometimes gives a hint on the package that you need to install

CHAPTER 8 MANAGING SOFTWARE196

instead. If that doesn’t happen either, try to search the appropriate package first, using the
 command.

You can also use to remove software, upgrade your system, and much more. The
following list provides an overview of the most important functions of the command.
Be aware that you should always run the command with root permissions, so use to start

 (or set a root password and work as root directly).

Install software: Use .

Remove software: Use . This option does
not remove configuration files. If you need to remove those as well, use

.

Upgrade software: To upgrade your complete operating system, use
 first so that you’re sure that is aware of the most recent

version of the packages. Then use .

Summary
In this chapter, you have read how to manage software packages. You have learned that soft-
ware packages can be installed as individual packages, but because of dependencies, this is
not a very good idea. Therefore, all distributions currently work with a package management
solution where the software repository is used to list installable packages and an intelligent
command is used to manage packages as well as their dependencies. You have read how to
manage packages from the RPM world with the and commands, as well as packages
from the Debian world with the commands. The following commands and utilities were
discussed in this chapter:

: Command to create and manage RPM-based packages.

yum: Package management utility in the Red Hat world.

zypper: Package management utility in the SUSE works. Works more or less the same
as yum.

: Ubuntu/Debian package management utility. Does a great job in installing
and updating software.

: Original Debian package management utility, which has been made more or less
obsolete by . Still, is useful, especially for listing where the files from a
package are installed.

: Alternative for . According to some, this utility is easier to use.

In the next chapter, you’ll learn how to manage processes on your Linux computer.

C H A P T E R 9

Process and System
Management

When working with Linux, from an administrative perspective, working with processes is
important. Every application or task you start on a Linux computer is started as a process. You
will find that in some instances, a task may hang, or something else may happen that urges
you to do some process management. In this chapter, you will learn how to monitor and man-
age processes. You will also learn how to schedule processes for automatic startup.

Understanding Linux Processes
When your computer boots, it will start a kernel. The kernel on its turn is responsible for
starting the first process, which normally is the process. This process is responsible for
all other processes. When starting a process, starts the process as a child of its own. For
instance, from the process is started, which is responsible for opening a login
shell. From , the process is started to allow users to work with a Linux command
line.

From this follows that in Linux process management, there is a parent-child relationship.
 is the first parent that launches the child process . The process on its

turn is a parent for the process, and every command you start from is a child of the
 process. The command, of which you can see the output in Listing 9-1, shows this

relation between processes.

Listing 9-1. Shows the Parent-Child Relation Between Processes

197

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT198

To run a process, the Linux kernel works with a queue of runnable processes. In this
queue, every process waits for its turn. By default, Linux works with time slices for process
handling. This means that every process gets a fair amount of system time before it has to
make place for other processes. If a process needs more attention, you can use the func-
tion to increase (or decrease if necessary) the system time that is granted to the process. More
on using on processes later in this chapter.

In some situations, you will have to stop a process yourself. This may happen if the pro-
cess doesn’t reply anymore, or if the process behaves in a way that harms other processes. To
stop a process, the Linux kernel will tell the responsible parent process that this process needs
to be stopped. Under normal circumstances, the parent process that was responsible for start-
ing a given process will always be present until all its children are stopped.

In the abnormal situation where the child is still there, but the parent is already stopped,
the child process cannot be stopped anymore, and it becomes a zombie. From the command
line there is nothing that you can do to stop a zombie process; the only solution is to restart
your computer.

You will find that if zombie processes occur, often the same processes are involved. That
is because the occurrence of zombie processes is often due to bad programming. So you may
have to update the software that creates the zombie process to get finally rid of your zombie
processes. In the following sections, you will learn how to monitor and manage processes.

Apart from zombie status, processes can be in other states as well. You can see these states
when using the command, which shows current process status; these are displayed in
the column (see Listing 9-2). Processes can be in the following states:

Running: The process is active.

Sleeping: The process is loaded in memory but hasn’t been active recently.

Zombie: The process is in defunctional state.

Stopped: The process is stopped and about to be removed from computer memory.

Listing 9-2. Processes Can Be In Different States

You should know that there a different kinds of processes. Among these are the service
processes, the so-called daemons. An example is the process, which provides web ser-
vices on your system. On the flip side are the interactive processes, which typically are started
by typing some command at the command line of your computer.

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT 199

Finally, there are two ways in which a process can do its work to handle multiple tasks.
First, it can just launch a new instance of the same process to handle the incoming request. If
this is the case, you will see the same process listed multiple times in . The alternative
is that the process works with one master process only, but launches a thread, which is a kind
of a subprocess, for each new request that comes in. Currently, processes tend to be multi-
threaded, as this uses system resources more efficiently.

Monitoring Processes
All work on processes that you’ll need to do will start by monitoring what the process is doing.
Two commands are particularly important: and . The command allows you to display
a list of all processes that are running on your computer. Because lists all processes (when
used as root), that makes it an excellent choice if you need to find a given process to perform
management tasks on it. The command gives an overview of the most active processes.
This overview is refreshed every 5 seconds by default. As it also offers you a possibility to per-
form management tasks on these active processes, is a very useful command for process
management, especially for users who are taking their first steps on the Linux command line.

Monitoring Processes with
The single most useful utility for process management is . You can start it by typing the
command at the command line. Make sure that you have root permissions when doing this;
otherwise, you can’t do process management. In Listing 9-3, you can see what the screen
looks like.

Listing 9-3. Makes Process Management Easy

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT200

 basically shows you all you need to know about the current status of your system, and
it refreshes its output every 5 seconds by default. Its results are divided in two parts. On the top
part of the output window, you can see how busy your system is; in the lower part, you’ll see a
list of the busiest processes your computer currently has.

The upper five lines of the output (see Listing 9-3) shows you what your system cur-
rently is doing. This information can be divided into a few categories:

Data about uptime and users: On the first line, shows you the current time (14.10 in
this example), which is followed by the time the system has been up and the number
of users connected to the system. Although useful, this is not critical information for
process management.

Current usage statistics: Still on the first line, there are three numbers related to current
system usage. These three numbers indicate how busy your computer is relative to the
amount of CPUs or CPU cores in your computer (from the perspective of , there is
no difference between a CPU and a CPU core): they give you the average for the last
minute, the last 5 minutes, and the last 15 minutes. Each number that you see has to
be divided by the number of CPUs installed in your system. The anchor value per CPU
is 1.00. If any of the values you see here is under 1.00, it means that your system is over
capacity, and there is no queuing of processes. A parameter that is higher than 1.00
indicates there is more demand currently than your system can handle.

Overview of tasks: The second line of shows you information about the total
number of tasks and their current status. On an average computer, you won’t see many
more than about 200 tasks here. The following status information for these tasks is
displayed:

Running: These are tasks that have been actively serviced during the last polling
loop.

Sleeping: These are tasks that have not been active in the last polling loop.

Stopped: These are tasks that are stopped but haven’t released all of their resources
yet.

Zombie: These are tasks of which the parent no longer is available and hence can-
not be stopped or managed anymore.

Overview of CPU usage: If the load average of your computer is relatively high, the CPU
usage line can give an indication of exactly what your computer is doing. In this line,
a subdivision is made of the different kinds of demands that processes are issuing on
your CPU. On a multi-CPU system, you’ll see the summary for all CPUs together. If you
want to see the load statistics for each of the CPUs from the interface, press 1. The
following options are listed:

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT 201

: The amount of load that was issued in user space. These typically are tasks that
run without root privileges and cannot access kernel functions directly.

: The amount of load that was issued in system space. These typically are tasks
that were started with root privileges and can access kernel functions directly. As
compared to user space–level tasks, the number of tasks that you see here should
be relatively low.

: Processes of which the priority has been adjusted using .

: The activity of the idle loop. This gives the percentage of inactivity on your sys-
tem. It is no problem at all if this parameter is high.

: The amount of time that your system has spent in waiting mode. This is the
time that your system has been waiting for I/O. If you see a high value here, it indi-
cates that you have a lot of I/O-related tasks on your computer. An average that is
higher than 30% may indicate that your I/O channel doesn’t perform as it should.

: The amount of time that your computer has spent handling hardware inter-
rupts. It should be low at all times. If you see a high value here, it normally
indicates that some badly functioning drivers are used.

: The amount of time that your system has spent handling software interrupts.

: This parameter applies to environments where virtualization is used. It indi-
cates the amount of time that was stolen from the processor in this machine by
other virtual machines.

Current memory use: In the last part of the upper lines of output, you can see infor-
mation about the amount of memory your computer is using. These two lines give
information about the usage of real memory and swap memory, which is emulated
memory on the hard disk of your computer, at the same time. The following param-
eters are listed:

Mem total: This is the total amount of real RAM memory that is installed in your
computer.

Mem used: This parameter indicates the amount of memory that is in use. The
amount of memory that you see here also indicates memory that is used for buffers
and swap memory (discussed later in this list).

Mem free: The total amount of memory minus the amount of memory that is in
use.

Buffers: The amount of memory that is currently reserved for write buffers. When
writing data to storage, your computer will put the data in write buffers first, where
it waits for availability of the storage channel. By using write buffers, your Linux
computer optimizes write requests. As soon as a write request is in write buffers,
the application that issued the write request thinks that the data is written and
doesn’t have to wait anymore. In case the write buffers are needed for something
else, your system can free them immediately.

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT202

Cache: This is memory in which recent read requests are cached. If a file was
recently requested a read, chances are that it will be needed again shortly. By keep-
ing recent files in cache, your computer has a mechanism to access these files as
fast as possible. Cache memory is also memory that your computer can free instan-
taneously if it is needed for something else.

Swap total: As mentioned previously, swap memory is emulated memory on the
hard disk of your computer. On Linux, it works as an overflow, and it is only used if
you are completely out of physical memory. Since swap memory is about a thou-
sand times slower than real memory, you should avoid using swap memory at all
times.

Swap used: This parameter indicates how much swap memory is currently in use.
This value should be close to 0. If more than a few megabytes of swap memory are
in use, this normally is an indication that your computer lacks physical memory.
You should install more physical memory in such cases.

The lower part of the output shows you process information, divided in a couple of
columns that are displayed by default. You should know that more columns are available than
the ones displayed by default. If you want to activate the display of other columns, you should
press the F key while in the screen. This shows you a list of all columns that are available,
indicating with an which are currently active, as you can see in Listing 9-4. To toggle the sta-
tus of a column, press the letter associated with that column. For instance, pressing J will show
you which CPU was last used by a process.

Listing 9-4. You Can Toggle Other Columns to Be Displayed As Well in

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT 203

The following list describes the columns that are listed by default:

: This is the process identification (PID) number of the process. Every process has a
unique PID, and you will need this PID number to manage the process.

: This indicates the name of the user who started the process.

: This indicates the current process priority. Processes with a higher priority will be
serviced before processes with a lower priority. If a process with a higher priority needs
CPU time, it will always be handled before the process that has a lower priority. Some
processes have the (real time) priority, which means that they can access system
resources at all times.

: Between processes that have the same priority, the value indicates which has
precedence. Processes with a low value are not so very nice and will always go
before processes with a high value. However, this works only for processes that
have the same priority.

: This column refers to the total amount of memory that is used by a process. This
includes shared memory, which is code that the process shares with other processes.

: This column indicates the amount of resident memory, which is memory that
the process has allocated and is currently also actively using. You may see differences
between and because processes like to ask for more memory than they really
need at the moment, which is referred to as memory over allocation.

: This refers to shared memory. Typically, these are libraries the process uses that
are used by other processes as well.

: This column gives the process status. The values that you find here are the same as
the values in the second line of the output, as discussed previously.

: This column shows the percentage of CPU cycles that the process has been using.
This is also the column that sorts by default; the most active process is listed at the
top of the list.

: This column refers to the percentage of memory that the process is using.

: This indicates the accumulated real time that the process has used the CPU dur-
ing the total period since it has started.

: This indicates the command that was used to start this process.

By default, output is sorted on CPU usage. You can sort the output on any other infor-
mation as well; there are over 20 different ways to do so. Some of my favorites are listed here:

: By process parent ID. This allows you to see in a quick overview all processes that are
started by the same parent process.

: By process status. This allows you to group all processes that have the same status in
an easy way.

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT204

: By UID. This allows you to see all processes that were started by the same user.

: By priority. This allows you to see processes with the highest priority listed on top.

: By memory usage. This shows the processes that have the largest amount of memory
in use listed first.

When done monitoring process activity with , you can exit the utility. To do this, issue
the command. Apart from the interactive mode that you’ve just read about, you can also use

 in batch mode. This is useful if you want to redirect the output of to a file or pipe it to
some other command. When using in batch mode, you can’t use any of the commands
discussed previously. You tell to start in batch mode by passing some options to it when
starting it:

: Starts in batch mode

: Tells what delay it should use between samples

: Tells how often it should produce its output in batch mode

For instance, the following would tell to run in batch mode with a 5-second interval,
doing its work two times:

Finding Processes with
If you want to manage processes from scripts in particular, the command is invaluable.
This command shows you a list of all processes that are currently active on your computer.
has many options, but most people use it in two ways only: and . The value of

 is that it shows all processes in its output in a way that you can for the information you
need. Imagine that you see in that there is a zombie process; will
show you which is the zombie process. Or imagine that you need the PIDs of all instances of
your Apache web server; will give you the result.

One way of displaying all processes and their properties is by using . Listing 9-5
shows a part of the output of this command. To make it more readable I’ve piped the results
of this command through .

Listing 9-5. Shows All Processes and a Lot of Details About What the Processes Are Doing

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT 205

In the command , three options are used to ask the system to show process infor-
mation. First, the option makes sure that all processes are shown. Next, the option gives
extended usage information, whereas the option also shows from which TTY and by what
user a process is started. You can see the results in Listing 9-5, in which the following columns
are listed. Because many of these columns are similar to the columns in , I will give a short
description of them only.

: The name of the user who started the process.

: The PID of the process. The command sorts the processes by their PID.

: The percentage of CPU time the process has used since startup.

: The percentage of memory the process is currently using.

: The virtual memory size, which is the total amount of memory claimed by this
process.

: The resident memory size, which is the amount of memory the process currently
has in use.

: The terminal (TTY) from which the process was started. A question mark indicates
a daemon process that is not associated to any TTY.

: The current status of the process.

: The time at which the process was started.

: The total amount of system time this process has been using since it started.

: The command that was used to start this process. If the name of this com-
mand is between square brackets (you can see quite a few examples of this in
Listing 9-5), the process is not started with a command at the command line, but is
a kernel thread.

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT206

Note The command can be used in two ways, both of which go back to the time when there were two
major styles in UNIX versions: the BSD style and the System V style. The command was used in the
BSD style to give a list of all processes and their properties, and was used in System V style to do
basically the same. There are some minor differences, but basically both commands have the same result.
So feel free to make your choice here!

The second way in which the command is often used is by issuing the com-
mand. You can see a partial output of this command in Listing 9-6.

Listing 9-6. Provides Just Another Way of Displaying Process Information

Just two columns in are new compared to the output for . First is the
column. This column tells you which process was responsible for starting this process, the
so-called parent process. Then there is the column with the name , which refers to the CPU
utilization of this process and hence gives the same information as the column in .

Personally, I like a lot if I need to terminate all processes that were started with
the same command. On my SUSE box, it happens that the management program YaST
crashes. This program basically uses two kinds of processes: processes that have in their

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT 207

command name and processes that have in their command line. To get a list of PIDs for
these processes, I use the following commands:

Next, it is fairly easy to kill all instances of this process based on the list of PIDs that these
two commands will show. You’ll read more about this in the section “Killing Processes with

, , and ” later in this chapter.

Finding PIDs with
In the preceding section, you read how you can find processes with and . There is a
different option also: the command. This command is fairly easy to use: enter fol-
lowed by the name of the process whose PID you are looking for. For instance, if you want to
know all PIDs that the Gnome processes are using, use . This will display a result
similar to what you see in Listing 9-7.

Listing 9-7. The Command Offers an Alternative If You Need to Find PIDs Easily

A useful feature of is that you can search for processes based on specific attributes
as well. For instance, you can use to locate processes that are owned by a specific user, as in
the following command:

Also useful is that you can have it display processes if you are not sure about a prop-
erty. For example, if you want to see processes that are owned by either linda or lori, use the
following:

Showing Parent-Child Relations with
For process management purposes, it is useful to know about parent-child relations between
processes as well. You can use the command without arguments to show a complete
hierarchical list of all processes on your computer, or with a PID as an argument to show

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT208

a process tree that starts on the selected PID only. If the output of looks weird, you
should use the option to give the result of in a specific format for your terminal.
I need this to ensure proper display in a PuTTY window, for example. In Listing 9-8, you can
see a partial output of this command.

Listing 9-8. Use to Find Out More About the Hierarchical Relation Between Processes

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT 209

In the output of , you can see which process is responsible for calling which other
process. For instance, in Listing 9-8, is the first process that is started. This process calls
basically all the other processes such as , , and so on. If a process has
started other processes, you will see that with as well. For instance, you can see that the

 command used for this example listing actually is in the output listing as well, as a child
of the process, which on its turn is started from an SSH environment.

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT210

Note Some people like to run a graphical user interface on their server; some people don’t. From the
process perspective, it certainly makes sense not to run a GUI on your server. If you are not sure this really
is useful, you should compare the result of on a server that does have a GUI up and running with the
result of the same command on a server that does not have a GUI up and running. You’ll see amazing differ-
ences as the result.

Displaying Memory Usage with
The last important command that is related to system management is , which tells you
about current memory usage. I like the output of a lot, especially when compared to the
memory usage summary that you can see in . The important addition that provides
is it gives you a line that shows how much memory is available immediately from the operat-
ing system’s perspective. This is the line , which you see in the example in
Listing 9-9. On this line, the column gives you the amount of memory that is available for
immediate usage on your computer. So if there is an application that needs 250MB of RAM for
immediate usage, this system can offer that, just by clearing buffers and cache currently in use.
When using , use the option to give the result in megabytes, instead of blocks.

Listing 9-9. The Command Also Shows You How Much Memory Is Available for
Immediate Usage

Managing Processes
At this point you know how to monitor the generic state of your computer. You have read how
to see what processes are doing and know about monitoring process activity. In this section,
you’ll learn about some common process management tasks. These include killing processes
that don’t listen anymore and adjusting process priority with . In a dedicated subsection,
you can read how to manage processes from the utility.

Killing Processes with , , and
Among the most common process management tasks is the killing of processes. Killing a pro-
cess, however, goes beyond the mere termination of a process. If you use the command
or any of its alternatives, you can send a signal to the process. Basically, by sending it a signal,
you give the process a command that it simply cannot ignore. A total of 32 signals are avail-
able, but of these only four are common. Table 9-1 gives an overview of these common signals.

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT 211

Table 9-1. Common Process Management Signals

Signal Value Comment
 1 Forces a process to reread its configuration without really stopping the

process. Use it to apply changes to configuration files.

 9 Terminates the process using brute force. You risk losing data from
open files when using this signal. Use it only if the process doesn’t stop
after sending it a signal 15.

 15 Requests the process to terminate. The process may ignore this.

 30 Sends a specific user-defined signal to the process. Only works if
defined within the command.

When sending a signal to the process, you normally can choose between the signal name
or the signal number. In the next three sections, you will see how to do this with the ,

, and commands.

Killing Processes with
The command provides the most common way to send signals to processes, and you will
find it quite easy to use. This command works with only two arguments: the signal number or
name and the PID upon which you want to act. If you don’t specify a signal number, by
default sends signal 15, asking the process to terminate.

 does not work with process names, just PID numbers. This means you first have to
find the PIDs of the processes you want to send a signal to, which you can do with a command
such as . You can specify multiple PIDs as arguments to . The following example
shows you how to kill three PIDs with a single command:

Only some commands listen to user-defined signals. An example of these is the com-
mand, which you can use to clone a device. You can send this command signal USR1, which
will ask to show its current progress. To find out whether a command listens to one of the
USR signals, go to the page for .

Killing Processes with
Compared to , is a more versatile command, specifically due to its ability to work
with some arguments that allow you to specify which processes you want to kill in a versatile
way. For instance, you can use to terminate processes that have a specific file open
at that time by just mentioning the file name. Some of the most useful options for are
listed here:

: This option tells to ignore case. Useful if you don’t want to think about
upper- and lowercase.

: This option puts in interactive mode. You’ll have to confirm before any
process is killed.

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT212

: This option allows you to work with regular expressions. This is useful because you
won’t have to enter the exact process name.

: This option kills only processes that a specific user owns. Useful if you need to
terminate everything a user is doing right now.

For example, if you want to kill all processes that linda currently has opened, use the
following command:

Or if you need to terminate all processes, use regular expressions as in the following
command:

Killing Processes with
The third command that you can use to send signals to processes is . Like ,
can also look up processes based on their name or other attributes, which you can address
using specific options. For instance, to kill all processes that are owned by user linda, use the
following:

Another useful feature of is that you can kill processes by their parent ID. For exam-
ple, if you need to kill all processes that have process 1499 as their parent ID, use the following:

Adjusting Process Priority with
As discussed earlier in this chapter, every process is started with a default priority. You can see
the priority in the default output of the command. By default, all processes that have the
same priority are treated as equal by the operating system. If within these priorities you want
to give more CPU time to a process, you can use the and commands to change
their nice status. Process niceness ranges from to . means that a process is not very
nice and will get the most favorable scheduling. means that a process is very nice to others
and gets the least favorable scheduling.

There are two ways to change the niceness of a program: use to start a program with
the niceness that you specify, and use to change the niceness of a program that has
already been started. The following shows how to change the niceness of to the value of :

In case you need to change the value for a program that is already running, you
should use . A useful feature is the option to change the nice status of all processes that
a given user has started. For instance, the following command would change the niceness of
all processes linda has started to the value :

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT 213

You can also just use a PID to change the value of a process:

Process Management from
You have already learned how to monitor processes using . You’ve also learned how to
manage processes using different command-line tools. From within the interface, you can
also perform some process management tasks. Two tasks are available: you can send proc-
esses a signal using functionality, and you can a process using functionality.
To do this, use the following options from within the interface:

: Sends a signal to a process. It will first ask for the PID, and then what signal to send
to that PID. You should use the numerical PID to manipulate the process.

: Changes the niceness of a process. When using this command, you next have to
enter the PID of the process whose niceness you need to change.

Scheduling Processes
On your computer, some processes will start automatically. In particular, these are the service
processes your computer needs to do its work. Other processes are started manually. This
means that you have to type a command at the command line to start them. There is also a
solution between these two options. If you need a certain task to start automatically at pre-
defined intervals, you can use to do so.

There are two parts in . First is the daemon . This process starts automati-
cally on all computers and will check its configuration every minute to see whether it has to
issue a certain task. By default, reads its master configuration file, which is .
Listing 9-10 shows what this file looks like on an Ubuntu server system.

Listing 9-10. Example File

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT214

This file contains three different elements. First, you can see an indication of the time
when a command should run. Next is the name of the user with whose permissions the job has
to execute, and the last part is the name of the command that has to run.

You can use five time positions to indicate when a job has to run:

For instance, a task definition in can look as follows:

This task would start 10 minutes after 5 a.m. on December 3 only. A very common error
that people make is shown in the following example:

The purpose of this line is probably to run a task at 5 a.m. every morning; however, it
would run every minute between 5:00 a.m. and 5:59 a.m., because the minute specification is
an asterisk, which means “every.” Instead, to run the task at 5 a.m. only, the following should
be specified:

Apart from the system , individual users can have s as well. This can be
very useful. Imagine that you want to make a backup every morning. To do so, you probably
have a backup program, and this backup program may run automatically with the permis-
sions of a specific user. You can, of course, make the definition in , with the
disadvantage that only root can schedule jobs this way. Therefore, the alterative in which
users themselves specify the job may be more appealing. To do this, you have to use the

 command. For instance, if user linda wants to install a job to send a mail message
to her cell phone every morning at 6 a.m., she would use the following command:

This opens an editor window in which she can define the tasks that she wants to run
automatically. Because the file will be installed as her file, there is no need
to include a user specification there. This means just including the following line would be
enough:

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT 215

Notice the use of in the specification of the day of the week. This tells the process
to run this job only on days 1 through 5, which is from Monday to Friday.

If you are logged in as the root user, you can also create jobs for other users. To do
this, use followed by the name of the user you want to create the job for. The
command , if issued as root for example, would create a job for user
linda. This command also opens the editor, which allows you to enter all the required
commands. Also useful if you are root: the command gives an overview of all the

 jobs that are currently scheduled for a given user account.

Summary
In this chapter, you have learned how to tune and manage processes and memory on your
computer. You have learned about the way that Linux works with processes and also about
memory usage on Linux. You acquired knowledge about some of the most important com-
mands related to process management, including and . In this chapter, the following
commands and utilities have been discussed:

: First process loaded on a Linux computer.

: Process responsible for initializing terminal windows.

: Command that shows a hierarchical overview of parent and child processes.

: Command that sets priority of a process as it starts up.

: Command that resets value for processes that are currently active.

: Command that shows a list of processes and much useful information about each
of them.

: Command that allows you to monitor processes and perform basic process
management actions.

: utility that is optimized for process management.

: Command that shows the amount of memory that is still available.

: Command for terminating processes.

: Command for terminating processes.

: Command for terminating processes. Optimized to terminate multiple
processes using one command.

: Process that allows you to run processes at a fixed time on a regular basis.

: Command that interfaces with to schedule processes.

In the next chapter, you’ll learn how to configure system logging.

C H A P T E R 1 0

System Logging

Most of the time, your Linux computer will work just fine. From time to time, however, your
program won’t start, or system components will break. When this is the case, you’ll need all
the help that you can get. Assuming that you’ve already used the available command docu-
mentation that is on your computer, such as and , you’ll need to find out now what
exactly is happening when you try to accomplish your task. That brings us to system logging.

Understanding Logging
One of the items that you will like on Linux—once you’ll understand how it works—is the
way that Linux handles system logging. Logging on Linux is extensive, and you’ll be able to
tell it to send log messages anywhere you want. The result is not only a bunch of files that are
created in , but in many cases also more important messages that are written to the
virtual consoles on your computer. Think about the virtual consoles that Linux works with; for
instance, just while installing, several consoles are available through which you can monitor
the output of different commands.

Note In Chapter 2, you read how to activate a virtual console, using Ctrl+Alt+F1 up to Ctrl+Alt+F6. On
most distributions, even the graphical console is a virtual console, which is available using the Ctrl+Alt+F7
keystroke.

Behind all these messages is often a process with the name . This process is con-
figured to monitor what happens on your computer. It does that by watching the messages
that the commands you use are generating. captures these messages and sends them
to a destination, which is often a file, but as mentioned can also be a virtual console on your
computer.

Apart from the process that captures the messages and directs them somewhere,
there is also the command or process that generates the messages. Not all of these are handled
by . Some messages may just not be handled because you normally don’t care about
them. These are the messages that have a status of “informational” on your computer. These
messages also do help though, and in some cases you’ll see them passing by when you start
the command. Many commands also work with the option, which gives you verbosity.

217

CHAPTER 10 SYSTEM LOGGING218

A random example of this is the command, which by default does not show you what it is
doing. However, if you add the option to it, it shows exactly what it is doing, even if it just
succeeds in copying the file. Listing 10-1 gives an example of this.

Listing 10-1. Many Commands Can Work with to Show Exactly What They Are Doing

Then there are also the commands that you run from a graphical interface. Normally, they
don’t show what they are trying to do. However, if you find out what the name and exact loca-
tion of the command are, and you try running the command from a command line instead
of just clicking its icon, you’ll be surprised by how much output the command gives. In List-
ing 10-2, you can see what running the Gnome file explorer Nautilus from the command line
looks like. Notice that doing so also displays any error messages about networking that you
would never see when starting the command the normal way.

Listing 10-2. Starting a Graphical Command from the Command Line Often Produces a Lot of
Startup Information

CHAPTER 10 SYSTEM LOGGING 219

Most commands, however, write to the system log to indicate that something is wrong.
Before discussing the workings of this system log, the next section explains more about the log
files it writes and how you can monitor them.

Monitoring Log Files
There is no golden rule about log files on your computer, but among the different distribu-
tions, just one file will always exist. It has the name , and its purpose is to
store all log messages generated by processes and commands on your computer. As it is just
a text file, you can monitor it as you would any other text file—open it with , for instance,
or watch the last couple of lines with the command. A particularly useful way of monitor-
ing the content of these files, however, is through , in which stands for follow. When
invoked in this way, opens the last ten lines of the log file and automatically shows new
lines as they are created. This technique is particularly useful when trying to understand what
exactly a command is doing. As it shows you real-time information, you’ll see immediately
whether something doesn’t work out, which allows you also to take action straight away.

When watching log files, many people tend to forget that there are more than just
. Have a look at the log files that exist on your computer and try to under-

stand what they are used for. For instance, did you know that most computers write a log
entry not only for every single mail message they receive, but also for every failed attempt to
send an e-mail? This information, which is useful when trying to understand why sending an
e-mail doesn’t work, is not written to . Hence, have a look at the contents of

 and see what other files you need to know about to find all log information that com-
mands on your computer are generating. Listing 10-3 gives an impression of what the contents
of looks like on my computer.

Listing 10-3. The Messages File Is Not the Only File in

CHAPTER 10 SYSTEM LOGGING220

Configuring the Service
Two log services are available for Linux: and . The in stands
for next generation; just consider it on steroids. To understand , you’ll need
to know about also, so you better just start reading this section before proceeding to
the next.

The process has two parts: the process itself (typically) and the
configuration file that tells the process what to do when it starts up. The name of this configu-
ration file is . Listing 10-4 gives an example of what this file can look like.

