o REET “i
THE EXPERT’S VOICE® IN OPEN SOURCE f ; -ﬁ'}-‘-ﬂ- i

 »
;
._A:‘
o

.

Beginning the

Linux
Command Line

Learn how to put the command line to work
to manage files, administer users and groups,
install new software, run network services,
and create basic shell scripts.

Sander van Vugt

APIESSs”

Beginning the
Linux Command Line

Sander van Vugt

APIess®

Beginning the Linux Command Line
Copyright © 2009 by Sander van Vugt

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1889-0
ISBN-13 (electronic): 978-1-4302-1890-6
Printed and bound in the United States of America9 8 765432 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Michelle Lowman

Technical Reviewer: Mary Ann C. Tan

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,
Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper,
Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Beth Christmas

Copy Editor: Ami Knox

Associate Production Director: Kari Brooks-Copony

Production Editor: Elizabeth Berry

Compositor: Linda Weidemann, Wolf Creek Publishing Services

Proofreader: Nancy Sixsmith

Indexer: Brenda Miller, Odessa&Cie

Artist: April Milne

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
WWW . apTEeSSs . com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales—eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every pre-
caution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

Contents at a Glance

Aboutthe AUTNOr. Xiii
About the Technical Reviewer XV
INtrodUCHION Xvii
CHAPTER 1 Starting Linux Command-Line Administration..................... 1
CHAPTER 2 Performing Essential Command-Line Tasks...................... 27
CHAPTER 3 Administering the Linux File System 47
CHAPTER 4 Working with Text Files. .. 69
CHAPTER 5 Managing Partitions and Logical Volumes 91
CHAPTER 6 Managing Users and Groups...........................cooovnnn. 133
CHAPTER 7 Managing Permissionso i, 163
CHAPTER 8 Managing Software 179
CHAPTER 9 Process and System Management 197
CHAPTER10 SystemLogging................. ..., 217
CHAPTER 11 Configuring the Network. 237
CHAPTER 12 ConfiguringaFileServer 277
CHAPTER 13 Working withthe Kernel....................................... 299
CHAPTER 14 Introduction to Bash Shell Scripting............................ 319
APPENDIX InstallingLinux. 353
INDEX . 361

Contents

Aboutthe AUTNOr. Xiii
About the Technical ReVIEWEr i e XV
INtrodUCHION Xvii
CHAPTER 1 Starting Linux Command-Line Administration............. 1
Linux Distributions. o 1

Linux History. ... 1

OPEN SOUICE 2

The First Distributions. il 2

Linux Turning Mainstreamt 2

LoggingInand Out i 4

Different Login Interfaces..................... 5

Working with a User Account.ooiinn.. 7

Command-Line Basics ... 8

The Command Interpreter it 9

Commands, Options, and Arguments. 9

Pipingand Redirection 12

PIDINg. ... 12

Redirection 14

GettingHelp 16
UsingmantoGetHelp..............t 16

Using the --help Option. 19

Getting Information on Installed Packages 20

Working withthe Shell 20

Using the Shell to Best Effect. 21

Managing Bash with Key Sequences.......................... 25

SUMMANY. ... 26

CONTENTS

CHAPTER 2

CHAPTER 3

Performing Essential Command-Line Tasks 27
Changing Your Password ..ot 27
Working with Virtual Consoles., 28
Becoming Another User i 29
Obtaining Information About OtherUsers 30
Communicating with Other Users.................... ...t 31
Real-Time Communication. 31
Sending Mail from the Command Line......................... 33
Finding Your Way inthe File System 35
Default Directories................. i 35
Working with the Linux File System................................ 38
Working with Directories 38
Workingwith Files............. 39
Cool Commands.t 43
Displaying a Calendar withcal 44
Clearing Your Screenwithclear 44
Displaying System Information with uname and hostname.. 44
Counting Words, Lines, and Characters withwe 45
Changing and Showing Date and Time withdate 45
SUMMANY. .. 45
Administering the Linux File System 47
Mounting DiskSo 47
Using the mount Command 47
Unmounting Devices i 52
Automating Mounts with /etc/fstab......................... ... 53
Checking File System Integrityl 56
Creating Backups. 57
Making File Backups withtar................................. 57
Making Device Backups Usingdd............................. 62
Workingwith Links 63
Why Use LinkS?o 64
Working with Symbolic Links.ooo.t 64
Working with Hard Links. 67
LinksRecap. ... 67

SUMMArY. 68

CHAPTER 4

CHAPTER 5

CONTENTS
Working with TextFiles 69
Workingwith Vi ... 69
VIMOGES . ..o 70
Savingand Quitting.............. 71
Cutting, Copying, and Pasting 72
Deleting Text. ... 72
Moving Through TextFiles.............. 72
Changing All Occurrences of a Stringina TextFile.............. 73
ViSummarized............. 73
Displaying Contentsof TextFiles 74
Showing File Contents with catandtac........................ 74
Showing a File’s Last Lines withtail 75
Displaying the First Lines in a File withhead 76
Browsing File Contents with lessand more 76
Cool Text File Manipulation Tools.oiii it 77
Changing Contents inaBatchwithtr.......................... 77
Sorting Text Fileswithsort. 78
Finding Differences Between Text Files with diff................ 78
Checking Whether a Line Exists Twice with uniq................ 79
Getting Specific Information withcut.......................... 80
Advanced Text File Filtering and Processing 81
Working with Basic Regular Expressions. 81
Working with Programmable Filters 84
Printing Files. 87
Managing CUPS Print Queues 87
Finding Files 88
SUMMANY. ... 90
Managing Partitions and Logical Volumes 91
Addressing Storage Devicescooiiiii i 91
File System Labels. o i 91
udev Device Names................ .. i 92
Creating Partitions. i 93
Understanding Partitions. 94
Managing Partitions with fdisk 95
Working with cfdisk. o 103

Recovering Lost Partitions withgpart......................... 104

vii

viii

CONTENTS

CHAPTER 6

Creating Logical Volumes.co it 106
Understanding Logical Volumes 106
Setting Up a Disk with Logical Volume Manager 107
Working with Snapshots.................................... 112
Basic LVM Troubleshooting 113

Working with File Systems. ... 116
Understanding File Systems................................. 117
Formatting File Systems.................., 122
Maintaining File Systemsl 122
Resizing File Systemsl 127
Working with Windows File Systems 129

Cloning DeVICESo 129

SUMMANY. .. 130

Managing Users and Groups 133

Setting Up User Accounts. ..., 133
Understanding Users and Their Properties 133
Commands for User Management 135
Working with Default Values for User Management 137

Managing Passwords 139
Performing Account Maintenance with passwd................ 139
Managing Password Expiration.............................. 140
Behind the Commands: Configuration Files 140

Group Membership ... 143
Creating Groupsoo i 143
The Use of Group Passwords....................covvinn... 145

Managing the User’s Shell Environment 145
Creating Shell Login Scripts.....................ooiiintt. 145
Showing Messages to Users LoggingIn 146

Applying Quota to Allow a Maximum Amount of Files................ 146
Installing the Quota Software................................ 147
Preparing the File System forQuota.......................... 147
Initializing Quota. 148

Setting Quota for Users and Groups 149

CHAPTER 7

CHAPTER 8

CONTENTS
Techniques Behind Authentication................................ 151
Understanding Pluggable Authentication Modules. 151
Discovering PAMModulesl 153
The role of /etc/nsswitch.conf............................... 156
Configuring Administrator Tasks withsudo 158
SUMMANY. .. 160
Managing Permissions 163
Setting Ownership............. .. 163
Displaying Ownership il 163
Changing User Ownership ...t 164
Changing Group Ownership............... 164
Default Ownership................ ... 165
Basic Permissions: Read, Write, and Execute 166
Understanding Read, Write, and Execute Permissions 166
Applying Read, Write, and Execute Permissions 167
Advanced Permissions 168
Understanding Advanced Permissions........................ 168
Applying Advanced Permissions............................. 170
Working with Access Control Lists......................ooiiiat 171
Understanding ACLS i 171
Preparing Your File SystemforACLs 172
Changing and Viewing ACL Settings with setfacl and getfacl172
Setting Default Permissions. 175
Working with Attributes 176
SUMMANY. .. 178
Managing Software....................................... 179
Understanding Software Management 179
Managing RPM Packages. ...t 180
WorkingwithRPM 180
Workingwithyum 181
Working with zypper ... 186
Managing DEBPackages............... i 188
Managing .deb Software Repositories........................ 188
Ubuntu Package Management Utilities 190

SUMMANY. ... 196

ix

CONTENTS

CHAPTER 9

CHAPTER 10

CHAPTER 11

Process and System Management........................ 197
Understanding Linux Processescooiiiiian... 197
Monitoring Processes 199
Monitoring Processes withtop 199
Finding Processeswithps............. ...t 204
Finding PIDswithpgrep o i 207
Showing Parent-Child Relations with pstree................... 207
Displaying Memory Usage withfree.......................... 210
Managing ProCesSSeS. o 210
Killing Processes with Kill, pkill, and killall 210
Adjusting Process Priority withnice 212
Process Managementfromtop.............................. 213
Scheduling Processes. ... 213
SUMMAY. ... 215
Systemlogging ... 217
Understanding Logging.co i 217
Monitoring Log FileS ... 219
Configuring the syslog Service, 220
Passing Startup Parameters to syslog and syslog-ng................ 224
Configuring Syslog-Ng.coovi i 226
Sending Logs Yourself with logger................................ 232
Rotating Old Log Files. 232
SUMMAY. 235
Configuring the Network 237
A Quick Introduction to Computer Networking...................... 237
Settingthe IP Address. ... 238
Usingifconfigoo 238
UsingtheipTool............. 242
Storing Address Configuration. 245
Storing IP Address Configurationon Ubuntu................... 245
Storing IP Address Configurationon Fedora................... 246
Storing IP Address Configurationon SUSE 248
Configuring Routing. i 249
Managing the Default Route withroute 249
Managing the Default Route with the ip Tool 250

Storing Routing Information.................. 250

CHAPTER 12

CHAPTER 13

CONTENTS
Resolving DNS Names to IP Addressesoovvevinnn.. 251
The Role of the /etc/nsswitch.confFile 251
Using the /etc/hosts File. ... 252
Tuning the Network Card with ethtool 253
Analyzing Network Connectionscoones. 255
Testing Connectivity 255
TestingRouting 257
Testing Availability of Services 258
Connecting Remotely with Secure Shell 262
Working with Public/Private Key Pairs 263
Working with Secure Shell 264
Configuring SSH. 266
Using SSH Key-Based Authentication. 268
Caching Keys with ssh-agent 271
Tunneling Trafficwith SSH. 272
SUMMANY. ... 274
Configuring a File Server 277
Creatinga Samba File Server 277
Background of the Samba Project. 277
Configuring a Samba File Server............................. 277
Accessing a Samba File Server.............................. 286
Basic Samba Troubleshooting. 289
Configuringan NFS Server................. .. 291
NFS Backgrounds.coiiiiiiii i 291
Understanding NFS Processes.cccovvvinennnn... 291
Configuringan NFS Server................ 293
Configuringan NFSClient. iiiines. 295
SUMMANY. ... 297
Working withthe Kernel................................... 299
Understanding the Kernel.................. 299
Managing Kernel Modules il 300
Listing Modules with Ismod 300
Loading and Unloading Modules with modprobe............... 301
Displaying Module Properties with modinfo 301
Changing Module Options.ccoiiiii ... 302
Managing Module Dependencies 303

Legacy Commands for Module Management.................. 303

Xi

Xii

CONTENTS
Tuning Kernel Parameters o ... 303
Writing Changesto/proc 304
Some Useful /proc Parameters 306
Compiling Your Own Kernel and Kernel Modules. 307
UnderstandingMake 307
Modifying and Compiling the Kernel.......................... 308
CompilingModules ...t 311
Managing the GRUB Boot Loader 312
The GRUB Configuration File 313
Working with the GRUBBootMenu 315
SUMMaANY. ... 317
CHAPTER 14 Introduction to Bash Shell Scripting...................... 319
Basic Shell Script Components..................... 319
Elements of a Good Shell Script 319
Executingthe Script. 321
Working with Variablesand Input................................. 322
Understanding Variables.................................... 323
Variables, Subshells, and Sourcing. 324
Working with Script Arguments.............................. 326
Askingforlnput 329
Using Command Substitution. 331
Substitution Operators. i 331
Changing Variable Content with Pattern Matching.............. 334
Performing Calculationso il 336
Using Control Structures.c it 339
Usingif..then..else 340
CaSE . .. 344
Usingwhile 345
Usinguntil.......... ... 346
Using for ... 347
SUMMANY. ... 350
APPENDIX Installing Linux.. 353

About the Author

SANDER VAN VUGT is an independent trainer and consultant who lives in
the Netherlands and works in the extended EMEA (Europe, Middle East,
and Africa) area. Sander has been a speaker at major Linux conferences
worldwide, such as LinuxWorld in San Francisco and Linux.conf.au in
Australia. He specializes in Linux high availability, storage solutions, and
performance problems, and has successfully implemented Linux clusters
across the globe. Sander has written several books about Linux-related
subjects, including The Definitive Guide to SUSE Linux Enterprise Server
(Apress, 2006), Beginning Ubuntu Server Administration (Apress, 2008),
and Pro Ubuntu Server Administration (Apress, 2008).

Sander’s articles can be found on several international web sites and in magazines such as
SearchEnterpriseLinux.com, Linux Journal, and Linux Magazine. He works as a volunteer for
the Linux Professional Institute (LPI), contributing topics for different certification levels. Most
important, Sander is the father of Alex and Franck, and is the loving husband of Florence. For
more information, consult Sander’s web site: waw. sandervanvugt.com. Sander can be reached
by e-mail at mail@sandervanvugt.com.

xiii

About the Technical Reviewer

MARY ANN C. TAN has experience in many fields, including slinging
regular expressions, watching Linux servers, writing telecom billing
systems, being an obsessive-compulsive spreadsheet user, and arguing
about machine learning. She is learning Italian, has forgotten most of her
Mandarin, trains cats using Cat-Kwan-Do, and sings videoke to survive
the Manila night. She currently does GUI development for a telecom test-
ing company as her day job.

Xv

Introduction

This book is for anyone who wants to master Linux from the command line. When writing it,
T'had in mind system administrators, software developers, and enthusiastic users who want to
get things going from the Linux command line. For beginning users, this may be a daunting
task, as Linux commands often have many options documented only in man pages that are not
that easy to understand.

This book is distribution agnostic. That is, while writing it, I've checked all items against
Ubuntu, Red Hat, and SUSE. Since most distributions are quite similar to one of these three,
this book should help you with other distributions as well. There is only one item in the book
that is not distribution agnostic: the Appendix, which explains how to install OpenSUSE.

I've chosen to cover installation of just one distribution, because if you don’t have any Linux
installed yet, you probably don’t care what you install. If you do care what distribution to work
with, you probably have it installed already.

The book begins with an introduction to exactly what I'm talking about when discussing
Linux and its different appearances: the distributions. In Chapter 1, you'll also find essential
information on how to log on to the computer and how to find out more about the way a
command should be used. Chapter 2 follows with some essential Linux commands. After read-
ing this chapter, you'll already start to feel at ease on the Linux command line; among other
things, it teaches you how to work with files and directories and how to communicate with
other users. Chapter 3 moves the focus to one of the most important tasks you’ll perform when
working with Linux: working with files. In this chapter, you’ll learn not only how to copy files
and make directories, but also how to mount devices to your Linux system.

Working with Linux from the command line means working with text files. In Chapter 4,
you'll learn about the tools that are at your disposal to do this. You'll get familiar with some of
the classic tools, such as find and grep, and also with some of the more advanced tools, such
as awk and sed. Following that, in Chapter 5 you'll learn more about partitions, logical volumes,
and other advanced file system management tasks. After reading this chapter, you'll start
feeling at ease on the Linux command line. Chapters 6 and 7 move on to two other essential
subjects: the management of users and permissions.

Chapter 8 covers a topic that seems to be handled differently by all the Linux distribu-
tions: software management. This chapter teaches you about generic ways to install and
manage software packages, such as rpm and dpkg, and also about some of the distribution-
specific ways to deal with these tasks, such as apt-get, rpm, and zypper. Chapters 9 and 10
cover tasks that are important for system administration. In these chapters, you’ll learn how
to manage processes and how to handle logging on your computer.

By the time you reach Chapters 11 and 12, you're ready to explore network-related tasks.
In these chapters, you'll learn how to configure a network interface and how to set up the
Samba and NFS file services. Chapters 13 and 14 cover two advanced but useful topics: kernel

Xvii

Xviii INTRODUCTION

management and shell scripting. After you finish the last chapter, you'll have all the knowledge
you need to work with Linux from the command line.

There are exercises available for this book as well, which you can download from www.
sandervanvugt.com/exercises. These exercises provide an excellent solution for learning Linux
in a classroom environment.