Listing 10-4. The Classical Service Uses the Configuration File

CHAPTER 10 SYSTEM LOGGING 221

To understand the file, you have to know that it contains three ele-
ments: the log facility, the log priority, and the action. The facility defines the services and
other parts of your operating system that can generate log messages. The priority defines the
severity of the log messages that the facility generates. The action field tells the process
what it has to do if the defined facility generates a message with this priority.

The following facilities are available in :

: Facility that handles events related to authentication.

: Facility that handles events related to authentication, as does . There is
no difference between and .

: Facility that handles messages generated by the subsystem (see Chapter 9
for more information about).

: Log messages that are generated by a daemon. No further subdivision can be
made for system processes, with the exception of the daemons that have their own
facility, such as and .

: Messages that are related to the File Transfer Protocol (FTP).

: Kernel-related messages. This facility also defines messages that are generated by
the iptables kernel firewall.

: Messages related to the legacy lpr printing system.

: Messages related to handling mail messages.

: For internal use only. The process can place a marker in periodi-
cally. If your computer doesn’t log a lot, this can help you make sure that logging is still
enabled.

: Messages related to the Network News Transport Protocol (NNTP)–related
services.

: Generic security-related messages.

: Messages that are related to the process itself.

CHAPTER 10 SYSTEM LOGGING222

: User-related messages.

: Messages that are generated by the legacy Unix to Unix Copy Protocol (UUCP).

- : Facilities that you can use for all other services. To use these facilities,
you need to configure the service in its configuration file to log to the local facility.
Consult the documentation for the service for more information on how to do this.

Tip If you need to set up logging to handle messages that are generated by individual services, I
recommend that you use instead. offers many more options to tune logging on
your computer. You’ll find more information on setting up later in this chapter in the section
“Configuring .”

When writing log messages, the facilities produce messages with a given priority. The fol-
lowing priorities are defined in , listed in ascending order:

: Relates to debug information. This gives you detailed information on everything
the facility is doing. In general, this level of information is useful for programmers only
in that it tells you exactly what system and library calls the facility performs.

: Gives all “normal” information about what the process is doing. This gives you
information about files that are open, for instance, but does not give extensive infor-
mation about system and library calls.

: Gives information about noncritical errors. For instance, this can refer to a file
that should exist, but because it didn’t, it was created automatically.

/ : Give information about warnings that occurred when executing the
process. Both and have the same meaning, but warning is deprecated.
This means you can still use it, as Linux will understand it, but because it’s “old
school,” so you shouldn’t use it anymore. A warning defines a situation where normal
functionality is disrupted, but the facility still operates.

/ : Give information about errors. Typically, -level messages are about situ-
ations that interrupt normal functioning of the facility. The use of is deprecated.
Use instead.

: Gives information about critical situations that endanger normal operation of
your computer.

: Gives information about a situation that will cause your computer to stop.

/ : Indicate normal operation of your computer has stopped. The use of
 is deprecated. Use instead.

To define log events, in you’ll refer to a facility combined with a priority. If
no other exceptions are defined, the priority you mention includes all higher priorities as well.
For instance, the following would refer to informational messages generated by the kernel and
messages with a higher priority as well:

CHAPTER 10 SYSTEM LOGGING 223

You can also refer to multiple facilities in one line by specifying them in a comma-
separated list. For instance, the following refers to both informational messages related to the
kernel and informational messages related to the process:

Alternatively, you can refer to all facilities by using an asterisk, as in the following example
line:

When referring to a priority, normally by just mentioning the priority you will include all
higher priorities as well. If you want to define what should happen just in case the specified
priority occurs, use an equals sign, as in the following example line, which handles messages
related to mail and not to messages with a higher priority:

You can also include a statement to exclude a priority and every priority beyond it by put-
ting an exclamation mark in front of the name of the priority:

When a log event happens, an action is performed on it. This action typically means that
a message is sent somewhere. In , the available actions are also well defined. Multiple
facilities and priorities can be specified in one line to log to the same destination. Listing 10-4
includes several examples of this. You can send log messages to the following:

Regular file: When mentioning the name of a file, log messages are written to that file.
You must specify this file name as an absolute path name. To prevent from writ-
ing every single message to the configuration file immediately, you can put a sign
in front of the file name. This means that changes are buffered first before they are
written to the actual configuration file. In Listing 10-4, this is used to handle logging of
messages that have a debug status. The sign in this listing is used as the delimiter, and
the sign makes sure that the next part is interpreted as belonging to the same line:

Named pipe: By logging to a named pipe, you can pipe log messages to a device. To use
a named pipe, you should put a pipe symbol in front of the device name. The follow-
ing example from shows how to log to the device using a
named pipe:

Terminal or console: If the file that you’ve specified as the actual log destination is a tty,
 will handle it as a tty and log messages in real time to it. A very common tty to

use for this purpose is .

CHAPTER 10 SYSTEM LOGGING224

Remote machine: A very useful feature that you can use with is the option to
configure one computer as the log host for all computers in the network. On this com-
puter, you will see the name of the machine from which a message comes in the log
files. To send log messages to a remote computer, you must meet two conditions:

 with the remote logging feature enabled. By default, the process
does not accept messages that come from other hosts. You can enable remote log-
ging on the process by starting it with the option. This tells your current
machine that it should accept log messages coming from other machines.

, specify the name of the machine you want to log to as the log desti-
nation by putting an sign in front of the machine name. For instance, you would
use to log messages to a machine with the name RNA. This machine name
must be resolvable if you want this to work.

User: You can send messages directly to a user, who will receive this message in real
time if he or she is logged in. To do this, just use the name of the user or a comma-
separated list of multiple users. For instance, the following would make sure that all
messages generated by the kernel and having a status of critical and higher are sent
directly to the root user:

Everyone logged in: If the log message is critical (for instance, because it disrupts all
functionality of the system), it makes sense to send a message to all users who are cur-
rently logged in. To do this, specify an asterisk as the log destination.

Passing Startup Parameters to
and
In some cases, you need to pass a startup parameter to the daemon. For instance, you
need to run it with the option to enable remote logging. However, the process is
started automatically when you boot your system. Most distributions have an elegant solution
to pass the startup parameter anyway by using the file (or any other
file name that is pretty similar). Listing 10-5 shows what this file looks like on SUSE Linux. As
you can see, it not only passes startup parameters to , but also indicates whether the old

 or the new should be used. Check your distribution to see whether it also has
a startup file in .

Listing 10-5. Use / to Pass Startup Parameters and More to When It
Starts

CHAPTER 10 SYSTEM LOGGING 225

CHAPTER 10 SYSTEM LOGGING226

Configuring
The system as discussed previously works pretty well, but it does have some limita-
tions. The most important of these are the inability to filter log messages and the limited
number of log facilities. These limitations are addressed by , the next generation

 system that is available for most Linux distributions.

Note At the moment this was written, not all distributions were on yet. Red Hat Enterprise
Linux 5.x versions, for instance, still use the old version of .

In facilities, priorities and log destinations are also used; read the preceding
section if you need to know more about these. The way they are used, however, is much dif-
ferent from standard . In Listing 10-6, you see an example of , which
defines how logging should be handled.

Listing 10-6. Handling Logging with

CHAPTER 10 SYSTEM LOGGING 227

CHAPTER 10 SYSTEM LOGGING228

CHAPTER 10 SYSTEM LOGGING 229

CHAPTER 10 SYSTEM LOGGING230

Caution On SUSE Linux, you’ll find the files and
. You should make all modifications to the

 file, and after making the modifications, run the command to write them to
. This procedure is used because an update procedure to SUSE may alter the

 file, which may cause you to lose all changes that you’ve made to it.

In a configuration, three elements are combined in the statement to define
where messages are logged to:

: Defines where messages are accepted from

: Specifies what exactly the log message should match

: Indicates where the message must be written to

To understand what’s happening on your configuration, it makes sense to read
the configuration file bottom up: at the bottom of the file, you’ll find the statement that
defines how logging should be handled, and in the upper parts of the configuration file, you
can find the different elements that make up this definition. Following is an example of such
a statement:

In this example, the first part that you see is the source specification, which is defined as
. This refers to a definition that is made earlier in the same file, which you can see here:

CHAPTER 10 SYSTEM LOGGING 231

As you can see, the definition by default accepts two sources: messages that are gen-
erated internally and messages for which the operating system uses the device to
process them. This definition handles all messages that are generated by your computer, but
does not accept any messages from other computers. However, you may also include these
easily. To accept messages from all computers, make sure the following line is enabled:

Alternatively, you can refer to messages that come from one host or a range of hosts by
mentioning the IP address of the host or the range from which you want this machine to
accept messages. For instance, you could enable messages from all IP addresses in the net-
work 192.168.1.0 by using the following:

Looking back at the example, the second part of the log definition defines the filter, which
in this case is , as shown here:

In a filter definition, you can indicate what level the message should come from and also
what facility should generate the message. As you can see in the preceding example, you can
also tell the filter not to handle messages that come from another specific filter. Filters in

 are very flexible. This is because you can also use a statement, which uses a
regular expression to tell to look for specific text. Following is an example of this:

In this filter, a match is used to look for a regular expression. The regular expression
defines that should handle all lines that start with the text , which enables
you in this case to specify a specific log target for the service. When building
configurations, you will in particular like this match functionality.

As the last part of your configuration, you’ll have to specify where to send the
messages. You do this by defining a log destination. Following is an example of a destination:

In destinations, you can use all log destinations that you’ve also seen in .
But here also, it is possible to be very specific. For instance, you can see that the example code
defines not only the name of the file that has to write, but also the user owner and
group assignments for that file.

CHAPTER 10 SYSTEM LOGGING232

Tip may look intimidating when you first start working with it. If you know it a little better, you
will find out that it is not that hard. I recommend you to study the example file thoroughly,
because it has all the examples you need to build your own configuration.

Sending Logs Yourself with
Also very useful when handling logs is the command. This command sends messages
to by default, which makes it a useful command to include in scripts where no default
logging is available. You can tell logger to use a certain priority, but normally you won’t; if used
in a environment, you’ll just employ a matching filter to handle messages that are
generated by the command. Using this command is very simple. For example, the fol-
lowing would write a message to your :

When using , you may like the option to mark every line you write to the log files
with a specific tag. This makes it easier for you to recognize such lines later on. To do this, use
the option . For instance, the command would tag the message
in the log file with , which makes it easier for you to on messages that you’ve written
with .

Rotating Old Log Files
Logging is good, but if your system writes too many log files, it can become rather problematic.
As a solution to this, you can configure the service. The service runs as
a daily job and checks its configuration files to see whether any rotation has to occur. In
these configuration files, you can configure when a new log file should be opened and, if that
happens, what exactly should happen to the old log file: for example, whether should it be
compressed or just deleted, and if it is compressed, how many versions of the old file should
be kept.

 works with two different kinds of configuration files. The main configuration
file is . In this file, generic settings are defined to tune how
should do its work. You can see the contents of this file in Listing 10-7.

Listing 10-7. Contents of the Configuration File

CHAPTER 10 SYSTEM LOGGING 233

The code in Listing 10-7 includes some important keywords. Table 10-1 describes these
keywords.

Table 10-1. Options

Option Description
 This option specifies that the log files should be created on a weekly basis.

 This option makes sure that four old versions of the file are saved. If the
 option is not used, old files are deleted.

 The old file is saved under a new name and a new file is created.

 Use this option to make sure the old log files are compressed.

 This option specifies the command that should be used for creating the
compressed log files.

 Use this command to specify what command to use to uncompress com-
pressed log files.

 This important option makes sure that the content of the directory
 is included. In this directory, files exist that specify how

to handle some individual log files.

As you have seen, the configuration file includes some generic code
to specify how log files should be handled. In addition to that, most log files have a specific

 configuration file in .

CHAPTER 10 SYSTEM LOGGING234

The content of the service-specific configuration files in is in general
more specific than the contents of the generic . In Listing 10-8, you can see
what the configuration script that handles log files for looks like.

Listing 10-8. Example of the Configuration for

Listing 10-8 demonstrates some additional options. Table 10-2 gives an overview of these
options and their meaning.

Table 10-2. Options in Service-Specific Files

Option Description
 Uses the date as extension for old versions of the log files.

 Specifies the number of days after which old log files should be removed.

 Specifies the number of times a log file should be rotated before being removed
or mailed to the address specified in the mail directive.

 Logs files that grow bigger than the size specified here.

 Does not rotate the log file when it is empty.

 If the log file does not exist, goes on to the next one without issuing an error
message.

 Truncates the old log file in place after creating a copy, instead of moving the
old file and creating a new one. This is useful for services that cannot be told to
close their log files.

 Specifies some commands that should be executed after performing the
 on the file.

 Denotes the end of the configuration file.

Like the preceding example for the log file, all other log files can have their own
 file. You can even create files for files that are not log files at all! More

options are available when creating such a file; for a complete overview, check the
 pages.

CHAPTER 10 SYSTEM LOGGING 235

Summary
In this chapter, you’ve learned how to handle logging. First, you’ve learned where you can
find the default log files on your system and how you can have a look at them. Next, you’ve
learned how to create your own or configuration. The last part of this
chapter has taught you how to configure log rotation to make sure that your computer’s
file system is not filled completely with log files by accident. The following commands have
been covered in this chapter:

: Legacy process used for logging files

: Newer process that offers more clever log services

: The way to see what’s happening in ,
the most important log file on your computer

: Command that you need to use on SUSE Linux to write changes that
you’ve written to the input file to the file /

: Useful tool that lets you write messages to

: Command that helps you to prevent log files from growing too big and
rotate them after a certain amount of time or once a given size has been reached

In the next chapter, you’ll learn how to configure networking on your computer.

C H A P T E R 1 1

Configuring the Network

Most Linux computers operate in a connected world. Therefore, configuring the network
board is of highest importance. In this chapter, you’ll first learn how to give your computer an
IP address and related information. You’ll also learn about some useful tools that will help you
in analyzing and troubleshooting a failing network connection. The last part of this chapter is
about Secure Shell (SSH), which helps you make secured connections to other computers.

A Quick Introduction to Computer Networking
Before looking at the specifics of network configuration, it’s important you first have a general
understanding of what it is all about. This section explains basic networking for people who
are new to the subject; it’s not a complete tutorial, but it tries to outline the most important
concepts of networking for people who don’t have much knowledge on the subject.

All networking starts with an address. The most basic address, which is on the network
card, is called a Media Access Control (MAC) address. Every network card has a MAC address.
This goes not only for the wired network card in your computer, but also for the mobile phone
that you use to browse the Internet. These MAC addresses are unique worldwide.

Although it is possible to communicate based solely on the MAC address, such a solution
would not be ideal. This is because a MAC address contains no information about where a
specific computer is on the network. The only way to have communication based on the MAC
address is by broadcasting to all computers in the network, querying them to find out which
has the MAC address you are looking for. This works for a small local network (referred to as a
LAN), but it doesn’t work for a computer that is thousands of miles away over the Internet.

The solution for this problem is in the IP address. IP addresses make worldwide commu-
nication between computers possible, as each IP address contains information about the local
computer (referred to as the node part of the IP address—the note before the section “Bring-
ing Interfaces Up and Down with ” explains more about this) as well as the network
the computer is on. Since each IP address includes this network information, it is possible to
address a computer at the other end of the world directly through an IP.

To connect different IP networks together, a router is used. This is a dedicated machine
that knows how to reach other IP networks. Most routers just know a few other networks and
contain a default route. This default route refers to all other IP network addresses. At the end,
most routed network traffic is handled by one of the backbone routers on the Internet. These
are huge machines that know how to find all IP network addresses.

237

CHAPTER 11 CONFIGURING THE NETWORK238

As IP addresses are in a numeric format (such as 179.237.39.66), which is not easy to
handle for humans, on the Internet, computers are addressed by their name instead of their IP
address. This name is translated into an IP address by a Domain Name Service (DNS) server.

To make sure your computer can communicate with other computers on the Internet,
your computer needs to have an IP address, and it needs to know where to find the default
router and the DNS servers. You can enter all this information manually (which you’ll learn
how to do later in this chapter), but in many cases, a DHCP server is used to hand out this
information automatically. If you are working on a workstation, your computer will by default
contact a DHCP server, and you’ll be fine. However, if you are an administrator who is respon-
sible for having a server up and running in your network, you’ll probably need to set all this
information yourself. The next sections teach you how.

Setting the IP Address
On installation, all Linux distributions work with DHCP to get an IP address. DHCP offers a
very convenient way of configuring the network card, as even simple Internet routers for home
usage have an embedded DHCP server. In some cases, however, you’ll need a fixed IP address.
Let’s see how this works.

Using
You can use to manage and monitor a network interface card. The command has
been around for years; although it’s not the most flexible command, it’ll still do the job. And
the biggest advantage: it’s a relatively easy command to use. If you use the command
without any parameters, you’ll see information about the current configuration of the network
cards in your computer. An example of this is in Listing 11-1.

Listing 11-1. The Command Can Show Your Current Network Configuration
Parameter.

CHAPTER 11 CONFIGURING THE NETWORK 239

Displaying Information with
As you have seen in Listing 11-1, the command provides different kinds of informa-
tion about a network card. It starts with the name of the protocol used on the network card.
The protocol is indicated by (for example) , which states that it is an
Ethernet network board. Almost all modern LAN interfaces will show you Ethernet as the
link encapsulation type, but on a WAN connection you may see other protocols such as PPP
instead. Then the MAC address is given as the (hardware address). This address is fol-
lowed first by the IPv4-related address information () and then the IPv6 address
information, if IPv6 hasn’t been disabled (). Then several statistics about the
network board are given. Pay special attention to the (received packets) and

 (transmitted packets) because you can see from these statistics what the network
board is doing and if any errors have occurred. Typically, there should be no errors here.

Note Currently, most computers use IP version 4 IP addresses. In version 4, approximately 4 billion IP
addresses can be addressed. However, since the protocol specification is inefficient, there are almost no
more free IPv4 addresses available. Therefore, IPv6 was developed (see). The most important
purpose of IPv6 is to make (many) more IP addresses available. Migration to IPv6 goes slowly, however, as
it requires quite a lot of work on the network infrastructure of companies that want to migrate. Linux offers
full support for IPv6, and most distributions even enable it by default. An IPv6 address is represented in hexa-
decimal way, as in this example: feb0:ff66:ab08:0963:badc:afe0:3796:0012. Compare this to the typical IPv4
address, which looks like 129.13.57.192.

Apart from the information about the physical network boards that are present in your
computer, you’ll also always see information about the loopback device (), which is the
network interface that’s used for internal purposes on your computer. Your computer needs
this loopback device because some IP-related services depend on it; for example, the graphi-
cal environment that’s used on Linux is written on top of the IP stack offered by the loopback
interface.

Configuring a Network Card with
Although your system is provided with an IP address upon installation, it’s important for you
to be able to manage IP address configuration on the fly, using the command. For-
tunately, it’s relatively easy to configure a network board in this way: just add the name of the
network board you want to configure followed by the IP address you want to use on that net-
work board (for example,). This command will configure
with a default class C subnet mask of 255.255.255.0, which indicates that the first three bytes of
the IP address are a part of the network address and that the last byte is the unique host identi-
fier within that network.

CHAPTER 11 CONFIGURING THE NETWORK240

Tip Not sure what device number is used? You can manage this via the mechanism. In the
file a mapping is made between the MAC address and
interface number of your network boards. So if you want the device to be presented as , this is the
place where you can change it. Just change the current name (e.g.,) in the name you want it to be, and
restart your computer to make the change effective.

If you need a custom subnet mask, add an extra parameter to , as in the com-
mand , which
configures the device with the given IP address and a 24-bit subnet mask. If you work with
a nondefault subnet mask, you have to specify the broadcast address that’s used to address
all nodes in the same network as well; the command just isn’t smart enough to real-
ize that you’re using a nondefault IP address and to calculate the right broadcast address
accordingly.

Note In the IP protocol, subnet masks are used to distinguish the network part from the node part of the
IP address. All IP addresses must have a subnet mask. To make working with IP easier, IP addresses do have
a default subnetmask; for instance, IP addresses starting with 192, such as 192.1.2.3, have the default sub-
net mask 255.255.255.0, which tells the IP stack that the first three bytes are used to address the network,
and the last byte only is used to address the node. In some situations, an administrator may choose to use
nondefault subnet masks, for instance, if he or she needs to address more than one network but doesn’t
have enough network addresses available. There are two ways to write the subnet mask that is to be used: in
the so-called dotted method (e.g., 255.255.255.0) or in the CIDR method. The latter uses a slash, followed by
the number of bytes that are in the subnet mask. Consult
for a more detailed explanation of subnet masks.

Bringing Interfaces Up and Down with
Apart from adding an IP address to a network board, you can use the command to
bring a specific network board up or down. For example, shuts down the
interface, and brings it up again with its default settings. This is useful if you
want to test a new configuration, but you’re not sure whether it’s really going to work properly.

Instead of using to bring the network card up and down, you can also use
and . These commands allow you to bring a network card up or down easily, without
changing the configuration of a given network board. For example, to bring a network board
down, use ; to bring it up again, use . In both cases, the default configu-
ration for the network card is applied.

CHAPTER 11 CONFIGURING THE NETWORK 241

Using Virtual IP Addresses with
In some cases, one network card may need multiple IP addresses. These are called virtual IP
addresses, and you can set them with . Using virtual IP addresses is useful if you are
configuring services on your computer that all need their own IP address. Think, for example,
of different virtual Apache web servers that are all reachable on their own IP address.

Note This doesn’t mean that to run multiple instances of Apache, you’ll always need a virtual IP address
configuration. Using virtual IP addresses is just one way of doing this.

You can use the virtual IP address either within the same IP address range or on a differ-
ent one. To add a virtual IP address, add where is a number after the name of the network
interface. For example, adds the address 10.0.0.10 as a virtual IP
address to . The number after the colon must be unique, so you can add a second virtual
IP address with , and so on. When you use the tool to
display the current configuration of your computer, you’ll see all virtual IP addresses that are
configured, as shown in Listing 11-2.

Listing 11-2. The Tool Shows Virtual IP Addresses As Well

CHAPTER 11 CONFIGURING THE NETWORK242

Using the Tool
You can use to display and change IP address information, but it’s not the only tool
available. A more flexible tool is . The tool has many options that allow you to manage
virtually all aspects of the network connection. For example, you can use it to configure an
IP address, but it manages routing as well, which is something that can’t do. When
using to change IP address information, you’ll need to change the routing
table. You’ll read more about this command further on in this chapter.

The first option you use with the command determines exactly what you want to
do with the tool. It is a reference to the so-called object; you can consider these objects the
secondary command level that determines more precisely what you want to do. Each of the
objects has different possibilities:

: Used to manage or display properties of a network device.

: Used to manage or display IPv4 or IPv6 network addresses on a device.

: Used to manage or display entries in the routing table.

: Used to manage or display rules in the routing policy database.

: Used to manage or display entries in the ARP cache. ARP gives information
about which IP address is used by which MAC address. By using this option, you can
modify the ARP information or display it.

: Used to manage or display IP tunnels. This is something you’ll only need when
setting up Virtual Private Network (VPN) connections over the Internet. VPN technol-
ogy is quite popular in enterprise environments to set up secure connections, but will
not be discussed any further in this book.

: Used to manage or display multicast addresses for interfaces. A multicast
address is a group address that you can add to a network card. Using multicast makes
it possible for a user or an application to address all nodes that provide the same func-
tionality simultaneously.

: Used to manage or display multicast routing cache entries.

: Used to monitor what happens on a given device.

For each of the objects, you’ll have to use options. The easiest way to learn about these
options is to use the command followed by the object followed by the keyword . For
example, provides information on how to use the command, as
shown in Listing 11-3.

CHAPTER 11 CONFIGURING THE NETWORK 243

Listing 11-3. The Command Gives Help on Configuring IP Addresses with the
Tool

It can be quite a challenge to find out how the help for the tool works, so I’ll give you
some pointers on this feature. To understand what you need to do, you must first analyze the

 lines. In the example in Listing 11-3, you see two of them: a usage line that starts with
, and another that starts with . Let’s have a look at the

first one, which allows you to add or remove an IP address.
The complete usage line as described by is

. So you can add or delete an IP address that is referred to by from a device
() that is referred to by . Now, a string is just a string, and that can be anything
(but normally will be something like). The part, which is the address that you’ll
assign to the string, offers more options, which are described in the next part. You can find
an explanation of that part in the next section of the help output:

.
In this line, the help explains that you have to use a or an statement, which may
be followed by several options like the address, the address, a , or a

. But from the help also follows that you can just simply add an address. There is no
further explanation of the other options, as this is information that you should know about
when configuring IP addresses. This means can’t tell you which IP address
you need on which Ethernet interface. Now that you understand how the help works, let’s
have a look at some of the different ways you can use the command.

Showing IP Addresses with
A common use of is to display information about the use of IP addresses for a given inter-
face. The command to use is , or just . Note that, if it is clear exactly
what you want and there can be no confusion between options, you can specify the options
used with the command in short form, such as , which accomplishes the same thing
as . Listing 11-4 gives an example.

CHAPTER 11 CONFIGURING THE NETWORK244

Listing 11-4. Showing Address Configuration with

If you look hard enough, you can see that the result of is almost the same
as the result of . It’s just presented differently. In particular the part about (nor-
mally your fixed network card) is interesting. First, you can see that broadcast and multicast
are enabled on this device, and that the network card is up. Next, it shows some other proper-
ties of the network card that are interesting if you need to troubleshoot the way a network card
is functioning. However, if you just need to assign an IP address, you typically wouldn’t care
about these parameters. Last, the lines starting with show the addresses that are assigned
to the network card, with their corresponding subnet masks.

Showing Device Attributes
Another simple use of the tool is to show device attributes, which you can do with the

 command. This command shows usage statistics for the device you’ve speci-
fied but no address information, which is kind of obvious as well. works on the link,

 on the IP address. Listing 11-5 provides an example of its output.

Listing 11-5. Use the Command for an Overview of Link Attributes

The information displayed by is related to the activity on the network board.
Of particular interest are the device attributes returned for each of the devices (they’re dis-
played in brackets right after the name of the device). You can see for instance the attributes

 for a normal network interface card. The attribute indicates
that the device is capable of sending broadcasts to other nodes in the network, the
attribute indicates that the device can also send multicast packets (a feature that is disabled in
some networks), and the attribute indicates that the device is working. The command also
shows all IP protocol attributes, such as the maximum transmission unit () that is used on
the interface.

CHAPTER 11 CONFIGURING THE NETWORK 245

Setting the IP Address
You can also use the tool to assign an IP address to a device. To do this, you could use a
command like . This command sets the IP address
for to 10.0.0.10. With this IP address, a 16-bit subnet mask is used, which is indicated by
the CIDR notation of the subnetmask 255.255.0.0 () directly behind the IP address. The
broadcast address is calculated automatically, which you can specify by adding to the
command. Once you have set the IP address with the tool, you can use the following com-
mand to check if it’s set correctly: (or just use , which gives you
the address configuration for all network cards).

You can add more than one IP address to a network interface when using the tool as
well. And it isn’t hard: just use , and 10.0.0.20
with its specified properties is added as a second IP address to (assuming that some other
IP address was already defined for this network card). There is a difference between secondary
IP addresses that are added with and the IP addresses that are added with the tool.
An address added with won’t show up when you use . So when using secondary IP
addresses, make sure you use the right tool to check their properties.

Note Even if is easier, it is a good idea to make a habit of using the command instead. You
can use the command with most of the utilities that you’ll be employing as well, and to display this infor-
mation properly, it just works better if you use the command.

Storing Address Configuration
When your computer boots, it normally loads its IP address configuration automatically. In the
next sections you’ll read how this works on the three most important Linux distributions.

Storing IP Address Configuration on Ubuntu
When your computer boots, it starts the script from . The script reads
the configuration that is stored in the directory, paying particular attention to
the file. This configuration file stores the entire configuration of
the network board. Listing 11-6 shows an example configuration for a computer that has two
Ethernet network cards.

Listing 11-6. Example Contents of the File on Ubuntu

CHAPTER 11 CONFIGURING THE NETWORK246

As you can see from the configuration file, the computer has activated three network
interfaces. The first is , and this is the loopback interface. It’s required for many services to
function, even if your computer has no network connection at all. For instance, the X server
that takes care of the graphical display on your computer uses the loopback interface to han-
dle internal communication. The loopback interface always uses the IP address 127.0.0.1.

In most cases, an Ethernet network card is used to connect with the rest of the world.
This network card is represented by the name if it’s the first, and names like and
so on for the next cards. The definition of each of the network boards starts with ,
in which is the number of the network interface. This line is used to start the network card
automatically when your computer boots. You can omit this line, but if you do so, you’ll
need to use the or commands as described earlier to start the network card by
hand. In most situations you don’t want to do that, so make sure that the line that starts with

 is used at all times.
Following the auto line, there is a definition of the interface itself. In this example, a com-

puter is configured with two static IP addresses. If you need DHCP on an interface, make sure
the line reads . Following that, there is the rest of the configu-
ration for the network card. You’ll need address, netmask, network, and broadcast in all cases.
The other options are optional.

Storing IP Address Configuration on Fedora
On Fedora, fixed IP address configuration is stored in the

 file. One file is created for each Ethernet interface. In Listing 11-7, you can see what
this file looks like.

CHAPTER 11 CONFIGURING THE NETWORK 247

Listing 11-7. Network Configuration As Stored on Fedora

In this example configuration file, you can see several parameters. You can change them
as needed and deactivate and activate the device after applying the changes with ,
followed by . Alternatively, you can use the tool to change
the parameters from a graphical interface. The following parameters are in the file:

: The device name. This should be the name of the hardware device.

: The MAC address of the device. Make sure that it is unique for all devices you
are using.

: Whether or not the device must be activated when your computer boots. You
normally want to set this parameter to .

: The default DNS search domain. If an incomplete DNS name is used (e.g., ping
linda), the default DNS search domain is appended.

: The specific boot protocol used, if any. Set this to DHCP if you want the net-
work card to obtain an IP address automatically from a DHCP server when activated.

: The netmask that you are using with the IP address on this interface.

: The IP address used by this interface.

: Whether or not an end user is allowed to activate and deactivate this interface.

: DNS information for the peer in a point-to-point setup.

: Whether or not you want to initialize the IPv6 protocol.

: As an alternative to manual device configuration, you can configure a
network device with the network manager applet. This parameter tells your system
whether this applet should be used.

: The IP address of the default router that is needed to connect to computers on
other networks.

: The protocol used by this network card.

CHAPTER 11 CONFIGURING THE NETWORK248

Storing IP Address Configuration on SUSE
On SUSE Linux, the network information is stored in more or less the same way as on
Fedora. The name of the configuration file is , in which

 represents the MAC address the network card uses. Listing 11-8 shows what the SUSE
configuration file looks like. In this listing, you can see that the contents of the file

 is requested. In the file name, backslashes are used to make sure that
the next character is not interpreted by the shell. You can change the SUSE configuration file
by hand, or by using the YaST configuration tool.

Listing 11-8. Network Card Configuration As Stored on SUSE

In the SUSE configuration file, multiple parameters are stored. A short explanation of each
of them follows:

: Indicates whether DHCP should be used or whether the interface has a
static IP address assignment. Use either DHCP or STATIC.

: Specifies the broadcast address of the network.

: Specifies command arguments that will be interpreted by the
 utility. lets you set specific parameters, such as the link speed, duplex

mode, or receive buffer size of your network card. You can read more about this utility
in the section “Tuning the Network Card with ” later in this chapter.

: Specifies which IP address is to be used.

: Specifies the maximum transmission unit. By default on Ethernet, it is ; set it
to to enable jumbo frames, which are useful on links that work with large packets.

: Specifies a name for the interface. Enter a unique name here.

 * : Indicates the netmask in dotted notation (255.255.255.0 and not /24).

: Allows you to specify the address of the network. This field is optional.

: Specifies the IP address of the remote node in a peer-to-peer
connection.

CHAPTER 11 CONFIGURING THE NETWORK 249

: Indicates whether this interface must be started automatically or manually.

: Contains a unique ID that is used by the YaST management utility.

: Indicates whether or not an end user is allowed to stop and start this
interface.

: Contains a reference to the hardware location of the NIC.

Configuring Routing
You’ve read about how a network interface is provided with an IP address. But, to be com-
pletely functional on the network, you have to specify some routes as well. These routes allow
you to communicate with computers on other networks, and, conversely, they allow comput-
ers on other networks to communicate with your computer.

As a minimal requirement, you need a default route. This entry specifies where to send
packets that don’t have a destination on the local network. The router used for the default
route is always on the same network as your computer; just consider it to be the door that
helps you get out of the local network. Your computer typically gets the information about
the default router that it should use from the Ubuntu file,

 on Fedora, or on
SUSE. To set the default route yourself, two tools can be used: the tool and the utility.
In the next two sections, you’ll read how to do this.

Managing the Default Route with
The old command to set the default route is . If no options are used, it will display a list
of all routes that are currently defined on this host. Listing 11-9 provides an example. When
using the command without options, it will always try to resolve the name for a given IP
address, which takes some time. If you don’t want any name resolution to be performed, use
the option , which makes the command a lot faster.

Listing 11-9. Use the Command to Get an Overview of All Routes That Are
Currently Configured

In the output of the command all information necessary for the routing process is
provided, as you can see in Listing 11-9. The first column provides the destination, which is
the network or host that a route is defined for. Typically, these are networks that your com-
puter is connected to with its local interfaces and the default route. Next is the gateway, which
is the router that needs to be contacted to reach the specified destination. An asterisk () in
this field indicates that the local computer is the gateway for that destination. If an external
router is used as the destination, you’ll see the IP address (or name) of that router. Next is the

CHAPTER 11 CONFIGURING THE NETWORK250

, which is the subnet mask used on the specified destination. Then come the ,
, , and columns, all of which reveal more detailed information about this route.

Finally, the column reveals what network interface is used to route packets.
To specify a route, you need to provide a minimum of two pieces of information: the IP

address or name of the network you want to add, and the IP address of the default gateway.
All the other information is added automatically. For example, if you want to specify that the
router with IP address 192.168.1.254 should be used as the default gateway, use the command

.
If you need to change the default gateway, you should be aware that you first have to

remove the old entry for this default gateway. Use the command to do this. For
example, to remove the current setting for the default gateway, use .

Managing the Default Route with the Tool
If you know what information to enter when defining a route, it’s easy to do it with either the

 or the tool. Only the syntax is different. To set the default gateway to 192.168.1.254
using the tool, use the command. This command
makes sure that all packets sent to nonlocal destinations are sent through 192.168.1.254. Like-
wise, you can delete the default route with .

Storing Routing Information
To make sure that your computer still knows the default route after a reboot, you should
store it somewhere. In the next three sections, you’ll read how to do this for the three main
distributions.

Ubuntu
When you enter information, such as the default gateway, from the command line, it will be
lost the next time you reboot your computer. To make sure that the information remains after
a reboot, store it in the file on Ubuntu. This file is read every time the
network is activated. The entry used in this file to store the default route isn’t complex:

If you have more than one network card in your computer, it is enough to specify the
information about the default route once only.

Fedora
On Fedora also, you specify the address of the default route in the file that stores the configu-
ration of your network interface. See Listing 11-7 earlier in this chapter for an example. If you
have more than one network card in your computer, you do not need to enter this information
in the configuration file of each network card.

CHAPTER 11 CONFIGURING THE NETWORK 251

Resolving DNS Names to IP Addresses
If you want to manually configure a network connection as the last part, you need to specify
what DNS name server to use. The DNS Server makes sure that names that are used on your
local network and the Internet can be translated to the IP addresses your computer needs to
make a connection.

To store the DNS information, you use the so-called DNS resolver. This DNS resolver is
stored in the file; there is no command-line utility to configure it. Typically,
the file will contain the IP address of at least two DNS name servers and a
search domain. The name server specifications indicate what DNS name computer should
be contacted to translate DNS names to IP addresses and vice versa. Typically, your Internet
provider will get you this information. Specify at least two name servers so that if the first one
cannot be reached, the second one can do the job.

The search domain specifies what domain name should be appended if an incomplete
host name is used. It makes sense to use the name of your default DNS domain as the search
domain. So if you computer’s name is computer.example.com, set the search domain name to
example.com. Listing 11-10 is an example of the content of the file.

Listing 11-10. Example of the File

In this example, you see that name server 192.168.1.10 is used as the default name server,
and all DNS requests will be sent to it. If this server cannot be reached, only then will the sec-
ond server in the list (193.79.237.39) be contacted. The third line of the Listing 11-10 example
specifies the search domain. For example, if a user uses the command , which
includes an incomplete host name, the name of the domain specified with the search option
in is added automatically to it, so in this case the packet would be sent to ftp.
example.com.

The Role of the File
Most people take it for granted that DNS resolves host names to IP addresses, but this isn’t
necessarily so. Every Linux computer has the file that determines what
exactly should happen when translating a host name to an IP address and vice versa. This file
specifies many things (such as user configuration, which you read about in Chapter 6), but
only the following lines are important for resolving host names:

These two lines specify that, when resolving host names as well as network names, the
(local) files should be searched first, and that the DNS subsystem should be used only if
the files have no information about the given host. Thus, an administrator can make sure
that frequently accessed host names are resolved locally, where the DNS is contacted only

CHAPTER 11 CONFIGURING THE NETWORK252

when the files don’t have information about a particular host. The most important file
used for resolving names to IP addresses is the file, which is the file referred to
by files on the line in .

Using the File
One of the oldest ways to resolve host names to IP addresses (and vice versa) is to use the

 file. It’s rather primitive because you have to maintain the file on every single com-
puter where you need it, and no synchronization of entries in this file is established between
computers. But it’s also a very efficient way to supply information that needs to be available
locally.

Note To resolve the problem of decentralized management, the Network Information Service (NIS, for-
merly known as Yellow Pages) was invented by Sun Microsystems. Nowadays, it’s hardly ever used anymore,
because most companies keep their hosts-related information in DNS.

Using the file makes resolving names faster and reduces Internet traffic, and
you can use it to add any host names that need to be available only locally. Listing 11-11 shows
example contents of this file.

Listing 11-11. Example of the File

As you can see, the contents of this file are rather simple. First, you specify the IP address
of the host, which can be an IPv4 or an IPv6 address. If you don’t use IPv6, you can keep out
the last six lines. Next, the fully qualified host name of the host is specified. This is the name of
the host itself followed by its DNS suffix. Last, the short host name is used. Alternatively, you
can just provide the IP address followed by the name of the host you want to add, such as in
the following line:

CHAPTER 11 CONFIGURING THE NETWORK 253

On a modern Linux computer, it’s not necessary to set up except for local
name resolving. Network name resolving is typically managed in DNS. So you’ll always need
your own host name and IP address in this file. This is configured automatically when install-
ing your computer.

Tuning the Network Card with
At this point you know how to configure IP-related parameters. The network card itself also
has settings that you may need to modify, and you’ll use the command to do this. With
this utility, you can change network board properties like link speed and duplex mode. Don’t
overestimate this tool though. Some Ethernet cards are not supported, and the only way to
change settings on those may be through the network board’s BIOS settings. Let’s start by dis-
playing some information: issue to see an overview of driver properties that
are currently used, as shown in Listing 11-12.

Listing 11-12. The Command Provides an Overview of Driver Properties

To change duplex settings and link speed on your network board, you’ll use the option,
followed by one of these arguments:

: This option changes the speed. Valid options are , , and .

: This option changes the duplex settings. Set it to or .

: This specifies what port to use. This option is used for network interfaces with
different ports available (which is not very common). Valid choices are , , , ,
and .

: This option indicates whether you want to use autonegotiation to discover the
settings that are used on the network.

So, for example, if you want to change the settings of your network card to full duplex
and a link speed of 1000 Mbps, use . Now there
is a problem when using like this: you need to enter these settings again the next
time you start your computer. Only SUSE offers a solution for this problem; on SUSE you
can store the configuration parameters in the configuration file for your network
card. You have seen this in Listing 11-8. On other distributions that don’t offer such a solu-
tion, you can include the command with all the parameters you need in the

 script. Doing this, you’ll make sure that settings are applied after
a reboot as well.

In addition to the option with , which gives you a brief summary about your
network board, are some other useful options. For instance, you can get some very detailed
statistics about your network board when using as you can see in Listing 11-13.

CHAPTER 11 CONFIGURING THE NETWORK254

Listing 11-13. Gives You Very Detailed Statistics About Your Network Card

CHAPTER 11 CONFIGURING THE NETWORK 255

Analyzing Network Connections
Once you have finished the setup tasks I’ve just described, you should have a working network
connection. But, even if it’s working fine right now, you may at some point need to perform
some tuning and troubleshooting, and that’s exactly what this section is about. Here, you’ll
learn how to test that everything is working the way it should and how to monitor what is hap-
pening on the network itself, as well as on the network interface. The tools I’m talking about in
this section are the top-notch troubleshooting tools.

Testing Connectivity
After configuring a network card, you want to make sure it’s working correctly. For this, the

 command is your friend, and more so because it’s easy to use: enter the command fol-
lowed by the name or address of the host you want to test connectivity to, such as

. This forces to start continuous output, which you can interrupt by using the
Ctrl+C key sequence. You can also send a limited number of packets; for example, the com-
mand sends just three packets to the specified host. If you use
in a clever way, you can test a lot of things with it. I recommend using it in the following order:

 1. Ping the localhost. If you pass this test, you’ve verified that the IP stack on your local
machine is working properly.

 2. Ping a machine on the local network by using its IP address: if this works, you’ve veri-
fied that IP is properly bound to the network board of your computer and that it can
make a connection to other nodes on the network. If it fails, you need to check the
information you’ve entered with the or commands; you may have made
an error entering the subnet mask for your network interface.

 3. Ping a machine on the Internet using its IP address. A good bet is 137.65.1.1, which is a
DNS server that hasn’t failed me in the last 15 years. Of course, you can use any other
host as long as you know its IP address. If the ping is successful, you’ve verified that the
routers between the localhost and the destination are all working. If it fails, there’s an
error somewhere in the routing chain. Check or on your local-
host to see if the default route is defined.

 4. Ping a machine on the Internet using its DNS name. If this succeeds, everything is
working. If this step fails (but test 3 was successful), make sure you’ve entered the
name of the DNS server that should be used in . If this is okay, check
to see whether your DNS server is working.

CHAPTER 11 CONFIGURING THE NETWORK256

In many cases, you’ll use the command without options. But some options can be
useful, and these are listed in Table 11-1.

Table 11-1. Useful Options

Option Description
 Specifies the number of packets to be sent. The command terminates auto-

matically after reaching this number.

 Specifies the name of the network device that should be used. Useful on a com-
puter with several network devices.

 Specifies the number of seconds to wait between individual ping packets. The
default setting is 1 second.

 Sends packets as fast as possible, but only after a reply comes in.

 Sends packets without waiting for a reply. If used with the option, this may
cause a denial-of-service attack on the target host, and the host may stop func-
tioning properly or even crash. Apart from the unknown harm that this may do
to the target computer, you may find yourself blacklisted or even charged with a
criminal offense. Because this is such a very dangerous option, only the user root
is allowed to use it.

 Sets the time to live (TTL) for packets that are sent. This indicates the maximum
number of routers that each packet may pass through on its way to a destination.
The TTL is decremented by one by each router it passes until the TTL becomes 0,
which means that the packet won’t be routed any more.

 Sends packets to the broadcast address of the network. This prompts a reply from
every host that’s up and allowed to answer to ping packets. Don’t use this unless
you have a very good reason to use it, as this command generates large numbers
of packets on your network.

Note To protect against a denial-of-service attack, many hosts are configured not to answer a ping
request. Therefore, when testing connectivity, make sure that you use a host that’s allowed to answer.

The command is not just used to test that a connection can be established; you
can also use it to check the round-trip delay between your computer and a given host. The
elapsed time is an important indication of the quality of the network connection. To check
the round-trip delay, have a look at the parameter that’s listed in the result of the
command. Listing 11-14 provides an example in which is used to send four packets to

.

CHAPTER 11 CONFIGURING THE NETWORK 257

Listing 11-14. Testing Connectivity to

Testing Routing
If you can ping your default router but you can’t ping a given host on the Internet, it’s probably
obvious that something is wrong with one of the routers between your network and the desti-
nation host. You can use the command to find out exactly where things are going
wrong. The command uses the TTL value of the UDP datagrams it sends out.

Note A datagram is a packet sent over the OSI model network layer.

The idea is that, when the TTL value reaches 0, the packet is discarded by the router, and
a message is sent back to the sender. When starting, uses a TTL value of 0, which
causes the packet to be discarded by the very first router. This is how identifies the
first router. Next, it sends the packet to the target destination again, but with a TTL of 1, which,
as you can see, causes the packet to be discarded by the second router. Things continue in this
manner until the packet reaches its final destination.

To use , you normally put the host name as the argument, such as
. It’s possible as well to use the IP address of a host, which will produce a result

as shown in Listing 11-15.

Listing 11-15. Testing a Network’s Route with

CHAPTER 11 CONFIGURING THE NETWORK258

With the command, you’ll see every router that’s passed. For each router, the
name of the router is displayed, followed by its IP address and then the round-trip times of
the three packets that were sent to that router. You’ll often see that a router replies with only
a string of three asterisks (), which indicates that the router forwards packets normally
but is configured not to reply to ping packets for security reasons.

Testing Availability of Services
When the and commands show that everything is working, you’re the proud
owner of a working network interface. Next you can test the availability of two kinds of ser-
vices: those on your computer itself and those on external computers. Because so many tools
are available to test service availability, I won’t try to cover them all, but I do want to discuss
two of the most popular. First is the tool, which you can use to test for the availability
of services on the host where you run the command. And second is , which is used to test
availability on other hosts.

Caution Some administrators consider any use of on their hosts or their network as an attack
against their security, and therefore won’t allow it. I once used it in a hotel room in the United States to see if
my server in Amsterdam was still offering all its services, and the hotel network shut me off immediately. In
these circumstances, it can be a real pain to get your connection back, so be careful.

Using for Services on Your Computer
If you want to know what services are available on your computer and what these services are
doing, the command is an excellent choice. However, because many of its options
require you to be root, I recommend that you use as root only. To see the most useful

CHAPTER 11 CONFIGURING THE NETWORK 259

information offered by , use the options, which make sure that you see infor-
mation about programs connected to ports () and what ports are actually listening ().
Other options show you everything there is to show (), do that for TCP () as well as UDP
(), without translating IP addresses to DNS names (), or with extended information ().

If you think that offers too much information, use
instead. The results are slightly less verbose, which makes it easier to get the data you really
need. Listing 11-16 shows the first screen of output generated by .

Listing 11-16. The Command Provides an Exhaustive Overview of
Everything Happening on Your Computer

CHAPTER 11 CONFIGURING THE NETWORK260

As you can see, the command yields a lot of information when used with the
 options. Table 11-2 explains the information displayed in Listing 11-16.

Table 11-2. Information Offered by

Item Explanation
 The protocol that’s used. Can be TCP or UDP.

 The number of packets waiting in the receive queue for this port at the mo-
ment that was used.

 The number of packets waiting to be sent from this port at the moment that
 was used.

 The local socket address (the local IP address followed by the port number
that’s used).

 The address of the foreign host (if any) that currently has an open connec-
tion to this host.

 The current state of the protocol connected to the mentioned port.

 The numeric user ID of the user with whose permissions the process was
started.

 The inode(s) of files that currently are opened by the process.

 The PID and name of the program that has currently claimed the men-
tioned port.

As you can see, provides a complete overview of what’s happening on your com-
puter. It’s especially useful if you get error messages like “port already in use.” In combination
with the utility, it’s easy to learn what port program is currently holding a port open and,
if required, to terminate that program. For example, to find out what program is currently
occupying port 80, use . This returns a line like

From this line, you can see that an Apache web server with a PID of 3965 is currently lis-
tening on port 80. Want to remove it and you don’t know how to do that in a normal way? Use

 and it’s gone.

CHAPTER 11 CONFIGURING THE NETWORK 261

Using to Check Services on Remote Computers
The command is a useful tool, but it works only on the host where you run it. Some-
times, when you cannot connect to a given service on a given host, you’d like to know if the
service is available at all. You can do this with the command. Like most powerful network
tools, also works best if you are root.

The command is an expert tool that helps you find out exactly what’s happening at
another host. If you use it properly, the owner of that host will never even know that you were
there. However, you should be aware that running a so-called port scan to monitor open ports
on a given host is considered an intrusion by many administrators, so be careful what you’re
doing with it because you may run into trouble if you use on a host that isn’t yours, and
you haven’t notified its owner.

If you really want to keep things simple, just use without arguments. For example,
 performs a basic scan on host 192.168.1.69 to find what common ports are

open on it. This gives good results for day-to-day use; see Listing 11-17 for an example.

Listing 11-17. The Command Shows You What Services Are Offered by a Host

A very common reason why the test shown in Listing 11-17 could fail is that normally
tries to ping its targets first. On many hosts, commands are administratively prohibited,
dropped, or ignored. And these hosts won’t reveal anything when you issue on them.
To make sure that they’re working even when you cannot ping, use the option to disable

. Another useful option is , which tries to guess the operating system that is on the tar-
get host. And, if you want to make sure that both TCP and UDP ports are scanned, you should
include and as well. So the command becomes somewhat longer:

 would scan the target host with all those options. You’ll notice that, because
has to do a lot more work with these options, it takes considerably longer for the command to
complete. Listing 11-18 shows the result of this scan.

CHAPTER 11 CONFIGURING THE NETWORK262

Listing 11-18. You Have Lots of Options to Specify How Should Do Its Work

In the last command, you’ll most likely get a better result, but there’s still a problem:
the scan is rather noisy, and so the target host may log messages to tell its owner that you’re
using on it. There’s nothing wrong with this in most cases, but if you really want to put

 through a thorough security test, you should use some stealth options like (FIN-
scan), (X-mas tree scan), or (NULL-scan). All of these use specific properties of the
IP protocol to perform a stealth scan so that the target host never knows you were there. The
disadvantage of these scan options is that they don’t always work! On many modern operat-
ing systems, you’ll find that the operating system ignores them, so you’ll end up waiting a
long time without a result.

Connecting Remotely with Secure Shell
If you’re in a network with multiple Linux computers, you’ll occasionally need to make a shell
connection to another computer. Secure Shell is just made for that. It also replaces the older
telnet utility, which was used in the days that security was not the issue it is today. The essence
of SSH is its security, and public and private keys naturally play an important role in it. On first
making contact, the client and the host exchange public and private keys. In this communica-
tion, the host creates a key based on its private key—the so-called host key—and uses this as

CHAPTER 11 CONFIGURING THE NETWORK 263

its proof of identity. When connecting, the host sends its public key to the client. If this is the
first time the client has connected to this host, the host replies with the message that shown in
Listing 11-19.

Listing 11-19. Establishing an SSH Session with an Unknown Host

If the client trusts that this is really the intended host, it should answer yes to the request,
in which case the host is then added to the file in the home directory of
the user who initiated the SSH session. The next time the client connects to the host, this file
is checked to see whether the host is already known. The check is based on the public key
fingerprint of the host, which is a unique checksum related to the public key of the host. The
connection is established only if this check matches the name and public key of the host that
the client is connecting to. If these two pieces of data don’t match, it’s very likely that the host
the client is trying to connect to isn’t the intended host, and the connection is refused.

Once the identity of the host you want to connect to is established, a secured channel is
set up between the client and host. These secured channels are established by a session key,
which is an encryption key that’s the same on both the host and the client and that encrypts all
data sent between the two machines. The client and the host negotiate this session key based
on their public keys. One of the things determined in this negotiation is the protocol that
should be used. For example, session keys can use different encryption protocols like 3DES,
Blowfish, or IDEA.

After establishing the secured channel, the user on the client is asked for credentials: if
nothing is configured, a prompt asks the user to enter his or her username and password.
Alternatively, the user can authenticate with his or her public/private key pair, thus proving he
or she really is that user, but some more things have to be configured before that can happen.

All this may sound pretty complicated, but the nice thing is that the user doesn’t notice
any of it. The user just has to enter a username and a password. If, however, you want to
move beyond simple password-based authentication, it’s necessary to understand what’s
happening.

Working with Public/Private Key Pairs
The security of SSH relies on the use of public/private key pairs. By default, the client tries to
authenticate using RSA or DSA key pairs. To make this work, the host must have the client’s
public key, which is something that you have to configure by hand, as you’ll see later. When
the client has a public/private key pair, it generates an encrypted string with its private key.
If the host is able to decrypt this string using the client’s public key, the client’s identity is
authenticated.

CHAPTER 11 CONFIGURING THE NETWORK264

When using public/private key pairs, you can configure different things. First, the user
needs to determine what cryptographic algorithm he or she wants to use. For this purpose, he
or she can choose between RSA and DSA (of which DSA is considered stronger). Next, the user
has to decide whether to protect his or her private key with a passphrase.

Using a passphrase is important because the private key really is used as the identity of
the user. Should anyone steal this private key, it would be possible to forge the identity of the
key’s owner, and, for that reason, it’s a very good idea to secure private keys with a passphrase.

Working with Secure Shell
Basically, Secure Shell is a suite of tools that consists of three main programs and a daemon,

. On Fedora/Red Hat and SUSE, SSH is installed by default. On Ubuntu, you’ll need to
install it first, using .

In SSH, three tools are available: , , and . The first, , is used to establish a
secured remote session. Let’s say that it’s like telnet but cryptographically secured. The sec-
ond, , is a very useful command that’s used to copy files to and from another computer
where the SSH process is running. The third, , is a secure FTP client interface. Using it
establishes a secured FTP session to a computer that’s running the .

Two of the best things of all of these tools are that they can be used without any prepara-
tion or setup, and you can set them up to work entirely according to your needs. They are at
once easy-to-use and very specialized tools.

Using the Command
The simplest way to work with SSH is to just enter the command, followed by the name of
the host you want to connect to. For example, to connect to the host ,
use .

Depending on whether you’ve connected to that host before, it may check the host cre-
dentials or just ask for your password. The command doesn’t ask for a username because
it assumes that you want to connect to the other host with the same identity that you’re
logged in with locally. If you’d rather log in with another user account, you can indicate this
intention in one of two ways: you can specify the username and follow it with an ampersand
when establishing the connection to the remote host, or you can use the option followed
by the name of the user account you want to use to connect to the other host. So, basically,

 and accomplish the
same thing. After establishing a session, use the command (or Ctrl+D) to close the session
and return to your own machine.

Now, it seems a lot of trouble to log in to a remote host if you just need to enter one or
two commands. If you face this situation often, it’s good to know that you can just specify the
name of the command at the end of the command:

 provides a long listing of files that user linda has in her home directory at the other host.
Of course, this isn’t the most realistic example of how to use “one command only” sessions to
a host, but you probably can see its value when working from shell scripts.

CHAPTER 11 CONFIGURING THE NETWORK 265

Using to Copy Files Securely
The command is another part of the SSH suite that you’ll definitely like. It’s used to copy
files securely. If you know how the command works, you’ll know how to handle . The
only difference is that it requires a complete network path name including the names of the
host and the file you want to copy. Also, if you don’t want to use the name of the user you are
currently logged in as, a username should be included as well. Consider the following example:

This easy command copies to and places it with the
name in the directory on that host. Of course, it’s possible to do the opposite as
well: copies from a
remote host with the name to the localhost. You’re going to like the

 option as well, because it allows you to copy a complete subdirectory structure.

Using for Secured FTP Sessions
As an alternative to copying files with , you can use the command. This command is
used to connect to computers running the program and to establish a secured FTP ses-
sion with it. From the command, you have an interface that really looks a lot like the
normal FTP client interface. All the standard FTP commands work here as well, with the only
difference that, in this case, it’s secure. For example, you can use the and commands to
browse to a directory and see what files are available and, from there, use the command to
copy a file to the current local directory. Once you’ve opened the interface, you can use
the following FTP commands to copy files to and from your computer:

: Copies a file from your computer to another computer

: Copies multiple files from your computer to another computer

: Copies a file from another computer to your computer

: Copies multiple files from another computer to your computer

Before establishing an FTP session to another computer, use the command on your
local computer to change to the directory you want to copy files to or from. Your home direc-
tory might be a decent location. When using , , , and to transfer files, this
directory is used as the default local directory. To establish an session to the computer
named nuuk, you would first use the following command:

This command assumes that you want to connect to the remote host using the same user
account. If you want to connect with another user account, put it in front of the name of the
remote server, as in the following command:

You’ll now see an prompt and will be in the root directory that was provided for the
user on the remote host. Here, you can use standard Linux commands such as to show a

CHAPTER 11 CONFIGURING THE NETWORK266

list of files, to print your working directory, and to change to another directory. You can
now transfer files between your computer and the remote computer. For instance, the follow-
ing command would use to copy the file to the current directory on your local
computer:

When finished copying files, use the or the command to terminate the
session.

Configuring SSH
In an SSH environment, a node can be client and server simultaneously. This means that your
computer can provide SSH services to others, and use SSH to connect to others at the same
time. So, as you can imagine, there’s a configuration file for both of these aspects. The client is
configured in , and the host uses . Setting options
for the host isn’t hard to understand: just put them in the configuration file for the daemon

. For the client settings, however, the situation is more complicated,
because there are several ways of overwriting the default client settings:

 file is applied to all users initiating an SSH session.
An individual user can overwrite these if he or she creates a file in the
directory of his or her home directory.

 has to be supported by the file on the
host you are connecting to. For example, if you’re allowing password-based authenti-
cation from the client side but the computer doesn’t allow it, it won’t work.

Table 11-3 is an overview of some of the most useful options that you can use to configure
the client in .

Table 11-3. Useful Options in

Option Description
 This option restricts the following declarations (up to the next

keyword) to a specific host. Therefore, this option is applied on a host
that a user is connecting to. The host name is taken as specified on the
command line. Use this parameter to add some extra security to spe-
cific hosts. You can also use wildcards such as and to refer to more
than one host name.

 If this option is set to (the default value), SSH will check the host IP
address in the file. Use this as a protection against DNS
or IP address spoofing.

 This option, which takes multiple arguments, is used to specify the or-
der in which the different encryption algorithms should be tried to use
in an SSHv2 session (version 2 is the default SSH version nowadays).

 The / values for this option specify whether to use compression
in your SSH session. The default is .

CHAPTER 11 CONFIGURING THE NETWORK 267

Option Description
 This very useful option specifies whether X11 connections will be

forwarded. If set to , graphical screens from an SSH session can
be forwarded through a secure tunnel. The result is that the
environment variable that determines where to draw graphical screens
is set correctly. If you don’t want to enable X forwarding by default, use
the option on the command line when establishing an SSH session.

 This option specifies that a TCP/IP port on the local machine is
forwarded over SSH to the specified port on a remote machine. (See
“Generic TCP Port Forwarding” later in this chapter for more details.)

 Use this option to specify the level of verbosity for log messages. The
default value is . If this doesn’t go deep enough, , ,

, , and provide progressively more information.

 Use this option to specify whether or not you want to use password au-
thentication. By default, password authentication is used. In a secure
environment in which keys are used for authentication, you can safely
set this option to to disable password authentication completely.

 This option specifies the protocol version that SSH should use. The
default value is set to (which indicates that version 2 should be
used first and, if that doesn’t work, version 1 is tried). It’s a good idea
to disable version 1 completely because it has some known security
issues.

 Use this option to specify whether you want to use public key–based
authentication. This option should always be set to the default value
() because public key–based authentication is the safest way of
authenticating.