T hope you enjoy reading this book and that it prepares you for getting things done from
the Linux command line!

CHAPTER 1

Starting Linux Command-Line
Administration

To unleash the full power of Linux, as a Linux administrator you will spend most of your time
typing commands on the Linux command line, the so-called shell prompt. For someone who
is new to the command line, the things that advanced users do there may look like magic. In
this chapter, you'll learn about the following topics:

e History of the Linux operating system

¢ What is open source?

e What are distributions?

¢ Logging in to Linux

¢ Command basics: working with commands, options, and arguments

¢ Using piping and redirection

e Getting help with --help and man

¢ Working with the shell

Linux Distributions

For someone new to Linux, the operating system may appear a little bit strange. For instance,
exactly what Linux are we talking about? Due to its open source character, there are different
versions (the so-called distributions) of Linux. After some Linux history, this chapter teaches

you about the differences and similarities between these distributions.

Linux History

Linux started around 1991 all because the Finnish student Linus Torvalds wasn’t too happy
with Minix, the educational version of the UNIX operating system that he had to work with at
the University of Helsinki. In particular, the ability of the kernel (which is the heart of the oper-
ating system) of this Minix distribution didn’t please him much. He decided to create a better
kernel and gave it the name Linux.

Possibly the smartest thing that Torvalds did when starting his initiative was decide not
to do it alone. To find other people who wanted to work with him, he posted a message on

CHAPTER 1 STARTING LINUX COMMAND-LINE ADMINISTRATION

Usenet, a major platform in those days that could be used to exchange information with other
people and get help from other people.

The initiative by Torvalds didn’t stand on its own. Many other software developers had
already started initiatives to create free software for the UNIX operating system. The only
thing that really was missing at that moment was a kernel that was stable enough to go into
production.

Open Source

Right from the start, Torvalds released his software as open source software—that is, software
whose computer code is freely available to anyone. This open source initiative fitted well into
many other open source programs that were a part of the GNU initiative. The acronym GNU
stands for GNU is Not UNIX, which means that this is about software written for the UNIX
platform but doesn’t use UNIX licensing. This GNU initiative was a part of the Free Soft-

ware Foundation (FSF), which wanted to create free software for a better operating system
experience.

When it came to licensing, Torvalds released his software under the GPL. In those days,
GPL stood for GNU Public License, but nowadays it means General Public License. The details
of this license are quite complex, but in essence it means that software released under the GPL
can be used and modified by anyone, as long as the person modifying this software makes sure
that his or her modifications will be released under the GPL as well. In brief: once software has
a GPL, it will always stay GPL software. This prevents companies from making small modifica-
tions and then taking the software out of GPL and selling it for a lot of money.

The First Distributions

Apart from the Linux kernel, lots of other programs were available under the GPL as well. In
the early days, people who wanted to start using Linux had to go on the Internet and down-
load these software programs themselves. Often, after downloading them, they even had to
compile them for themselves. This compilation process was necessary to convert the program
files, which were published as source code files only, to executable programs that users could
execute on their computer.

Software compilation is not very easy to do, and for that reason, different people started
to create collections that consisted of the Linux kernel and some other useful programs. One
of the first persons to do so was Patrick Volkerding, who started his Slackware distribution in
1993. In those days, this distribution consisted of different software categories, all put together
on no fewer than 43 diskettes. Volkerding was perhaps the first who made a successful Linux
distribution that started to get used on servers all around the world.

Linux Turning Mainstream

The years between 1993 and 1998 marked the rise of the Linux operating system. One of the
most important reasons for this is that it provided a very affordable alternative for the expen-
sive UNIX operating system that was used on many mission-critical server systems. Due to this
popularity, during this period the most important Linux distributions were created.

Whereas Slackware was just a collection of software programs with an installation pro-
gram that made working with Linux easy, other Linux distributions soon started to add value
to the open source software. Some did this by adding commercial support to their software

CHAPTER 1 STARTING LINUX COMMAND-LINE ADMINISTRATION

collection, others by creating programs and adding that to their distribution, and some hired
developers to optimize the open source programs. The result is that nowadays hundreds of
Linux distributions are available for new Linux users. Of all these Linux distributions, only
some really matter. In this book, I've focused on the three most important distributions: Red
Hat, SUSE, and Ubuntu. By focusing on these three only, I am not making a statement about
the quality of the other distributions; however, it makes sense to focus on these three as they
make up more than 90% of the Linux market. Following are short descriptions of these three
distributions.

Red Hat

North Carolina-based Linux distribution Red Hat had a major role in bringing Linux to the
data center of many companies. The reason for the success of Red Hat was that this distribu-
tor added support for Linux. At one level, this is support of different hardware and software
programs, which means that users of the supported hardware and software programs were
guaranteed that they would work on Linux. Red Hat also added help for Linux users, available
as a commercial added value to Linux.

Because Red Hat offered Linux with support, companies started putting aside their old
flavors of UNIX and replacing them with the much cheaper Linux. This made Red Hat the
most important Linux distributor for many years; only recently have SUSE and Ubuntu posed
a threat to the commercial success of Red Hat in the enterprise environment.

Currently, there are three product lines related to Red Hat. The most important of these
is Red Hat Enterprise Linux (RHEL), which consists of two server versions and a desktop ver-
sion. RHEL is a commercial product, so it is not available as a free download. It is open source
software, however, but the only reason you can’t download it for free is because Red Hat has
added the Red Hat logo to the RHEL software, and this is something that users have to pay for.

Red Hat also founded the Fedora open source project. Basically, you can see this as the
development environment for RHEL. Most new software components are first used and tested
in Fedora, and if they are successful there, they will make it into RHEL as well. Fedora Linux is
available for free download at www.redhat.com/fedora.

Since the only thing that is not free in Red Hat Enterprise Linux is the Red Hat logo, the
CentOS (Community ENTerprise Operating System) distribution offers Red Hat Enterprise
Linux software from which the Red Hat logo has been removed. This sounds illegal, but it
isn’t, as Red Hat is completely open source software. So if you want the stability of Red Hat
Enterprise Linux, but don’t want to pay for it, CentOS provides a good alternative. You can
download CentOS at www.centos.org.

SUSE

The SUSE Linux distribution was founded in Germany. It became popular quite fast because
from the beginning SUSE Linux came with lots of software packages. SUSE was one of the first
distributions that only sold their distribution and just delivered a demo system as freely avail-
able software, thus trying to make money out of it.

In 2004, Utah-based network software company Novell purchased SUSE and developed
itinto an enterprise-ready Linux distribution that could compete with Red Hat, which in that
period still dominated the market.

Currently, there are two directions in SUSE Linux. SUSE Linux Enterprise is the commer-
cial software that offers support, and it exists in three different flavors: SUSE Linux Enterprise

CHAPTER 1 STARTING LINUX COMMAND-LINE ADMINISTRATION

Server, SUSE Linux Enterprise Desktop, and SUSE Linux Enterprise Real Time, a tuned version
that allows financial companies to process real-time transactions. With SUSE Linux Enterprise
Desktop, Novell has some success in bringing Linux to the enterprise desktop, whereas Red
Hat, for example, still focuses on server versions. Interestingly, the SUSE Linux Enterprise
products (with the exception of SUSE Linux Enterprise Real Time) are freely downloadable
atwww.novell.com/downloads.

Apart from the SUSE Linux Enterprise products, there is OpenSUSE, which is a fully
open source product. This version also offers a stable Linux distribution, but at the same
time is used as a development platform for new software. You can download OpenSUSE at
WWW. Opensuse. org.

Ubuntu

Ubuntu is a relatively new Linux distribution. It has become quite successful because its
founder, the South African millionaire Mark Shuttleworth, made it an extremely user-friendly
distribution and even gives away CDs with the Ubuntu Desktop for free. Anyone can order as
many CDs of this distribution he or she likes from www. ubuntu. com.

Apart from the Ubuntu Desktop, Ubuntu has a server edition as well, which due to the
success of the desktop version has become quite popular (though not yet as popular as the
Red Hat and SUSE server versions). Both versions of Ubuntu Linux are available for free;
customers who are interested in getting support can purchase it from Canonical, a separate
company that specializes in Ubuntu support.

Remarkable about Ubuntu Linux is the fact that there is a new software release every
6 months. By looking at the name of the distribution, you can see when it was released; for
instance, Ubuntu 9.04 was released in April 2009. As enterprise users normally don’t like
upgrading their operating system every 6 months, there is also a Long Term Support (LTS)
version that currently is released every 18 months. The special thing about this version is the
extended period of support that is offered. For desktops this is 5 years, and for servers its 7
years.

Note This book focuses on Red Hat, SUSE, and Ubuntu Linux. You will notice, however, that 98% of the
commands and configuration files covered in this book are available on other Linux distributions as well. This
means that no matter what Linux distribution you use, the information in this book will be useful for you.

Logging In and Out

Before you can do anything on a Linux computer, you have to log in. In this section, you'll
learn about usernames and different ways you can use to make yourself known to your Linux
computer.

CHAPTER 1 STARTING LINUX COMMAND-LINE ADMINISTRATION

Different Login Interfaces

Before starting to work on your Linux computer, you need to tell it who you are. To help you
with this, Linux offers you a login prompt. This can be either a graphical or a nongraphical
prompt. If you are working on a Linux desktop, you are likely to see a graphical environment.
If, however, it is a server you a working from, you'll just see a shell login prompt.

In Linux, there often is a choice between different solutions. This means there is not
just one unified graphical login prompt, but many, depending on the distribution that you
are using and on the graphical environment that you have installed. You will notice that the
graphical login screen for that reason will be different between the distributions. In Figure 1-1,
you can see what it looks like on SUSE Linux.

Username:

Figure 1-1. The graphical login screen on SUSE

When working with a graphical environment, it is the graphical environment that pro-
vides you with the login screen. More specifically, it is the xdm process that starts the graphical
login screen. So what you see in Figure 1-1 is really the result of this xdm process.

If you are working on a server, the graphical environment doesn’t matter and is normally
not started by default. That is because the graphical environment consumes resources, and
these resources on server systems are better reserved for other purposes. Therefore, servers
normally offer a text-based login prompt only. In Figure 1-2, you can see what this sort of login
prompt looks like.

6 CHAPTER 1

Loading keymap i386-querty-us.map.gz
Loading compose table winkeys shiftctrl
Start Unicode mode

Loading console font lat9w-16.psfu
Starting auditd

Starting RPC portmap daemon
Importing Net File System (NF3)
Mount 3MB- CIFS File 3ystems
Starting cupsd

Checking-updating CPU microcode
Starting mail service (Postfix)
Starting CRON daemon

Starting nfsboot (sm-motify)
Starting Mame Service Cache Daemon
Starting ZENworks Management Daemon
Starting powersaved:

Starting 33H daemon

Executing suseRegister (looking for new
Starting service gdm

Master Resource Control: runlevel 5 has
Skipped services in runlevel 5:

Welcome to SUSE Linux Enterprise Server

nuuk login:

Welcome to SUSE Linux Enterprise Server

muuk login: _

Figure 1-2. The text-based login prompt

-m trivial GO:loadable

STARTING LINUX COMMAND-LINE ADMINISTRATION

done
done
done
done
done
done
unused
unused
done
done
done
done
done
done
done
done
done
done
done
reached
smbfs nfs

latinl.add

update chamels):

been

10 3PZ (i586) - Kernel Z2.6.16.60-0.21-default (ttyl).

10 3PZ (i586) - Kernel Z2.6.16.60-0.21-default (ttyl).

There are other ways of connecting to a Linux machine as well. If you are a server admin-
istrator, your server will probably be installed in an air-conditioned cold server room that
you enter only if really necessary. Therefore, as a server administrator, you may use a remote
access tool like PuTTY to get shell access to the server. In Figure 1-3, you can see what the

PuTTY login screen looks like.

Note PuTTY is the de facto standard for accessing Linux machines from a Windows desktop. You can
download PuTTY for free from www. putty.org. To use it, you need SSH on your Linux computer as well.

SSH is covered in detail in Chapter 11.

CHAPTER 1 STARTING LINUX COMMAND-LINE ADMINISTRATION

P 192.168.139.128

Figure 1-3. PuTTY is the de facto standard for accessing a Linux console remotely from a
Windows workstation.

As you can see, there are many ways to connect to a Linux machine. In all cases, you do
need to provide user credentials. The next section gives more information about that.

Working with a User Account

To log in to a Linux machine, you need a user account name and a password. You should
already know what username to use if you installed the machine yourself. If someone else
installed the machine for you, ask him or her what username you should use. This username
will also have a password. At the login prompt, you need to provide the username and pass-
word to make yourself known to the machine. This procedure is also known as authentication.

Note There are alternatives to passwords for authentication. For instance, you may use a smart card to
authenticate on your machine. However, this is not very common, and for this reason, in this book | will focus
on password authentication.

When authenticating for the first time, you have to decide what user account to use. You
can authenticate as a normal user, but you can authenticate with the account of the system
administrator as well. The username for this account is root. On every Linux computer, there
is a user with the name root, and this user account has no restrictions. The user root really
is almighty. If you are a system administrator, it makes sense to authenticate as root; after

CHAPTER 1 STARTING LINUX COMMAND-LINE ADMINISTRATION

all, you need to do system administration, and for that purpose you need all the permissions
there are. If, however, you are a normal user, you shouldn’t make a habit of logging in as root
by default. Just log in with your normal user account, and use su or sudo to become root when
needed. In Chapter 2, you'll learn how to do this. At this time, just make sure that you are
authenticated.

Command-Line Basics

The command line is important, because a system administrator can do anything from it.
Linux has many, many commands, more than you will ever know, and new commands are
added on a regular basis. All of these commands, though, share a common way of working. In
this section, you'll learn about common elements that you will encounter in any Linux com-
mand. First, you'll learn about the common structure that every Linux command has. Next,
we’ll talk about characters that you can and can’t use in Linux commands. Figure 1-4 shows
what a command line looks like, when started as a terminal from a graphical environment.

= Terminal =X
Fie Edit View Temminal Tabs Help

nuuk:~ # I

[+]

[4]

Figure 1-4. The command line as seen from a terminal window

The command line offers you a prompt that consists of different parts. The first part of
the prompt, as you can see in Figure 1-4, is the name of the computer you are working on.
In this case, the computer name is nuuk. Next, the prompt refers to the current directory
in the file system where the user is at right now. In Figure 1-4, you can see a ~ sign instead
of the name of a directory. This sign refers to the home directory, which is the folder in the
file system where the user can store his or her personal files. Last, the # sign in this prompt

CHAPTER 1 STARTING LINUX COMMAND-LINE ADMINISTRATION

indicates that the current user is root, the mighty system administrator. If you see anything
other than #, the current user is not root, but a normal user with normal privileges. Be aware
that if this is the case, some commands have limited use. For instance, on Linux a normal
user cannot format hard disks.

Note Since in open source there are no rules, a developer can do as he or she likes. Therefore, words like
“always” and “every” are not applicable in Linux, as there are often exceptions to the rules that are used in
Linux. To keep this book readable, | will, however, use these words anyway. Just keep in mind that when you
see the terms “every” and “always,” it should read “almost every” and “almost always.”

The Command Interpreter

When working on the command line, as an administrator you will be dealing with the shell.
The shell is the command interpreter: it is responsible for making something out of the things
that you type on the command line. How you work with commands is largely defined by the
abilities of the shell. The shell itself is a program that your server starts automatically after

you log in on your server, no matter if you've done so directly on the server console or via a
remote session that you've started from PuTTY on your Windows workstation. Two shells

are used quite often: Bash and Dash. Bash is the default shell on the current SUSE and Red
Hat versions, and Dash is the default shell on Ubuntu. The good news is that as a beginning
command-line administrator, you don’t really care which shell is used—both work in the same
way. In the section “Working with the Shell” later in this chapter, you'll learn about some of its
most important and most useful features.

Commands, Options, and Arguments

A Linux command normally consists of three parts: the command itself, the command
options, and its arguments. For instance, the following example shows what a Linux command
looks like:

useradd -m -G sales linda

This example consists of three parts, useradd, which is the command; -m and -G sales,
which are both options; and 1inda, which is a generic argument. Further on in this section, I'll
explain these components in more detail.

The command itself is the character string you type to activate a certain task. For instance,
the command 1s (see Listing 1-1) lists files. In Listing 1-1, you see the result of this command
when used in the home directory of the user root (the Linux system administrator). Certain
functionality is defined for this command. Linux has many commands, as mentioned previ-
ously; later in this chapter, in the section “Using man to Get Help,” you'll learn how to get
detailed usage information about them by using the man command.