The counterpart of on the client computer is the file on the host.
Many options that you can use in the file are also available in the file.
However, some options are specific to the host side of SSH. Table 11-4 gives an overview of
some of these options.

Table 11-4. Important Options in

Option Description
 Use this option to specify whether you want to allow

clients to do TCP port forwarding. This is a very useful
feature, and you’ll probably want to leave it at its default
value ().

 Use this option to specify the port that the SSH process
is listening on. By default, is listening on port 22. If
the SSH process is connected directly to the Internet, this
will cause many people to try a brute-force attack on your
host. Consider running the SSH process on some other
port for increased security.

 Use this option to specify whether you want to allow root
logins. To add additional security to your host, consider
setting this option to the value. If set to , the root user
has to establish a connection as a normal user and from
there use to become root or use to perform certain
tasks with root permissions.

Continued

CHAPTER 11 CONFIGURING THE NETWORK268

Table 11-4. Continued

Option Description
 Use this option to specify whether you want to allow

users to log in with an empty password. From a security
perspective, this isn’t a very good idea, and so the default

 value is suitable in most cases. If, however, you want to
run SSH from a script and establish a connection without
entering a password, it can be useful to change the value
of this parameter to .

 This option specifies whether users are allowed to log in
using passwords. If you want to add additional security to
your host by forcing users to log in with public/private key
pairs only, give this parameter the value .

 Use this option to specify whether you want to allow cli-
ents to use X11 forwarding. On most Linux distributions,
the default value for this parameter is .

Using SSH Key-Based Authentication
Now that you know all about the basics of SSH, let’s look at some of the more advanced
options. One of the most important is key-based authentication, which SSH uses via public/
private key–based authentication. Before diving into the configuration of key-based authenti-
cation, let’s first have a look on how these keys are used.

A Short Introduction to Cryptography
In general, you can use two methods for encryption: symmetric and asymmetric. Symmetric
encryption is faster but less secure, and asymmetric encryption is slower but more secure. In a
symmetric key environment, both parties use the same key to encrypt and decrypt messages.
With asymmetric keys, a public and a private key are used, and this is the important technique
that’s used for SSH.

If asymmetric keys are used, every user needs his or her own public/private key pair, and
every computer needs a pair of them as well. Of these keys, the private key must be protected
at all times: if the private key is compromised, the identity of the owner of the private key is
compromised as well. In short, stealing a user’s private key is like stealing that user’s identity.
Therefore, a private key is normally stored in a very secure place where no one other than its
owner can access it; typically this is in . The public key, on the other hand, is available
to everyone.

Public/private keys are generally used for three purposes: encryption, authentication, and
nonrepudiation.

To send an encrypted message, the sender encrypts the message with the public key of the
receiver who can decrypt it with the matching private key. This scenario requires that, before
sending an encrypted message, you have the public key of the person you want to send the
message to.

CHAPTER 11 CONFIGURING THE NETWORK 269

The other options are to use public/private keys for authentication or to prove that a
message has not changed since it was created. This method is known as nonrepudiation. In
the example of authentication, the private key is used to generate an encrypted token, the
salt. If this salt can be decrypted with the public key of the person who wants to authenti-
cate, that proves the host really is dealing with the right person, and access can be granted.
However, this technique requires the public key to be copied to the host before any authen-
tication can occur, which is also the case when keys are used to prove that a message hasn’t
been tampered with.

Using Public/Private Key–Based Authentication in an SSH Environment
When SSH key-based authentication is used, you must make sure that, for all users who need
to use this technology, the public key is available on the hosts they want to log in to. When
logging in, the user creates an authentication request that’s signed with the user’s private
key. This authentication request is matched to the public key of the same user on the com-
puter where that user wants to be authenticated. If it matches, the user is allowed access; if it
doesn’t, user access is denied.

Public/private key–based authentication is enabled by default on all major Linux distribu-
tions, so it’s only when no keys are present that the computer prompts users for a password.
The following steps provide a summary of what happens when a user tries to establish an SSH
session with a host:

 1. If public key authentication is enabled (the default), SSH checks the directory in
the user’s home directory to see whether a private key is present.

 2. If a private key is found, SSH creates a packet with some data in it (the salt), encrypts
that packet with the private key, and sends it to the host. The public key is also sent
with this packet.

 3. The host now checks whether a file with the name exists in the home
directory of the user. If it doesn’t, the user can’t be authenticated with his or her keys.
If the file does exist and the public key is an allowed key (and also is identical to the key
that was previously stored on the host), the host uses this key to check the signature.

 4. If the signature is verified, the user is granted access. If the signature can’t be verified,
the host prompts the user for a password instead.

All this sounds pretty complicated, but it really isn’t. Everything happens transparently, if
it has been set up right. Also, there’s hardly any noticeable delay when establishing a connec-
tion. It normally takes no more than a second.

Setting Up SSH for Key-Based Authentication
The best way to explain how to set up SSH for key-based authentication is by working through
an example. In the following procedure, key-based authentication is enabled for the user root.

CHAPTER 11 CONFIGURING THE NETWORK270

 1. On the desktop where root is working, use the command .
This generates a public/private key pair of 1,024 bits. Listing 11-20 shows what
happens.

Listing 11-20. Generating a Public/Private Key Pair with

I’ll explain what happens. The user in this example uses the command to
generate a public and a private key. The encryption algorithm used to generate this key is
DSA, which is considered more secure than its alternative, RSA. The option specifies
that 1024-bit encryption should be used for the key. You’re possibly aware that the longer this
number, the more secure it is. Notice, however, that a many-bits encryption algorithm also
requires more system resources to use it. After generating the keys, the command prompts you
to save it somewhere. By default, a directory with the name is created in your home direc-
tory and, within this directory, a file with the name . This file contains the private key.

Next, you’re prompted to enter a passphrase, which is an important extra layer of protec-
tion that can be added to the key. Because anyone who has access to your private key (which
isn’t that easy) can forge your identity, your private key should always be protected with a
passphrase. After entering the same passphrase twice, the private key is saved, and the related
public key is generated and saved in the file . Also, a key fingerprint
is generated. This fingerprint is a summary of your key, a checksum that’s calculated on the
key to alert you if the key has been changed. Make sure that your passphrase is not too easy to
guess; a weak passphrase makes a strong key useless.

 2. After creating the public/private key pair, you must transfer the public key to the host.
The ultimate goal is to place the contents of the file in the

 file on the host. But you can’t simply copy the file to the destination
file because other keys may already be stored there. Therefore, first
use to copy the file to a temporary location. The command

 would do the job.

CHAPTER 11 CONFIGURING THE NETWORK 271

 3. Now that the public key is on the host, you have to put it in the file.
Before doing this, though, make sure that the directory exists on the host in the
home directory of the user root, and that it has user and group root as its owner and
permission mode 700. Then, on the host with the directory as your current direc-
tory, use . This command
appends the content of the public key file to the file, thus not over-
writing any file that may have been there already.

 4. Hopefully, no errors have occurred, and you’ve been successful. Go back to your work-
station and start an SSH session to the host where you just copied your public key to
the file. You’ll notice that you are no longer prompted for a password,
but for a passphrase instead. This proves that everything worked. Do notice, however,
that you need to repeat this procedure for every key-secured host with which you want
to be able to establish a session.

Working with keys as described in these steps is an excellent way to make SSH authen-
tication more secure. But there’s a drawback: if you need to establish an SSH session
automatically from a shell script or job, it’s not very handy if you’re first prompted for a
key. Therefore, some method is needed to execute such jobs automatically. One solution is to
create a special user account with limited permissions and without a passphrase on its private
key. Another solution is to run , which caches the keys before they are used, and
you’ll learn how to do this in the next section.

Caching Keys with
You can use to save yourself from constantly having to enter private keys. With
this program, you can cache keys for a given shell environment. After starting from
a shell prompt, you need to add the passphrase for the private key that belongs to it. This
is something that you’ll do for a specific shell, so after you close that specific shell or load
another shell, you’ll need to add the passphrase to that shell again.

After adding a passphrase to , the passphrase is stored in RAM, and only the user
who added the key to RAM is able to read it from there. Also, listens only to and

 commands that you’ve started locally, so there’s no way that you can access a key that is
kept by over the network. So you can be sure that using is pretty secure.
Apart from being secure, it’s pretty easy as well. Enabling and adding a passphrase
to it is a simple two-step procedure:

 1. From the shell prompt, use followed by the name of the shell you want to
use it from. For example, use to activate for the Bash
shell.

 2. Now type . You’ll be prompted for the passphrase of your current private key,
and you’ll then see the message identity added, followed by the private key whose
passphrase is added to .

CHAPTER 11 CONFIGURING THE NETWORK272

Tip Secure Shell is a great way of accessing other hosts. But did you know that you can also use it to
mount a file system on a remote host? All modern versions of SSH support this feature: just use for
access to all the files and directories on the remote host, just like a local user on that host. If you know
how to mount a directory with the command, working with is easy. For example, the com-
mand allows access to the directory on the remote host and
connects that directory to on the local computer. Secure Shell is not installed by default, so use

 to install it on your computer.

Tunneling Traffic with SSH
Apart from establishing remote login sessions, copying files, and executing commands on
remote hosts, you can also use SSH for TCP port forwarding. When used like this, SSH is a
simple VPN solution with the capability of tunneling to almost any unsecured protocol over a
secured connection. In this section, I’ll first talk about X forwarding, and then you’ll see how to
forward almost any protocol using SSH.

X Forwarding
Wouldn’t it be useful if you could start an application on a host, where all the workload is
performed by the host, while you control the application from your client? Well, you can with
SSH X forwarding. To use X forwarding, you first must establish an SSH session to the host you
want to connect to. Next, from this SSH session, you start the graphical application, which will
draw its screen on your workstation while doing all the work on the host itself.

Sounds good? Establishing such an environment has only two requirements:

 option is set to in on the host.

 command from your client. Alternatively, you
can set the option in the client configuration file ,
which allows you to forward graphical sessions by default. This poses a minor secu-
rity problem, however, and so this setting is not enabled by default on most Linux
distributions.

Now that you have established the SSH session with your host, start your favorite graphi-
cal program. The program itself will be executed at the remote host, and you’ll see the screen
locally.

CHAPTER 11 CONFIGURING THE NETWORK 273

Note X-forwarding sessions with SSH is really cool, but there is a limitation: you need an X server on the
client from which you are establishing the SSH session. This X server is used as the driver for your graphical
hardware, and the application that you want to run on your client needs it to display its screens. On Linux,
UNIX, or Macintosh machines, this won’t be a problem because an X server is present by default. It’s a prob-
lem on Windows, however. The most common SSH client for Windows is PuTTY, which, although very useful,
doesn’t contain an X server. A good X server for Windows is Xming, which is a free X server that you can
download from the Internet.

Generic TCP Port Forwarding
X is the only service for which port forwarding is hard-coded in the SSH software. For every-
thing else, you need to do port forwarding by hand, using the (local forwarding) or the
(remote port forwarding) options. Let’s have a look at the example in Figure 11-1.

AMS ATL SLC

Figure 11-1. Example network

This example network has three nodes: AMS is the node where the administrator is work-
ing, ATL is the node in the middle, and AMS has a direct connection to ATL, but not to SLC,
which is behind a firewall. ATL does have a direct connection to SLC and is not obstructed by
any firewall.

The following command illustrates a simple case of port forwarding:

In this example, user linda forwards connections to port 4444 on her localhost to port 110
on the host ATL as user linda on that host. This is how you would establish a secure session to
the insecure POP service on that host, for example. The localhost first establishes a connection
to the SSH host running on ATL. This SSH host connects to port 110 at ATL, whereas binds
to port 4444 on the localhost. Now an encrypted session is established between local port 4444
and host port 110: everything sent to port 4444 on the localhost really goes to port 110 at the
host. If, for example, you configured your POP mail client to get its mail from local port 4444, it
would really get it from port 110 at ATL.

Notice that a nonprivileged port is used in this example. Only user root can connect to
a privileged port with a port number lower than 1024. No matter what port you are connect-
ing to, you should always check in the services configuration file , where port

CHAPTER 11 CONFIGURING THE NETWORK274

numbers are matched to names of services indicating what the port is normally used for (if
anything), and use to make sure that the port
is not already in use.

A little variation on local port forwarding is remote port forwarding, which involves for-
warding all connections on a remote port at a remote host to a local port on your machine.
To do this, use the option as in the following example:

In this example, user linda connects to host ATL (see the last part of the command). On
this remote host, port 4444 is addressed by using the construction . This remote port
is redirected to port 110 on the localhost. As a result, anything going to port 4444 on ATL is
redirected to port 110 on AMS. This example would be useful if ATL is the client and AMS is
the host running a POP mail server that user linda wants to connect to.

Another instance when port forwarding proves useful is when the host you want to for-
ward to cannot be reached directly, perhaps because it is behind a firewall. In this case, you
can establish a tunnel to another host that is reachable with SSH. Imagine that, in Listing 11-6,
the host SLC is running a POP mail server that our user linda wants to connect to. This user
would use the following command:

In this example, linda forwards connections to port 4444 on her localhost to host ATL,
which is running SSH. This host, in turn, forwards the connection to port 110 on host SLC.
Note that in this scenario, the only requirement is that ATL has the SSH service activated; no

 is needed on SLC for this to work. Also note that there is no need for host AMS to get in
direct contact with SLC, as that’s what ATL is used for.

In these examples, you’ve learned how to use the command to accomplish port for-
warding, but this isn’t the only way of doing it. If a port-forwarding connection needs to be
available all the time, you can put it in the configuration file at the client computer. Put it
in in your home directory if you want it to work for your user account only, or in

 if you want it to apply to all users on your machine. The parameter that
should be used as an alternative to would be .

Summary
In this chapter, you’ve learned how to set up a network connection. First, we explored how an
IP address is assigned to a network interface card. We covered IPv4 addresses as well as IPv6
addresses. Following that, you read how to troubleshoot a network connection using basic
commands such as and , or advanced tools like . In the last part of this
chapter, you’ve learned how to create a remote session with SSH. You have read about the fol-
lowing commands:

: Legacy command to monitor and set IP address and other network card–
related information

: Newer command to monitor and set IP address and other network card–related
information

CHAPTER 11 CONFIGURING THE NETWORK 275

: Command that displays and sets routing information

: Command that displays and sets settings related to the physical capabilities
of a network card, such as duplex mode and speed

: Tool to test connectivity to other computers

: Utility that helps you analyzing reachability of hosts on the network

: Utility that helps you check which services are offered by an other host

: Utility that helps you find out which services are offered by the local host

: Command that helps you to establish a shell connection to a remote computer,
secured wit cryptography

: Command that securely copies files between hosts

: Secure FTP client

: Command that generates public/private keys you can use for automatic
SSH connection establishments where keys are used for authentication

: Command that caches the passphrase associated to a private key used
by SSH

In the next chapter, you’ll find out how to set up file services like Samba and NFS on your
computer.

C H A P T E R 1 2

Configuring a File Server

A very common task that people use Linux for is to configure it as a file server. With regard
to this task, Linux is very versatile; it offers support for all common protocols. In this chapter,
you’ll learn how to configure Linux as a file server using either Samba or NFS.

Creating a Samba File Server
In this section, you’ll first read about the background of the Samba project. This helps you
to better understand what Samba is all about. Following that, you’ll read how to configure a
Samba server to offer file services to end users using a Windows desktop. In the last part of this
section, you’ll read how to access files on a computer that provides SMB file services from the
Linux command line.

Background of the Samba Project
In 1998, Microsoft released the specifications of its Server Message Block (SMB) protocol,
which spurred the start of the Samba project. The goal of the Samba project was to implement
a free file server that offers SMB functionality. With such a server in place, companies would
be able to migrate away from Windows Servers to Linux, without any hassle. With Samba, the
end user wouldn’t notice the difference, as Samba can provide exactly the same services that
Windows does.

More than ten years on, the Samba project has made great progress. However, there
are some problems also. The biggest challenge Samba team members have to face is that all
they do is done by reverse engineering. Microsoft in general is not too willing to share the
source code of the core functionality that is offered by Windows servers. Because of this, at
this moment, for example, there is no Samba implementation of an Active Directory Domain
Controller. However, Samba does a nice job acting as a non-Active Directory Primary Domain
Controller (PDC). In comparison to Windows servers, you may find other functionality lacking
as well. However, if you are looking for a fast and easy-to-configure file server that can replace
such functionality on Windows, Samba offers a decent alternative.

Configuring a Samba File Server
Before you start configuring, make sure that Samba is installed on your computer. If
doesn’t give you anything, it’s not installed. In this case, install it with yum, zypper, or
using . Configuring a Samba file server is not too hard,

277

CHAPTER 12 CONFIGURING A F ILE SERVER278

but you should know what this configuration is all about. The basic purpose of Samba is to
offer access to shared directories over the network. To do so, you need a directory to share on
the local Linux file system, and the share itself, which gives access to this directory over the
network. The former is configured on Linux, the latter is configured in the main Samba con-
figuration file . To get access to the Samba file server, you need two user
accounts as well. First, there must be a Linux user who has Linux permissions to the Linux file
system. Next, you need a user who has Windows-compatible credentials to access the share.
After creating the share and the user account, you may need to configure some generic Samba
parameters as well. Finally, when all this is done, you must start the processes that the Samba
server needs. In the following sections, you’ll find more details about all of these tasks.

Note At the time this was written, Samba version 4 wasn’t available yet. By the time you read this, it may
be available. The major difference between versions 3 and 4 is that in version 4 you can configure Samba as
an Active Directory Domain Controller. In this chapter, I’m covering version 3 features only. They most likely
will work on version 4 as well, but you may see some items behaving differently.

Configuring the Share
The first part in the configuration of a Samba server is the share. You’ll need the configuration
file to do this. Before doing so, you need to create the directory you want
to share in the Linux file system, and you need to configure access to the share. The follow-
ing procedure describes how to do this for an imaginary share with the name . You will
make this directory read/write accessible to members of the sales group. In this group, user
linda needs special permissions to be able to do some application management. You’ll notice
that none of the tasks described here is really new, but you will need to perform all of them as
a part of the Samba configuration. All of the tasks described here assume that you have root
permissions.

 1. Use to create the shared directory in the Linux file system. It doesn’t
really matter what file system you are using on Linux, although I do recommend you
work with a file system that has support for ACLs (see Chapter 7 for more on ACLs).
Samba works with ACLs to enable Windows-like permission inheritance.

 2. After creating the directory, you need to configure permissions on the share. You could,
of course, work with the infamous Everyone Full Control that you encounter on older
versions of Windows servers. If you want this, just use . It is nicer
though if you apply more granularity in the file system permissions. In this scenario,
you need to make the share read/write accessible for all users in the group sales. Also,
user linda needs group management permissions. You can do this by changing owner-
ship on the directory using the following command: . This
command assigns user linda and group sales as the owners of the share .

 3. At this point, you have configured ownership but still are working with the default per-
missions, which normally don’t allow group members to write to the share. To make
sure that only user linda and members of the group sales can write to the share, use the
following command: .

CHAPTER 12 CONFIGURING A F ILE SERVER 279

At this point, you have configured the Linux part of the file share. However, this doesn’t
make the directory accessible over the network. To do that, you need to modify the

 file. Since you’ve already set permissions on the Linux file system, the con-
figuration of the Samba share can be really simple. In Listing 12-1, you can see what the share
configuration might look like. This listing contains some code that you need to include in the

 file.

Listing 12-1. Simple Share Configuration in

In this share configuration, a few parameters are used:

: This parameter is used to provide a comment, which is shown to Windows
users who browse to the share. It’s a good idea always to use such a comment to make
it clear to users what exactly they are connecting to.

: This parameter, the only required one in the list, tells you what directory the
Samba server should share.

: This parameter configures security on the Samba share. If you don’t use it,
the share will be read-only. In this example, it is set to , which means that the share
is writable by all users who also have write permissions on the underlying Linux file
system.

: This parameter tells Samba to honor Linux ACLs. This means that
you can set ACLs on the Linux file system and benefit from them in the Samba
environment.

: If you don’t use this parameter, Samba will use the default Linux
when it creates new files on the Linux file system. Since the default gives read
access to all users, this might not be a good idea. Therefore, in this example, a custom

 is used to grant read/write permissions to the user and group owners, but
no permissions at all to others. When specifying a value, you have to enter
the exact permissions you want to set. For instance, would set read/
write permissions for the user and group and nothing for others.

At this point, you have configured all that needs to be configured to make the share acces-
sible. In the next section, you’ll read how to handle user access.

Creating the User Account
To access a Samba share, you need access to the share on the Linux file system, as well as on
the share itself. You can compare this to a Windows server, where a user needs NTFS permis-
sions as well as share permissions. Unfortunately, the way that Windows handles encryption is
not compatible with the way Linux handles permissions. Therefore, you cannot access a Linux

CHAPTER 12 CONFIGURING A F ILE SERVER280

directory from a Windows workstation if you only have a Linux user account; you need Win-
dows credentials as well. The simplest way to fix this problem is to create a Linux user account
as well as a Windows user account, which is exactly what we’ll do in this chapter.

When working in an enterprise environment where many users need to get access to a
share, this may not be a workable solution, however. This is especially true if you have many
servers with Samba shares. If your needs go beyond a situation where you can work with just
a Linux and a Samba user account, there are some other options. As all are relevant in typical
enterprise environments, none of these options are explained any further in this book:

Set up an OpenLDAP Directory server: By using such a Directory server, you can create
user accounts that have properties that make it a valid user in Linux, as well as proper-
ties that make it a valid user in Windows.

Configure Samba as a Windows NT-style Domain Controller: When doing this, you still
need Linux user properties to be able to access the Linux file system, but at least this
method allows you to manage users in a centralized way. Another benefit is that you
can configure end-user computers for domain logon, which is more flexible than local
logon only.

Configure Samba as a member server in Active Directory: This option is interesting in
environments where an existing Active Directory environment is in use. If Samba is
configured as a member server in Active Directory, it can get all user information from
Active Directory, which means that you don’t have to set up Windows user accounts at
all. However, you will still need to set up Linux user accounts.

Use Winbind to get all required information from Active Directory: Winbind also is a
decent solution if you want to use Samba in an environment that mostly uses Active
Directory. To accomplish this, you’ll run the service on the Linux compu-
ter. Winbind will authenticate user accounts against Active Directory, and once this
authentication has happened successfully, the user account is authenticated on Linux
as well. This solution therefore allows you to manage one user account only, central-
ized from Active Directory.

Use the option: This option allows you to configure one Samba server
with user accounts. All other Samba servers can get the user information from this
main Samba server.

In this book, I’ll only cover the option where you’ll create two different user accounts: the
Linux user account and the Samba user account. The following procedure shows what you
need to do to set up such an environment:

 1. Create the Linux user account with the methods discussed in Chapter 6 of this book.
For instance, to create a user linda and make sure that she has a home directory as
well, use the following command:

 2. There is no need to set a password for this user account as well. A Samba user typically
connects to a share over the network and never accesses the console of your Linux
computer. If your Samba user needs local access, you can give him or her a Linux pass-
word. However, if the user account is used on a Windows computer only, you don’t
have to do this.

CHAPTER 12 CONFIGURING A F ILE SERVER 281

 3. Use the command to create the Samba user account. You can do this as
follows:

 . The command now asks you to enter a password for the Samba user. This
Samba password conforms to all rules that Windows normally uses for password stor-
age and is stored with the user account in the configuration file .
Listing 12-2 shows the contents of this file after creating the user linda.

Listing 12-2. Example File

Apart from creating user accounts with , you can also use this command to
manage user accounts. The command allows you to do this in local mode, as well as remote
mode. The remote mode helps you in managing Samba user accounts on other computers. In
local mode, you’ll manage Samba users on your computer only. Following is a list of the most
useful parameters that you can use in local mode:

: Adds a user

: Disables a user account without removing it from your configuration

: Enables a user account after it has been disabled

: Creates a machine account, which is required in setups where workstations need to
authenticate to a domain

: Removes the user account from the file

At this point, you have done all that is necessary to enable the Samba user account. In the
next section, you’ll read how to start Samba services.

Starting Samba Services
At this point all that you need to do to create a Samba file server has been done. It’s time to
start it now! To do this, you normally need to run two different services. First is the serv-
ice, which starts Samba file services. Next is the service. This service gives you NetBios
name services; you’ll only need to start it if you want to use NetBios for name resolution.

CHAPTER 12 CONFIGURING A F ILE SERVER282

Note In older Windows versions, NetBIOS was used to get the IP addresses belonging to a given name in
the network. Modern Windows networks use DNS for this purpose. This means that you probably don’t need
NetBIOS name services anymore, because your DNS server takes care of name resolution already.

To start these services, you may launch them from their default location, which on
most distributions is . On most distributions, you will also find a script that
allows you to start them. This script is in on many (but not all) distributions.
If you have it, it will have a name like (Red Hat) or and

 (SUSE).
To start the scripts from , you can, of course, refer to the complete name of

the script, followed by the relevant argument. That is, to start the Samba service, you can use
 (if your distribution uses the script). Or, you can run these

scripts with the command. So instead of , you can also issue
. The command runs from your current path and therefore just

replaces the part of the command.
The scripts allow you to start or stop Samba and perform other actions as well. To tell

the script what it needs to do, you have to start it with an argument. The following arguments
are available (you may see small differences, depending on the distribution you are using):

: Use this argument to start the Samba service.

: Use this argument to stop the Samba service.

: When used with this argument, the script shows you the current status
of the process. Use this to check whether Samba is already running.

: This argument performs a stop and a start. Use this to activate settings that
aren’t activated automatically.

: Use this argument to tell the Samba service to reread its configuration files.
Normally, the service checks every minute to see whether anything has changed, but
by using the option, you can force the service to recheck and activate its con-
figuration files.

Note The arguments listed previously don’t work for the Samba service only. You can use them with
most services in . Just run the service without any arguments to find out which arguments are
available; these will be different for different services.

Working with Additional Parameters in
Based on the information that was just discussed, you are able to configure a Samba server
that offers a share on the network. However, hundreds of other parameters exist that you can
use to tune and enhance your server. I won’t cover every available parameter, but to give you

CHAPTER 12 CONFIGURING A F ILE SERVER 283

an impression of some of the most important ones, Listing 12-3 shows an example
configuration file and an explanation of the parameters used in this file.

Before explaining the individual parameters, you should be aware of the main distinc-
tion used on the configuration file. There is a section with the name as well as other
sections. The section contains global parameters. These are parameters that are not
directly related to individual shares, but they define how your Samba server should behave
in general. Most parameters used in this section are specific to the section only; you
can’t use them in individual shares. (There are some exceptions to this rule, but they are rare.)

Following the settings are some specific share settings. In this example file, some
“normal” file shares are used, but some specific shares are included as well that help you in
enabling specific functionality. Here’s a list of the specific shares in Listing 12-3:

: This share shares user home directories. When creating a Linux user, it nor-
mally gets a home directory in . This share makes sure that the Samba user can
access the contents of this home directory as well.

: This share enables users to share their user profile on the Samba server.

: This share makes a connection to the printing system, which on all current
Linux distributions is the Common UNIX Printing System (CUPS).

: This share enables access to printer drivers for end users. By using this share
the way it is configured here, end users can install printer drivers directly from the
Samba server.

Listing 12-3. Example Configuration File

CHAPTER 12 CONFIGURING A F ILE SERVER284

Following is a list of the options used in Listing 12-3 and a short explanation for each of
these options. Of these options, the only one that is required is . All others are optional.

: This option specifies the workgroup name your Samba server uses, which
serves not only as the workgroup name in Windows peer-to-peer networking, but also
as the domain name in an environment where domains are used. This can be a Win-
dows NT 4 environment, an Active Directory environment, or an environment where
Samba is used to provide domain functionality.

: This parameter tells Samba what local solution is used to handle printing. On
Linux, this will normally be CUPS.

CHAPTER 12 CONFIGURING A F ILE SERVER 285

: In pre-CUPS Linux printing, the printing system had its own configura-
tion file, which had the name . In CUPS printing, there is no longer such
a file. Samba needs to know what to do with though, and that’s why in
this example, is used as the value for this parameter.

: This parameter tells Samba how it should offer data to CUPS printers.

: In a Windows environment, a guest user can be used. Therefore, the
Samba server may receive requests addressed to the guest user. Using this parameter,
you tell Samba how to handle such requests. For instance, you can map the Windows
guest user to a local Linux user account that has limited permissions. In this example,
the parameter has the value of , which completely disables the Windows guest
user feature.

: Use this parameter if you also want to read the contents of an additional con-
figuration file. In this example, the contents of a file with the name is read. In
this file, you’ll need to specify additional Samba commands. Using an additional con-
figuration file is useful in making sure that the main configuration file doesn’t
grow too big.

: In a domain environment, workstations that are in the domain need to
know where they can find system logon information. Samba makes that clear by using
the parameter. This parameter has as its argument the name of a share that
this Samba server offers. In the share, is used to refer to the localhost name.

: In a Windows 9x environment, users may also use home directories. If this
is the case, they’ll use the parameter to discover where to find all home
directory related settings.

: This parameter indicates which drive is used on the Windows worksta-
tion to map to the share that contains home directories. Make sure that this drive is not
already in use by something else.

: This parameter indicates whether you allow guest users in user
shares. If you want to maintain tight security, you should set this to .

: Use this parameter to make it clear what a share is used for. Users will see the
value that you’ve used here when browsing the network environment.

: You can use this parameter to indicate which users are allowed access to
this share. This is a very good measure for security: if a user is not on the list, he or she
simply doesn’t get access. You can also refer to all members of a group by using the

 sign. For instance, would allow access to all users who are a member of the
group sales.

: This parameter indicates whether you allow browse access to a share. A
user who has browse access can see all contents of the share. It is typical to switch this
off on home directories and shares that relate to printing.

: This parameter sets basic security on a share. If not set, the share will be
read only. Change this to (or , both work) to allow
write access to the share.