10 CHAPTER 1 STARTING LINUX COMMAND-LINE ADMINISTRATION

Listing 1-1. Using the 1s Command Without Options Shows Files in the Current Directory

nuuk:~ # 1s

.ICEauthority .exrc .gnome2_ private .metacity
.Xauthority .Fvwm .gnupg .nautilus .wapi
.bash_history .gconf .gstreamer-0.10 .qt .xsession-errors
.config .gconfd .gtkrc .recently-used Desktop

.dmrc .gnome .gtkrc-1.2-gnome2 .skel Documents

.esd auth .gnome2 .kbd .suse_ register.log bin
Options

Most commands have options as their second part. By using these options, you modify the
behavior of the commands. For instance, the 1s command just shows the names of files in
the current directory, as you can see in Listing 1-1. If you want to see details, such as the file
size, the permissions that are set for it, and information about the creation date, you can
add the option -1. In Listing 1-2, you can see how this option modifies the behavior of the
1s command.

Listing 1-2. By Adding an Option to a Command, You Modify Its Behavior

nuuk:~ # 1s -1

total 120

“IW------- 1 root root 777 Dec 5 10:43 .ICEauthority
“IW------- 1 root root 115 Dec 5 10:43 .Xauthority
“IW------- 1 root root 2558 Nov 24 13:39 .bash history
drwx------ 3 root root 4096 Nov 7 11:04 .config
SIW------- 1 root root 24 Nov 7 11:03 .dmrc

S {\CEEEEEE 1 root root 16 Nov 7 11:03 .esd auth
-rw-r--r-- 1 7root root 1332 Nov 23 2005 .exrc
drwxr-xr-x 2 7root root 4096 Nov 7 10:47 .fvwm
drwx------ 5 root root 4096 Dec 5 10:43 .gconf
drwx------ 2 root root 4096 Dec 5 11:03 .gconfd
drwxr-xr-x 3 root root 4096 Nov 7 11:04 .gnome
drwx------ 6 root root 4096 Nov 7 11:04 .gnome2
drwx------ 2 root root 4096 Nov 7 11:03 .gnome2 private
drwx------ 3 root root 4096 Nov 7 11:03 .gnupg
drwxr-xr-x 2 root root 4096 Dec 5 10:43 .gstreamer-0.10
-Iw-r--r-- 1 7root root 123 Nov 7 11:03 .gtkrc
-Iw-r--r-- 1 7root root 134 Nov 7 11:03 .gtkrc-1.2-gnome2
drwxr-xr-x 2 root root 4096 Nov 7 10:47 .kbd

drwx------ 3 root root 4096 Nov 7 11:03 .metacity
drwxr-xr-x 3 root root 4096 Nov 7 11:04 .nautilus
drwxr-xr-x 2 root root 4096 Nov 19 15:03 .qt

SIW------- 1 root root 325 Dec 5 10:43 .recently-used
drwxr-xr-x 2 root root 4096 Nov 7 11:03 .skel

CHAPTER 1 STARTING LINUX COMMAND-LINE ADMINISTRATION

-Tw-r--r-- 1 root root 795 Dec 5 10:44 .suse_register.log
drwx------ 3 root root 4096 Nov 7 11:04 .thumbnails
drwxr-xr-x 2 root root 4096 Dec 1 05:27 .wapi

-Iw-r--r-- 1 7root root 1238 Dec 5 10:43 .xsession-errors
drwxr-xr-x 2 root root 4096 Nov 7 11:04 Desktop

drwx------ 2 root root 4096 Nov 7 11:04 Documents
drwxr-xr-x 2 root root 4096 May 3 2007 bin

Options provide you a method that is defined within the command code to modify the
behavior of the command. This means that as a user or an administrator, you cannot add
options yourself. The only way of doing this is to change the source code of the command.
Options are very specific to the command you use. Some commands don’t have any options,
and other commands can have more than 50. The man command normally gives you a com-
plete list of all options that are available.

Many commands offer two different methods of working with options: the short option
and the long option. For example, you can use the command 1s -1h, which makes the 1s
command present its output in a human-readable way by showing kilobytes, megabytes, and
gigabytes instead of just bytes. You can also use the short option -h in a long way, written as
--human-readable. In Listing 1-3, you can see this option at work, combined with the option
-1, which makes sure that the output of 1s is given as a long listing. (Unfortunately, there is no
long alternative for the short option -1.)

Listing 1-3. Most Linux Commands Work with Short As Well As Long Options

nuuk:/somedir # 1s -1 -h

total 4.0M

-IwWXr-xr-x 1 root root 1.5M Dec 5 11:32 vmlinux-2.6.16.60-0.21-default.gz
-IW-T--r-- 1 7root root 1.3M Dec 5 11:32 vmlinuz

-IW-T--r-- 1 7root root 1.3M Dec 5 11:32 vmlinuz-2.6.16.60-0.21-default
nuuk:/somedir # 1s -1 --human-readable

total 4.0M

-Twxr-xr-x 1 root root 1.5M Dec 5 11:32 vmlinux-2.6.16.60-0.21-default.gz
-IW-T--r-- 1 7root root 1.3M Dec 5 11:32 vmlinuz

-IW-T--r-- 1 7root 7root 1.3M Dec 5 11:32 vmlinuz-2.6.16.60-0.21-default

Short options are preceded by a - sign, and you can add more than one short option after
the - sign. For instance, you can combine the options -1 and -h from the example in Listing
1-4 as 1s -1h. Long options are preceded by the -- sign. For instance, 1s --human-readable
executes the 1s command with just one option, which is - -human-readable. If by mistake you
put just one - in front of a long option, the long option is not interpreted as a long option, but
as a collection of short options. This means that 1s --human-readable would be interpreted as
ls-h -u-m-a-n---r-e-a-d-a-b-1-e

Arguments

Apart from options, many Linux commands have arguments. These are additional specifica-
tions that you can add to the command to tell it more precisely what to do, but the argument

1

12

CHAPTER 1 STARTING LINUX COMMAND-LINE ADMINISTRATION

is typically not defined in the command code itself. For example, consider the command
1s -1 /etc/hosts:

nuuk:/somedir # 1s -1 /etc/hosts
-IW-T--T-- 1 root root 683 Nov 7 10:53 /etc/hosts

In this example, /etc/hosts is the argument. As you can imagine, you can use any other
file name instead of /etc/hosts, and this is typical for arguments. They are not fixed, and you
can use any argument you like as long as it is relevant in the context of the command. In this
book, I'll make a very clear distinction between options and arguments.

You should be aware that not only commands have arguments, but also options have
arguments as well. For example, consider the following command:

mail -s hello root
This command consists of four different parts:

¢ mail: The command itself
¢ -s:The option that tells the mail command what subject it should use

¢ hello: The argument of the option -s, which specifies what exactly you want to do with
the option -s

¢ root: The argument of the command, which in this case makes clear to whom to send
the mail message

As arule of thumb, arguments at the end of the command are normally command argu-
ments, and arguments for options are placed right next to the options. You may wonder now
how to find out the differences between command arguments and arguments for options, but
later in this chapter in the section “Getting Help,” you’ll see that it is fairly simple to differenti-
ate the two argument types.

Piping and Redirection

To unleash the full power of Linux’s many commands, you can use piping and redirection. By
piping, you can send the result of a command to another command, and by using redirection,
you can determine where the command should send its results.

Piping

Piping offers you great benefits in a Linux environment. By using piping, you can com-
bine the abilities of two or more commands to create a kind of super command that offers
even more capabilities. By creating the right pipes, you can really do amazing stuff. For an
advanced Linux administrator, a command such as the following is pretty common (after
reading all the chapters in this book, you should be able to understand what this command
is doing):

kill “ps aux | grep y2 | grep -v grep | awk '{ print $2 }'°

CHAPTER 1 STARTING LINUX COMMAND-LINE ADMINISTRATION

As a Linux administrator, you absolutely need to know about piping, so let’s start with
an easy example. If you try a command like 1s -R /, you will see that it gives a lot of output
that scrolls over your screen without stopping. On Linux, there is a very useful command,
named less, that you can use as a viewer for text files. For example, try less /etc/hosts
(see Listing 1-4); this will open the /etc/hosts file in less to show the contents of the file
(use q to quit less).

Note The /etc/hosts file contains a list of IP addresses and the matching host name. In a small net-
work, you can use it as an alternative to using DNS for resolving host names.

Listing 1-4. You Can Use less As a Viewer to Read Text Files

nuuk:/ # less /etc/hosts

#

hosts This file describes a number of hostname-to-address
mappings for the TCP/IP subsystem. It is mostly

used at boot time, when no name servers are running.
On small systems, this file can be used instead of a
"named" name server.

Syntax:

#

IP-Address Full-Qualified-Hostname Short-Hostname

#

127.0.0.1 localhost

special IPv6 addresses

11 localhost ipvé6-localhost ipv6-loopback
fe00::0 ipv6-localnet

ff00::0 ipv6-mcastprefix

ff02::1 ipv6-allnodes

ff02::2 ipv6-allrouters

ff02::3 ipv6-allhosts

127.0.0.2 nuuk.sander.gl nuuk

/etc/hosts lines 1-23/23 (END)

The less command can be very useful in a pipe as well. By using piping, you'll send the
result of the first command to the second command. So if youuse 1s -R / | less, thels -R /
command executes and sends its result to the less command. less will function as a pager
in this situation and show you the output of the first command screen by screen (see Listing
1-5). It will also show you the current position that you are at; this is indicated by lines 1-23,
which you see at the end of the example file. Press the spacebar to proceed to the next screen
of output.

13

14

CHAPTER 1 STARTING LINUX COMMAND-LINE ADMINISTRATION

Listing 1-56. By Piping to less, You Can Display the Results of a Command That Gives a Large
Amount of Output Screen by Screen

nuuk:/ # 1s -R / | less
/:

.rnd
bin
boot
dev

etc
home
lib
lost+found
media
mnt

opt
proc
root
sbin
somedir
STV

sys

tmp

usr

var

/bin:
lines 1-23

Redirection

Another operator that is very useful in the Linux command shell is the redirection operator, >.
By default, a command will show its result on your computer monitor. In Linux slang, you can
also say that the shell will send the result of a command to standard output, abbreviated to
STDOUT, which is usually your computer monitor. Using redirection, you can send it some-
where else.

Tip If possible, try all commands described in this section immediately after reading about them. Without
trying them yourself, it may be quite hard to understand what they are doing.

Let’s use the command 1s -1 once more as an example. If you just type the command,
you will see its result on STDOUT. However, if you type 1s -1 > somewhere, you'll tell the com-
mand to send its output somewhere else, in this case to a file that has the name somewhere.
This file will be created in the current directory if it doesn’t exist. If a file with this name already

CHAPTER 1 STARTING LINUX COMMAND-LINE ADMINISTRATION

exists, you will overwrite it by using this command. In case you want to add to an existing file
instead of overwriting it, use 1s -1 >> somewhere. The double redirector tells the command to
append to the contents of the file instead of overwriting it. If the file doesn’t already exist, the
command will create it. So if you want to be sure never to overwrite an existing file by accident
when using redirection, use >> at all times instead of >.

Some commands give you error messages apart from output. The good thing is that
you can redirect these error messages also. To do this, use 2> instead of >. So if 1s -1 gives
you a lot of error messages as well (which isn’t very likely, but you never know), you can
send all of them to the file errors, which will be created in the current directory if you use
1s -1 2> errors. And itis even possible to redirect the standard output of a command in
one direction, while sending the error output somewhere else. For instance, the command
1s -1 > output 2> errors will create two files, the file output for the regular output and the
file errors for the error output.

Instead of sending the results of a command to a file, you can redirect to some of the
Linux special devices as well. Every piece of hardware in Linux can be addressed by using a
device file. For instance, there is the device file /dev/null, which can be used as a digital waste
bin. Everything that you send to /dev/null will immediately disappear into thin air. So if you
just don’t want to see any error messages at all, instead of saving them somewhere on your
system, you can redirect the error messages to the /dev/null device. The following example
shows how to do so:

1s -1 2> /dev/null

In this example, the regular output is still written to your current terminal, but you just
won'’t see error messages anymore.

Apart from output, you can also use redirection on input for a command. This is used
not as often, but can be useful for commands that open an interactive prompt where you are
expected to provide input for the command. An example of this is the Linuxmail command
that you can use on the command line.

Tip You can use the mail command for some simple mail handling from a terminal screen, but if your
server is configured properly, you can even use it to send mail to other users on the Internet. The only thing
you need to do is set up DNS on your server.

Consider the command mail -s hello root. This command opens a command prompt
that will allow you to compose a mail message to the user root (whose name is provided as the
argument to the command). The option -s hello specifies the subject, in this case hello. In
Listing 1-6, you can see the result of this command.

Listing 1-6. Composing a Mail Message with mail

nuuk:/ # mail -s hello root
Hi root, how are you.

EOT

15

16

CHAPTER 1 STARTING LINUX COMMAND-LINE ADMINISTRATION

Now the problem with the mail command is that when used in this way, it opens an inter-
active prompt where you type the message body. When finished typing the message body, you
have to provide a dot on a separate line and press Enter. By using input redirection, you can
feed the dot immediately to the command, which allows you to run the command without any
interruption from the command line.

mail -s hello root < .

The difference between Listing 1-6, where mail opens a command prompt, and the pre-
ceding example, where input redirection is used, is that in the example with input redirection,
you cannot enter a message in the body of the mail. To send the mail, there is just one line to
use, and that’s all.

Getting Help

Linux offers many ways to get help. Let’s start with a short overview:

¢ The man command offers documentation for most commands that are available on
your system.

¢ Almost all commands accept the --help option. Using it will display a short overview of
available options that can be used with the command.

¢ As with every shell, the Bash shell also has internal commands. These commands can’t
be found as a program file on disk, but they are built in the Bash shell and available in
memory as soon as the Bash shell is loaded. For these Bash internal commands, you
can use the help command to find out more about them. For example, use help for to
get more information about the Bash internal command for.

Note Want to find out whether a command is an internal command or not? Use type. For example, try
type cd; the result will show you what kind of command cd is, in this case a Bash internal command.

Using man to Get Help

The most important source of information about commands on your Linux system is man,
which is short for the System Programmers Manual. The basic structure for using man is to type
man followed by the command you want information about. For example, type man passwd to
get more information about the passwd item. You'll then see a page displayed by the less
pager, as shown in Listing 1-7.

CHAPTER 1 STARTING LINUX COMMAND-LINE ADMINISTRATION

Listing 1-7. Example of a man Page

PASSWD(1) User Commands PASSWD(1)

NAME

passwd - change user password

SYNOPSIS

passwd [options] [LOGIN]

DESCRIPTION

passwd changes passwords for user accounts. A normal user
may only change the password for his/her own account, while
the super user may change the password for any account.
passwd also changes account information, such as the full
name of the user, the user's login shell, or his/her
password expiry date and interval.

Password Changes
Manual page passwd(1) line 1

Each man page consists of the following elements.

Name: This is the name of the command. It briefly describes the purpose of the
command.

Synopsis: Here you can find short usage information about the command. It will show
all available options and indicate whether an option is optional (shown between
square brackets) or mandatory (not between brackets).

Description: This describes what the command is doing. Read it to get a clear and com-
plete picture of the purpose of the command.

Options: This is a complete list of all options that are available, and it documents the
use of all of them.

Files: If it exists, this section provides a brief list of files that are related to the command
you want more information about.

See also: This is a list of related commands.

Author: This indicates the author and also provides the mail address of the person who
wrote the man page.

man Sections

In the early days, nine different man volumes documented every aspect of the UNIX operating
system. This structure of separate books (nowadays called sections) is still present in the man
command. Table 1-1 lists the available sections and the type of help you can find in them.

17

18

CHAPTER 1 STARTING LINUX COMMAND-LINE ADMINISTRATION

Table 1-1. man Sections and What They Cover

Section Topic Description
0 Header files These are files that are typically in /usr/include and contain
generic code that can be used by your programs.
1 Executable programs For the user, this is the most important section because it
or shell commands normally documents all commands that can be used.
2 System calls As an administrator, you will not use this section on a fre-

quent basis. The system calls are functions that are provided
by the kernel. It’s all very interesting if you are a kernel debug-
ger, but normal administrators won’t need this information.

3 Library calls Alibrary is a piece of shared code that can be used by several
different programs. Typically, man pages that are documented
in section 3 are relevant for programmers, not so much for
Linux users and system administrators.

4 Special files In here, the device files in the directory /dev are documented.
These files are needed to access devices in a computer. This
section can be useful for learning more about the workings of
specific devices and how to address them using device files.

5 Configuration files Here you'll find the proper format you can use for most
configuration files on your server. If, for example, you want
to know more about the way /etc/passwd is organized, use
the entry for passwd in this section by issuing the command
man 5 passwd.

6 Games On a modern Linux system, this section contains hardly any
information.
7 Miscellaneous This section contains some information on macro packages
used on your server.
8 System administra- This section does contain important information about the
tion commands commands you will use on a frequent basis to change settings

on your Linux machine.

9 Kernel routines This is documentation that isn’t even included as part of the
standard install and optionally contains information about
kernel routines.

So the information that matters to you as a system administrator is in sections 1, 5, and
8. Mostly you don’t need to know anything about the other sections, but sometimes an entry
can be found in more than one section. For example, information on an item called passwd
is found in section 1 as well as in section 5. If you just type man passwd, you'll see the content
of the first entry that man finds. If you want to make sure that all the information you need
is displayed, use man -a <yourcommand>. This makes sure that man browses all sections to
see whether it can find anything about <yourcommand>. If you know what section to look in,
specify the section number as well, as inman 5 passwd, which will open the passwd item from
section 5 directly.

Now man is a very useful tool for getting more information on how to use a given com-
mand. On its own, however, it is useful only if you know the name of the command you want
to read about. If you don’t have that information and need to locate the proper command,
you will like man -k. The -k option allows you to locate the command you need by looking at
keywords.

CHAPTER 1 STARTING LINUX COMMAND-LINE ADMINISTRATION

Note man -k is very useful. Instead of using man -k, you may also use the apropos command, which
does exactly the same thing.

man -k often produces a very long list of commands from all sections of the man pages,
and in most cases you don’t need to see all that information; the commands that are rel-
evant for the system administrator are in sections 1 and 8. Sometimes, when you are looking
for a configuration file, section 5 should be browsed as well. Therefore, it’s good to pipe the
output of man -k through the grep utility, which can be used for filtering. For example, use
man -k time | grep 1 toshow only lines from man section 1 that have the word “time” in the
description.

Tip It may happen that man -k provides only a message stating that nothing is appropriate. If this is the
case, run the mandb command. This will create the database that is necessary to search the man indexes.

Using the --help Option

The --help option is pretty straightforward. Most commands accept this option, although

not all commands recognize it. But the nice thing is that if your command doesn’t recognize
the option, it will give you a short summary on how to use the command anyway because it
doesn’t understand what you want it to do. Although the purpose of the command is to pro-
vide a short overview of the way it should be used, you should be aware that the information is
often still too long to fit on one screen. If this is the case, pipe it through less to view the infor-
mation page by page. In Listing 1-8, you see what happens when you do that.

Listing 1-8. Displaying Information Screen by Screen by Piping Through less

nuuk:/ # 1s --help | less

Usage: /bin/ls [OPTION]... [FILE]...

List information about the FILEs (the current directory by default).
Sort entries alphabetically if none of -cftuSUX nor --sort.

Mandatory arguments to long options are mandatory for short options too.

-a, --all do not ignore entries starting with .
-A, --almost-all do not list implied . and ..
--author with -1, print the author of each file
-b, --escape print octal escapes for nongraphic characters

--block-size=SIZE use SIZE-byte blocks
-B, --ignore-backups do not list implied entries ending with ~

19

20 CHAPTER 1 STARTING LINUX COMMAND-LINE ADMINISTRATION

-C with -1t: sort by, and show, ctime (time of
modification of file status information)
with -1: show ctime and sort by name
otherwise: sort by ctime

-C list entries by columns
--color[=WHEN] control whether color is used to distinguish file

types. WHEN may be “never', “always', or
“auto’

-d, --directory list directory entries instead of contents,
and do not dereference symbolic links

-D, --dired generate output designed for Emacs' dired mode

-f do not sort, enable -aU, disable -1lst

-F, --classify append indicator (one of */=>@|) to entries

lines 1-23

Getting Information on Installed Packages

Another nice source for information that is often overlooked is the documentation you

can install for software packages in the directory /usr/share/doc/. This information is not
installed by default on all distributions; you’ll probably need to install the Documentation
software package yourself to get it. (More on management of software appears in Chapter

8.) Beneath this directory, you'll find a long list of subdirectories that all contain some usage
information. In some cases, the information is really short and not very good, but in other
cases, thorough and helpful information is available. Often this information is available in
ASCII text format and can be viewed with less or any other utility that is capable of handling
clear text.

In many cases, the information in /usr/share/doc is stored in a compressed format. You
can recognize this format by the extension .gz. To read files in this format, you can use zcat
and pipe the output of that to less, which allows you to browse through it page by page. For
example, if you see a file with the name changelog.gz, use zcat changelog.gz | less toread it.

In other cases, you will find the documentation in HTML format, which can only be dis-
played properly with a browser. If this is the case, it is good to know that you don’t necessarily
need to start a graphical environment to see the contents of the HTML file because Linux
comes with the w3m browser, which is designed to run from a nongraphical environment. In
w3m you can use the arrow keys to browse between hyperlinks. To quit the w3m utility, use the
g command.

Working with the Shell

Linux uses the kernel to address and control the machine’s hardware. The kernel can be con-
sidered the heart of the Linux operating system. On top of this kernel, as shown in Figure 1-5,
Linux gives users the shell interface to tell this kernel and the services running on top of it what
they should do. This interface interprets the commands that users enter and translates them to
machine code.

CHAPTER 1 STARTING LINUX COMMAND-LINE ADMINISTRATION

Command

v

Shell

v

Kernel

v

Hardware

Figure 1-5. Overview of the relation between kernel and shell

Several shells are available. The very first shell that was ever created for UNIX, back in the
1970s, was the Bourne shell. It is still available in Linux as the program file /bin/sh. Another
popular shell is Bash (short for the Bourne Again Shell). The Bash shell is completely compat-
ible with the original Bourne shell, but it has many enhancements. Bash is used as the default
shell for all users on most Linux distributions. Whereas SUSE and Red Hat use Bash, Ubuntu
uses another shell, named Dash. For regular server administration tasks, there are no impor-
tant differences between Bash and Dash. You should be aware that other shells are available as
well. Some people prefer using these other shells, three of which I'll merely mention here:

e tcsh: A shell with a scripting language that works like the C programming language (and
thus is fairly popular with C programmers).

¢ zsh: A shell that is compatible with Bash, but offers even more features.

¢ sash: The stand-alone shell. This is a very minimal shell that runs in almost all environ-
ments. It is thus well suited for troubleshooting systems.

Using the Shell to Best Effect

Basically, in the shell environment, an administrator is working with commands to execute the
tasks he or she wants to perform. An example of such a command is 1s, which can be used to
display a list of files in a directory. Bash has some useful features to make working with these
line commands as easy as possible.

Some shells offer the option to complete a command automatically. Bash has this feature,
but it does more than just complete commands. Bash can complete almost everything: not just
commands, but also file names and shell variables.

21

22

CHAPTER 1 STARTING LINUX COMMAND-LINE ADMINISTRATION

Working with Files and Directories

You'll find that when working in the shell, you'll often be manipulating files and directories.
A directory is the folder in which files are stored that are related to one another; for instance,
in the directory /bin, you will find binary files. Some directories are created by default, but
you can also create directories yourself. To do this, use mkdir. For instance, the following
command would create a directory with the name groups in the root of the file system:

mkdir /groups

In a directory, you'll find files. These can be text configuration files, program files, and
documents; all that is stored on a Linux machine is stored in a file in some directory. In some
cases, it can be useful to create a dummy text file that allows you to test functionality. To do
this, use the touch command. The following command shows how to use touch to create an
empty text file in the current directory:

touch somefile

This was just a very short introduction to working with files and directories. Chapter 2 of
this book gives many more details on this subject.

Using Automatic Command Completion

Using this feature is as simple as pressing the Tab key. For example, the cat line command

is used to display the contents of an ASCII text file. The name of this file, which is in the cur-
rent directory, is thisisafile. So, to open this file, the user can type cat thi and then press the
Tab key. If the directory has only one file that starts with the letters “thi,” Bash automatically
completes the name of the file. If the directory has other files that start with the same letters,
Bash will complete the name of the file as far as possible. For example, let’s say that there

is a file in the current directory with the name thisisatextfile and another with the name
thisAlsoIsAFile. Because both files start with the text this, Bash will complete only up to this
and no further. To display a list of possibilities, you then press the Tab key again. This allows
you to manually enter more information. Of course, you can then press the Tab key again to
use the completion feature once more.

Tip Working with the Tab key really makes the command-line interface much easier. Imagine that you
need to manage logical volumes on your server, and you remember only that the command for that starts
with 1v. In this case, you can type Iv and press the Tab key twice. The result will be a nice list of all com-
mands that start with 1v, from which you’ll probably recognize the command that you need.

Working with Variables

A variable is simply a common value that is used often enough by the shell that it is stored with
aname. Many system variables are available from the moment your system boots, but you

can set variables yourself as well. For instance, when you use the command SWEET=good on the
command line, you have temporarily defined a variable that you can use later. Setting vari-

CHAPTER 1 STARTING LINUX COMMAND-LINE ADMINISTRATION

ables yourself is mainly interesting when writing shell scripts; you'll read much more about
this subject in Chapter 12.

Apart from the variables that you would define yourself, there are system variables as
well. These system variables are stored in the user’s environment and help make it easier to
work from the shell. An example of such a variable is PATH, which stores a list of directories
that should be searched when a user enters a command. To refer to the contents of a variable,
prefix a $ sign before the name of the variable. For example, the command echo $PATH displays
the content of the current search path that Bash is using.

On any Linux system, you’ll get quite a few variables automatically when logging in. For
an overview of all of them, you can use the env (short for environment) command. Listing 1-9
shows the result of this command.

Listing 1-9. The env Command Shows All Variables That Are Defined in Your Shell Environment

100t@RNA:~# env

TERM=xterm

SHELL=/bin/bash
SSH_CLIENT=192.168.1.71 1625 22
SSH_TTY=/dev/pts/1

USER=ro0t

MAIL=/var/mail/root
PATH=/usx/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games
PWD=/ro0t

LANG=en_US.UTF-8

SHLVL=1

HOME=/root

LOGNAME=root

VISUAL=vi

When working from the command line, in some cases you'll need to change some vari-
ables. Several of the most relevant variables are listed here:

e MANPATH: A lists of directories where your system will look for man pages.
e PATH: A list of directories that your system will search for executable files.

e HOSTNAME: The name of your computer. When booting, your computer reads this vari-
able from the file /etc/HOSTNAME.

e PS1: The current prompt layout that your computer uses.
e SHELL: The name of the shell the current user is using.

e TERM: The terminal type that is used. This is an important variable, because it defines
how text on your console is displayed.

¢ USER: The name of the current user.

¢ LANG: The current language settings and what language is used to display items like
man pages. This variable is important for international users. POSIX is the setting for
US English. If, for example, you want to use the French language, change this setting
to fr_FR.UTF-8.

23

24

CHAPTER 1 STARTING LINUX COMMAND-LINE ADMINISTRATION

Normally, as a user, you'll get your variables automatically when logging in to the system.
The most important source of new variables is the /etc/profile file, a script that is processed
for every user who logs in to the system. Want to add a new variable for all users on your sys-
tem? Add it to the bottom of the /etc/profile file to make sure it is available for all users. You
must, however, log in as the system administrator root if you want to do this, if you have some
code you want to apply to /etc/profile. Also be aware that changes you make to /etc/profile
only become active after you log out and back in to the system.

If you want to make sure that your variable experiments don’t cause harm to all users on
your system, use the command cd ~ to change to your home directory, and in the directory,
create a file with the name .profile. All users can have such a file in their home directories,
and it will be treated as an addition to /etc/profile. So if you put a new variable in this file, it
will be executed only for the user in whose home directory you inserted this file.

Working with Bash History

Another useful feature of the Bash shell is the history feature, which lets you reuse com-
mands you have recently used. Many distributions will remember the last 1,000 commands
that a user has used; in fact the number of commands the shell remembers is defined in a
variable itself. The name of this variable is HISTSIZE. The history feature is useful for sessions
beyond even the current one. A file, named .bash_history, is created in the home direc-
tory of every user, and this file records the last 1,000 commands that the user has entered.
You can see an overview of these commands by entering history at the Bash prompt. List-
ing 1-10 is an example of this list.

Note In addition to the history command, you can also use the up/down arrow keys, page up/down
keys, and Ctrl+P/Ctrl+N to browse the history.

Listing 1-10. The history Command Shows a List of All Commands That You Recently Used

sander@RNA:~$ history

182 1s -1 -h

183 1s -1 --human-readable
184 clear

185 1s -1 /etc/hosts
186 1s -R / | less

187 1s -R
188 1s -R /
189 clear

190 1s R/

CHAPTER 1 STARTING LINUX COMMAND-LINE ADMINISTRATION

191 clear

192 cod /

193 clear

194 less /etc/hosts
195 clear

196 1s -R / | less
197 clear

198 mail -s hello root
199 type 1s

200 type cd

201 man 1s

202 clear

203 1s --help | less
204 history

The history feature is especially useful because you can reissue any command from this
list without typing it all over again. If you want to run any of the listed (and numbered) com-
mands again, simply type its number preceded by an exclamation mark. In this example, typ-
ing!198 would runmail -s hello root again.

A user can also erase his or her history by using the history command. The most impor-
tant option offered by this Bash internal command is -c, which clears the history list for that
user. This is especially useful because everything that a user types at the command line—such
as passwords—is recorded. So use history -c to make sure your history is cleared if you'd
rather not have others knowing what you've been up to. Once you use this option, however,
you can’t use the up arrow key to access previous commands, because those are all erased.

Because everything you enter from the command line is saved in the file .bash_history
in your home directory, I recommend never entering a plain-text password in the first place,
even if you regularly erase the history. Never forget that the history file is also a default keylog-
ger on your Linux system!

Managing Bash with Key Sequences

Sometimes, you'll enter a command from the Bash command line, and either nothing hap-
pens at all or something totally unexpected happens. In such an event, it’s good to know that
some key sequences are available to perform basic Bash management tasks. Here are some of
the most useful key sequences:

e Ctrl+C: Use this key sequence to quit a command that is not responding (or simply
takes too long to complete). This key sequence works in most scenarios where the
command is operational and producing output to the screen. In general, Ctrl+C is also
a good choice if you absolutely don’t have a clue as to what’s happening, and you just
want to terminate the command that’s running in your shell. If used in the shell itself, it
will close the shell as well.

e Ctrl+D: This key sequence is used to send the “end of file” (EOF) signal to a command.
Use this when the command is waiting for more input, which is indicated by the sec-
ondary prompt (>). You can also use this key sequence to close a shell session.

25

26 CHAPTER 1 STARTING LINUX COMMAND-LINE ADMINISTRATION

Ctrl+R: This is the reversed search feature. It will open the “reversed I-search” prompt,
which helps you locate commands that you used previously. The Ctrl+R key sequence
searches the Bash history, and the feature is especially useful when working with
longer commands. As before, type the first characters of the command, and you will
see the last command you've used that started with the same characters.

Ctrl+Z: Some people use Ctrl+Z to stop a command that is running interactively on
the console (in the foreground). Although it does stop the command, it does not ter-
minate it. A command that is stopped with Ctrl+Z is merely paused, so that you can
easily start it in the background using the bg command or in the foreground again
with the fg command. To start the command again, you need to refer to the job num-
ber that the program is using. You can see a list of these job numbers using the jobs
command. You will learn more on running commands in the background in Chap-
ter 7. For the moment, just remember never to use this key sequence if you want to
stop a command!

Summary

In this chapter, you have learned about the essentials you’ll need to know to work with Linux.
The following topics were covered:

History of the Linux operating system

What is open source?

Differences between distributions

Logging in to Linux

Structure of a command, including options and arguments
Piping and redirection

Getting help with man and --help

Working with the shell

Based on the information in this chapter, you now have the basic skills that are required
to start using some commands. In the next chapter, you’ll learn about some useful commands
and the way they work.

CHAPTER 2

Performing Essential
Command-Line Tasks

At this point, you know the basics to get around. One very important topic that you've
learned in Chapter 1 is how to get help. Now it’s time to expand your command-line skills by
exploring some essential Linux commands. In this chapter, you’ll learn about the following
topics:

¢ Changing your password

¢ Working with virtual consoles

¢ Becoming another user

¢ Obtaining information about other users

e Communicating with other users

¢ Exploring the Linux file system

* Working with files and directories

¢ Cool commands

Changing Your Password

As a user, you have a password that protects your account. This account includes all your
personal settings and files, and therefore needs serious protection. Hence, it is a good idea

to change your password regularly to minimize the risk that someone else gets to know your
password and can use your credentials to authenticate. When changing a password, make sure
it meets the following minimal requirements:

* A password should be long: at least six characters, though eight or more is better.

¢ Use complexity; mix letters, numbers, and other characters to make the password as
difficult to guess as possible.

e Use upper- and lowercase letters.

¢ Make sure that your password doesn’t look like any word in the dictionary. Attack-
ers use “dictionary attacks” in which they feed the entire contents of a dictionary to
a brute-force password cracker, and if your password is in the dictionary, they will
crack it.

27

28

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS

Changing your password is not too hard—just use the passwd command. Then, you first
have to enter your old password. This is to prevent others from changing your password. Next,
enter the new password twice. Also, make sure that your password meets the complexity rules;
otherwise it will not be changed. In Listing 2-1, you can see what happens when changing your
password.