CHAPTER 12 CONFIGURING A F ILE SERVER286

: This parameter is used to let your Samba server cooperate with Linux
ACLs. If this parameter is set to , Samba will honor ACLs and create new files
according to the specification of the ACL setting.

: This parameter, which is required, indicates which path on the Linux file system
is shared by this share.

: If you want to store DOS attributes, make sure that this param-
eter is set to . As DOS attributes require additional disk space, they are not stored by
default.

: This parameter is used to set a for new files. The
determines permissions on new files. If you use , you should not use this
parameter because the settings in a default ACL and the settings in the
may conflict with one another.

: This parameter accomplishes the same as the parameter,
with the only difference being that it works on directories.

: This parameter is needed on a printer share to allow the CUPS printing sub-
system to get files from this share and print them.

: This parameter contains a list of users who have write access to a share.
You can use it in combination with the parameter for more strict security
settings. Only valid users get access, and only users who are on the write list are able to
write new files in the share.

: This parameter tries to set the group owner to the group whose name is
specified here. If the user is not a member of that group, the default primary group of
that user is set as the owner. You don’t need this parameter if you have already applied
the SGID permission (see Chapter 7), or if you are working with a default ACL.

Accessing a Samba File Server
After applying all items that are discussed in the preceding sections, you should now have a
decent Samba file server up and running. Time to test whether it works! You could, of course,
use a Windows workstation and connect to the network share by using UNC naming. For
example, if the name of your host is and the name of the share is , you would try
from Windows to map a network drive as . Windows would then ask you to enter
a username and password and connect you to the share.

If you don’t have a Windows workstation available at the moment, there is an alternative:
you can connect to the share from the Linux command line. In the next two sections, you’ll learn
how to test the share and connect to it from the command line. Following that, you’ll also read
how to connect to the share automatically when starting your workstation by including it in the

 startup file on your workstation.

Accessing Samba from the Command Line
There are two methods to connect to a Linux share from the command line. You can use the

 utility, which gives you an FTP-like interface to the Samba shared file system. This
means that you would need to use FTP-like commands like and to transfer files to
and from your local workstation. When working this way, the share doesn’t really integrate

CHAPTER 12 CONFIGURING A F ILE SERVER 287

smoothly to your file system, so you probably don’t want to do that. To integrate the share in
the Linux file system, you can mount it using the command.

Before connecting to a share, you might be interested to find out whether the share exists.
Even if you have started the Samba server using and not seen a failure,
there may be another reason why accessing the share fails. Hence, you need to make sure that
it works first. To do this, you can use the utility. Using this utility, you can ask the
Samba server to get an overview (list) of all available shares. You do this by entering the follow-
ing command:

The command next asks for a password, but you can ignore that and just press the Enter
key, as no password is needed to get a mere overview of shares that are offered. Listing 12-4
shows the result of the command on the machine that uses the example Samba
configuration file that you’ve seen in Listing 12-3.

Listing 12-4. With the Command, You Can Get an Overview of All Shares That Are
Offered by Your Samba Server

Given the output provided by the command, our test server is available, and
it has some shares to offer. So it’s time to connect now. To make a connection to a share by
using the command, you first need a directory that is available to mount the file system
on. For testing purposes, let’s use the directory . This directory doesn’t exist by
default, so make sure that you create it before you start, using . To connect
the Samba share to that directory, you need to use an option that tells that it should
connect to a Samba share, which by the way can also be a share on a Windows machine. To
make this clear to the command, you can use either the or the options.
The former works in most situations, but not if you want to connect to an Active Directory, in
which case you have to use the option. So, basically, using is better.

CHAPTER 12 CONFIGURING A F ILE SERVER288

Next, you need to tell Samba what user credentials to use. You can do this by passing
the username as a special option to the command, using . Using a special
option, you can even pass the password directly on the command line to the command,
but that is a very bad idea, since this password would be readable text on the command line
with no encryption applied. This means that other users would be able to get the password
by using such mechanisms as the command. As the third and fourth arguments, you
need to tell what share to connect to and where to mount this share. The result of all this
is a command that looks like the following:

At this point, the directory on your Linux computer is connected to the share
on your Samba server. It looks a little weird to use a Windows protocol to connect one Linux
machine to another Linux machine, but why shouldn’t you? Samba is a fast, versatile solution
that offers way more options to secure it than the alternative NFS file system. Also, using this
solution, you can not only connect your Linux computer to a Samba server, but also to a share
that is offered by a Windows machine, and that is useful if you need to exchange files between
Windows and Linux computers.

Note Although this book is about Linux command line, I do want to mention one thing about the graphi-
cal user interface that is available on many Linux computers nowadays. Both KDE’s Konqueror and GNOME’s
Nautilus utilities provide an easy-to-use interface that helps you to browse to a Samba share offered on the
network. So if you are running a GUI on your computer and you are looking for an easy way to connect to
Samba, use these tools to make the connection.

Configuring Samba Access on Booting
In a test environment, an excellent solution is to perform a manual mount to connect to the
Samba share. Once you have verified it’s working, you probably want a solution that is more
user friendly. You can do this by using the file to mount the share automatically.

Before typing your share entry in , however, you should have a plan. This plan
is based on the answer to one question: what exactly are you going to do with your share?
There are three common scenarios:

home directories. If this is the case, you want to mount
the contents of the home directory share on the directory of the local machine.

create a directory with the name on the local workstation and mount the share
in a subdirectory of that directory. For instance, if you want to mount ,
you might want to do that on .

CHAPTER 12 CONFIGURING A F ILE SERVER 289

group scenario, but is of a more generic kind, it is a good idea to mount it in the
directory. Many distributions have this directory by default now to allow you to access
common server-based files. For example, if you have a directory on the Samba
server that you want to make accessible on the local file system, it’s a good idea to cre-
ate a directory named and mount it there. Of course, you may also
use another solution—any solution that makes sense to you is fine.

After deciding where to mount the share, you just have to mount it. To do this for the
share that was discussed previously, you can add the following line to your
file (see Chapter 3 for more information about and its contents):

Since the same options are used as when you are performing the mount manually, there
are only two items that need a little explanation. First is the option . This option tells

 that the share is on the network. The result is that your computer will wait until the
network is available before trying to mount this share. Next, the password of the user is in the

 file in clear text. Since this is the case, you do want to apply some additional security to
the file. I recommend you at least remove the read permissions for the others entity.

Basic Samba Troubleshooting
Based on the preceding information, your Samba server should now be up and running.
Sometimes it won’t though. In case this happens, here is a basic troubleshooting procedure for
you to follow, based on the problems I’ve seen people having with Samba:

 1. Start by narrowing the scope: can you reach the Samba host with the utility? Try
the command , and make sure to replace with the IP address of
the machine where the Samba server resides. Are you getting a reply? Then you know
the problem is not on the network.

 2. Now do some checks on the computer that runs the Samba server. The best check to
start with is the command. This command gives an over-
view of all shares that are locally offered. If this command does not give anything that
looks like Samba shares, proceed with Step 3. If this command does give you a list of
available shares, proceed with Step 4.

 3. If didn’t return anything looking like Samba shares, the problem is probably
in the service process. Make sure that it is up and running using . In
case this command doesn’t give you any running Samba servers, start the Samba serv-
ice now with the procedure that is appropriate for your distribution. This should fix the
problem.

 4. If did give a result, there can be two possible causes. First, you may have
made a syntax error while writing the file. Step 5 describes what to do in that
case. Another reason can be an error in the user configuration. See Step 6 for more
details on how to fix this.

CHAPTER 12 CONFIGURING A F ILE SERVER290

 5. Samba has an excellent tool that helps you look for syntax errors in the con-
figuration file. Its name is , and you can just run it like that from the command
line. The tool will first give you the results of its analysis and, after you press Enter, dis-
play all the effective parameters (which in fact is a dump of all active lines in ,
excluding comment lines). In Listing 12-5, you can see an example of its output. In this
output, the tool points out an unknown parameter , which in this case
helps in fixing the problem.

Listing 12-5. The Utility Analyzes for Syntax Errors

 6. If you still haven’t found the problem, it is probably user related. In this case, the solu-
tion really depends on the way you’ve set up the user accounts. If you did it in the way
described in this chapter, you can run a few checks to see whether the user setup still
works. If you are using an external service for user authentication, check the configura-
tion and availability of that service. The first thing to do if a user gives a problem is to
check whether the user is available on your Linux computer. You can do this by using

 on , which is shown in the following example code line:

 . If this command does not give you a result, use to create the local user
account. In case this command does give a result, it may help to reset the password for
the user. The following command will do that for you:

 . The command will now ask you to enter the password for your user twice.
Once you’ve entered it, try again and see whether that has made the user account
functional.

I am aware that this section on Samba troubleshooting was short. However, I’ve described
the most common problems, which will help you in resolving these issues. Other problems are
less common and therefore not covered in this chapter.

CHAPTER 12 CONFIGURING A F ILE SERVER 291

Configuring an NFS Server
The preceding part of this chapter described how to configure Samba to offer file access to
mostly Windows users. In this section, you’ll learn how to configure Network File System
(NFS) services on your computer. Following a brief overview of the protocol, you’ll next learn
how to build a configuration to share NFS services and how to access these NFS shares.

NFS Backgrounds
NFS is an old protocol that allows you to share files on a UNIX/Linux network. It goes back to
the days when you still had to wear a white coat before being allowed to approach the com-
puter. In those days, computers that were networked were also computers that were trusted,
because there was no such thing as the Internet that allowed everyone to connect to your com-
puter. Given this environment, NFS was developed as a protocol that offers a fast-and-easy
way to share files. Unfortunately, it was never developed with security in mind.

Security in NFS is based on hosts. When creating a share, you’ll give access to a host, not
to individual users. After the host has made contact, the users on that host will have the same
permission as the users on the NFS server. That is, the user with user ID 501 (or any other
user ID) on the NFS client will automatically get the permissions that user 501 has on the NFS
server. You can imagine that there can be some serious problems with this. Since NFS was
often used in conjunction with the NIS service, which allows for centralized user management
(i.e., which takes care that the user with UID 501 is the same on all hosts involved), this feature
was not really harmful.

Given the security needs of modern network environments, NFS will not do, though. For
that reason, a new version of the NFS protocol has been developed. It is NFS version 4, which
can use Kerberos for smart and secure handling of authentication. This version of NFS never
really became a success, probably because old-school NFS users had already created an envi-
ronment in which NFS version 3 could be used securely, and new users who might possibly be
interested in NFS tended to choose a more versatile solution to share files, such as Samba. For
that reason, if you see an NFS implementation, it will most likely be an NFSv3 implementa-
tion. Therefore, I do not cover NFSv4 in this book.

You may wonder, however, why people still want to use NFS. There are two main reasons:
its speed and the ease with which you can set it up. As you will find out in the next sections,
setting up an NFS share really is not hard to do, as is using the NFS environment.

Understanding NFS Processes
To use an NFS server, a couple of components are involved. First is the NFS server itself. This is
provided by the Linux kernel. To offer its services, NFS uses another service, which is the NFS
RPC (Remote Procedure Call) portmapper. Let’s see what role this service plays first.

Most modern services have their own port number. This is not the case by default for NFS.
NFS was created a long time ago, when the Internet port numbers in use nowadays weren’t
yet common. As a result, NFS uses its own kind of port numbers, the so-called RPC program
numbers.

CHAPTER 12 CONFIGURING A F ILE SERVER292

To offer compatibility with the way that modern computers offer services on the network,
these RPC numbers must be converted to an Internet port number. This is the task of the

 program, which runs as a daemon to support your NFS server. When an RPC-based
service, such as NFS, is started, it will tell on what port number it is listening and what
RPC program numbers it serves. When a client wants to communicate to the RPC-based ser-
vice, it will first contact the portmapper on the server to find out the port number it should
use. Once it knows about the port number, its requests can be tunneled over the Internet port
to the correct RPC port.

To find out on which RPC program numbers your server is currently listening, you can use
the command. In Listing 12-6, you can see an example of this command showing
its results.

Listing 12-6. Displaying RPC Program Numbers with

As you can see in the output of the command, NFS is listening to Internet port
2049 for version 2, 3, and 4 calls. Internally, it is using RPC port 100003 as well. Before the NFS
server is started, you must make sure that the portmapper is started. All of the main Linux dis-
tributions will take care of this automatically when you start the NFS server.

After starting the portmapper, the other NFS server components can be started. First is
the program. This program makes sure that the portmapper is informed there is an
NFS server present, and it will give the proper portmapper program number to the NFS server.

CHAPTER 12 CONFIGURING A F ILE SERVER 293

Next, the program must be loaded. This program allows users to make NFS mounts
to the NFS server. As the third component, the program needs to be started. This
program ensures that only one user can have access to a file at a time; when it is accessed,
the program locks access to the file for other users. You don’t need to load all these
programs individually; they are loaded automatically with the or

 script (the load script is different on the different distributions). You should
add this script to the default runlevels to ensure automatic loading on booting of the server.

The last part of the NFS server consists of its configuration files. Two different files are
involved. First is the file. In this file, the NFS shares are specified. Then on some
distributions such as SUSE and Red Hat, there is also the configuration
file, where the number of NFS threads and other startup parameters are specified.

Configuring an NFS Server
On most distributions, two configuration files are involved if you want to manage the NFS
server by hand. First and most important is the file. You will find it on all Linux
distributions. This file is used to configure all NFS shares you want to offer from your NFS
server. Apart from that, your distribution may use the file, in which a
couple of parameters is provided to the NFS server, determining the way that server offers its
services.

In the file , the NFS shares are defined. The generic structure of the lines
where this happens is as follows:

In this, is the name of the directory you would like to share, for example, .
Next, refers to the hosts that you want to grant access to that directory. The following
can be used for the host specification:

name

192.168.10.0/255.255.255.0

After indicating which hosts are granted access to your server, you need to specify the
options with which you want to give access to the NFS share. Some of the most used options
are listed in Table 12-1.

CHAPTER 12 CONFIGURING A F ILE SERVER294

Table 12-1. Commonly Used NFS Options

Option Meaning
 The file system is exported as a read-only file system. No matter what local

permissions the user has, writing to the file system is denied at all times.

 The file system is exported as a read-write file system. Users can read and write
files to the directory if they have sufficient permissions on the local file system
to do that. That is, this parameter makes the share writable, but to write files in
the share, you still need permissions to the local file system as well.

 The user ID of user root is mapped to the user ID 65534, which is mapped to
the user nobody by default. This means that you won’t have write permissions,
and depending on the permission configuration on your computer, probably
you’ll have no permissions at all. This default behavior ensures that a user who
is mounting an NFS mount as user root on the workstation does not have root
access to the directory on the server. Especially if you use NFS to give end users
access to a share, you should at all times use this option.

 With this option, there is no limitation for the root user. He or she will have
root permissions on the server as well. Use this option only if you want to cre-
ate an NFS share only the user root has access to.

 Use this option if you want to limit the permissions of all users accessing the
NFS share. With this option, all users will have the permissions of user nobody
on the NFS share. Use this option if you want extra security on your NFS share,
but realize that it may make your NFS share unworkable.

 This option makes sure that changes to files have been written to the file sys-
tem before others are granted access to the same file. Although it doesn’t offer
the best performance, to avoid losing data to files, it is recommended you
always use this option.

Tip After all changes to the file, you must restart the NFS server. NFS is one of those
older UNIX services that only reads its configuration on startup.

Following is an example of a configuration line that is quite common in .
Check for more examples.

In this line, the host gets read/write access to the shared root file system,
but root from that host will not get root permissions on the NFS server. The computer

 gets read/write access as well, but the user root will still have his root permis-
sions when connecting to this share.

Tuning the List of Exported File Systems with
When the NFS server is activated, it keeps a list of exported file systems in the

 file (your distribution may use a different location). This file is initialized with the list of
all directories exported in the file by invoking the command when
the NFS server initializes. With the command, it is possible to add a file system to this

CHAPTER 12 CONFIGURING A F ILE SERVER 295

list without editing the file or restarting the NFS server. For example, the follow-
ing is used to export the directory to all servers in the network 192.168.1.0:

The exported file system will become available immediately, but will only be available
until the next reboot of your NFS server, as it is not in the file. If you want it to be
available after a reboot as well, make sure to include it in the file as well.

Configuring an NFS Client
Now that the NFS server is operational, you can configure the clients that need to access the
NFS server. There are two ways to do so:

.

Mounting an NFS Share with the Command
The fastest way to get access to an NFS shared directory is by issuing the command from
the command line. Just specify the file system type as an NFS file system, indicate what you
want to mount and where you want to mount it, and you have immediate access. In the next
example, you can see how to get access to the shared directory on server STN via the local
directory :

Notice the colon after the name of the server; this required element separates the name of
the server from the name of the directory that you want to export. Although you can access an
NFS shared directory without using any options, there are some options that are used often to
make accessing an NFS mounted share easier. These options are summarized in Table 12-2.

Table 12-2. Common NFS Mount Options

Option Meaning
 Use this option to tell the command not to insist indefinitely on mounting the

remote share. If after the default timeout value (normally 60 seconds) the directory
could not be mounted, the mount attempt is aborted. Use this option for all noncritical
mounts.

 By using this option, you tell the command that it should continue trying to
access the mount indefinitely. Be aware that if the mount is performed at boot time,
using this option may cause the boot process to hang. Therefore, only use this option
on directories that are really needed.

 This default option tells the command that all mounts must be activated as fore-
ground mounts. The result is that you can do nothing else on that screen as long as the
mount could not be completed.

 This performs the mount as a background mount. If the first attempt is unsuccessful, all
other attempts are started in the background.

Continued

CHAPTER 12 CONFIGURING A F ILE SERVER296

Table 12-2. Continued

Option Meaning
 With this option, you can specify the number of bytes that the client reads from the

server at the same time. For compatibility reasons, this size is set to 1024 bytes by de-
fault. NFS version 3 and later can handle much more than that. To increase the speed of
your system, set it to a higher value, like 8192 bytes.

 Use this option to set the maximum number of bytes that can be written simultaneous-
ly. The default is . NFS 3 and later can handle much more than that, so you should
specify to optimize the write speed for your server.

 This option is used to specify the number of minutes a mount attempt can take. The
default value is (which is 6.94 days). Consider setting it lower to avoid waiting
forever on a mount that can’t be established.

 Use this option to specify that the SUID and SGID bits cannot be used on the exported
file system. This is a security option.

 This option is used to specify that no devices can be used from the imported file system.
This also is a security feature.

 Use this option to avoid starting executable files from the exported file system.

Tip NFS uses long timeouts to establish a connection. This may be very useful. Once I was installing a
Linux machine by using an NFS installation server. The installation server was accidently rebooted during
the installation, so the installation stopped. At the moment the installation server came back, it restarted the
installation automatically.

Mounting an NFS Share Automatically from
Mounting an NFS share with the command will do fine for a mount you only need occa-
sionally. If you need the mount more than once, it is better to automate it using .
If you know how to add entries to , it isn’t difficult to add an entry that mounts
an NFS share as well. The only differences with normal mounts are that you have to specify
the complete name of the NFS share instead of a device, and that some NFS options must be
specified. When mounting from , you should always include the options , ,
and for optimal performance. To refer to the server, its name as well as its IP address can
be used. The following line gives an example of what the line in could look like:

Getting a List of Available NFS Shares
To mount an NFS share, you first must know what shares are offered by a machine. You can
find that out using the command. This command is fairly simple in use: just type

 followed by the name of the host that you want to check. The example in Listing
12-7 shows what its result can look like.

CHAPTER 12 CONFIGURING A F ILE SERVER 297

Listing 12-7. To Find Out What Shares Are Offered, Use

Summary
In this chapter, you’ve learned how to set up Linux as a file server. You’ve read about Samba,
which nowadays is a kind of universal option for configuring a Linux file server. It works for
Windows, but also for Apple and Linux users. You’ve also read how you can enable NFS file
sharing, which is a useful method for file sharing if you want to share files between Linux com-
puters. In this chapter, you’ve learned about the following commands and configuration files:

: The process responsible for Samba file sharing.

: The process that offers NetBIOS-style name services.

: The main Samba configuration file.

/ / : Specific options that specify the file sys-
tem type that should be used when mounting a Samba or an NFS share.

: Command that does a syntax check on the configuration file.

: Command that gives information about mappings between NFS ports and
RPC ports.

: The main configuration file for your NFS server. All NFS shares are in this file.

: Command that lets bypass the file if you need an NFS share for
temporary use. Use with the name of the directory you want to export as its
argument.

: Command that helps you discover which shares are available on any host
offering NFS services.

In the next chapter, you will learn how to manage the kernel, its modules, and its hard-
ware on your computer.

C H A P T E R 1 3

Working with the Kernel

The heart of your computer is the kernel. This kernel works with specific parameters and
modules, and as a Linux user you need to have at least a minimal knowledge about them. In
this chapter, you’ll learn how to perform basic kernel management tasks and how to change
parameters for your kernel. You’ll also learn how to configure GRUB to load your kernel.

Understanding the Kernel
As mentioned, the Linux kernel is the heart of the operating system. It is the software that
communicates directly to the hardware. The kernel is the only part of the operating system
that communicates to the hardware directly; all other components that you use have to go
through the kernel as shown in Figure 13-1.

Other Software

Kernel

Computer Hardware

Figure 13-1. Only through the kernel can all software communicate to the computer hardware.

To access the different hardware components, the kernel needs drivers. Every kernel
driver is represented by a kernel module. Only the most essential drivers are directly compiled
in the kernel itself. In general, drivers are loaded automatically when the computer boots or
when new hardware is attached to the computer. The latter is done with the aid of the
process, which is used by all modern distributions.

Note In the old days, kernels were monolithic, meaning that all drivers were compiled directly into the
kernel. This also meant that if a user needed a new driver, he or she had to enable the driver in the source
code and recompile the entire kernel. Fortunately, this is no longer necessary; if a new driver is required, the
user just has to load a new module. Therefore, situations where kernels need to be recompiled are pretty
rare nowadays.

299

CHAPTER 13 WORKING WITH THE KERNEL300

Managing Kernel Modules
To work with your computer’s hardware, you need drivers to access the hardware. The role
of the driver is to tell the kernel exactly how it should address the hardware. In general, you
don’t need to do anything for proper hardware access, but some cases will require your
involvement, and Linux offers some commands to help you with that. These commands are
discussed in the following sections.

Listing Modules with
Before doing any module management on your computer, you should know which modules
are loaded. For this purpose, you can use the command. Listing 13-1 shows you the
command and sample output.

Listing 13-1. Use to Get a List of All Loaded Modules

The output of shows you not only which modules are loaded, but also what the
modules are doing. In the first column of its output, you see the name of the module (for
instance, on the last line, you see information about). Next is the amount of memory
the module uses (in the case of), followed by the number and names of the
other modules that currently use this module. In particular, the latter part of this information
is important to know about, because if a module has dependencies, you cannot just unload
it before unloading the dependencies. Before doing anything, you should use to see
what the modules are currently doing, after which you can use or on these
modules.

CHAPTER 13 WORKING WITH THE KERNEL 301

Loading and Unloading Modules with
Basically, modules get loaded automatically. In some cases, however, you may need to unload
and reload a module by hand. This may be required after changing options for a module (see
the section “Changing Module Options” later in this chapter for more information). As mod-
ules normally get loaded automatically, you’ll probably have to unload a module first before
you can load it again. To unload a module that is currently loaded, use . For exam-
ple, the following command would unload the module from your computer:

 will not normally return any messages; it just does its job and quits. If you
actually want to see what it is doing, you can add the option for verbosity. This can be
especially useful when loading a module; for instance, it shows you what dependencies are
automatically loaded with your module. Listing 13-2 gives an example of this.

Listing 13-2. To See What Happens on Loading a Module, Use

Loading of a module may fail because of versioning errors. Typically, modules are written
for a specific version of the kernel, and if the version in the module is wrong, it will fail to load.
A bad solution to this problem is to disable version checking by using the (force) option.
You may succeed in loading the module in this way, but it won’t be stable. However, if this
is your only option, you may need to use it. Before using , you should first check
whether you can find the source code for your module, which you might want to compile
again to make sure it works with your kernel. See the section “Compiling Modules” later in this
chapter for more information.

Displaying Module Properties with
In some situations, you may just want to know more about a module that is currently loaded.
To do this, you can use . This is a pretty straightforward command that gives you all
available properties for a module, which may be useful for troubleshooting. For instance,

 also gives you the license that is used for the module in question. This allows you to
recognize a proprietary module, which may possibly cause problems in your current kernel.
In Listing 13-3, you can see the result of running the command on the module.

Listing 13-3. Use to Find Out More About a Module

CHAPTER 13 WORKING WITH THE KERNEL302

Changing Module Options
When working with kernel modules, you can pass options to them. You would do this by
editing the configuration file or by adding module-specific files to

. You can include lines for specific modules in and specify
all you need to do on one line per module, or alternatively you can create a configuration
file for a specific module in . Listing 13-4 shows partial sample contents of

.

Listing 13-4. Using for Module-Specific Options

As you can see, a few commands are used in :

: Use this to give an alternative name to a module. In the example line
, the alias name is given to the real

module name . This means that you can also load this module by referring to
.

: This command is used to pass specific options to a module. In the example
line , no specific mode is specified, and a memory
address is added. Module options are normally module specific; you should consult the
documentation about the module to find out more about the options that you can use.

: Normally, a module is just added to the kernel. If your module needs more
parameters and settings when it initializes, you can use the command, which
lets you use complete shell scripts to load a module. An example of this is in the line

, which tells that it should load the module by doing a
 on the module; if that fails, it should not load at all. (More

on the techniques that are used in a shell script like this will be discussed in the next
chapter.)

: Like , this command allows you to pass specific options when unload-
ing a module.

CHAPTER 13 WORKING WITH THE KERNEL 303

: By using the command, you can tell to use an additional
configuration file for loading modules. As you can see in Listing 13-4, the
command is used to include all configuration files in as well.

: In some cases, a module is programmed to use internal alias names.
These may conflict with an alias name that you have configured for the module. To
prevent problems with this, you can use the command to indicate that all
of the module’s internal alias names should be ignored. Some distributions have an

 configuration file in place by default to prevent certain
alias names from being used.

Managing Module Dependencies
As you can see, when using the command, some modules depend on other modules to
load successfully. Scanning for these module dependencies is the responsibility of the
command, which automatically loads when your computer boots. The result of this command
is written to the file, which you can find in the directory for your current
kernel (). Since this file just contains a long list of modules and their depen-
dencies, it makes no sense to edit it yourself. In case a module has dependency problems, it
can be useful to run the command again from the command line. This command will
generate a new file automatically for you.

Legacy Commands for Module Management
Some older commands for module management don’t take module dependencies in consid-
eration. You should not use these commands, which I’ve listed here, because they most likely
won’t load and unload your modules correctly:

: Loads a module

: Removes a module

Tuning Kernel Parameters
In the old days, tuning kernel parameters was hard. You needed to change parameters in the
C language source files and recompile the kernel to make changes. Today this is no longer a
requirement. Instead, you can write new parameters to the file system. This file system
contains several kernel settings, and by writing directly to some of the files in , you will
immediately change the setting.

You should never try to change settings in without knowing what you are doing,
because you may severely trash your system. However, expertise requires deep insight
into the working of Linux and the Linux kernel; hence, I won’t give you a complete list of every
parameter that you can change in . I will give you some useful examples, however, as well
as the method to make changes permanent.

CHAPTER 13 WORKING WITH THE KERNEL304

Writing Changes to
To write a change to a file in , you need to echo the new value to the configuration file.
All kernel-related configuration files are in . Let’s consider an example: the con-
figuration file indicates whether your computer can route
packets between two network cards. Typically, this is not required for an end-user compu-
ter, but you may choose to set this up if you want to use your computer as a wireless access
point, for instance. You can show the default setting in this file by using

, which will give you the value of , meaning that routing currently is disa-
bled. To enable it, echo the value of to this configuration file. Listing 13-5 shows how this
procedure works.

Listing 13-5. Changing Parameters in

The disadvantage of the procedure just described is that changes are not persistent when
you reboot your computer. This means that after a reboot, you would have to apply all of these
settings again. Fortunately, a workaround exists in the form of the sysctl package. If installed,
sysctl runs as a service when your computer boots. When loaded, it reads its configuration file,

. This file contains a list of all parameters that have to be applied to the
file system. Listing 13-6 shows an example of what the contents of sysctl may look like. This
example, which comes from an Ubuntu server, contains some valuable information on param-
eters that you may want to change.

Listing 13-6. Applying Settings Permanently with sysctl

CHAPTER 13 WORKING WITH THE KERNEL 305

CHAPTER 13 WORKING WITH THE KERNEL306

In , configuration files in are referred to by using relative path
names. As you can see in the last line, for instance, the setting
is used, which refers to the file with the complete name of

. Instead of using the notation with slashes that you see in this example listing, your
distribution may use the dotted notation, which would in this case be

. It doesn’t matter which you choose, as both are compatible.
When changing kernel settings, you should know where to find which kind of settings. In

, different subdirectories are used to group different kinds of configuration files. The
following subdirectories are used:

: Contains parameters related to kernel debugging

: Contains parameters related to devices and their working

: Contains file system parameters

: Contains kernel-related parameters

: Contains network-related settings

: Contains settings that relate to memory management

Some Useful Parameters
As mentioned before, tuning the kernel by modifying the file system is not easy to do
and requires deep insight in the working of the kernel. Therefore, I will not go into that here.
To give you an impression of the possibilities, I’ve included a short list of some of the options
in :

: Determines whether your computer has to route
packets between network cards. Use this if you are setting up your computer as a
router on a network.

: Tells the kernel whether it should automatically eject
the optical disk after unmounting it.

: Determines the logging level that SCSI devices
should use. A higher log level means more intensive logging. Only use values here that
are the double or the half of the previous value; for example, , , , , , , , ,

. Tune this if you want more (or less) SCSI-related logging.

CHAPTER 13 WORKING WITH THE KERNEL 307

: Gives the maximum number of files that can be opened
simultaneously.

: Contains the name of the computer as it is known by your
kernel.

: Contains the current kernel version. This file is
read when displaying the current version on the command line with the
command.

: Sets the maximum amount of memory that the kernel
should reserve to buffer incoming network packets.

: Tells the kernel whether it should run in laptop mode.
When enabled with the value , it will use settings that are more energy efficient.

: Tells the kernel how fast it should start swapping. A higher
value in here indicates a higher willingness on the part of your kernel to start swapping.

Compiling Your Own Kernel and Kernel Modules
Among the advantages of using Linux is that you can create new functionality based on the
source files of kernel as well as other programs. In this section, you’ll read how compiling is
used to get things going, first as it applies to the kernel, and second as it applies to new kernel
modules.

To be able to build and compile your own software, you must have a C compiler installed
on your computer. Typically, the GNU C compiler, which is in the gcc package, is used for this
purpose. Make sure that it is installed, as well as all the packages that depend on it, before pro-
ceeding. Read Chapter 8 for more information about the installation of new software packages
on your distribution.

Understanding Make
To compile software, you need a C compiler, which is in the gcc package. To compile C files
successfully, generically speaking you’ll use one of two approaches; the one you use depends
on which way the source program files have been delivered. If your source file is one file only,
you could compile it directly, using the command. When dealing with Linux kernels and
drivers, this never is the case; you don’t work with one single source file, but with lots of source
files that are all linked to each other and, depending on your current configuration, have to
behave differently. As it would be virtually impossible to compile all of these one by one, most
source files come with a file that helps with the compilation process, named . You will
find it after extracting the source files from the software package.

The contains specific instructions that tell the C compiler exactly what it has to
do when compiling the software. To start compiling the software against this is not
too hard: you just run the command. However, since there can be different s on
your computer, you should always run the command from the directory that contains the

 you need to start compiling your software.
If the software in question is very complex, the may contain instructions to

run the compiling job for different scenarios. This is the case when working with the kernel,

CHAPTER 13 WORKING WITH THE KERNEL308

where you can run with different arguments to tell the compiler exactly what it has to
do. These arguments are not specific to but are defined in the itself. If you’re
not afraid of complicated scripts, you can even read the to try to find out exactly
what it accomplishes. (See for more
information on .)

Modifying and Compiling the Kernel
Before the Linux kernel was modular and before it was easy to write new kernel options to the

 file to change settings dynamically, you needed to change kernel settings
and recompile a new kernel after making your setting changes. Nowadays, there is hardly
a reason to proceed in this way. Nevertheless, this section gives some insight into what is
needed to configure and compile your own kernel, which will result in a new kernel. Before
you start, make sure that the kernel source files are installed on your computer. Read Chapter
8 for more details on how to install software.

It only makes sense to compile a kernel if you have changed settings to the kernel. The
next section shows you how to do so, and the section after that discusses how to compile the
kernel after making these changes.

Modifying the Kernel
The current kernel configuration is normally stored in the file in the directory

, which contains the source files of your current kernel. To create this file, different
options are available, of which two will be covered here:

 file from scratch.

 file based on the default configuration.

Creating a file from Scratch

To create a file from scratch, you need to run the command or one of
the related commands. This command starts a script that asks for every single piece of kernel
functionality how you want to configure it, which is very user unfriendly. Some alternatives
exist that are easier to use: and . Both offer a menu interface that
enables you to specify what you need in your new kernel configuration. As they offer the same
functionality, I will cover the command only; you can run it from the console,
which is not the case for .

You must run the commands from the directory, so before
you start, make sure that you are in this directory. Next, type to start the
menu-based kernel configuration. Figure 13-2 shows what the interface looks like.

CHAPTER 13 WORKING WITH THE KERNEL 309

Figure 13-2. offers a menu interface that allows you to change kernel options.

In the interface, all options are subdivided in different modules that
allow you to find specific functionality easily. You can select an option by navigating to it with
the arrow keys and pressing Enter to select it. Some options can just be switched on or off,
whereas other options can be enabled as a module as well. For the latter option type, you can
toggle between selected, unselected, or an M, which indicates that you want to use the option
as a module (see Figure 13-3). You can also get more details about what functionality is related
to a given option: select it first and then use the Tab key to navigate to the Help option. Select-
ing Help will show you a description of the selected function.

Figure 13-3. From , it is easy to switch options on or off.

CHAPTER 13 WORKING WITH THE KERNEL310

Once you are finished creating the configuration you need with , you can
browse back to the top of the menu interface by selecting Exit until you are back in the main
menu. This offers you the screen shown previously in Figure 13-2. From there, select Exit once
more. You will now be prompted to save the current selection. Select Yes to write the current
selection to a configuration file. Read the section “Compiling a New Kernel” later in this chap-
ter for information on how to proceed from this point.

Creating a Based on the Default Configuration

Every kernel also contains a default configuration, which according to the kernel maintainer
contains the best options for the architecture that you are using. You can easily write this
default configuration to the file by using the com-
mand. Make sure that you use this command from the directory, as it otherwise
won’t work.

After starting the command, lots of options will scroll over your screen
(see Listing 13-7), and the result is written to the new file.

Listing 13-7. Using , You Can Write the Favorite Options of the Kernel Developer
to a Configuration File

Compiling a New Kernel
Now that you have created the file, it’s time to compile the new ker-
nel, or better, build the new kernel. Whereas previously several commands were needed to do

CHAPTER 13 WORKING WITH THE KERNEL 311

this, nowadays you can perform this task by running one simple command from the
 directory:

Completing the build of a new kernel can take awhile. will show you the names of all
the individual source files that it is currently is working on and display any warning or status
errors related to these files. Listing 13-8 gives you an impression of what you see at this point.

Listing 13-8. Run from to Build the New Kernel

Compiling Modules
Although you won’t often have to recompile the kernel very often, the same is far from true for
kernel modules. The issue is that many hardware vendors refuse to publish the source code
for their drivers under open source licenses. Instead, they will make some proprietary Linux
drivers available only. These proprietary Linux drivers are generic, but to be fully functional,
drivers have to be developed for your specific kernel. The only way to meet this requirement is
to compile these drivers for your machine.

Speaking in a generic way, there are two methods to install such drivers on your com-
puter: the easy way and the hard way. When choosing the easy way, you’ll have to integrate
the web site where the vendor made his or her drivers available as a package repository on
your computer. When choosing the hard way, you’ll have to download and compile the drivers
yourself. The exact procedure to do this is different for each driver. What is described in the
following procedure is a generic way that will work in most cases:

CHAPTER 13 WORKING WITH THE KERNEL312

 1. Download the driver and store it somewhere on your computer. Let’s assume that the
driver you want to install is , and you have stored it in the home directory
of the user root. You should also make sure that you have acquired root permissions
before starting.

 2. Extract the archive using . Normally, this creates a sub-
directory in the current directory, which would be in this case. Use
to change to this directory.

 3. In the driver subdirectory, you’ll normally find some files. One of them is the configure
file (which may also have the name , , or something similar). Often you’ll
also find a file with the name , and in most cases there’s also a file with the
name . Be aware that exact file names may vary, so check to be sure that you are
using the right files. It’s a good idea to start by reading the file, as it may contain
useful tips on how to install the driver.

 4. After reading the file, run the generic setup script, which is normally .
To run it from the current directory, run it as , and not just .
The script makes sure that all conditions have been met to start compiling
the driver.

 5. From the directory where you’ve extracted the driver files, run to start the com-
piling process. The command will follow the instruction in the in the
directory and compile the driver for your current kernel.

 6. After running , you’ll need to make sure that all drivers are copied to the correct
location. To do this, run , still within the directory that contains the driver
files as the current directory.

This generic procedure should help you in compiling and installing the driver for your
kernel. It is a very generic procedure, however: in all cases, you should check the documenta-
tion that comes with the driver to see whether it contains any specific instructions.

Managing the GRUB Boot Loader
After compiling a new kernel, you need to make sure that it will be loaded. You do so by cre-
ating a GRUB configuration. GRUB, which is short for the Great Unified Boot Loader, makes
sure that an operating system gets loaded. It is installed on all Linux distributions by default
and offers you a boot menu. By default, you won’t see much of this boot menu, as it just boots
your kernel. After adding a new kernel, you need to configure GRUB to make the old kernel as
well as the new kernel available as a load option. In this section, you’ll read how to configure
GRUB. First, you’ll learn how GRUB normally works, and then you’ll see how to modify its
configuration.

The BIOS of every computer has a setting for the device that should be used for booting
by default. Often, the server will try to initiate the boot procedure from its hard drive. It reads
the very first sector of 512 bytes (the Master Boot Record, or MBR), in which it finds the GRUB
primary boot loader in the first 446 bytes. After that come the 64 bytes in which the partition
table is stored and finally the last 2 bytes in which a magic code is written. Upon installing

CHAPTER 13 WORKING WITH THE KERNEL 313

your server, the installation program writes the GRUB boot code onto the hard drive. This code
makes sure that your server is started automatically. However, you can also interrupt the auto-
matic startup by pressing the Esc key. This shows you the GRUB boot menu. This boot menu
is defined in the GRUB configuration file (on Red
Hat and derivatives).

The GRUB Configuration File
GRUB has a text configuration file— —that defines all options from the
boot menu. Here, you can specify the different boot options on your server. Listing 13-9 shows
the data that is normally in the GRUB configuration file just after installation of Ubuntu Server.
On SUSE and Red Hat, you’ll see something quite similar. For better readability, I’ve removed
all the comment sections from this file.

Listing 13-9. Default GRUB File

The file consists of several parts. The first is the general section, which defines
some options that determine how the menu is used. Next are three sections, each devoted to
one of the three different boot-menu options. This is also where you need to add a new section
after compiling your new kernel—you need to make sure here that your new kernel can load.
The following text explains the items from Listing 13-9; you need to create a new boot item
accordingly for your new kernel.

CHAPTER 13 WORKING WITH THE KERNEL314

The first part of the GRUB boot menu consists of the generic options. The example file
shown in Listing 13-9 has three of them. The option specifies that the first section
in should be executed as the default section. Next, is used to give the user
3 seconds to interrupt the startup procedure. If the user doesn’t do anything during these
3 seconds, the server will continue with the boot process. The last generic boot option in
this example file is (SUSE and Red Hat don’t use it). As you can guess, this option
causes the boot menu to be hidden by default. If the user presses the Esc key at this moment,
the GRUB menu will be displayed.

In the second part, the first item in the boot menu is specified. This item has the title
Ubuntu 8.04, kernel 2.6.24-16-server, which is defined with the option. Next, everything
that is needed to start the server is defined. First is the name of the root device that should be
read. This line tells GRUB where it can find the kernel that it should load. In this example, this
is the device , which corresponds to or . However, because
the device names are not known at this stage in the boot procedure, it’s not possible to refer to
these device names, and that’s why is used. Check the file to
see how these device mappings are currently defined.

After specifying the root device, the kernel itself is referred to in the line that starts with
. This line also specifies all the options that are required to load the ker-

nel properly. Some of the more common options are as follows:

: This option refers to the device where the root file system is found. It’s possible
to refer to common device names such as here. To add increased flexibility,
however, file system UUIDs are used. In case your root is on a logical volume, you’ll
see the logical volume device name here. Check Chapter 5 for more details about this,
or use the command to see parameters that are set for your Ext2/Ext3 file
systems.

: Use this option to make sure that the root device is mounted as read-only at this
stage. This is necessary so that you’ll be able to perform a file system check later during
the system boot.

: This option suppresses most messages that are generated while booting. If you
want to see exactly what happens, remove this option from the .

: Use this option to show a splash screen. In general, this is a graphical screen
that is shown to the user during the boot process. On a server you don’t want this, so
better leave it off so that you can see what happens when the server comes up.

: Use this option to specify the VGA mode as a hexadecimal argument when boot-
ing. This line determines the number of columns and lines used when starting your
system. As an alternative to a value like , you can use the option . In that case,
you can enter the mode you want to use when booting.

: You can use this option to specify the mode that should be used for starting the
IDE device. Use if you suspect that your server might have problems initial-
izing IDE in DMA mode.

: The advanced configuration and power interface (ACPI) option allows you to
specify what to do with this sometimes problematic technique. By default, ACPI is on.
Use if you suspect that it’s causing some problems.

CHAPTER 13 WORKING WITH THE KERNEL 315

: If your system was suspended, this option will just ignore that fact and start a
new system. While starting this new system, the suspended system is terminated. Since
normally you wouldn’t suspend a server, you probably don’t need this option either.

: Use this option if symmetric multiprocessing (SMP) is causing you any trouble.
But be aware that you’ll be using only one CPU if this option is used.

: The advanced programmable interrupt controller (APIC) allows you to use
interrupts with much more outputs and options than when using normal interrupts.
However, this option can cause problems; so use if you think that your system
can’t properly handle APICs.

: This option tells your kernel how many CPUs to work with. Use to
force all except the primary processor off.

: This option specifies whether enhanced disk drive (EDD) support should be used.
If you suspect it’s causing problems, switch it off here.

: This option is used only in recovery mode. It starts single-user mode, in
which a minimal number of services is started so that the administrator can perform
troubleshooting.

The following line specifies what to load as the initial RAM drive (). The use of an
 is very important on modern Linux systems because it’s used to load the kernel mod-

ules that are needed to boot the system.
The other menu items that are defined in this boot menu work in more or less the same

way: each starts with a specification of the root device and then a referral to the kernel that
should be loaded.

One of the nice features of GRUB is that it reads its configuration dynamically, which
means that if you made any modifications to the options used in , you don’t have
to recompile or reinstall GRUB. This is a huge advantage that didn’t exist for LILO, the boot
loader from the early days of Linux, where you had to run the command after all changes
or modifications to the configuration. Any changes that you make to will show imme-
diately the next time you restart your server.

Working with the GRUB Boot Menu
When GRUB runs, it displays a boot menu. (Remember to press the Esc key if your computer
boots in silent mode.) From the boot menu, you can select from the options that you have
defined in the GRUB configuration file .

Note The failsafe option is more than just a single-user mode. A minimal number of services are loaded
in single-user mode, but the kernel is loaded in the normal way. Selecting the failsafe option from the boot
menu starts the single-user mode, but the kernel is also started with minimal options to increase chances
that you can boot successfully.

CHAPTER 13 WORKING WITH THE KERNEL316

If the default startup option from the GRUB menu is not good enough, select the item that
you want to start and press E. You’ll next see a window like the one in Figure 13-4.

Figure 13-4. After pressing E, you can choose from more options when booting your server.

You’ll now see the selected boot item in more detail. Every line in the selected item can be
edited from this interface. From this interface, you can perform the following tasks:

settings.

have made an error in a certain line and you want to fix it.

type GRUB-specific commands to tell your server what you want to do. If GRUB still is
capable of showing you some boot options, you probably won’t use this option much.

to GRUB while starting your machine. For example, if you want to start your server in
troubleshooting mode instead of its normal startup mode, type to start single-
user mode.

 continue
booting.

CHAPTER 13 WORKING WITH THE KERNEL 317

Summary
In this chapter, you have learned how to work with the kernel. You’ve read how to manage ker-
nel modules, as well as how to change kernel parameters. The following commands have been
covered in this chapter:

: Allows you to load and unload kernel modules

: Provides information about kernel modules

: Lists loaded modules

: Allows you to load kernel modules (legacy command)

: Removes currently loaded modules from memory (legacy command)

: Creates the configuration file, which makes sure that module
dependencies are loaded automatically

: Refers to the GNU C compiler, used to convert source files into program files

: Works with the to make compiling software easier

: Allows you to load kernel parameters while booting

In the next and final chapter of this book, you will read how to create shell scripts.

C H A P T E R 1 4

Introduction to
Bash Shell Scripting

Once you really get to be at ease working on the command line, you’ll want to do more than
what the previous chapters have taught you. You’ve already learned how to combine com-
mands using piping, but if you really want to get the best out of your commands, there is
much more you can do. In this chapter, you’ll get an introduction to the possibilities of Bash
shell scripting, which really is the command line on steroids; piping and redirection just is not
enough if you need to do really complex tasks. As soon as you really understand shell scripting,
you’ll be able to automate many tasks, and thus do your work at least twice as fast as you used
to do it.

Basic Shell Script Components
A shell script is a text file that contains a sequence of commands. So basically, anything that
can run a bunch of commands can be considered a shell script. Nevertheless, some rules exist
for making sure that you create decent shell scripts, scripts that will not only do the task you’ve
written them for, but also be readable by others. At some point in time, you’ll be happy with
the habit of writing readable shell scripts. As your scripts get longer and longer, you will notice
that if a script does not meet the basic requirements of readability, even you yourself won’t be
able to understand what it is doing.

Elements of a Good Shell Script
When writing a script, make sure that you meet the following requirements:

unique name.

shebang () to tell the shell which subshell should execute the script.

comments—lots of them.

 command to tell the shell that executes the script that the script has
executed successfully.

319

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 320

Let’s start with an example script (see Listing 14-1).

Listing 14-1. Make Sure Your Script Is Well Structured

Let’s talk about the name of the script first: you’ll be amazed how many commands
already exist on your computer. So you have to make sure that the name of your script is
unique. For instance, many people like to give the name -

Structures” later in this chapter). If your script has the same name as an existing command,
the existing command will be executed, not your script (unless you prefix the name of the
script with). So make sure that the name of your script is not in use already. You can find
out whether a name already exists by using the command. For instance, if you want to
use the name and want to be sure that it’s not in use already, type . List-
ing 14-2 shows the result of this command.

Listing 14-2. Use to Find Out Whether the Name of Your Script Is Not Already in Use

In the first line of the script is the shebang. This scripting element tells the shell from
which this script is executed which subshell should be executed to run this script. This may
sound rather cryptic, but is not too hard to understand. If you run a command from a shell,
the command becomes the child process of the shell; the command will show you that
perfectly. If you run a script from the shell, the script becomes a child process of the shell. This
means that it is by no means necessary to run the same shell as your current shell to run the
script. To tell your current shell which subshell should be executed when running the script,
include the shebang. As mentioned previously, the shebang always starts with and is fol-
lowed by the name of the subshell that should execute the script. In Listing 14-1, I’ve used

 as the subshell, but you can use any other shell if you’d like.
You will notice that not all scripts include a shebang, and in many cases, even if your

script doesn’t include a shebang, it will still run. However, if a user who uses a shell other than
 tries to run a script without a shebang, it will probably fail. You can avoid this by

always including a shebang.
The second part of the example script in Listing 14-1 are two lines of comment. As you

can guess, these command lines explain to the user what the purpose of the script is and how

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 321

to use it. There’s only one rule about comment lines: they should be clear and explain what’s
happening. A comment line always starts with a followed by anything.

Note You may ask why the shebang, which also starts with a , is not interpreted as a comment. That is
because of its position and the fact that it is immediately followed by an exclamation mark. This combination
at the very start of a script tells the shell that it’s not a comment, but a shebang.

Following the comment lines is the body of the script itself, which contains the code that
the script should execute. In the example from Listing 14-1, the code consists of two simple
commands: the first clears the screen, and the second echoes the text “hello world” to the
screen.

The last part of the script is the command . It is a good habit to use the com-
mand in all your scripts. This command exits the script and next tells the parent shell how the
script has executed. If the parent shell reads , it knows the script executed successfully.
If it encounters anything other than , it knows there was a problem. In more complex
scripts, you could even start working with different exit codes; use as a generic error
message and , and so forth, to specify that a specific condition was not met. When

-
ter), you’ll see that it may be very useful to work with exit codes.

Executing the Script
Now that your first shell script is written, it’s time to execute it. There are different ways of
doing this:

 command.

Making the Script Executable
The most common way to run a shell script is by making it executable. To do this with the

 script from the example in Listing 14-1, you would use the following command:

After making the script executable, you can run it, just like any other normal command.
The only limitation is the exact location in the directory structure where your script is. If it
is in the search path, you can run it by typing just any command. If it is not in the search
path, you have to run it from the exact directory where it is. This means that if linda created
a script with the name that is in , she has to run it using the command

. Alternatively, if she is already in , she could use to run
the script. In the latter example, the dot and the slash tell the shell to run the command from
the current directory.

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 322

Tip Not sure whether a directory is in the path or not? Use to find out. If it’s not, you can
add a directory to the path by redefining it. When defining it again, you’ll mention the new directory, followed
by a call to the old path variable. For instance, to add the directory to the path, you would use

.

Running the Script As an Argument of the Command
The second option for running a script is to specify its name as the argument of the com-
mand. For instance, our example script run by using the command .
The advantage of running the script in this way is that there is no need to make it executable

when running it this way; it has to be in the current directory, or you have to use a complete
reference to the directory where it is. This means that if the script is , and
your current directory is , you should run it using the following command:

Sourcing the Script
The third way of running the script is rather different. You can source the script. By sourcing
a script, you don’t run it as a subshell, but you are including it in the current shell. This may
be useful if the script contains variables that you want to be active in the current shell (this
happens often in the scripts that are executed when you boot your computer). Some prob-
lems may occur as well. For instance, if you use the command in a script that is sourced,

 command exits the current script. In fact, it
doesn’t exit the script itself, but tells the executing shell that the script is over and it has to
return to its parent shell. Therefore, you don’t want to source scripts that contain the
command. There are two ways to source a script. The next two lines show how to source a
script that has the name :

It doesn’t really matter which one you use, as both are equivalent. When discussing vari-
ables in the next section, I’ll give you some more examples of why sourcing may be a very
useful technique.

Working with Variables and Input
What makes a script so flexible is the use of variables. A variable is a value you get from some-
where that will be dynamic. The value of a variable normally depends on the circumstances.
You can have your script get the variable itself, for instance, by executing a command, by mak-
ing a calculation, by specifying it as a command-line argument for the script, or by modifying
some text string. In this section, you’ll learn all there is to know about variables.

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 323

Understanding Variables
A variable is a value that you define somewhere and use in a flexible way later. You can do this
in a script, but you don’t have to, as you can define a variable in the shell as well. To define
a variable, you use . To get the value of a variable later on, you call its value by
using the command. Listing 14-3 gives an example of how a variable is set on the com-
mand line and how its value is used in the next command.

Listing 14-3. Setting and Using a Variable

Note The method described here works for the Bash and Dash shells. Not every shell supports
this method, however. For instance, on tcsh, you need to use the command to define a variable:

 gives the value to the variable .

Variables play a very important role on your computer. When booting, lots of variables
are defined and used later when you work with your computer. For instance, the name of your
computer is in a variable, the name of the user account you logged in with is in a variable, and
the search path is in a variable as well. These are the shell variables, the so-called environment
variables you get automatically when logging in to the shell. As discussed earlier, you can use
the command to get a complete list of all the variables that are set for your computer. You
will notice that most environment variables are in uppercase. However, this is in no way a
requirement; an environment variable can be in lowercase as well.

The advantage of using variables in shell scripts is that you can use them in three ways:

When reading some of the scripts that are used in your computer’s boot procedure, you
will notice that the beginning of the script features a list of variables that are referred to several
times later in the script. Let’s have a look at the somewhat silly example in Listing 14-4.

Listing 14-4. Understanding the Use of Variables

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 324

As you can see, after the comment lines, this script starts by defining all the variables
that are used. I’ve specified them in all uppercase, because it makes it a lot easier to recog-
nize the variables when reading a longer script. In the second part of the script, the variables
are referred to by typing in their names with a sign in front of each.

You will notice that quite a few scripts work in this way. There is a disadvantage though: it
is a rather static way of working with variables. If you want a more dynamic way to work with
variables, you can specify them as arguments to the script when executing it on the command
line, for instance.

Variables, Subshells, and Sourcing
When defining variables, you should be aware that a variable is defined for the current shell
only. This means that if you start a subshell from the current shell, the variable won’t be there.
And if you define a variable in a subshell, it won’t be there anymore once you’ve quit the sub-
shell and returned to the parent shell. Listing 14-5 shows how this works.

Listing 14-5. Variables Are Local to the Shell Where They Are Defined

In Listing 14-5, I’ve defined a variable with the name , and next its value is correctly
echoed. In the third command, a subshell is started, and as you can see, when asking for the
value of the variable in this subshell, it isn’t there because it simply doesn’t exist. But
when the subshell is closed by using the command, we’re back in the parent shell where
the variable still exists.

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 325

Now in some cases, you may want to set a variable that is present in all subshells as well.
If this is the case, you can define it by using the command. For instance, the following
command would define the variable and make sure that it is available in all subshells
from the current shell on, until you next reboot the computer. However, there is no similar
way to define a variable and make that available in the parent shells.

Note Make sure that you include the definition of variables in so that the new variable will
also be available after a reboot.

Listing 14-6 shows the same commands as used in Listing 14-5, but now with the value of
the variable being exported.

Listing 14-6. By Exporting a Variable, You Can Make It Available in Subshells As Well

So that’s what you have to do to define variables that are available in subshells as well.
A technique you will see often as well that is related to variables is the sourcing of a file that
contains variables. The idea is that somewhere on your computer you keep a common file that
contains variables. For instance, consider the example file that you see in Listing 14-7.

Listing 14-7. By Putting All Your Variables in One File, You Can Make Them Easily Available

The main advantage of putting all variables in one file is that you can make them available
in other shells as well by sourcing them. To do this with the example file from Listing 14-7, you
would use the following command (assuming that the name of the variable file is):

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 326

Note is not the same as . With , you include the contents of in the current
shell. With , you run from the current shell. The former doesn’t start a subshell, whereas the
latter does.

In Listing 14-8, you can see how sourcing is used to include variables from a generic con-
figuration file in the current shell. In this example, I’ve used sourcing for the current shell, but
the technique is also quite commonly used to include common variables in a script.

Listing 14-8. Example of Sourcing Usage

Working with Script Arguments
In the
seen how to create a variable in a static way. In this section, you’ll learn how to provide values
for your variables in a dynamic way by specifying them as an argument for the script when
running the script on the command line.

Using Script Arguments
-

sider the script that you’ve seen previously in Listing 14-4. You could run it with an
argument on the command line as well, as in the following example:

Now wouldn’t it be nice if in the script you could do something with the argument
that is specified in the script? The good news is that you can. You can refer to the first argu-
ment that was used when launching the script by using in the script, the second argument
by using , and so on, up to . You can also use to refer to the name of the script itself.
The example script in Listing 14-9 shows how it works.

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 327

Listing 14-9. Showing How Arguments Are Used

The example code in Listing 14-10 shows how is rewritten to work with an argu-
ment that is specified on the command line. This changes from a rather static script
that can create one directory only to a very dynamic script that can create any directory and
assign any user and any group as the owner to that directory.

Listing 14-10. Referring to Command-Line Arguments in a Script

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 328

To execute the script from Listing 14-10, you would use a command as in this example:

This line shows you how the has been made more flexible now, but at the same
time it also shows you the most important disadvantage: it has become somehow less obvi-
ous as well. You can imagine that it might be very easy for a user to mix up the right order of
the arguments and type instead. So it becomes important to
provide good information on how to run this script.

Counting the Number of Script Arguments
On some occasions, you’ll want to check the number of arguments that are provided with
a script. This is useful if you expect a certain number of arguments, for instance, and want
to make sure that the required number of arguments is present before running the script.
To count the number of arguments provided with a script, you can use . Basically, is a
counter that does no more than show you the exact number of arguments you’ve used when

” later

in this chapter) it does make sense. For example, you could use it to show a help message if
the user hasn’t provided the correct number of arguments. Listing 14-11 shows the contents
of the script , in which is used. Directly following the code of the script, you can
see a sample running of it.

Listing 14-11. Counting the Number of Arguments

Referring to All Script Arguments
So far, you’ve seen that a script can work with a fixed number of arguments. The example in
Listing 14-10 is hard-coded to evaluate arguments as , , and so on. But what if the number
of arguments is not known beforehand? In that case, you can use or in your script. Both
refer to all arguments that were specified when starting the script, although there is a differ-
ence. To explain the difference, I need to show you how a loop treats or .

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 329

A loop can be used to test all elements in a string of characters. Now what I want to
show you at this point is that the difference between and is exactly in the number of
elements that each has. But let’s have a look at their default output first. Listing 14-12 shows
version 1 of the script.

Listing 14-12. Showing the Difference Between and

Now let’s have a look at what happens if you launch this script with the arguments
. You can see the result in Listing 14-13.

Listing 14-13. Running with Different Arguments

So far, there seem to be no differences between and , yet there is a big difference: the
collection of arguments in is treated as one text string, whereas the collection of arguments
in ” later in this chapter, you will see
some proof for this.

At this moment, you know how to handle a script that has an infinite number of argu-
ments. You can tell the script that it should interpret them one by one. The next subsection
shows you how to count the number of arguments.

Asking for Input
Another elegant way to get input is just to ask for it. To do this, you can use in the script.
When using , the script waits for user input and puts that in a variable. The sample script

 in Listing 14-14 shows a simple example script that first asks for the input and then
shows the input that was provided by echoing the value of the variable. Directly following the
sample code, you can also see what happens when you run the script.

Listing 14-14. Asking for Input with

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 330

As you can see, the script starts with an line that explains what it expects the user to
do. Next, with the line , it will stop to allow the user to enter some text. This text
is stored in the variable . In the following line, the command is used to show the
current value of . As you see, in this sample script I’ve used with the option .
This option allows you to use some special formatting characters, in this case the formatting
character , which enters a tab in the text. Formatting like this ensures that the result is dis-
played in a nice manner.

As you can see, in the line that has the command , the text that the script needs to
be echoed is between double quotes. This is to prevent the shell from interpreting the special
character before does. Again, if you want to make sure the shell does not interpret spe-
cial characters like this, put the string between double quotes.