Listing 2-1. Changing Your Password

sander@nuuk:~> passwd
Changing password for sander.
0ld Password:

New Password:

Reenter New Password:
Password changed.

If you are logged in as root, you can also change the password of other users. If you just
want to change the password, that’s easy: type passwd followed by the name of the user whose
password you need to change. There are also some options that you can use when changing a
user’s password. Following are the most useful of these options:

¢ -d: Removes the password for the specified user account.

¢ -1: Locks an account. Useful if you know that the account is not to be used for a given
period.

e -u: Unlocks an account that has been locked with -1.

e -e: Forces the user to change his or her password at the next login.

Working with Virtual Consoles

On your Linux system, you work from a console. This is either a graphical or a text-based con-
sole. All distributions by default offer more than just this one console. They do this by using
virtual consoles. You can consider a virtual console similar to the dumb terminal that was quite
popular in the 1980s. Virtual consoles offer you more than one login environment, which is
especially useful in a nongraphical environment.

Also for a modern Linux user, a virtual console can be very practical. Imagine a system
administrator who wants to test a new setting and verify that it works for the user accounts. He
or she can use one virtual console to change the setting as system administrator, while testing
the setting by logging in as a normal user at another virtual console. Or imagine a developer
tweaking the source code of a new program on one virtual console, while debugging the same
program at another virtual console.

Most Linux distributions offer six virtual consoles by default. The names of these consoles
are ttyl through tty6. You can activate them using Ctrl+Alt+function key. So, to access virtual
console number tty4, you need to press Ctrl+Alt+F4. If your system has started a graphical
environment as well, you can use Ctrl+Alt+F7 to get back to the graphical environment.

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS

Note In a nongraphical environment, you can skip the Ctrl key. So, to switch between tty1 and tty2,
pressing Alt+F2 also works.

You may notice that some distributions also use some of the higher-numbered virtual
consoles for logging. Therefore, you should always at least check what happens at the higher-
numbered virtual consoles. For instance, SUSE Linux writes kernel log messages to tty10,
which can be useful when troubleshooting a problem.

Becoming Another User

There are basically two ways to authenticate to your Linux system: as the root or as a nonroot
user. It is good habit not to use root by default. Since root can do anything, a small mistake
may have big consequences. As root, you can accidentally destroy everything on your system,
and Linux won’t ask whether you are sure about this action before wiping out everything on
your hard drive (or whatever mistake you are about to make). Therefore, it is a good idea to log
in as a normal user and get root permissions only when you really need them. To write a text
document, you don’t need root permissions (unless it’s a configuration file). To change your IP
address, however, you do need root permissions.

To temporary change your identity, you can use the su (substitute user) command.
(Ubuntu users: read the upcoming tip!) Its use is not hard; just issue su followed by the name
of the user through whose identity you want to work. For instance:

su linda

would switch your current user account to the user account linda. If you are a normal user,
you next have to enter a password. If you are root, this is not necessary (root is almighty,
remember?). If you omit the name of the user you want to su to, the command assumes you
want to become root. It will next prompt you to enter a password, which in this case is the
password of the user root.

Tip If you're on Ubuntu, you can’t use su just like that. Ubuntu uses the sudo mechanism instead, which
is covered in Chapter 6 of this book. Here’s a quick-and-dirty method that helps you in using su, even on
Ubuntu. It will enable you to execute privileged commands from now on. First, use the command sudo su.
When asked for a password, enter the password assigned to your user account. Next, use the command
passwd to give the user root a password. From this moment on, you can also log in as root on Ubuntu. If for
security reasons you don't like the fact that you can do so, read Chapter 6 for information on how to disable
this feature. Until then, the goal is to help you work on the command line, and to do that, you will need root
permissions from time to time.

29

30

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS

When using su, it is a good idea to use the option - at all times. This option will give you
alogin shell instead of a subshell. If you don’t use the option -, you may still work with some
settings that belong to the old user account. To prevent this, use su - at all times. This ensures
that you work in the complete environment of the user you are switching to. In Listing 2-2, you
can see what happens when a normal user uses su - to take the identity of user root.

Listing 2-2. Switching Identity with su -

sander@nuuk:~> su -
Password:
nuuk:~ #

When done working as the other user, you can issue exit. This brings you back to your
original user environment.

Obtaining Information About Other Users

If you are using Linux on your personal computer at home, you are probably the only user who
is logged in to it. However, if you are a Linux user at the Linux server in your company, there
can be other users as well. In the latter case, it is good to know that several commands are
available to help you in getting information about users who are currently connected to the
same machine. To start, there is the users command. This command shows a short list of all
users currently authenticated with no further details:

nuuk:~ # users
linda root root sander

If you want more information about the users who are logged in, who is a better option.
By default, it shows you not only what users are logged in currently, but also where they are
logged in from and at what time they logged in. Listing 2-3 shows the output of who when used
without additional options.

Listing 2-3. who Gives More Detailed Information About What Users Are Doing

nuuk:~ # who

root tty1 Dec 10 09:11
sander pts/0 Dec 10 09:31 (192.168.139.1)
root pts/1 Dec 10 12:20 (192.168.139.1)

linda pts/2 Dec 10 12:21 (192.168.139.1)

The fact that who shows the IP address of remote users is particularly useful. If, for exam-
ple, a user is misbehaving himself or herself, the administrator knows from which IP address
that user is working, which makes it easier to take corrective measures.

If you want to see what a user is doing, the w command is helpful. This command shows
you the names of users, where they are logged in from and at what time, current usage statis-
tics, and what program they currently are using (or have used as the last program). Listing 2-4
gives an overview of w output.

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS

Listing 2-4. Use w If You Want to See What a User Is Doing

nuuk:~ # w

13:17:23 up 4:31, 4 users, load average: 0.00, 0.00, 0.00
USER TTY LOGIN®@ IDLE JCPU PCPU WHAT
root ttyl 09:11 4:05m 0.07s 0.07s -bash

sander pts/0 09:31 1:41m 0.13s 0.05s sshd: sander [priv]
root pts/1 12:20 0.00s 0.08s 0.00s w

linda pts/2 12:21 55:43 0.04s 0.04s -bash

If you want to get to know as much as possible about other users, try finger. Because this
command really gives much privacy-related information, it is disabled by default on some
distributions. This is not the case on all distributions, which means that you can query the
system to find out what a user has been doing recently. The finger command even shows you
whether the user has unread mail! Listing 2-5 shows an example of its output.

Listing 2-5. Because It Shows Much Privacy-Related Data, the finger Command Is Disabled on
Many Distributions

sander@nuuk:~> finger linda

Login: linda Name:

Directory: /home/linda Shell: /bin/bash

On since Wed Dec 10 12:21 (CET) on pts/2, idle 1:00, from 192.168.139.1
Mail last read Wed Dec 10 13:21 2008 (CET)

No Plan.

Communicating with Other Users

From the Linux command line, you have some communication options as well. Some com-
mands allow you to communicate in real time, providing chat functionality, while others are
provided to allow you to send e-mail.

Real-Time Communication

On Linux, there are two options to communicate with other users in real time. You can use
write to talk to an individual user. If you want to send a message to all users, you can use wall.
If you don’t want to receive messages from other users, use the mesg command to switch mes-
sage reception off or on.

Individual Chat Sessions with write

If you want to chat in real time with another user on the system, you can use write. This com-
mand is provided for communication between two users. Its use is fairly simple: initiate a
write session to another by using the write command followed by the name of the user you
want to talk to. For instance, the following command would initiate a session from the current
user to user linda:

write linda

31

32

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS

Next, write opens a prompt after which the user can type text. This text is displayed line
by line on the terminal of the other user. No matter what the user is doing, the text will be
displayed, as long as the user has a terminal session that is open. If a user receives awrite
message from another user, he or she can reply to that by opening his or her own write ses-
sion. As an illustration, the following procedure demonstrates how root and linda initiate and
terminate a write session:

1. User linda opens the write session to root, using the command write root. This opens
the write prompt, from which linda can type her text:

linda@nuuk:~> write root
write: root is logged in more than once; writing to pts/1
hi root, I'm having a problem.

2. At this moment, root receives linda’s message at his console. To reply, he has to press
Enter to put away linda’s message first, and then enter the command write linda.
Next, he can type his message, thereby establishing an active chat session with linda:

nuuk:~ #
Message from linda@nuuk on pts/2 at 13:35 ...
hi root, I'm having a problem.

nuuk:~ # write linda
hi linda, how can I help you
We'll, my mouse doesn't react anymore

3. At the end of the session, both parties that are involved have to use the Ctrl+C key
sequence to terminate the session. This will bring them back to their prompts, where
they can continue their normal work.

Writing to All Users

Another tool for real-time communication is wall. This stands for write all, and you can prob-
ably guess that this tool is used to write a message to all users. It works in more or less the
same way as write: after entering wall, the user who invokes wall writes a message, which is
terminated by using the Ctrl+D key sequence. This message will show on the console of all
users who are currently logged in. It needs no explanation that you should use this tool with
care, as it is very annoying for users to receive wall messages frequently. In Listing 2-6, you can
see an example of awall session.

Listing 2-6. Writing a Message to All Users with wall

nuuk:~ # wall
I'11 shut down the system in 5 minutes

Broadcast Message from root@nuuk
(/dev/pts/1) at 15:27 ...

I'11 shut down the system in 5 minutes

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS

With wall, you can also send the contents of a text file to other users. For instance,
wall /tmp/mymessage.txt would send the contents of mymessage.txt to all users who are cur-
rently connected. This function is useful for a system administrator who wants to send a
longer message to all users.

Disabling Real-Time Messages

If you don’t want to receive any messages from other users, use the mesg command. This
command works with two arguments only. mesg n makes sure that no one can write mes-
sages to your console. If you want to open your console again for messages from other users,
use mesg Y.

Sending Mail from the Command Line

You may think that in order to send mail, you need a full-scale mail client, such as Thunder-
bird, Evolution, or Windows Mail. The Linux command line, however, also has a mail client,
which you can invoke from the command line by using the mail command. I wouldn’t rec-
ommend replacing your normal mail client by mail, but if you want to send a message to an
Internet or local user, or if you want to read system mail, the mail command offers an excellent
solution to do that.

Note You can use the mail command to send mail to Internet users, but this requires DNS to be set up
properly on your Linux machine and an SMTP process running. Most Linux computers meet these require-
ments after a default installation.

To send a mail message to another user, you invoke the command asmail user, where
user is the name of a local user (e.g., mail root) or a user on the Internet (e.g., mail
someone@example.com). Next, the mail program opens an interface where you first enter the
subject, followed by the body of the mail message. When finished writing the mail body, you
type a dot on a separate line and press Enter. This will tell the mail client that you're done
and offer the mail message to the SMTP process on your machine, which will take care of
delivering it to the correct user. In Listing 2-7, you can see what happens when using the mail
command from the command line.

Listing 2-7. Sending Messages with themail Utility

nuuk:~ # mail linda
Subject: 4 PM meeting
Hi Linda, can we meet at 4 PM?

Thanks,
root

EOT

33

34

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS

You can also run the mail utility completely from the command line, without it opening
an interface that has you input text. This, for example, is very useful if you want shell scripts
or scheduled jobs to send a message automatically if a certain error condition occurs. In these
cases, the body of the mail message is not very important; you probably just want to deliver a
mail message with a certain subject to the user. The next command shows you how to do this:
it sends a message with the text “something is wrong” to the user root. Also, take notice of the
< . construction. Normally, the mail command would expect a dot on a line on its own to indi-
cate that the message is complete. By using input redirection with < ., the dot is provided on
the command line.

mail -s "something is wrong" root < .
The mail command has some other useful options as well for sending mail:

e -a filename: Allows you to add a file as an attachment to your message.
® -c cc-addr: Specifies the name of a user you want to send a copy of the message to.

* -b bcc-addr: Sends a blind copy to a user. The recipient of the mail cannot see that
you've sent a copy to this user also.

e -R reply-addr: Allows you to specify the reply address. A reply to this mail message is
automatically sent to this reply address.

Apart from sending mail, you can read mail messages also with the mail utility. The utility,
however, is meant to read system mail and is not a good choice to read your POP or IMAP mail
from the mail server of your Internet provider. When invoking mail to read your system mes-
sages, you should just type mail. In reply, the mail client shows a list of mail messages that are
waiting for you (see Listing 2-8).

Listing 2-8. Just Type mail to Display a List of All Mail Messages That Are Waiting for You

nuuk:~ # mail

mailx version nail 11.25 7/29/05. Type ? for help.

"/var/mail/root": 5 messages 5 unread

>U 1 root@nuuk.sander.g Wed Nov 19 15:13 20/661 Meeting at 10 AM

2 root@nuuk.sander.g Fri Nov 21 09:48 20/661 10 AM meeting cancelled
3 root@nuuk.sander.g Fri Dec 5 10:44 20/661 Nice day for Dutch users
4 root@nuuk.sander.g Fri Dec 5 12:28 19/568 hello

5 root@nuuk.sander.g Wed Dec 10 08:48 20/661 Wanna go for coffee?

c C Cc C

To read a message, just enter the message number, and you will see its text. When finished
reading the message, press q to quit. After closing a message that you've read, you can type the
reply command from within the mail interface to send a reply to the user who sent the mes-
sage, or type delete, followed by the message number to delete the message from your system.
Next, type quit to exit the mail interface.

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS

Finding Your Way in the File System

Now that you know how to log in to your server, it is time to get more familiar with the way a
Linux file system is organized with default files and directories. Even nowadays, it is still very
important that you know your way around the file system; this is because Linux is still a file
system—centric operating system. Even if you want to work only from the graphical environ-
ment, you must know where you can find all important files on your server. Knowing where to
find files and directories will absolutely make working on the Linux command line easier.

Default Directories

All Linux distributions use more or less the same approach in organizing the directory struc-
ture on a system. This means that certain directories will always be present, no matter what
distribution you are using. You may encounter small differences between distributions
though. In this section, you'll learn what default directories exist and what kinds of files you'll
find in these directories.

On most Linux systems, you'll find the following default directories (notice that minor dif-
ferences may exist between distributions):

¢ /: The root directory is the starting point of your Linux file system. All other directories
on your system exist in the root directory.

e /bin: This is the location where you find program files (binaries) accessible to all users.
These are essential binaries that must be available at all times, even if there is a prob-
lem with other parts of your system. For that reason, the directory /bin is always on the
root partition. In it you will find essential utilities and commands like /bin/bash (the
shell), cp (used to copy files), and many more.

¢ /sbin: In this directory you will find binaries for the system administrator. These are
critical binaries that must be available at all times in case you need to repair your sys-
tem. In this directory, you will find commands and utilities you’d rather not see in the
hands of your users, like the general system management tool yast2, or the partitioning
tool fdisk.

* /boot: This directory contains everything you need to boot your server. One of the
most important things that you’ll find in this directory is the kernel; this is the file with
the name vmlinuz. (On some distributions, the version number is appended to the file
name.) Other vital components are present as well, and the thing all of these have in
common is that your server needs them to start.

e /dev: On a Linux system, all hardware you work with corresponds with a file on your
system. If you want to address the hardware, you have to address the corresponding
file. You can find all these device files in the directory /dev. You will find, for example,
a device called /dev/cdrom that refers to the optical drive that might be present in your
system. Other important device files are /dev/sda, which typically refers to your hard
disk, or /dev/null, which you can use to redirect error messages to.

e /etc: Most services running on Linux use an ASCII text file to store all necessary con-
figuration. These text files are kept in the directory /etc. In this directory, you will find
some important configuration files like /etc/passwd, which contains the database of
local Linux users.

35

36 CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS

¢ /home: The personal files of a user are stored in his or her home directory, no matter if
you are working on a Linux server or a personal desktop. The directory /home is used
to store each user’s home directory. When installing a Linux system, it may be wise to
put this directory on a partition on its own to separate user data files from operating
system components. That minimizes the risk that you’ll lose all your personal files if
something happens to the installation of your operating system.

e /1lib: Many programs that are used in a Linux environment share some of their code.
This shared code is stored in different library files. All the libraries needed by binaries
that are in a subdirectory of your file system root are in the directory /1ib. You will also
find some other important modules in this directory, like the driver modules that are
used by the kernel of your server.

¢ /media: On a Linux system, to access files that are not on the hard disk of your compu-
ter, you need to make the medium accessible. You do this by mounting it (mounting
devices is explained in more detail in Chapter 3). When you mount a CD-ROM, for
example, you connect it to a directory on your file system. This must be a directory that
exists before you start mounting anything. The default directory that is used for regu-
lar mounts on most distributions is /media. In this directory, a subdirectory is created
automatically when a new removable device is detected. CDs as well as USB sticks will
appear here (and on the graphical desktop as well) once they are mounted with the
label of the device used as the name of the directory where the device is mounted.

¢ /mnt: On older Linux systems, /mnt was the default directory for mounting devices. On
more recent systems, this has been replaced by the /media directory. However, /mnt
still has a purpose: it is used for mounts that don’t occur very often, such as a mount to
a server that has to be accessed only once.

e /usr: This directory is probably the largest directory on your system. Here you can find
almost all user-accessible files. Some people like to compare it to the Program Files
directory on a Windows system. Because there are so many files in this directory, inside
it you will find an entire structure of subdirectories, including /usr/bin, in which most
programs are stored; /usr/X11R6, where your graphical user environment resides; and
/usr/src, where you can put the source files of the open source programs and kernel
you use. Because there are so many files in the /usr directory, it is quite usual to put it
on its own partition.

Tip Have you always wanted to find out how much space a directory occupies on your hard disk? Use
du -hs from a console environment. It will show you the disk usage of a specified directory. The normal
output of this command is in blocks; the parameter -h presents the output in a human-readable form. The
option -s makes sure that you see the summary for the selected directory only, and not how much disk
space every individual file uses. For example, use du -hs /usr to find out exactly how much space is
occupied by /usr. In Listing 2-9, you can see the result of the du -h /usr command.

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS

Listing 2-9. Use du -hs to Find Out How Much Disk Space a Directory and Its Contents
Occupy

nuuk:/ # du -hs /usr
1.8G /ust

/opt:In /usr you will find a lot of binaries. Many of these are small software packages.
Normally, large software installations, such as office suites and other large programs,

are stored in /opt. For example, the Gnome graphical interface, the OpenOffice suite,

or the Oracle database (if installed) could be subdirectories of this directory.

/proc: This is a strange directory, because it doesn’t really exist on the hard disk of your
computer. /proc is an interface to the memory of your computer. An advanced admin-
istrator can use it to tune the workings of the computer and get information about its
current status. You can find a lot of information about your computer in the files in this
directory. For example, try the command cat /proc/cpuinfo to show the contents of
the text file /proc/cpuinfo (you must be root to do this). This command will show you
a lot of information about the processor(s) in your computer, as you can see in Listing
2-10.

Listing 2-10. Use cat /proc/cpuinfo to Get Information About Features Your Computer’s
CPU Is Using

nuuk:/ # cat /proc/cpuinfo

processor 10

vendor_id : GenuineIntel

cpu family 16

model 1 15

model name : Intel(R) Core(TM)2 Duo CPU T7500 @ 2.20GHz
stepping 18

cpu MHz 1 2201.481

cache size : 4096 KB

fdiv_bug 1 no

hlt_bug 1 no

foof bug 1 no

coma_bug 1 no

fpu :yes

fpu_exception : yes

cpuid level 1 10

wp 1 yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca

cmov pat pse36 clﬂush dts acpi mmx fxsr sse sse2 ss nx
constant_tsc pni ds _cpl ida
bogomips 1 4417.91

37

38 CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS

e /root: Ordinary users have their home directories in /home. A system administrator
is not a normal user; in a UNIX environment, the system administrator is therefore
respectfully called “superuser.” Since this user may have some important tools in his or
her home directory, this directory is not in /home with those of the other users. Instead,
the user root uses /root as his or her home directory. There is a good reason for this: on
many servers the directory /home is on a separate partition. If for any reason you can-
not access this partition anymore, user root at least still has access to his or her home
directory, in which he or she has probably stored some important files.

e /srv: On many distributions, you will find all files from some important services in this
directory. For example, it is used to store your entire web server and FTP server file
structures. If you were to run, say, an Apache web server on your computer, this is the
directory where you would put the HTML documents.

¢ /sys: This directory can be used to store information about the state of your system. Its
use is like the use of /proc, with the difference that the information in /sys is kept on
the hard disk of your server, so it is still available after you have rebooted it. The infor-
mation in /sys is more directly related to the hardware you are using on your server,
whereas /proc is used to store information about the current state of the kernel.

e /tmp: As the name suggests, /tmp is used for temporary files. This is the only direc-
tory on the entire system where every user can write to. This is, however, a bad idea,
because the content of this directory can be wiped out automatically by any process or
user without any warning being issued before that happens.

e /var: This last directory you will find on any Linux computer. This directory contains
mostly files that are created by your system whose content can grow very fast. For
example, think of spooling of print jobs—these are found in this directory.

Working with the Linux File System

On a Linux system, everything is treated as a file. Even a device like your hard disk is addressed
by pointing to a file (which, for your information, has the name /dev/sda in most cases).
Therefore, to handle Linux well, it is important that you can find your way in the Linux file sys-
tem. In this section, you'll learn the basics of working with the file system (more details are in
Chapter 3). The following subjects are covered:

* Working with directories

¢ Working with files

Working with Directories

On Linux, directories are used as is the case with folders on Windows. Because files are
normally organized in directories, it is important that you know how to handle them. This
involves a few commands:

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS 39

¢ pwd: Use this to show your current directory. It will display the complete directory path
reference, which always starts at the root directory:

nuuk:~ # pwd
/root

¢ cd: Once you know what your current directory is, you can change to another directory
using the cd command. When using cd, you should be aware of some features in the
Linux file system:

¢ Linux file and directory names are case sensitive. Hence, bin and BIN are not the
same!

e If you want to go to a directory that is directly under the root directory, make sure
to put a / in front of the directory name. Without the slash, this command will try
to find the directory as a subdirectory in the current directory.

The cd command has one argument only: the name of the directory you want to go to.
For instance, the following command brings you to the directory /usr/bin, which is
directly under the root directory of the file system:

cd /usr/bin

Tip Switching between directories? Use cd - to return to the last directory you were in. Also good to
know: if you just type cd, the cd command brings you to your home directory.

e mkdir: If you need to create a new directory, use mkdir. For instance, the following
would create a directory named files in the directory /tmp:

mkdir /tmp/files

With mkdir you can create a complete directory structure in one command as well,
which is something you can’t do on other operating systems. For example, the com-
mand mkdir /some/directory will fail if /some does not already exist. In that case, you
can force mkdir to create /some as well: do this by using the mkdir -p /some/directory
command.

e rmdir: The rmdir command is used to remove directories. However, this isn’t the most
useful command, because it works only on directories that are already empty. If the
directory still has files and/or subdirectories in it, use rm -1, or better, rm -rf, which
makes sure that you'll never get a prompt for confirmation. It’s best to be sure what
you're doing when using this option

Working with Files

An important task from the command line is managing the files in the directories. Four impor-
tant commands are used for this purpose:

40 CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS

o 1slists files.
e rmremoves files.
* cp copies files.

¢ mv moves files.

Listing Files with 1s
The generic syntax of 1s is not too hard:
1s [options] filename

For instance, the following would show all files in the directory /usr, displaying their
properties as well:

1s -1 /usr

See Listing 2-11 for an example. In this example you can see that different columns are
used to show the attributes of the files:

 File type: The very first letter shows the file type. If a - is displayed, it is a regular file.
In this example, you can see one file that has the d type. This is not a regular file, but a
directory.

e Permissions: Directly after the file type, you can see the permissions assigned to the file.
There are nine positions that show you the file permissions. In Chapter 7, you'll learn
much more about them.

e Ownership: On Linux, every file has a user owner and a group owner. In the following
example, they are set to user root and group root for all files.

* File size: Next to the group owner, the size of the file is displayed.
* Creation date and time: For every file, creation date and time are shown as well.

e File name: In the last column of 1s -1 output, you can see the name of the file.

Listing 2-11. Example Output of Is -1

100t@RNA: /boot# 1s -1
total 10032

-IW-r--r-- 1 root root 414210 2007-04-15 02:19 abi-2.6.20-15-server
-IW-T--T-- 1 root root 83298 2007-04-15 00:33 config-2.6.20-15-server
drwxr-XI-X 2 root root 4096 2007-07-29 02:51 grub

-IW-I--r-- 1 root root 6805645 2007-06-05 04:15 initrd.img-2.6.20-15-server
-IW-I--r-- 1 root root 94600 2006-10-20 05:44 memtest86+.bin

-IW-T--T-- 1 root root 812139 2007-04-15 02:20 System.map-2.6.20-15-server
-IW-I--r-- 1 root root 1763308 2007-04-15 02:19 vmlinuz-2.6.20-15-server
-IW-I--1-- 1 root root 240567 2007-03-24 10:03 xen-3.0-1386.gz

Apart from the option -1, 1s has many other options as well. An especially useful one is
the -d option, and the following example shows why. When working with the 1s command,
wildcards can be used. So, 1s * will show a list of all files in the current directory, 1s /etc/*a.*

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS

will show a list of all files in the directory /etc that have an “a” followed by a dot somewhere
in the file name, and 1s [abc]* will show a list of all files whose names start with either an “a,”
“b,” or “c” in the current directory. But something strange happens without the option -d. Ifa
directory matches the wildcard pattern, the entire contents of that directory are displayed as
well. This doesn’t really have any useful application, so you should always use the -d option
with 1s when using wildcards. Some of the most useful options that you can use with 1s are
listed here:

¢ -a: Also show files whose name starts with a dot. Normal users will not see these by
default, as files whose names start with a dot are hidden files.

e -1: Provide a long listing. This shows properties of files as well, not just file names.
¢ -d: Shows the names of directories and not their contents.

¢ -R: Shows the contents of subdirectories as well.

¢ -t: Sort files by access time.

¢ -h: Indicates human readable. This mentions file sizes in kilobytes, megabytes, or
gigabytes, instead of just bytes, which is the default setting. Use this option with the
-1 option only.

e -S: Sorts files by file size. This option is useful only when used together with the
option -1.

Note A hidden file is a file whose name starts with a period. Most configuration files that are stored in
user home directories are created as hidden files to prevent the user from deleting the file by accident.

Removing Files with rm

Cleaning up the file system is another task that needs to be performed regularly, and for this
you’ll use the rm command. For example, rm /tmp/somefile removes somefile from the /tmp
directory. If you are root or if you have all the proper permissions on the file, you will suc-
ceed without any problem. (See Chapter 7 for more on permissions.) Removing files can be

a delicate operation (imagine removing the wrong files), so it may be necessary to push the
rm command a little to convince it that it really has to remove everything. You can do this by
using the -f (force) switch (but only if you really are quite sure you want to do so). For exam-
ple, use rm -f somefile if the command complains that somefile cannot be removed for some
reason. Conversely, to stay on the safe side, you can also use the -i option to rm, which makes
the command interactive. When using this option, rm will ask for every file that it is about to
remove if you really want to remove it.

The rm command can be used to wipe entire directory structures as well; in this case the -r
option has to be used. If this option is combined with the -f option, the command will become
very powerful and even dangerous. For example, use rm -rf /somedir to clear out the entire
content of /somedir, including the directory /somedir itself.

Obviously, you should be very careful when using rm this way, especially because a
small typing mistake can have serious consequences. Imagine, for example, that you type

4

42

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS

m -rf / somedir (with a space between / and somedir) instead of rm -rf /somedir. The
rm command will first remove everything in the root of the file system, represented by the
directory / and, when it is finished with that, it will remove somedir as well. Hopefully, you
understand that the second part of the command is no longer required once the first part of
the command has completed.

The rm command also has some useful options:

e -1: Recursive, removes files from all subdirectories as well
e -f:Force, doesn’t ask anything, just removes what the user asks to remove
e -i:Interactive, asks before removing a file

e -v: Verbose, shows what is happening

In Listing 2-12, you can see what happens when removing the contents of a directory
with all its subdirectories with the options -ivR. As you can seeg, it is not a very practical way of
removing all files, but at least you'll be sure not to remove anything by accident.

Listing 2-12. Removing Files with rm -ivR *

nuuk:/test # rm -ivR *

rm: descend into directory “etc'? y

rm: remove regular file “etc/fstab'? y

removed “etc/fstab'

rm: descend into directory “etc/udev'? y

rm: descend into directory “etc/udev/rules.d'? y

rm: remove regular file “etc/udev/rules.d/65-cdrom.rules'? y
removed "etc/udev/rules.d/65-cdrom.rules’

rm: remove regular file “etc/udev/rules.d/31-network.rules'? y
removed etc/udev/rules.d/31-network.rules’

rm: remove regular file “etc/udev/rules.d/56-idedma.rules’?

Caution Be very careful using potentially destructive commands like rm. There is no good undelete
mechanism for the Linux command line, and, if you ask Linux to do something, it doesn’t ask whether you to
confirm (unless you use the -1 option).

Copying Files with cp

If you need to copy files from one location in the file system to another, use the cp command.
This command is straightforward and easy to use; the basic structure of this command is as
follows:

cp source destination

As source, you typically specify the name of a directory, files, or a file pattern (like * to
refer to all files). For example, use cp ~/* /tmp to copy all files from your home directory to

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS

the /tmp directory. As you can see, in this example I introduced a new item: the tilde (~). The
shell interprets this symbol as a way to refer to the current user’s home directory (normally
/home/username for ordinary users and /root for the user root). If subdirectories and their con-
tents need to be included in the cp command as well, use the option -r.

The cp command has some useful options, some of which are listed here:

e -a: Archive; use this option to make sure that all properties of the files you copy are
copied as well.

e -b: Backup; if your cp command will overwrite an existing destination file, this option
makes sure that a backup is created of this destination file first.

e -f:Force; if a file at the destination prohibits you from copying your file, this option
will force the copy. This means that the destination file is overwritten and cp tries
again.

e -i:Interactive; when using this option, cp asks before overwriting an existing file at the
destination location.

e -p: Preserve; when using this option, cp makes sure that attributes of the file, such as
owners and permissions, are copied as well.

e -r: Recursive; this option makes sure that directories are copied recursively.

¢ -u: Update; this very useful option only copies if the destination file is older than the
source file, or if the destination file does not exist.

Moving Files with mv

Sometimes you need to copy your files, at other times you need to move them to a new loca-
tion. This means that the file is removed from its source location and placed in the target
location. The syntax of the mv command that you use for this purpose is comparable to the
syntax of cp:

mv source destination

For example, use mv ~/somefile /tmp/otherfile to move the somefile file to /tmp.Ifa
subdirectory with the name otherfile already exists in the /tmp directory, somefile will be
created in this subdirectory. If /tmp has no directory with this name, the command will save
the contents of the original somefile under its new name otherfile in the /tmp directory.

The mv command also does more than just move files. You can use it to rename
files, as well as directories, regardless of whether there are any files in those directo-
ries. If, for example, you need to rename the directory /somedir to /somethingelse, use
mv /somedir /somethingelse.

Cool Commands

Some commands don'’t really fit into a certain theme, but are just cool and useful. In this
final section, you'll learn about these commands. I'll give a short description of the following
commands:

43

44

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS

e cal

e clear
® uname
® WC

e date

Displaying a Calendar with cal

Want to know if Christmas 2018 is in a weekend? Linux has a cool utility to help you with that:
cal. If you just type cal, this utility will show you the calendar of the current month. You can,
however, also include a year or a month and a year as its arguments to display the calendar for
a given month or a specific year. For example, the command cal 12 2018 shows you the calen-
dar for December 2018 (see Listing 2-13).

Listing 2-13. With cal You Can Show the Calendar for a Specific Month or Year

nuuk:/test # cal 12 2018
December 2018
Su Mo Tu We Th Fr Sa
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31

Clearing Your Screen with clear

Want to clear your screen so that you can see in a better way what you are doing? Use clear
to do that. This command takes no argument—ijust typing clear will do the job. You may also
prefer to use the key sequence Ctrl+L, which does exactly the same.

Displaying System Information with uname and hostname

In some cases you need to know more about your system. For this purpose, you can use the
uname command. When using it without any arguments, it will just show you what kind of ker-
nel you are using. This will normally be a Linux kernel, and that information might not be too
useful as you probably already were aware of using Linux. However, you can also use uname

to display what kernel version you are using (uname -1), or what type of CPU you are using
(uname -p). And if you just want to see all there is to show about your computer, use uname -a.
An example of this command is shown in Listing 2-14.

CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS

Listing 2-14. Showing System Information with uname -a

nuuk:/ # uname -a
Linux nuuk 2.6.16.60-0.21-default #1 Tue May 6 12:41:02 UTC 2008 1686 1686 1386
GNU/Linux

You may have noticed that uname shows a lot of information, but it doesn’t tell you what
the name of your computer is. For this purpose, better use the hostname command. If you use
it without arguments, it just shows the short host name, which is probably the same as what
you already see at your computer’s shell prompt. If you also want to see the name of the DNS
domain that your computer is in, use hostname -f.

Counting Words, Lines, and Characters with wc

In some situations, it is useful to know how many words there are in a file. For this purpose,
Linux has the wc (wordcount) command. It will not only show you words, but also characters
and lines that are in the target file. Its use is easy:

wc filename

The result looks like what you see in Listing 2-15. It first shows you lines, followed by the
number of words and the number of characters in the file.