You may get confused here, because two different mechanisms are at work. First is the
mechanism of escaping characters so that they are not interpreted by the shell. This is the dif-
ference between and . In the former, the is treated as a special character,
with the result that only the letter is displayed; in the latter, double quotes tell the shell not
to interpret anything that is between the double quotes, hence it shows .

The second mechanism is the special formatting character , which tells the shell to dis-
play a tab. To make sure that this or any other special formatting character is not interpreted
by the shell when it first parses the script (which here would result in the shell just displaying
a), you have to put it between double quotes. In Listing 14-15, you can see the differences
between all the possible commands.

Listing 14-15. Escaping and Special Characters

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 331

When using , you can use the following special characters:

 (octal).

: Alert (BEL, or bell code). If supported by your system, this will let you hear a beep.

: Backspace.

: Form feed.

: Newline.

: Horizontal tab.

: Vertical tab.

Using Command Substitution
Another way of getting a variable text in a script is by using command substitution. In com-
mand substitution, you’ll use the result of a command in the script. This is useful if the script
has to do something with the result of a command. For instance, by using this technique, you
can tell the script that it should only execute if a certain condition is met (you would have
to use a conditional loop with to accomplish this). To use command substitution, put the
command that you want to use between backquotes (also known as back ticks). The following
sample code line shows how it works:

In this example, the command is used with some of its special formatting characters.
The command tells to present its result in the day-month-year format. In
this example, the command is just executed; however, you can also put the result of the com-
mand substitution in a variable, which makes it easier to perform a calculation on the result
later in the script. The following sample code shows how to do this:

Substitution Operators
Within a script, it may be important to check whether a variable really has a value assigned
to it before the script continues. To do this, Bash offers substitution operators. By using sub-
stitution operators, you can assign a default value if a variable doesn’t have a value currently
assigned, and much more. Table 14-1 provides an overview of the substitution operators with
a short explanation of their use.

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 332

Table 14-1. Substitution Operators

Operator Use
 Shows the value if a parameter is not defined.

 Assigns the value to the parameter if the parameter does not exist at
all. This operator does nothing if the parameter exists but doesn’t
have a value.

 Assigns a value if the parameter currently has no value or if param-
eter doesn’t exist at all.

 Shows a message that is defined as the value if the parameter doesn’t

be aborted immediately.

 Displays the value if the parameter has one. If it doesn’t have a value,
nothing happens.

Substitution operators can be hard to understand. To make it easier to see how they
work, Listing 14-16 provides some examples. In all of these examples, something happens to
the variable. You’ll see that the result of the given command is different depending on
the substitution operator that’s used. To make it easier to discuss what happens, I’ve added
line numbers to the listing. Notice that, when trying this yourself, you should omit the line
numbers.

Listing 14-16. Using Substitution Operators

The example of Listing 14-16 starts with the following command:

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 333

This command reads the variable and shows its current value. Because doesn’t
have a value yet, nothing is shown in line 2. Next, a message is defined in line 3 that should be
displayed if is empty. This happens with the following command:

As you can see, the message is displayed in line 4. However, this doesn’t assign a value to
, which you see in lines 5 and 6 where the current value of is asked again:

In line 7, finally gets a value, which is displayed in line 8:

The shell remembers the new value of , which you can see in lines 9 and 10 where the
value of is referred to and displayed:

In line 11, is redefined but it gets a null value:

The variable still exists; it just has no value here. This is demonstrated when
 is used in line 12; because has a null value at that moment, no new

value is assigned:

Next, the construction is used to assign a new value to . The fact
that really gets a value from this is shown in lines 16 and 17:

Finally, the construction in line 18 is used to display if currently does have a
value:

Notice that this doesn’t change anything for the value that is assigned to at that
moment; just indicates that it has a value and that’s all.

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 334

Changing Variable Content with Pattern Matching
You’ve just seen how substitution operators can be used to do something if a variable does not
have a value. You can consider them a rather primitive way of handling errors in your script.
A pattern-matching operator can be used to search for a pattern in a variable and, if that pat-
tern is found, modify the variable. This can be very useful because it allows you to define a
variable exactly the way you want. For example, think of the situation in which a user enters
a complete path name of a file, but only the name of the file itself (without the path) is needed
in your script.

The pattern-matching operator is the way to change this. Pattern-matching operators
allow you to remove part of a variable automatically. Listing 14-17 is an example of a script
that works with pattern-matching operators.

Listing 14-17. Working with Pattern-Matching Operators

When executed, the script will show the following result:

Pattern-matching operators always try to locate a given string. In this case, the string is
. In other words, the pattern-matching operator searches for a , preceded by another char-

acter (). In this pattern-matching operator, is used to search for the longest match of the
provided string, starting from the beginning of the string. So, the pattern-matching operator
searches for the last that occurs in the string and removes it and everything that precedes the

 as well. You may ask how the script comes to remove everything in front of the . It’s because
the pattern-matching operator refers to and not to . You can confirm this by running the
script with as an argument. In this case, the pattern that’s searched for is in the last
position of the string, and the pattern-matching operator removes everything.

This example explains the use of the pattern-matching operator that looks for the longest
match. By using a single , you can let the pattern-matching operator look for the shortest
match, again starting from the beginning of the string. If, for example, the script in Listing
14-17 used , the pattern-matching operator would look for the first in the
complete file name and remove that and everything before it.

You should realize that in these examples the is important. The pattern-matching
operator removes the first found and anything in front of it. The pattern-matching
operator removes the first in only if the value of starts with a . However, if
there’s anything before the , the operator will not know what to do.

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 335

In these examples, you’ve seen how a pattern-matching operator is used to start searching
from the beginning of a string. You can start searching from the end of the string as well. To do
so, a is used instead of a . This refers to the shortest match of the pattern, and refers to
its longest match. The script in Listing 14-18 shows how this works.

Listing 14-18. Using Pattern-Matching Operators to Start Searching at the End of a String

While executing, you’ll see that this script has a problem:

As you can see, the script does its work somewhat too enthusiastically and removes every-
thing. Fortunately, this problem can be solved by first using a pattern-matching operator
that removes the from the start of the complete file name (but only if that is provided) and
then removing everything following the first in the complete file name. The example in List-
ing 14-19 shows how this is done.

Listing 14-19. Fixing the Example from Listing 14-18

As you can see, the problem is solved by using . This construction starts searching
from the beginning of the file name to a . Because no is used here, it looks for a only at
the very first position of the file name and does nothing if the string starts with anything else.
If it finds a , it removes it. So, if a user enters instead of , the

 construction does nothing at all. In the line after that, the variable is defined
again to do its work on the result of its first definition in the preceding line. This line does the

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 336

real work and looks for the pattern , starting at the end of the file name. This makes sure that
everything after the first in the file name is removed and that only the name of the top-level
directory is echoed. Of course, you can easily edit this script to display the complete path of
the file: just use instead.

So, to make sure that you are comfortable with pattern-matching operators, the script in
Listing 14-20 gives another example. This time, though, the example does not work with a file
name, but with a random text string.

Listing 14-20. Another Example with Pattern Matching

When running it, the script gives the result shown in Listing 14-21.

Listing 14-21. The Result of the Script in Listing 14-20

Performing Calculations
Bash offers some options that allow you to perform calculations from scripts. Of course, you’re
not likely to use them as a replacement for your spreadsheet program, but performing simple
calculations from Bash can be useful. For example, you can use calculation options to execute
a command a number of times or to make sure that a counter is incremented when a com-
mand executes successfully. The script in Listing 14-22 provides an example of how counters
can be used.

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 337

Listing 14-22. Using a Counter in a Script

This script consists of three lines. The first line initializes the variable counter with a value
of 1. Next, the value of this variable is incremented by 1. In the third line, the new value of the
variable is shown.

Of course, it doesn’t make much sense to run the script this way. It would make more
sense if you include it in a conditional loop, to count the number of actions that is performed

” later in this chapter, I have an example
that shows how to combine counters with .

So far, we’ve dealt with only one method to do script calculations, but you have other
options as well. First, you can use the external command to perform any kind of calcula-
tion. For example, the following line produces the result of 1 + 2:

As you can see, a variable with the name is defined, and this variable gets the result of
the command by using command substitution. A semicolon is then used to indi-

used to separate one command from the next command.) After the semicolon, the command
 shows the result of the calculation.

The command can work with addition, and other types of calculation are supported
as well. Table 14-2 summarizes the options.

Table 14-2. Operators

Operator Meaning
 Addition (1 + 1 = 2).

 Subtraction (10 – 2 = 8).

 Division (10 / 2 = 5).

 can
handle integers only (11 % 3 = 2).

When working with these options, you’ll see that they all work fine with the exception of
the multiplication operator,

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 338

This seems curious but can be easily explained. The has a special meaning for the shell,
as in . When the shell parses the command line, it interprets the , and you don’t want
it to do that here. To indicate that the shell shouldn’t touch it, you have to escape it. Therefore,
change the command as follows:

Another way to perform some calculations is to use the internal command . Just the
fact that is internal makes it a better solution than the external command : it can be
loaded from memory directly and doesn’t have to come all the way from your computer’s

, you can make your calculation and apply the result directly to a vari-
able, as in the following example:

The result of the calculation in this example is stored in the variable . The disadvantage
of working this way is that has no option to display the result directly as can be done when
using . For use in a script, however, it offers excellent capabilities. Listing 14-23 shows
a script in which is used to perform calculations.

Listing 14-23. Performing Calculations with

Here you can see what happens if you run this script:

If you think that we’ve now covered all methods to perform calculations in a shell script,
you’re wrong. Listing 14-24 shows another method that you can use.

Listing 14-24. Another Way to Calculate in a Bash Shell Script

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 339

You saw this construction before when you read about the script that increases the value
of the variable counter. Note that the double pair of parentheses can be replaced by one pair
of square brackets instead, assuming the preceding is present.

Using Control Structures
now, you haven’t read much about the way in which the execution of commands can

be made conditional. The technique for enabling this in shell scripts is known as flow control.
Flow control is about commands that are used to control the flow of your script based on spe-
cific conditions, hence the classification “control structures.” Bash offers many options to use
flow control in scripts:

 to execute commands only if certain conditions were met. To customize the
working of some more, you can use to indicate what should happen if the con-
dition isn’t met.

 to work with options. This allows the user to further specify the working
of the command when he or she runs it.

: This construction is used to run a command for a given number of items. For
example, you can use to do something for every file in a specified directory.

 as long as the specified condition is met. For example, this construc-
tion can be very useful to check whether a certain host is reachable or to monitor the
activity of a process.

: This is the opposite of to run a command until a certain condi-
tion has been met.

The following subsections cover flow control in more detail. Before going into these
details, however, I want to first introduce you to the command. This command is used
to perform many checks to see, for example, whether a file exists or if a variable has a value.
Table 14-3 shows some of the more common options. For a complete overview, consult
its page.

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 340

Table 14-3. Common Options for the Command

Option Use
 is a file, without looking at what particular kind of file it is.

 is a regular file and not (for example) a device file, a direc-
tory, or an executable file.

 is a directory.

 is an executable file. Note that you can test for other
permissions as well. For example,

 is newer than .

 is older than .

 and both refer to the same inode. This is the case if one

 and are equal.

 and are not equal.

 if integer is greater than integer .

 if integer is less than integer .

 is greater than or equal to integer .

 is less than or equal to integer .

 is empty. This is a very useful construction for finding out
whether a variable has been defined.

 if is defined.

 and are the same. This is most useful to
compare the value of two variables.

 and are not equal to each other. You can
use with all other tests as well to check for the negation of the statement.

You can use the command in two ways. First, you can write the complete command,
as in . This command, however, can be rewritten as . (Don’t forget the

you’ll see the latter option only because people who write shell scripts like to work as effi-
ciently as possible.

Using
Possibly the classic example of flow control consists of constructions that use

. This construction offers various interesting possibilities, especially if used in conjunction
with the command. You can use it to find out whether a file exists, whether a variable cur-
rently has a value, and much more. Listing 14-25 provides an example of a construction with

 that can be used in a shell script.

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 341

Listing 14-25. Using to Perform a Basic Check

The simple check from the Listing 14-25 example is used to see whether the user who
started your script provided an argument. Here’s what you see if you run the script:

If the user didn’t provide an argument, the code in the loop becomes active, in which
case it displays the message that the user needs to provide an argument and then terminates
the script. If an argument has been provided, the commands within the loop aren’t executed,
and the script will run the line , and in this case echo the argument to
the user’s screen.

Also notice how the syntax of the construction is organized. First, you have to open it
with . Then, separated on a new line (or with a semicolon), is used. Finally, the loop
is closed with an
loop won’t work.

Note You can use a semicolon as a separator between two commands. So would first execute
the command and then the command .

The example in Listing 14-25 is rather simple; it’s also possible to make loops more
complex and have them test for more than one condition. To do this, use or

 within the control structure allows you to not only make sure that something happens
if the condition is met, but also check another condition if the condition is not met. You can
even use in conjunction with () to open a new control structure if the first condi-
tion isn’t met. If you do that, you have to use after . Listing 14-26 is an example of the
latter construction.

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 342

Listing 14-26. Nesting Control Structures

Here you can see what happens when you run this script:

In this example, the argument that was entered when running the script is checked. If it
is a file (), the script tells the user that. If it isn’t a file, the part under is exe-
cuted, which basically opens a second control structure. In this second control structure, the
first test performed is to see whether is perhaps a directory. Notice that this second part of
the control structure becomes active only if is not a file. If isn’t a directory either, the part
after is run, and the script reports that it has no idea what is. Notice that for this entire
construction, only one is needed to close the control structure, but after every (that
includes all as well), you need to use .

You should know that constructions are used in two different ways.
You can write out the complete construction as in the previous examples, or you can employ
constructions that use and . These so-called logical operators are used to separate two
commands and establish a conditional relationship between them. If is used, the second
command is executed only if the first command is executed successfully (in other words,
if the first command is true). If is used, the second command is executed only if the first
command isn’t true. So, with one line of code, you can find out whether is a file and echo
a message if it is:

Note that this can be rewritten as follows:

Note This example only works as a part of a complete shell script. Listing 14-27 shows how the example
from Listing 14-26 is rewritten if you want to use this syntax.

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 343

In case you don’t quite follow what is happening in the second example: it performs a test
to see whether is not a file. (The is used to test whether something is not the case.) Only if
the test fails (which is the case if is indeed a file) does the command execute the part after
the and echoes that is a file. Listing 14-27 shows how you can rewrite the script from
Listing 14-26 with the and tests.

Listing 14-27. The Example from Listing 14-26 Rewritten with and

Note You’ll notice in Listing 14-27 that I used a at the end of the line. This slash makes sure that the
carriage return sign at the end of the line is not interpreted and is used only to make sure that you don’t type
two separated lines. I’ve used the for typographical reasons only. In a real script, you’d just put all code on
one line (which wouldn’t fit on these pages without breaking it, as I’ve had to do). I’ll use this convention in
some later scripts as well.

It is not really hard to understand the script in Listing 14-27 if you understand the
script in Listing 14-26, because they do the same thing. However, you should be aware
of a few differences. First, I’ve added a test to give an error if is not defined.
Next, the example in Listing 14-27 is all on one line. This makes the script more compact,
but it also makes it a little harder to understand what is going on. I’ve used parenthe-
ses to increase the readability a little bit and also to keep the different parts of the script
together. The parts between parentheses are the main tests, and within these main tests
some smaller tests are used as well.

Let’s have a look at some other examples with
following line:

Here, the command tries to synchronize the content of the directory with
the content of the same directory on some other machine. If this succeeds, no further evalu-
ation of this line is attempted. If something happens, however, the part after the becomes
active and makes sure that user gets a message.

The following script presents another example, a complex one that checks whether avail-
able disk space has dropped below a certain threshold. The complex part lies in the sequence
of pipes used in the command substitution:

The important part of this piece of code is in the first line, where the result of a command
is included in the loop by using backquoting, and that result is compared with the value .

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 344

If the result is less than , the following section becomes active. If the result is greater than
, nothing happens. As for the command itself, it uses to check available disk space on

the volume where is mounted, filters out the last line of that result, and from that last line
filters out the fourth column only, which in turn is compared to the value . And, if the con-
dition is true, the command writes a message to the system log file. This example isn’t
really well organized. The following rewrite does exactly the same, but using a different syntax:

This shows why it’s fun to write shell scripts: you can almost always make them better.

Case
Let’s start
to figure out what it’s done.

Listing 14-28. Example Script with Case

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 345

-
pionship (of course, you can modify it for any major sports event you like). It will first ask
the person who runs the script to enter the name of the country that he or she thinks will be
the next champion. This country is put in the variable. Notice the use of uppercase
for this variable; it’s a nice way to identify variables easily if your script becomes rather big.
Because the statement that’s used in this script is case sensitive, the user input in the first
part is translated into all uppercase using the
this command, the current value of is read, translated to all uppercase, and assigned
again to the variable using command substitution. Also notice that I’ve made it easier
to distinguish the different parts of this script by adding some additional comments.

The body of this script consists of the command, which is used to evaluate the input
the user has entered. The generic construction used to evaluate the input is as follows:

So, the first line evaluates everything that the user can enter. Notice that more than one
alternative is used on most lines, which makes it easier to handle typos and other situations
where the user hasn’t typed exactly what you were expecting him or her to type. Then on
separate lines come all the commands that you want the script to execute. In the example,
just one command is executed, but you can enter a hundred lines to execute commands if you
like. Finally, the test is closed by using . Don’t forget to close all items with the double semi-
colons; otherwise, the script won’t understand you. The can be on a line by itself, but you
can also put it directly after the last command line in the script.

When using case, you should make it a habit to handle “all other options.” Hopefully, your
user will enter something that you expect. But what if he or she doesn’t? In that case, you prob-
ably do want the user to see something. This is handled by the at the end of the script. So,
in this case, for everything the user enters that isn’t specifically mentioned as an option in the
script, the script will echo to the user.

Using
You can use to run a command as long as a condition is met. Listing 14-29 shows how

 is used to monitor activity of an important process.

Listing 14-29. Monitoring Process Activity with

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 346

The body of this script consists of the command . This command moni-
tors for the availability of the process whose name was entered as an argument when starting
the script. As long as the process is detected, the condition is met and the commands in the
loop are executed. In this case, the script waits 1 second and then repeats its action. When the
process is no longer detected, the command writes a message to .

As you can see from this example, offers an excellent method to check whether
something (such as a process or an IP address) still exists. If you combine it with the
command, you can start your script with as a kind of daemon and perform a check
repeatedly. For example, the script in Listing 14-30 would write a message to if the
IP address suddenly gets lost due to an error.

Listing 14-30. Checking Whether the IP Address Is Still There

Using
Whereas does its work as long as a certain condition is met, is used for the oppo-
site: it runs until the condition is met. This can be seen in Listing 14-31 where the script
monitors whether the user, whose name is entered as the argument, is logged in.

Listing 14-31. Monitoring User Login

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 347

In this example, the command is executed repeatedly. In this command,
the result of the command that lists users currently logged in to the system is grepped for
the occurrence of . As long as that command is not true (which is the case if the user is not
logged in), the commands in the loop will be executed. As soon as the user logs in, the loop
is broken, and a message is displayed to say that the user has just logged in. Notice the use of
redirection to the null device in the test, ensuring that the result of the command is not
echoed on the screen.

Using
Sometimes it’s necessary to execute a series of commands, whether for a limited or an unlim-
ited number of times. In such cases, loops offer an excellent solution. Listing 14-32 shows
how you can use to create a counter.

Listing 14-32. Using to Create a Counter

The code used in this script isn’t difficult to understand: the conditional loop determines
that, as long as the counter has a value between and , the variable counter must be auto-
matically incremented by 1. To do this, the construction is used. As long as this
incrementing of the variable counter continues, the commands between and are exe-
cuted. When the specified number is reached, the loop is left, and the script will terminate and
indicate with to the system that it has done its work successfully.

Loops with can be pretty versatile. For example, you can use it to do something on
every line in a text file. The example in Listing 14-33 illustrates how this works (as you will see,
however, it has some problems).

Listing 14-33. Displaying Lines from a Text File

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 348

In this example, is used to display all lines in one by one. Of course, just
echoing the lines is a rather trivial example, but it’s enough to show how works. If you’re
using in this way, you should notice that it cannot handle spaces in the lines. A space
would be interpreted as a field separator, so a new field would begin after the space.

Listing 14-34 shows one more example with : in this example, is used to ping a
range of IP addresses. This is a script that one of my customers likes to run to see whether
a range of machines is up and running. Because the IP addresses are always in the same range,
starting with 192.168.1, there’s no harm in including these first three bits in the IP address
itself. Of course, you’re free to work with complete IP addresses instead.

Listing 14-34. Testing a Range of IP Addresses

Notice the use of in this script. This operator allows you to refer to all arguments that
were specified when starting the script, no matter how many there are. Let’s have a closer look
at this.

 nd , used when treating arguments within a script? Time to show you
exactly what the difference is between the two by using a , you can perform
an action on each element in a string. Listing 14-35 provides a simple example that demon-
strates this.

Listing 14-35. Using to Distinguish Different Elements in a String

The example command line in Listing 14-35 consists of three different parts, which are
separated by a semicolon. The first part is , which you can interpret as “for
each element in the string 1 2 3.” While evaluating the loop, each of these elements is
stored in the temporary variable . In the second part, for each of these elements a com-
mand is executed. In this case, the command echoes the elements one by one,
which you can clearly see in the output of the command used in Listing 14-35. Finally, the
third part of this loop is the word , which closes the loop. Every loop starts
with , is followed by , and closes with . Now let’s change the script that
appeared earlier in this chapter in Listing 14-12 to include a loop for both and .
Listing 14-36 shows what the new script looks like.

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 349

Listing 14-36. Evaluating and Using

Let’s consider a few comments before running this script. In this script, a technique called
escaping is used. The purpose of escaping is to make sure that the shell doesn’t interpret cer-
tain elements. For instance, consider this line:

If you run this line as shown, the shell will interpret and show you its current value. In
this case, we want the shell to display the characters instead. To do so, the shell should not
interpret the sign, which we make clear by adding a slash in front of it. By using a slash, we
tell the shell not to interpret the next character.

Later in the script, notice the lines and . In here, I’ve used
double quotes to prevent the shell from interpreting and before executing the code
lines in the script. We want the shell to interpret these at the moment it runs the script, and
therefore I put both between double quotes. At this point, I recommend you try running the
script once without the double quotes and once with the double quotes to see the difference
yourself.

When you run the script without the double quotes and start the script with a com-
mand like , the shell has already interpreted before it comes to the line

. So it would in fact execute and next show , , , and , each
displayed on its own line. But that’s not what we want—we want the shell to show the result of

. To make sure this happens, put between double quotes. In Listing 14-37, you
can see the result of running the example script from Listing 14-36.

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 350

Listing 14-37. Result of Running the Example Script in Listing 14-36

Summary
In this chapter, you’ve learned how to write a Bash shell script. Having mastered shell script-
ing, you are well on your way to becoming a real expert on the Linux command line. The
following common Bash shell script elements have been covered:

tells the parent shell what shell should be used to interpret the script.

exactly the script ought to be doing.

: Informs the parent shell whether the script executed successfully. It is good prac-
tice to include at the end of scripts.

: Includes a script in the current shell environment without launching a subshell.

: Operates the same way as .

: Stops the script to read user input and put that into a variable.

: Searches the path to see where an executable file exists. Issue this before giving a
name to a script to avoid using a name already in use.

: Escapes the next character so that it is not interpreted by the shell.

: Escapes the next string so that some characters are not interpreted by the shell.

: Escapes the next string so that no characters are interpreted by the shell at all.

CHAPTER 14 INTRODUCTION TO BASH SHELL SCRIPTING 351

: Performs calculations.

: Performs calculations.

: Performs tests, for instance, to see whether a file exists or a value is greater or
smaller than another value.

: Executes a command when a certain condition has been met.

: Executes as long as a certain condition has been met.

: Executes until a certain condition has been met.

executes a command.

: Executes a command for a range of items.

This was the last chapter. After reading all chapters in this book, you should now be
capable of working efficiently from the Linux command line.

A P P E N D I X

Installing Linux

This book is about Linux command-line administration. Before starting command-line
administration, you need an installed Linux system. If you don’t have your favorite Linux
distribution installed yet, this appendix teaches you how to install the popular OpenSUSE dis-
tribution, which allows you to do everything described in this book. If you want to use another
distribution, that’s fine as well. In that case, consult the web site of the distribution of your
choice for additional installation hints. Before you start, make sure your computer meets the
following minimal requirements:

Other hardware is not required, though useful to have on board. I recommend not
installing Linux along with Windows on your computer. Try to get a dedicated computer
for running Linux. If that’s not possible, use) or VirtualBox

) to install Linux as a virtual operating system on your current computer.
The following procedure assumes that you can dedicate the complete hard drive of your com-
puter to Linux.

 1. to download OpenSUSE. I recommend downloading the ISO
-

 2.
puter boots from the optical drive. You may have to interfere in the boot process by

select the boot device.

 3.
press Enter to load the installation system. This will take a minute or two.

353

APPENDIX INSTALLING L INUX354

 4. In the Welcome screen, choose the installation language and the keyboard layout you
are using. Then click Next to continue. The installer will now detect the hardware in
your computer and propose an installation based on what it has found.

 5. Now select New Installation as the installation mode, and click Next.

 6.

 7.

something). This book is about command-line administration, so the only part of

selecting which graphical desktop you want to use, click Next.

Tip If you really want to dive deep into command-line administration, from the screen where you select
the graphical desktop, choose Other Minimal Server installation. This will install no graphical desktop
at all.

 8. In the next window, the installer suggests a partition layout. If you want to try out the

allows you to make sure that free space is kept available. You can use this free space

APPENDIX INSTALLING L INUX 355

Note The SUSE installer shows the current installation step in the left pane. The left pane gives you a big
overview of what you are doing. In the right pane, you see details of the step you are working on.

Figure A-1. To make sure that you can manually create partitions and LVM logical volumes later,
click Create Partition Setup.

APPENDIX INSTALLING L INUX356

 9. You now see a window where you can choose between one of the hard disks that was

Figure A-2. Select Custom Partitioning (for experts) to create your own disk layout.

APPENDIX INSTALLING L INUX 357

 10.
. If you see instead of , select that. On your disk device, you

Figure A-3. Select your disk device to create your custom partitions.

 11.

 is selected, and click

APPENDIX INSTALLING L INUX358

 12.

Figure A-4. Create a second partition with a size of 1GB.

APPENDIX INSTALLING L INUX 359

 13.

Figure A-5. Select the swap file system and accept all other default options.

 14. -

continue.

APPENDIX INSTALLING L INUX360

 15. Now the installer asks to create a user account. Enter your own name and provide a
password twice. If the installation program complains that the password doesn’t meet
complexity criteria, you can just ignore that and proceed to the next step of the instal-
lation process. Do notice that the password you enter here also automatically becomes

Figure A-6. You now have to create a user account and grant a password to that user account.

 16.
so far. Before clicking the Install button, you can still change settings, as nothing has

installing your system. In the pop-up window that appears, click Install to confirm that

before all software has been copied to your computer’s hard drive.

Your Linux installation is finished now. Enjoy working with it!

361

symbols
/

division operator, 337
pattern matching and, 334

$
prefixing variable names, 324
regular expression, 82

$0 referring to script names, 326
$1, $n referring to script arguments, 326
$# counter, 328
$@ operator, 328, 348
$* operator, 328
+

addition operator, 337
repetition operator, 84

\
as convention indicating end of a line, 343
regular expression, 83

` ` backquotes (back ticks), 331
! character, 142, 144
* character, 142
. dot, ending tar command, 60
\ for escaping characters, 330
! indicating testing, 340, 343
&& logical operator, 342
|| logical operator, 342
% modulus operator, 337
*

multiplication operator, 337
repetition operator, 83

\{n\} repetition operator, 84
or ##, pattern matching and, 334
% or %%, pattern matching and, 335
*/, pattern matching and, 334, 335, 336
prefixing shell script comments, 321
./ prefixing shell scripts, 320
< . redirection operator, 34, 77
> redirection operator, 14
^ regular expression, 82
-

regular expression, 83
sign, indicating short options, 11
subtraction operator, 337

--
help option, 16, 19
sign, indicating long options, 11

. regular expression, 82
[^] regular expression, 82
[] regular expression, 82
\< regular expression, 83
\> regular expression, 83
? repetition operator, 83
; semicolon, 337, 341
;; double semicolons, 345
" " quotes, 330
#! (shebang), 319, 320
sign, indicating root user, 8

A
absolute path names, archive files and, 59
ACLs (Access Control Lists), 171–175
a command, 70
ACPI (advanced configuration and power

interface), 314
Active Directory Domain Controller, Samba

and, 277, 278
Active Directory, Samba and, 280
addition (+) operator, script calculations and,

337
adduser command, 133. See also useradd

command
administrative tasks, configuring via sudo

command, 158–160
advanced configuration and power interface

(ACPI), 314
advanced permissions, 168
advanced programmable interrupt controller

(APIC), 315
alert priority, syslog and, 222
allocation groups, 119
APIC (advanced programmable interrupt

controller), 315
apt command, 190, 191
apt-get command, 189–191, 195
aptitude command, 190, 193, 196
aquota.group file, 148
aquota.user file, 148
archive files, 57–62

compressing/decompressing, 59
creating, 58
extracting, 60

arguments, for commands, 9, 11

Index

INDEX362

attributes, 176
authentication, 7, 151–158

auth facility and, 221
authpriv facility and, 221
password-based, 266
public/private key pairs and, 263
SSH key-based, 268–271

authorized_keys file, 271
authpriv facility, 221
automating mounts, 53
awk command, 81, 86

B
backports category, of software packages, 189
backquotes/back ticks (` `), used in command

substitution, 331
backups

creating, 57–63
dump command for, 56
for devices, 62
incremental, 61

balanced trees (b-trees), 121
bash command, 321, 322
bash process, 197
Bash shell, 21, 135

history feature of, 24
internal commands, accessing via help, 16

Bash shell scripting, 319–351
basic components of, 319–322
calculations and, 336
executing scripts and, 321, 339–350
naming scripts and, 319, 320
script requirements and, 319
variables and, 322–339

batch changes, tools for, 77
batch processing, top command and, 204
Berkeley UNIX dialect, CUPS print system

and, 88
/bin directory, 22, 35
BIOS, 312
block bitmaps, 119
/boot directory, 35
boot loader, 312–316
Bourne shell, 21
b-trees (balanced trees), 121
bunzip2 command, decompressing archive

files via, 59
bzip2 command, compressing archive files

via, 59

C
caching keys, 271
cal command, 44
calculations, shell scripts and, 336
calendar, command for displaying, 44

case construction, 339, 344
case sensitivity, files/directories and, 39
cat command

displaying contents of files via, 37, 74
mtab configuration file and, 51

C compiler, 307
cd command

browsing FTP directories via, 265
changing directories via, 39, 167

CD drives, mounting, 47, 49
CentOS (Community ENTerprise Operating

System), 3
cfdisk command, 94, 103
chattr command, 178
chgrp command, 164
chmod command, 167, 170
chown command, 164
chs (cylinder/head/sector) information, 106
cifs file system, 51
clear command, 44
cloning devices, 129
command completion, 22
command interpreter, 9
command line

basics of, 8–12
essential tasks performed via, 27–46

command line prompt, 8
command mode (Vi), 70
commands, 9

automatic completion for, 22
calculations and, 336
command mode for, 70
command substitution and, 331
essential, list of, 45
graphical, 218
help for, 16–20
naming shell scripts and, 320
quitting, 25
some cool ones, 43
stopping, 26
-v option and, 217

command substitution, 331
comments, in Bash shell scripts, 319, 320
Community ENTerprise Operating System

(CentOS), 3
compiling kernel/kernel modules, 307–312
compressing archive files, 59
computer name

displaying, 45
as known by kernel, 307

.conf file, 308
configuration files

crontab, 213
database, modifying via vipw command,

133

INDEX 363

mtab and, 51
PAM modules and, 152

configuring
administrative tasks, via sudo command,

158–160
file servers, 277–297
IP addresses, 239, 245
network cards, 239, 245
networks. See network configuration
NFS client, 295
NFS server, 293–297
routing, 249
Samba file server, 277–286
Samba shares, 27
Secure Shell, 266–274
syslog-ng process, 226–232
syslog process, 220–224

consoles, log messages sent to, 223
control structures, 339–350
copying

files, 265
selections, 42, 72

cp command
copying files via, 42
vs. scp command, 265

CPU
information about, displaying, 44
number of CPUs to work with, 315
processes and, 198, 212
usage statistics about, 200

crit priority, syslog and, 222
crond daemon, 213
cron process, 213, 221
crontab command, 70
crontab configuration file, 213
cryptography, 268
Ctrl+Alt+function key key sequence, 28
Ctrl+C key sequence, 25, 32
Ctrl+D key sequence, 25, 32
Ctrl+R key sequence, 26
Ctrl+Z key sequence, 26
CUPS print system, 87
cut command, 80
cutting selections, 72

D
daemon facility, 221
daemons, 198
Dash shell, 21, 135
date command, 45, 331
d command, 72
dd command, 72

cloning devices and, 129
making backups and, 62–63

optical devices and, 129
signals and, 211

.deb file extension, 188, 189

.deb-src file extension, 189
Debian, DEB packages and, 188
DEB packages, 188–196
debugfs command, 117, 119

inodes and, 65
managing file systems and, 125

debug priority, syslog and, 222
debug subdirectory, 306
default directories, 35
default gateway, 250
default ownership, 165
default permissions, 175
default route, 237, 249
delete command, for mail messages, 34
deleting. See also removing

partitions, 100
text, 72

dependencies
kernel modules and, 303
software packages and, 179

depmod command, 303
/dev directory, 35
“Device is busy” message, 52
devices

backing up, 62
checking file system integrity for, 56
cloning, 129
displaying attributes of, 244
mount command and, 51
mounting, 47–56
name of, 95, 113
unique names for, 91
unmounting, 52

dev subdirectory, 306
df command, 128
DHCP servers, 238
diff command, 78
directories, 22, 117

changing to, 39
creating, 39
default, 35
displaying, 39
moving contents of, 61
permissions and, 163, 166–178
removing, 39
SGID permission and, 169
working with, 38

directory indexing, 121
Directory server, 280
disk space, checking, 36
division (-) operator, script calculations and,

337

INDEX364

dmesg command, 95, 113
DNS names, 251
DNS resolver, 251
DNS servers, 238
documentation, for installed packages, 20
dot (.)

dot command, 146
ending tar command, 60

dpkg command, 190–193
available software packages, displaying via,

192
list of installed software packages, display-

ing via, 191
drivers, 300, 311
drives, obtaining overview of, 96
DSA keys, 263
dump command, 56
dumpe2fs command, 123
du -hs command, 36
DVD drives, mounting, 47, 49
dw command, 72

E
e2fsck command, 122
echo command

input and, 330
variables and, 323

EDD (enhanced disk drive), 315
edquota command, 70, 147, 149
ed text editor, 84
eject command, 53
elif statement, 341
else statement, 341
emerg priority, syslog and, 222
encryption, 268
end of file (EOF) signal, 25
enhanced disk drive (EDD), 315
env (environment) command, 23, 323
environment variables, 323
EOF (end of file) signal, 25
error messages

“Device is busy” message, 52
redirecting, 15

err priority/error priority, syslog and, 222
escaping characters, 330
Esc command, 70
/etc/crontab file, 213
/etc/defaults/useradd file, 137
/etc directory, 35
/etc/fstab file, 53

ACLs and, 172
quota support and, 147
Samba file server and, 286, 288

/etc/group file, 134, 140, 144
/etc/hosts file, 252

/etc/init.d file, 150
/etc/issue file, 146
/etc/motd file, 146
/etc/mtab file, 51
/etc/nsswitch.conf file, 151, 156, 251
/etc/pam.d directory, 152, 153
/etc/passwd file, 133, 134, 141

PAM modules and, 151
primary group and, 143
SUID permission and, 169

/etc/profile file, 24
creating shell scripts and, 145
defining variables and, 325

/etc/resolv.conf file, 251
/etc/shadow file, 133, 142, 151
/etc/sudoers file, 159
/etc/sysconfig/nfs file, 293
eth device numbers, 240
ethtool command, 253
executable files, SGID permission and, 169
execute permissions, 166–171
exit command, 165

Bash shell scripting and, 319, 321
FTP sessions and, 266
sourced scripts and, 322

exportfs command, 294
exports command, 294
exports file, 293, 294
expr command, 337, 338
Ext2 file system, 50, 117, 122
ext2online command, 127
Ext3 file system, 50, 117, 122
Ext4 file system, 50
extents, 118

F
facilities

syslog-ng and, 226
syslog process and, 221

fdisk command, 94
vs. cfdisk command, 103
displaying partitions via, 94
managing partitions via, 95–102

Fedora, 3
IP address configuration and, 246
routing information and, 250

Fedora open source project, 3
FHS (Filesystem Hierarchy Standard), links

and, 64
file attributes, 176
files, 22, 39–43

archive, 57–62
copying, 42, 265
finding, 88, 137
links and, 63–67

INDEX 365

listing, 40
log, 217–235
log messages sent to, 223
maximum number opened simultaneously,

307
moving, 43
permissions and, 163, 166–178
removing, 41
text, 69–90
word count in, 45

file servers, configuring, 277–297
file systems

administrative tasks for, 47–68
analyzing/repairing, 122
checking integrity of, 56
choosing, 122
exploring, 35–38
exported, NFS server and, 294
formatting, 122–127
labels and, 55, 91
mounting on remote host, 272
preparing for ACLs, 172
quota system, preparing for, 147
resizing, 127
types of, 50
understanding how they work, 117–121
Windows, 129
working with, 38–43, 116–129

Filesystem Hierarchy Standard (FHS), links
and, 64

find command
finding files via, 88, 137
managing users/groups and, 164

finger command, 31
fi statement, 341
floppy disks, mounting, 49
flow control, 339–350
folders. See directories
for loop, 339, 347–350
free command, 210
fsck command, 56
fs subdirectory, 306
fstab command, NFS shares and, 296
fstab file, 53

ACLs and, 172
quota support and, 147
Samba file server and, 286, 288

ftp facility, 221
FTP sessions, 265
fuser command, processes and, 52

G
gcc command, 307
g command, 72
G command, 72

Gecos (General Electric Comprehensive
Operating System) field, 135

General Public License (GPL), 2
get command

Samba file server and, 286
secured FTP sessions and, 265

getfacl command, 173
getty program, 146
global substitution, 73
GNU C compiler, 307
GNU initiative, 2
gpart command, 104
GParted, resizing partitions via, 128
GPG configuration, 182
GPL (General Public License), 2
graphical user interfaces. See GUIs
Great Unified Boot Loader (GRUB), 312–316
grep command, 81, 204
groupadd command, 143
group command, 144
group file configuration, 134, 140, 144
groupdel command, 143
groupmod command, 143
group ownership, 163, 164
group passwords, 145
groups, 134, 143

authenticating, 151–158
creating, 143
managing, 133–161
quota system and, 146–151

groups command, 165
GRUB boot loader, 312–316
GUIs (graphical user interfaces)

browsing Samba shares and, 288
commands and, 218
servers and, 210

gunzip command, decompressing archive
files via, 59

gzip command, compressing archive files via,
59

H
hard drives, mounting, 49
hard links, 65, 67
hardware, kernel communicating with,

299
head command, 76
help, 16–20
history command, 24
HISTSIZE variable, 24
home directories, 36, 135, 145

creating automatically, 136
removing, 137
Samba shares and, 283, 288

hostname command, 44

INDEX366

HOSTNAME variable, 23
hosts file, 252
human-readable output, 11

I
i command, 70
IDE devices, 314
ifconfig command

vs. ip command, 245
managing/monitoring network cards via,

238–242
if construction, 339, 340–344
ifdown command, 240
if ... then ... else construction, 340–344
iftop package, 180
ifup command, 240
incremental backups, 61
indexing, 121
info priority, syslog and, 222
inheritance, 166, 171
init process, 197
initrd command, 315
init scripts, Samba and, 282
init.d file, 150
inode bitmaps, 119
inodes, 65, 117, 126
input, redirection and, 15
input mode (Vi), 70
insert mode (Vi), 70
insmod command (legacy), 303
installation sources, zypper command and,

186
installing Linux, 353–360
interactive processes, 198
IP addresses, 237, 238–249

configuring, 239, 245
displaying information about, 243
DNS names and, 251
Fedora and, 246
SUSE and, 248
Ubuntu and, 245
virtual, 241

ip command, 242–245
default route and, 250
vs. ifconfig command, 245

ipconfig command, default route and, 250
IPv4 addresses, 239
IPv6 addresses, 239
issue file, 146
iso9660 file system, 50

J
journaling, 120

K
Kerberos, 291
kernel, 299–317

compiling your own, 307–312
current version of, 307
default configuration and, 310
displaying information about, 44
GRUB boot loader and, 312–316
kernel modules and, 300–303, 307–312
Linux history and, 1
modifying, 308
new partitions and, 99
processes and, 197
shell and, 20
tuning settings for, 303–307
understanding how it works, 299

kernel subdirectory, 306
kern facility , 221
key sequences, 25, 28
killall command, 210, 211
kill command, 52, 210, 211, 213
killing processes, 210, 213
Konqueror utility, 288

L
labels, file systems and, 55
LANG variable, 23
laptop mode, 307
less command, 19, 76

log files and, 219
mtab configuration file and, 51
piping and, 13
ps command and, 204

let command, 338
/lib directory, 36
/lib/security directory, 152, 153
library files, directory for, 36
LILO boot loader, 315
limits, on quotas, 147, 150
links, 63–67

reasons for using, 64
understanding hard links vs. symbolic

links, 66
Linux

command line basics and, 8–12
distributions (versions) of, 1–4
essential tasks, command line and, 27–46
history of, 1
installing, 353–360
processes and. See processes

ln command
hard links and, 67
symbolic links and, 64

lo (loopback device), 239

INDEX 367

local0-local7 facilities, 222
log files, 217–235

monitoring, 219
rotating old, 232–234
sending to yourself, 232

log statement, syslog-ng process and, 230
logger command, 232, 344, 346
logging in/out, 4
logging levels, 306
logical volume manager (LVM), 54, 106
logical volumes, 93, 106–116

creating, 109
resizing file systems within, 127
troubleshooting, 113–116
understanding how they work, 106

login.defs file, 137, 138
login prompt, 5
login scripts, for users, 145
logrotate command, 232–234
logrotate.conf file, 232
lpq command, 88
lpr command, 88
lpr facility, 221
lsattr command, 178
ls command, 40

debugfs command and, 125
inodes and, 65
permissions and, 166
symbolic links and, 65
user/group ownership and, 163

lsdel command, 126
lsmod command, 300, 303
lsof command, 53
lsscsi command, 96
lvcreate command, 109
lvdisplay command, 110, 115
lvextend command, 128
LVM (logical volume manager), 54, 106
lvreduce command, 127
lvscan scan, 115
lvs command, 115

M
MAC addresses, 237, 239
mail command, 33

redirection and, 16
sending mail from the command line via,

33
mail facility, 221
main category, of software packages, 189
make command, 307–311
make config command, 308
make defconfig command, 310
Makefile, 307
make menuconfig command, 308

make xconfig command, 308
man command, 16–19

--help option, 217
-k option and, 18

mandb command, 19
Mandriva, RPM packages and, 180
MANPATH variable, 23
man sections, 17
mark facility, 221
master process, 199
match statement, syslog-ng process and, 231
Media Access Control addresses (MAC

addresses), 237, 239
/media directory, 36, 47
memory

current amount in use, 201
displaying amount available, 210
maximum amount for buffering incoming

network packets, 307
mesg command, 31, 33
mesg y command, 33
messages

suppressed at system boot, 314
to users logging in, 146

mget command, 265
Microsoft, SMB protocol and, 277
Microsoft Windows file systems, 129
mingetty process, 197
Minix version of UNIX, 1
Minix file system, 50
mkdir command, 22, 39
mkfs command, 122
mkntfs command, 129
/mnt directory, 36, 47
modinfo command, 301
modprobe command, 301
modprobe.conf file, 302
modules.dep file, 303
modulus (%) operator, script calculations and,

337
more command, 76
motd file, 146
mount command, 47–52

files system labels and, 92
file system remounting and, 57
journaling and, 121
mount options and, 55
NFS shares and, 295
options for, 50
preparing file systems for quotas and, 148
resizing file systems and, 128
Samba file server and, 287
sshfs command and, 272

mounting devices, 47–56
mput command, 265

INDEX368

MS-DOS file system, 50
mtab configuration file, 51
multiplication (*) operator, script calculations

and, 337
multiverse category, of software packages, 189
mv command, 43

N
named pipes, log messages sent to, 223
nano text editor, 159
Nautilus utility, 288
NetBios, 281
netstat command, 258, 274
net subdirectory, 306
network cards, 237, 238–241

bringing up/down, 240
configuring, 239, 245
displaying information about, 239, 253
Fedora and, 246
SUSE and, 248
tuning, 253
Ubuntu and, 245

network configuration, 237–275
IP addresses and, 238–249
remote connections and, 262–266
SSH for, 262–274
tuning/troubleshooting connections and,

255–262
understanding computer networking and,

237
Network File System (NFS), 51, 291
network shares, mounting, 48
newgrp command, 145, 165
news facility, 221
NFS client, configuring, 295
NFS file system, 51, 291
NFS server, configuring, 291–297
NFS shares

displaying list of, 296
mounting, 49, 295

nfs.lockd command, 293
nice command

CPU time and, 198
process priority and, 212

nmap command
caution for, 258
checking services on remote computers

via, 261
nmbd service, 281
notice priority, syslog and, 222
Novell, zypper package and, 186
nsswitch.conf file, 151, 156, 251
NTFS file system, 50
ntfsclone command, 129
ntfsfix command, 129

ntfsresize command, 129
ntfsundelete command, 129
ntfswipe command, 129

O
o command, 70
O command, 70
OpenLDAP Directory server, Samba and, 280
open source software, 2
OpenSUSE, 4, 353
/opt directory, 37
optical devices

automatic ejection for, 306
dd command and, 129
eject command and, 53
mounting, 49

options, for commands, 9–11
ownership of files/directories, permissions

and, 163

P
p command, 72
package databases, 190
PAM modules (Pluggable Authentication

Modules), 151–158
pam.d directory, 152, 153
pam_deny module, 153
pam_env module, 153
pam_limits module, 153
pam_mail module, 154
pam_mkhomedir module, 154
pam_nologin module, 154
pam_permit module, 154
pam_rootok module, 155
pam_securetty module, 155
pam_tally module, 155
pam_time module, 156
pam_unix module, 156
pam_warn module, 156
panic priority (deprecated), 222
parent-child relationships, displaying, 207
partitions, 93–106

changing order of, 101
creating, 95–98
deleting, 100
displaying information about, 97
recovering when lost, 104
types of, 95, 99
understanding how they work, 94

partprobe command, 100
passphrases, 264, 270
passwd command, 28, 136, 139–143

changing passwords via, 27, 137
groups and, 145

passwd configuration file, 133, 134, 141

INDEX 369

PAM modules and, 151
primary group and, 143
SUID permission and, 169

passwords, 7, 134
changing, 27, 137
expiration of, 140, 142
groups and, 145
managing, 139–143

pasting selections, 72
PATH variable, 23
pattern matching, changing variable content

via, 334–336
PDC (Primary Domain Controller), 277
Perl, 84
permissions

ACLs and, 171–175
advanced, 168
default, 175
managing, 163–178
setting, 167, 170, 175

personal files, directory for, 36
PGP (Pretty Good Privacy), 182
pgrep command, 207
physical extents, 108
physical volumes, 106

creating, 107
displaying list of, 114

PIDs (process IDs)
finding, 207
fuser command and, 52
parent-child relationships and, 207
signals and, 211

ping command, 255, 261
piping, 12, 319, 343
pkill command, 210, 212
portmap command, 292
Pretty Good Privacy (PGP), 182
Primary Domain Controller (PDC), Samba

and, 277
primary group assignment, 134
primary groups, 143, 165
primary partitions, 95, 97, 105
printing

Samba shares and, 283
text files, 87

priorities, of processes, 201, 203
adjusting, 212
syslog and, 222
syslog-ng and, 226

private groups, 143
private keys, 262, 271
/proc directory, 37
proc file system, 303–307
process IDs. See PIDs

processes, 197–215
information about, 202, 205
killing, 198, 206, 210, 213
listing those running, 199, 204
managing, 210–215
master process and, 199
monitoring, 199–210
parent-child relationships and, 197
scheduling, 213
sending signals to, 210
states of, 198
types of, 198
unmounting devices and, 52
zombie, 198

profile file, 24
creating shell scripts and, 145
defining variables and, 325

programmable filters, 84
PS1 variable, 23
ps aux command, 198, 204

background of, 206
while construction and, 346

ps command, 199, 204, 206
pstree command, 197, 207, 320
public keys, 262
public/private key pairs, 263, 268–271
put command, 265, 286
PuTTY, 6
pvcreate command, 106
pvdisplay command, 107
pvscan command, 114
pvs command, 114
pwck command, 141
pwd command, 39
Python, 84

Q
q command, top command and, 204
:q! command, 71
quit command, 34, 266
quitting commands, 25
quitting work, 71
quotacheck command, 148
quota start command, 150
quota system, 146–151

initializing, 148, 150
setting quotas for users/groups, 149
starting the service, 150

quotes (" "), special characters and, 330

R
rccups command, 88
read command, 329
read permissions, 166–171
recovery mode, single-user mode and, 315

INDEX370

Red Hat, 3
LVM and, 106
RPM packages and, 180

Red Hat Enterprise Linux (RHEL), 3
redirection, 14, 319
regular expressions, 81
ReiserFS file system, 50, 117, 121
relative path names, archive files and, 59
remote machines, log messages sent to, 224
remote network connections, 262–266
Remote Procedure Call (RPC) portmapper,

291
removing

directories, 39
files, 41
home directories, 137
partitions, 100
user accounts, 137
users, from groups, 143

renice command, 212, 213
repetition operators, 83
reply command, 34
repositories, for software packages, 179, 186

DEB packages and, 188
yum command and, 181

repquota command, 150
resize2fs command, 127
resize_reiserfs command, 128
resolv.conf file, 251
resources for further reading

make command, 308
subnet masks, 240

restoring backups, incremental backups and,
62

restricted category, of software packages, 189
reversed search feature, 26
RHEL (Red Hat Enterprise Linux), 3
rm command, 41
rmdir command, 39
rmmod command (legacy), 303
root

directory for, 35, 38
logging in/out and, 7
sudo command and, 158–160

root device, 314
/root directory, 35, 38
root file system, 314
root kit, 167
route command, default route and, 249
route packets, 306
routers, 237
routing

configuring, 249
ip command and, 242
troubleshooting, 257

rpcinfo command, 292
rpc.nfsd command, 292
RPC (Remote Procedure Call) portmapper, 291
rpm command, 180
.rpm file extension, 180
RPM packages, 180–188
RSA keys, 263
rsync command, 343
rug command, 186

S
:s command, 73
Samba

installing, 277
versions of, 278

Samba file server, 277–290
accessing, 286
configuring, 277–286
troubleshooting, 289

Samba project, 277
samba script, 282
Samba shares

configuring, 278
determining purpose of, 288

sash shell, 21
saving work, 71
/sbin directory, 35
scheduling processes, 213
scp command, 264, 265
screen, command for clearing, 44
script arguments, 326, 328
SCSI driver, 96
Secure Shell. See SSH
security facility, 221
security=server option, Samba and, 280
sed command, 81, 84
semicolon

single (;), separating commands, 337, 341
double (;;), shell scripting and, 345

Server Message Block (SMB) protocol, 277
servers, directory for, 38
service command, 282
services

/etc/nsswitch.conf file and, 156
testing availability of, 258–262

setfacl command, 172
Set Group ID (SGID) permission, 169, 170
Set User ID (SUID) permission, 168, 170
sftp command, 264, 265
SGID (Set Group ID) permission, 169, 170
shadow configuration file, 133, 142, 151
shebang (#!), 319, 320
shell, 9, 20–26, 135

managing for users, 145
when not needed, 135

INDEX 371

shell scripting. See Bash shell scripting
SHELL variable, 23
shell variables, 323
showmount command, 296
SIGHUP signal, 211
SIGKILL signal, 211
signals, 210
SIGTERM signal, 211
SIGUSR1signal, 211
single-user mode, 315
smart cards, for authentication, 7
smbclient command, 286, 289
smb.conf file, 278, 279

additional parameters in, 282–286
Samba troubleshooting and, 289

smbd service, 281
smbpasswd command, 281, 290
smbpasswd file, 281
SMB (Server Message Block) protocol, 277
SMP (symmetric multiprocessing), 315
snapshot files, 62
snapshots, 112
software, directory for, 37
software packages, 179–196

categories of, 189
checking integrity of, 182
DEB packages and, 188–196
dependencies and, 179
list of installed, displaying, 191
RPM packages and, 179–188

software repositories, 179, 186
DEB packages and, 188
yum command and, 181

sort command, 78
source command, 146
sources.list file, 189
sourcing Bash shell scripts, 322, 324, 325
special characters, Bash shell scripts and, 330
splash screens, 314
spreadsheets, shell scripts and, 336
SSH (Secure Shell), 262–274

configuring, 266–274
SSH key-based authentication and,

268–271
tunneling traffic via, 272
working with, 264

ssh-agent command, 271
ssh command, 264

TCP port forwarding and, 273
X forwarding and, 272

ssh-keygen command, 270
ssh_config file, 266
sshd daemon, 264, 265
sshd_config file, 266, 267

sshfs command, 272
startup parameters, syslog process and, 224
stat command, 117
stats command, 119
STDOUT (standard output), 14
sticky bit permission, 170
stopping commands, 26
subnet masks, 239
subshells, 324
substitution operators, 331
subtraction (-) operator, script calculations

and, 337
su command, 8, 29
sudo command, 29, 158–160
sudo su command, 8, 29
sudoers file, 159
SUID (Set User ID) permission, 168, 170
superblocks, 119
SUSE, 3

IP address configuration and, 248
RPM packages and, 180
SuSEconfig command and, 230

SUSE Linux Enterprise, 3
/svr directory, 38
swap memory, 201
swapping, 307
symbolic links, 64–67
symmetric multiprocessing (SMP), 315
sysctl.conf file, 308
sysctl package, 304
/sys directory, 38
syslog process, 217

configuration for, 220–224
startup parameters and, 224

syslog-ng process, 220, 222
configuring, 226–232
startup parameters and, 224

syslog.conf file, 220, 222
system

commands for displaying information
about, 44

directory for, 38
system management, 197–215

managing processes and, 210–215
monitoring processes and, 199–210

system suspension, 315
system time

current time/system uptime/number of
users connected, 200

processes and, 198, 212
system variables, 22
System V UNIX dialect, CUPS print system

and, 88

INDEX372

T
Tab key, command completion and, 22
tac command, 74
tail command, 75, 219
tape archives, tar command for, 57–62
tape drives, mounting, 49
tarballs, 57
tar command

dot ending, 60
making backups via, 57–62
moving directory contents via, 61
options for, 62

tasks, displaying, 200
TCP port forwarding, 273
tcsh shell, 21
temporary files, directory for, 38
terminals, log messages sent to, 223
terminating real-time communications, 32
TERM variable, 23
test command, 339, 340
testing

network connectivity, 255
routing, 257

testparm command, 290
?text command, 73
/text command, 73
text files, 69–90

comparing, 78
directory for, 35
displaying contents of, 74–76
filtering/processing, 81–87, 90
moving/searching through, 72
printing, 87
sorting, 78
specifying fields in, 80
strings in, changing all occurrences of, 73
tools for manipulating, 77–81

text patterns, 81
time, 45, 200
/tmp directory, 38, 135
top command, 199–204, 213
Torvalds, Linus, 1
touch command, 22
traceroute command, 257
tr command, 77
troubleshooting

logical volumes, 113–116
network connections, 255–262
Samba file server, 289

tune2fs command, 55, 92, 125
type command, internal commands and, 16

U
u command, 72
Ubuntu, 4

DEB packages and, 188
IP address configuration and, 245
network connectivity testing and, 256
package-management commands and, 190
routing information and, 250
routing testing and, 257

udev process, 92
UIDs, 134
umask setting, 175
umount command

resizing file systems and, 127
unmounting devices via, 52

uname command, 44
uniq command, 79
unique UIDs, 134
universal unique ID (UUID), 54
universe category, of software packages, 189
until construction, 339, 346
USB devices, mounting, 49
user accounts, 7

managing, 281
Samba file server and, 279

useradd command
changing passwords via, 137
creating services via, 133, 136

useradd configuration file, 137
user database, modifying, 133
userdel command, 136, 137
user facility, 222
usermod command, 133, 136, 137
usernames, 7, 134
user ownership, 163, 164
user profiles, Samba shares and, 283
USER variable, 23
users

accounts for, setting up, 133–139, 158
adding to groups, 144
authenticating, 151–158
communicating with, 31–34
creating, 133
default environment for, creating, 138
default values for, setting, 137
identity of, changing, 29
information about, obtaining, 30
input from, read command and, 329
login scripts for, 145
log messages sent to, 224
managing, 133–161
number connected, 200

INDEX 373

passwords for, managing, 139–143
quota system and, 146–151
removing from groups, 143
scheduling processes and, 214
shell for, managing, 145
user-accessible files, directory for, 36

users command, 30
/usr directory, 36
/usr/share/doc/ directory, 20
uucp facility, 222
UUID (universal unique ID), 54

V
v command, 72
-v option (verbosity), 217
/var directory, 38
var/log/messages file, 219
variables, 22, 322–339

changing content of via pattern matching,
334–336

defining, 323, 324
environment, 323
script arguments and, 326
shell, 323

varname=value, 323
verbosity (-v option), 217
vfat file system, 50
VGA mode, 314
vgchange command, 116
vgcreate command, 108
vgdisplay command, 108
vgscan command, 114
vgs command, 114
vi command, 82
Vim text editor, 69
vipw command

editing /etc/passwd and etc/shadow files
via, 141

modifying database configuration files via,
133

VirtualBox, 353
virtual consoles, 28, 217
virtual IP addresses, 241
viruses, 167
VISUAL variable, 70
visudo command, 70
visudo text editor, 159
VI text editor, 69–74, 149

vm subdirectory, 306
VMware Server, 353
Volkerding, Patrick, 2
volume groups, 106

creating, 108
displaying, 114

W
:w command, 30, 71
wall command, 31, 32
warn priority/warning priority, syslog and,

222
wc command, 45
which command, 320
while construction, 339, 345
who command, 30, 347
Winbind, Samba and, 280
Windows file systems, 129
Windows NT–style Domain Controller, Samba

and, 280
Windows shares, mounting, 49
word count, obtaining, 45
:wq! command, 71
write command, 31
write permissions, 166–171
write root command, 32

X
x command, 72
xdm process, 5
X forwarding, 272
XFS file system, 50, 117

analyzing/repairing, 126
b-trees and, 121

xfs_admin, 55
xfs_check command, 126
xfs_repair command, 127

Y
YaST utility, 186
y command, 72
yum command, 181–186

Z
ZENworks Linux Management Solution, 186
zombie processes, 198
zsh shell, 21
zypper command, 186