Listing 2-15. Counting Lines, Words, and Characters in a File with wc

nuuk:/ # wc /etc/hosts
23 77 683 /etc/hosts

Changing and Showing Date and Time with date

At the end of the working day, you probably want to know when it is time to go home. The
date command helps you with this. When used without arguments, this command shows you
the current date and time, but you can also use arguments to change the time or date. For
instance, date -s 14:48 sets the time to 2:48 p.m. You can also work with an mmddhhmm argu-
ment to change month, date, hour, and minute. For instance, the command date 12111449
sets the current date and time to 2:49 on December 11.

Summary

In this chapter, you've acquired some important basic skills to work with Linux on the
command line. You have first learned all there is to know about your session on the Linux
computer. This includes logging in and out, working with virtual consoles, and working as
another user. Next, you've learned how to work together with other users. You've read how
you can find out which users are connected to the system and how you can communicate with
those users. Following that, you've read how to work with files and directories. Finally, at the
end of this chapter, you've learned about some other useful commands. The following com-
mands were covered in this chapter:

45

46 CHAPTER 2 PERFORMING ESSENTIAL COMMAND-LINE TASKS

¢ passwd: Change passwords.

¢ su: Become another user.

e users: See who is connected.

¢ who: See who is connected.

¢ w: See who is connected.

e finger: Get information about a user.

e write: Send areal-time message to one user.

¢ wall: Send a real-time message to all users.

* mesg: Disable or enable reception of real-time messages.
e mail: Send e-mail to other users.

¢ du: See how much disk space a directory occupies.
¢ cat: Show contents of a text file.

¢ pwd: Print working directory.

¢ cd: Change to another directory.

e mkdir: Make a directory.

e rmdir: Remove a directory.

e 1s: List files.

e rm: Remove files.

e cp: Copy files.

e mv: Move files.

e cal: Show a calendar.

e clear: Clear screen.

* uname: Show system information.

* wc: Count words, lines, and characters in a text file.

¢ date: Show and change current date and time.

In the next chapter, you'll get some more details about working with the Linux file system.

CHAPTER 3

Administering the
Linux File System

In Chapter 2, you've read about some of the basic tasks that you may want to accomplish
when working with a Linux system. In this chapter, you'll read about some of the more
advanced tasks. Typically, these are tasks that you would use to administer and tune your
Linux computer. First, you'll learn how to mount devices on your computer and how to make
sure that devices are mounted automatically when booting. Next, you’ll read how to create
backups of files and directories with the tar utility, and of complete devices using dd. At the
end of this chapter, you’ll discover the benefits of working with links.

Mounting Disks

On a Linux computer, devices are not always mounted automatically. Therefore, you must
know how to mount a device manually. Especially if you are a server administrator who needs
to connect his or her computer to external storage, knowledge about the mount procedure is
very important. This also holds true for more common situations, for instance, when you have
to connect a USB key and it doesn’t mount automatically.

Using the mount Command

To mount devices manually, you use the mount command. The basic syntax of this command is
easy to understand:

mount /what /where

For the what part, you specify a device name, and, for the where part, you provide a direc-
tory. In principle, any directory can be used, but it doesn’t make sense to mount a device just
anywhere (for example, on /usr) because doing so will temporarily make all other files in that
directory unavailable.

Therefore, on Linux, two directories are created as default mount points. These are the
directories that you would typically use to mount devices. The first of these is the directory
/mnt. This is typically the directory that you would use for a mount that happens only occa-
sionally, such as if you want to test whether some device is really mountable. The second of
these directories is /media, where you would mount devices that are connected on a more
regular basis. You would mount a CD or DVD in that directory with the following command:

mount /dev/cdrom /media/

47

48

CHAPTER 3 ADMINISTERING THE LINUX FILE SYSTEM

The mount command lets you mount devices like CDs or DVDs, but network shares can
also be mounted with this command. You just have to be more specific. If, for example, you
want to mount a share named myshare that is offered by a Windows computer named lor, you
would use the following command:

mount -t cifs -o username=yourname //lor/myshare /mnt

Note The syntax in the preceding command can be used to access a share that is offered by a Windows
computer, but you can also use it to access a share that is offered by a Samba file server. Samba is a pro-
cess that you can run on top of any Linux computer to offer Windows-like file services.

You'll notice in this last example that some extra options were used:

e First, the file system to be used is mentioned. The mount command is perfectly capable
of determining the file system for local devices by just looking at the administration
that exists in the beginning of every file system. But, if you're trying to mount a share
that is offered by a computer on the network, you really need to specify the file system.
This is because the mount command needs to know what type of file system it is before
being able to access it. In the example of the share on a Windows machine, because
you want to mount on a Windows file system, the cifs file system type is used. You can
use this file system type also to access shares on a Samba server.

¢ The next option you need to access a share on a Samba file computer is the name of the
user who performs the mount. This must be the name of a valid user account on the
other system.

¢ Third, the name of the share is given. In the prior example, a computer name (lor) is
used, but, if your system has problems working with computer names, an IP address
can be used just as well. The computer name is followed by the name of the share.

e Finally, the name of the directory where the mount has to be created is given. In this
example, I've mounted it on /mnt, because this is a mount that you would perform only
occasionally. If it were a mount you used on a more regular basis, you would create a
subdirectory under /media (/media/lor would make sense here) and create the mount
in that subdirectory.

In Table 3-1, you can see a list of some of the most popular devices that you typically want
to mount on a regular basis.

Table 3-1. Mounting Popular Devices

CHAPTER 3 ADMINISTERING THE LINUX FILE SYSTEM

Device

Address As

Remarks

Floppy disk

Hard drives

USB drives

Optical drives

Tape drives

Windows shares

NFS shares

/dev/fdo

/dev/hdX, /dev/sdX

/dev/sdX

/dev/sr0, /dev/hdX

/dev/sto

//computer/share

computer:/share

Because modern computers rarely have more than one
floppy device drive, the floppy drive (if present) will be
tdo. If more than one drive is available, use fd1, and

S0 on.

Depending on the bus the hard drive is installed on,

you will see it as /dev/hdX (IDE) or /dev/sdX (SCSI and
SATA). X is replaced by “a” for the first drive, “b” for the
second drive, and so on. Notice that normally you don’t
mount a complete hard drive, but a file system on a
partition on the hard drive. The partition on the drive is
referred to by a number, /dev/sda1 for the first partition
on an SCSI hard drive, and so on. In Chapter 5, you'll
find more information about partitions and ways to lay
out your hard drive.

USB drives (including USB keys) appear on the SCSI
bus. Typically, you'll see them as “the next” SCSI disk.
So, if you already have an sda, the USB device will
appear as sdb. The USB drive normally has a parti-
tion on it. To mount it, you must mount this partition.
The numbering of partitions on USB drives works like
the numbering of partitions on normal hard drives
(from the Linux kernel perspective, there isn’t really a
difference between these two different device types).
So to mount the partition on a USB drive that has
become available as /dev/sdb, you would typically use
mount /dev/sdbl /somewhere (don’t forget to replace
somewhere with the name of an existing directory).

If the optical drive is installed on the IDE interface, it is
typically /dev/hda or /dev/hdc, depending on other IDE
devices already present. On modern computers, you'll
find the optical drive more often as /dev/sr0. To make
it easier for you, your distribution will create a symbolic
link (you can compare this to a shortcut) with the name
/dev/cdrom or /dev/dvd. By addressing this symbolic
link, you can address the real name of the device.

Typically, a tape drive is installed at the SCSI bus and
can be mounted as /dev/sto0.

Use // followed by the computer name, followed by
the share. Additional options are required, such as

-t cifs toindicate the type of file system to be used
and -0 username=yourusername to specify the name of
the user account that you want to use.

Add -t nfs to indicate that it is an NFS (Network File
System) server.

49

50

CHAPTER 3

ADMINISTERING THE LINUX FILE SYSTEM

Options for the mount Command

The mount command offers many options, and some of these are rather advanced. One of the
most important options for mount is the -t option, which specifies the file system type you
want to use. Your computer normally would detect what file system to use by itself, but some-
times you need to help it because this file system self-check isn’t working properly. Table 3-2
lists some file systems that you may encounter on your computer (or other Linux systems).

Table 3-2. Linux File System Types

Type

Description

minix

ext2

ext3

reiser

ext4

xfs

msdos

vfat

ntfs

1509660

This is the mother of all Linux file systems. It was used in the earliest Linux version.
Because it has some serious limitations, like the inability to work with partitions greater
than 32MB, it isn’t used much anymore. Occasionally, it can still be seen on very small
media, like boot diskettes.

This has been the default Linux file system for a very long time, and it was first devel-
oped in the early 1990s. The Ext2 file system is a completely POSIX-compliant file
system, which means it supports all the properties of a typical UNIX environment.
However, it has one serious drawback: it doesn’t support journaling, and therefore is
being replaced by journaling file systems like Ext3 and ReiserFS.

Basically, Ext3 is Ext2 with a journal added to it. The major advantage of Ext3 is that it
is completely backward-compatible with Ext2. Its major disadvantage is that it is based
on Ext2, an elderly file system that was never designed for a world in which partitions
of several hundreds of gigabytes are used. It is, however, the most stable file system we
have today, and therefore is used as the default file system on Linux.

ReiserFS is another journaling file system. It was developed by Hans Reiser as a
completely new file system in the late 1990s. ReiserFS was only used as the default file
system on SUSE Linux, but even SUSE has changed to Ext3 as its default because there
justisn’t enough community support for ReiserFS.

Ext4 is the successor to Ext3, and it fixes some of the most important shortcomings of
Ext3. For example, Ext4 will use a strong indexing system that helps you work with lots
of files in one single directory. At the time of writing, Ext4 is still experimental, so I will
not discuss it in this book.

The XFS file system was created as an open source file system by supercomputer
manufacturer SGI. It has some excellent tuning options, which makes it a very good file
system for storing your data. You'll read some more about this file system and its op-
tions later in this chapter.

If, for example, you need to read a floppy disk with files on it that were created on a
computer using MS-DOS, you can mount it with the msdos file system type. This is,
however, something of a legacy file system that has been replaced with vfat.

The vfat file system is used for all Windows and DOS file systems that use a FAT file
system. Use it for accessing files from a Windows-formatted diskette or optical media.

On Windows systems, NTFS is now the default file system. Not so long ago, Linux didn't
have a stable open source solution for writing to NTFS. On older distributions, write
support for NTFES is still missing. Modern distributions, however, offer complete read/
write support. You'll also find some excellent NTFS tools on live cds like Knoppix.

This is the file system that is used to mount CDs. Normally, you don’t need to specify
that you want to use this file system, as it will be detected automatically when you
insert a CD.

CHAPTER 3 ADMINISTERING THE LINUX FILE SYSTEM

Type Description

cifs When working on a network, the cifs file system is very important. This file system al-
lows you to make a connection over the network to a share that is offered by a Windows
computer, as in the previous example. Linux computers also can offer shares that use
this protocol, by using the Samba service (see Chapter 12 for more details). In the past,
the smbfs file system type was used to address these shares, but, because cifs offers a
better solution, it has replaced smbfs on modern Linux distributions. In case mounting
a Samba share doesn’t work with cifs, try smbfs.

nfs NEFS is used to make connections between UNIX computers. See Chapter 12 for more
information about NFS and Samba.

Apart from -t, the mount command has many other options as well, which can be prefixed
by using the -o option. Most of these options are file-system dependent, so no generic list of
these options is provided here. You'll find information that is specific for your file system in
the man page of the mount command.

Getting an Overview of Mounted Devices

Every device that is mounted is recorded in the configuration file /etc/mtab. You can browse
the content of this file with a utility like cat or less. You can also use the mount command to
get an overview of file systems that are currently mounted. If this command is used without
any other parameters, it reads the contents of /etc/mtab and displays a list of all mounted file
systems that it can find, as shown in Listing 3-1.

Listing 3-1. The mount Command Gives an Overview of All Devices Currently Mounted

nuuk:/ # mount
/dev/sda2 on / type ext3 (xw,acl,user xattr)
proc on /proc type proc (1w)
sysfs on /sys type sysfs (rw)
debugfs on /sys/kernel/debug type debugfs (rw)
udev on /dev type tmpfs (1w)
devpts on /dev/pts type devpts (rw,mode=0620,gid=5)
/dev/sdal on /boot type ext2 (rw,acl,user xattr)
securityfs on /sys/kernel/security type securityfs (rw)
nfsd on /proc/fs/nfsd type nfsd (rw)
/dev/hdc on /media/VMware Tools type is09660 (ro,nosuid,nodev,utf8,uid=0)
/dev/sdc1l on /media/disk type vfat
TW, noexec,nosuid,nodev, flush, fmask=0133, shortname=lower,utf8,uid=0)

As you can see in Listing 3-1, mount gives you information not only about mounted parti-
tions, but also about system devices. For now, I'll ignore all lines about these system devices
and just focus on the two lines where /dev/sdal and /dev/sda2 are mounted. In these lines,
you can see the name of the device first. Next, they show the name of the directory on which
they are mounted. Following that, the file system type is mentioned, and lastly, the options
that were used when mounting the device are listed. You can see that both sda1 and sda2 are
mounted with the rw option, which means they are accessible for reads and writes. Also, these
two file systems have the acl and user_xattr options. These options, which are on by default

51

52

CHAPTER 3 ADMINISTERING THE LINUX FILE SYSTEM

on most distributions, allow you to use some advanced security on the file system. You'll learn
more about these options in Chapter 7, which discusses working with permissions.

In Listing 3-1 you can also see a /dev/hdc, which is mounted. If you see this device,
chances are that it refers to your optical disk device, which is also the case here. You can also
see that by the file system type that is used, 1509660, which typically is the file system used on
CD devices.

The last two lines (they read as one line, but due to printing limitations are displayed as
two lines) show the /dev/sdc1 device that is mounted. This is a USB key that was inserted into
the system. The Linux kernel has recognized it automatically at the moment it was connected
and mounted it, using all the options needed to do so. Don’t worry about the specific mean-
ing of these options; the Linux kernel has detected automatically what exactly was needed to
mount this device.

Unmounting Devices

On a Linux system, when you want to disconnect a device from your computer, you have to
unmount it first. Unmounting devices ensures that all of the data that is still in cache and has
not yet been written to the device is written to the file system before it is disconnected. You'll
use the umount command to do this. The command can take two arguments: either the name
of the device or the name of the directory where the device is mounted. So umount /dev/cdrom
and umount /media will both work for a CD device that is mounted on the directory /media.

When using the umount command, you may get the message “Device is busy,” and the
dismount fails. This is likely because a file on the device is open, and the reason you're not
allowed to disconnect the device is probably obvious: disconnecting a mounted device
may lead to data loss. So first make sure that the device has no open files. The solution is
sometimes simple: if you want to dismount a CD, but you are currently in the directory
/media/cdrom, it is not possible to disconnect the device. Browse to another directory and try
again. Sometimes, however, the situation can be more complex, and you'll need to first find
out which processes are currently using the device.

To do this, you can use the fuser command. This command displays the IDs of processes
(PIDs) using specified files or file systems. For example, fuser -m /media displays a list of all
processes that currently have open files in /media. Based on these PIDs, you can now manu-
ally terminate the processes using the kill command. Listing 3-2 shows you how you can use
fuser to list the PIDs of processes that have files open in /media, and how you can use the kill
command next to terminate these processes. For much more information about process man-
agement, read Chapter 9.

Listing 3-2. With fuser and kill, You Can Trace and Terminate Processes That Prevent
Dismounting a Device

nuuk:~ # fuser /media
/media: 13061cC
nuuk:~ # kill 13061

The fuser command also allows you to kill these open files automatically. For open files
on /media/cdrom, use fuser -km /media/cdrom. Be careful when using the option: if you are
root, it may blindly kill important processes and make your computer unreadable.

CHAPTER 3 ADMINISTERING THE LINUX FILE SYSTEM

As an alternative to the fuser command, you can use 1sof as well. This also provides a list
of all processes that currently are using files on a given file system, but it provides more infor-
mation about these processes. Whereas fuser just gives the PID of a process, 1sof also gives
information like the name of the process and the user who owns the process. Listing 3-3 shows
what the result of 1sof looks like.

Listing 3-3. If You Need More Details About Processes Preventing You from Performing a
Dismount, Use 1sof

nuuk:/media # lsof /media

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
lsof 10230 root cwd DIR 22,0 4096 1856 /media
1sof 10231 root cwd DIR 22,0 4096 1856 /media
bash 13061 root cwd DIR 22,0 4096 1856 /media

The example from Listing 3-3 was taken on a computer where a Bash shell was open and
had its current prompt set to the /media directory. As you can see, this starts different pro-
cesses, of which the PID number is in the second column. You'll need this PID to manage the
process; more on that is in Chapter 9.

After using fuser with the -k switch on the /media directory to kill active processes, you
should always make sure that the processes are really terminated by using fuser -m /media
again, as this will show you whether there are still processes with open files.

Another way of forcing the umount command to do its work is to use the -f option as fol-
lows: umount -f /somemount. This option is especially intended for use on an NFS network
mount that has become unreachable and does not work on other file systems, so you will not
have much success if you try it on a local file system.

If you want to minimize the impact of unmounting a device, you can use umount with the
-1 option, which performs a “lazy unmount” by detaching the file system from the file system
hierarchy and cleaning up all references to the file system as soon as it is no longer busy. Using
this option lets you do an unmount right away, even if the file system is busy. But it may take
some time to complete. This option allows you to unmount a busy file system in a very safe
way, as it won’t shut down any processes immediately.

Tip The eject command is a very easy way to dismount and eject optical media. This command will
open the CD or DVD drive and eject the optical media that is currently in the drive. All you have to do is
remove it. And then you can use eject -t to close the optical drive drawer.

Automating Mounts with /etc/fstab

When starting your computer, some mounts need to be issued automatically. For this purpose,
Linux uses the /etc/fstab file to specify how and where these file systems must be mounted.
This file contains a list of all mounts that have to occur on a regular basis. In /etc/fstab, you
can state per mount whether it has to happen automatically when your system starts. Listing
3-4 shows the contents of a sample /etc/fstab file.

53

54

CHAPTER 3 ADMINISTERING THE LINUX FILE SYSTEM

Listing 3-4. The /etc/fstab File Makes Sure That File Systems Are Mounted During System Boot

nuuk:/media # cat /etc/fstab

/dev/sda2 / ext3 acl,user xattr 11
/dev/sdal /boot ext2 acl,user xattr 12
/dev/sda3 swap swap defaults 00
proc /proc proc defaults 00
sysfs /sys sysfs noauto 00
debugfs /sys/kernel/debug debugfs noauto 00
usbfs /proc/bus/usb usbfs noauto 00
devpts /dev/pts devpts mode=0620,gid=5 00
/dev/fdo /media/floppy auto noauto,user,sync 0 0

Note Some distributions use advanced features like a universal unique ID (UUID) or LVM logical volumes
to mount devices from fstab. In this section, | explain fstab based on normal partitions. You can find more
information about these advanced features in Chapter 6 of this book.

In the listing, you can see that not only real file systems are specified in /etc/fstab. Some
system file systems are listed as well.

Note The /etc/fstab file is used at system boot, but you can also use it from the command line: enter
the mount -a command to mount all file systems in /etc/fstab that are currently not mounted and have
the option set to mount them automatically. Also, if a device is defined in /etc/fstab with its most com-
mon mount options, you don’t need to specify all mount options on the command line. For example, if the
/dev/cdrom device is in /etc/fstab, you can mount it by using a shortened mount /dev/cdrom com-
mand instead of the complete mount /dev/cdrom /media/cdrom command.

In fstab, each file system is described on a separate line, and the fields in these lines are
separated by tabs or spaces. The following fields are always present:

e File system: This first field describes the device or the remote file system to be mounted.
Typically, you will see names like /dev/sda1 or computer:/mount on this line. The former
is used to refer to a local partition, whereas the latter is used to refer to a network share
that is offered by another computer.

e Mount point: The second field is used to describe the mount point for the file system.
This is normally a directory where the file system must be mounted. Some file systems
(such as the swap file system) don’t work with a specific directory as their mount point.
In the case of swap partitions, just swap is used as the mount point instead.

CHAPTER 3 ADMINISTERING THE LINUX FILE SYSTEM

Tip On most file systems, the device name can be replaced with a label, like “ROOT”. On an Ext2 or Ext3
file system, these labels can be created with the tune2fs -L command, or with xfs_admin on an XFS sys-
tem. Using labels makes the system more robust and avoids the situation in which adding a SCSI disk adds
all the device names. Labels are static and are not changed automatically when a disk is added. Most of the
recent Linux distributions don’t use labels anymore. Nowadays, an alternative system, using UUIDs, allows
you to use unique device naming. In Chapter 5 you can read more about this system.

* File system type: The third field is used to specify the file system type you can use. As
you learned earlier, many file systems are available for use on Linux. No specific kernel
configuration is needed to use them, as most file systems can be activated as a kernel
module that is loaded automatically when needed. Instead of the name of a file system,
you can also use ignore in this field. This is useful to show a disk partition that is cur-
rently not in use. To determine the file system type automatically, use the option auto.
This is what you want to use on removable media like CDs and diskettes. Don’t use it,
however, on fixed media like partitions and logical volumes because it may lead to a
failure in mounting the file system when booting your computer.

* Mount options: The fourth field is used to specify the options that should be used when
mounting the file system. Many options are available, and of these, many are file-
system specific. For most file systems, the option default is used, which makes sure the
file system is mounted automatically when the computer boots and prohibits normal
users from disconnecting the mount. Also, the options rw, suid, dev, exec, and async
are used. The following list describes some of the most used options. Note that you can
also use these options as arguments when using the mount command:

e async: Does not write to the file system synchronously but through the write cache
mechanism. This ensures that file writes are performed in the most efficient way,
but you risk losing data if contact with the file system is suddenly lost.

e dev: Treats block and character devices on the file system as devices and not as reg-
ular files. For security reasons, it’s a good idea to avoid using this option on devices
that can be mounted by ordinary users.

e exec: Permits execution of binary files.

e hotplug: Does not report errors for this device if it does not currently exist. This
makes sense for hot-pluggable devices like USB media.

* noatime: Does not update the access times on this file system every time a file is
opened. This option makes your file system somewhat faster if many reads are
performed on it. It is a good idea to switch this option on as a default for all file sys-
tems your computer is mounting.

* noauto: Does not mount the file system automatically when the system boots or if a
user uses the mount -a command to mount everything in /etc/fstab automatically.

55

56

CHAPTER 3 ADMINISTERING THE LINUX FILE SYSTEM

¢ mode: Sets a permission mode (see Chapter 7) for new files that are created on the
file system.

e remount: Remounts a file system that is already mounted. It only makes sense to
use this option from the command line.

* user: Allows a user to mount the file system. This option is normally used only for
removable devices like diskettes and CDs.

* sync: Makes sure the content of the file system is synchronized with the medium
before the device is dismounted.

e Dump status: This field is for use of the dump command, which is a way of making back-
ups of your file system. The field determines which file systems need to be dumped
when the dump command is called. If the value of this field is set to 0, it will not be
dumped; if set to 1, it will be dumped when dump is invoked. Make sure that the value is
set to 1 on all file systems that contain important data that should always be included
when making backups with dump.

Note You may never use the dump command yourself to create backups, but some backup utilities do. So
if you want to make sure that your backup utilities are successful, give all file systems that contain important
data the value 1 in this column.

e Fsck status: This last field in fstab determines how a file system needs to be checked
with the fsck command. At boot time, the boot loader will always check whether a file
system has to be checked with fsck or not. If this is the case, the root file system must
always be checked first and therefore has the value 1. Other file systems should have
the number 2. If the file systems have the same fsck number, they will be checked
sequentially. If the files are on different drives, they can be checked in parallel. If the
value is set to 0, no automatic check will occur.

Checking File System Integrity

When a system crashes unexpectedly, any file systems that are open can be damaged, which
may prevent you from using these file systems in a normal way. If this happens, the consis-
tency of these file systems needs to be checked, and you’d do this with the fsck command.
While booting, Linux always will perform a quick check of your file systems automatically.
In some cases, this will fail, and you will need to do a manual check of your computer file
systems. If this happens, the boot procedure will stop, and you will see a text-based login
shell. This section assumes that you work from such a text-based login shell to repair your
file systems.

CHAPTER 3 ADMINISTERING THE LINUX FILE SYSTEM

Caution Never use fsck on a mounted file system, as it may severely damage the file system! If a file
system has no open files, you can remount it as read-only using the -o remount, ro option with mount. For
instance, to remount the file system on /usr as read-only, use mount -o remount,ro /usr.

You can start the fsck command with the name of the device you want to check as its
argument: for example, use fsck /dev/hda1 to check files on /dev/hda1. If you run the com-
mand without any options, fsck will check all file systems in /etc/fstab one by one, according
to the setting in the fsck status field in /etc/fstab. Normally, this will always happen when
booting your system.

Nowadays, a system administrator does not have to regularly use fsck because most mod-
ern file systems are journaling file systems. The journal is used to write transactions on files
to a specific log file. Having such a journal makes it possible to recover a damaged file system
very fast. If a journaling file system gets damaged, the journal is checked, and all incomplete
transactions can easily be rolled back. To offer some protection, an Ext2 or Ext3 file system is
checked automatically every once in a while.

Tip On a nonjournaling file system, the fsck command can take a very long time to complete. In this
case, the -C option can be used when performing a manual check. This option displays a progress bar—
which doesn’t, of course, make it go any faster, but it at least lets you know how long you still have to wait
for the process to complete. Currently, the -C option is supported only on Ext2 and Ext3 file systems.

Creating Backups

One thing always seems to be true about computers: one day they’ll fail. If the computer in
question is an important server, the failure can cause huge problems. Companies have gone
bankrupt because their vital data was lost. Therefore, making decent backups of your data is
essential. In this section, I'll cover two different methods of creating backups, both of which
are native Linux solutions: making file backups with tar and making device backups using dd.

Making File Backups with tar

The command-line utility tar is probably the most popular Linux backup utility. It functions
as a stand-alone utility for writing backups to an archive. This archive can be tape (hence

the name “tar” which stands for tape archiver), but it can also be anything else. For instance,
tar-based backups are often written to a file instead of a tape, and, if this file is compressed
with a compression utility like bzip2 or gzip, you'll get the famous tarball, which is a common
method of delivering software installation archives. In this section, you’ll learn how to create
tar archives and how to extract files from them. I'll also provide some tips and tricks to help
you get the most out of the tar utility.

57

58

CHAPTER 3 ADMINISTERING THE LINUX FILE SYSTEM

Note The tar command is not used for backup and restore only; on the Internet you'll find many tar
packaged software archives as well. Even when working in an environment where a package manager is
used, you’ll find that occasionally you need to unpack tar archives as well.

Creating an Archive File

In its most basic form, tar is used to create an archive file. The following command would help
you do this for the directory /home:

tar -cvf /tmp/home.tar /home

This command will create a backup of /home and put that in the file /tmp/home.tar. This
archive contains absolute path names, which means that while restoring it, it will always
restore files in the same directory. This method is useful if you want to create a backup
of important system files and directories. For instance, the following command would
create a backup of the directories /home, /srv, /root, and /var and write that to the file
/tmp/system-backup:

tar -cvf /tmp/system-backup.tar /home /srv /root /var

Note When using the tar command, you can put a - before the options, but you don’t have to. You will
encounter both syntax styles, and to help you getting used to that, | will use both in this book.

This tar command has a few arguments. First, you need to indicate what you want to do
with the tar command. In this case, you want to create an archive. (That’s why the option c is
used; the “c” stands for create.)

After that, I've used the option v (verbose). Although it’s not required, it often comes in
handy because verbose output lets you see what the tar command is actually doing. I recom-
mend always using this option because sometimes a tar job can take a really long time. (For
instance, imagine creating a complete archive of everything that’s on your hard drive.) In cases
such as these, it’s nice to be able to monitor what exactly happens, and that’s what the option
v is meant to do.

Next, you need to specify where you want the tar command to send its output. If you
don’t specify anything here, tar defaults to the standard output. In other words, it simply
dumps all the data to your computer’s console. This doesn’t accomplish much, so you should
use the option f (file) to specify what file or device the output should be written to.

In this example, I've written the output to a regular file, but, alternatively, you can write
output to a device file as well. For example, the following command makes a backup of /home
and writes that to the /dev/mt0 device, which typically refers to a tape drive:

tar -cvf /dev/mto /home

CHAPTER 3 ADMINISTERING THE LINUX FILE SYSTEM

The last part of the tar command specifies exactly what you want to put into your tar
archive. In the example, the directory /home is archived. It’s easy to forget this option, but, if
you do, tar will complain that it is “cowardly refusing to create an empty archive.”

You should know a couple of other things about tar. First, the order of arguments does
matter. So, for example, there is a difference between tar -cvf /somefile /somedir and
tar -f /somefile -vc /somedir. The order is wrong in the last part, and tar won't know
what you want it to do. So, in all cases, first specify what you want tar to do. In most cases,
it’s either c (to create an archive), x (to extract an archive), or t (to list the contents of the
archive). Then specify how you want tar to do that; for example, you can use v to tell tar
that it should be verbose. Next, use the f option to indicate where you want tar to write
the backup, and then specify what exactly you want to back up. The following example line
demonstrates this tar syntax:

tar { create | extract} [options] <destination file> <source files or directories>

Creating an archive with tar is useful, but you should be aware that tar doesn’t compress
one single bit of your archive. This is because tar was originally conceived as a tape stream-
ing utility. It streams data to a file or (typically) a tape device. If you want tar to compress the
contents of an archive as well, you must tell it to do so. tar has two options to compress the
archive file:

¢ z: Use this option to compress the tar file with the gzip utility. This is the most popular
compression utility, because it has a pretty decent compression ratio. This means it
would gain quite a lot of disk space when compressing files. Also, it doesn’t take too
long to create a compressed file.

* j: Use this option to compress the tar file with the bzip2 utility. This utility compresses
10 to 20% better than gzip, but at a cost: it takes as twice as long.

So, if you want to create a compressed archive of the directory /home and write that
backup to a file with the name home. tar.gz, you would use the following command:

tar -czvf home.tar.gz /home

Note 0f course, you can use the bzip2 and gzip utilities from the command line as well. Use
gzip file.tar to compress file.tar. This command produces file.tar.gz as its result. To decom-
press that file, use gunzip file.tar.gz, which gives you the original file.tar back. If you want to do
the same with bzip2, use bzip2 file.tar to create the compressed file. This creates a file with the name
file.tar.bz2, which you can decompress using the command bunzip2 file.tar.bz2.

Relative or Absolute Names

When creating an archive with tar, there are two ways of putting the files in the archive: with
relative path names or with absolute path names. If you create the backup with the purpose
of putting back the files in the backup at the exact same location, you should use absolute

59

60

CHAPTER 3 ADMINISTERING THE LINUX FILE SYSTEM

path names. In this case, the archive would contain the directory name as well, so the files
will always be restored to the same directories. In Listing 3-5, you can see the result of the
command tar -cvf /tmp/old.tar /old, which would make a tar backup of /old containing
absolute file names.

Listing 3-5. Using tar to Create an Archive That Contains Absolute File Names

nuuk:/ # tar cvf /tmp/old.tar /old

tar: Removing leading “/' from member names
/old/

/o0ld/hosts

/0ld/shadow

/old/passwd

If you create the tar archive with the purpose of extracting it later at any location you like,
itis not the best idea to use absolute file names in the archive. This would, for example, be the
case if you are a developer who wants to distribute his or her new program to users. In such
a case, it is good if the user can extract the archive anywhere he or she wants. To do this, you
have two options:

e Use cd to go to the target directory before creating the backup.

¢ Use the tar option -C to tell tar that it should create an archive file containing relative
file names.

Of these two, I recommend using the latter, as it is more clear and makes it possible to
create an archive that contains files from more than one directory as well. When you create
a backup that has relative file names, you should always put a dot at the end of the tar com-
mand. This dot tells tar to make a backup of the contents of the current directory. Without the
dot, tar tells you that it doesn’t want to create an empty archive. In Listing 3-6, you can see
how an archive is created in this way of the same directory (/old) that was used in the example
command from Listing 3-5.

Listing 3-6. Creating an Archive Containing Relative File Names

nuuk:/ # tar cvf /tmp/old.tar -C /old .
./

./hosts

./shadow

./passwd

Extracting an Archive File

Now that you know how to create an archive file, it’s rather easy to extract it. Basically, the
command-line options that you use to extract an archive file look a lot like the ones you
needed to create it in the first place. The important difference is that, to extract a file, you need
the option x (extract), instead of c (create). Here are some examples:

CHAPTER 3 ADMINISTERING THE LINUX FILE SYSTEM

e tar -xvf /file.tar: Extracts the contents of file.tar to the current directory

e tar -zxvf /file.tar.gz: Extracts the contents of the compressed file.tar to the cur-
rent directory

e tar -xvf /file.tar C /somedir: Extracts the contents of /file.tar to a directory with
the name /somedir

Moving a Complete Directory

Most of the time, tar is used to write a backup of one or more directories to a file. Because of
its excellent handling of special files (such as stale files that are used quite often in databases),
tar is also quite often used to move the contents of one directory to another. Let’s assume that
you want to move the contents of the directory /old to the directory /new. Some people per-
form this task by first creating a temporary file and then extracting the temporary file into the
new directory. This would involve the following commands:

tar cvf /tmp/old.tar -C /old .
tar xvf /tmp/old.tar -C /new

This is not the easiest way because you need twice the disk space taken by the directory
whose contents you want to move: the size of the original directory plus the space needed for
the temporary file. The good news is that you don’t have to do it this way. Use a pipe, and you
can directly copy the contents of one directory to another directory.

To understand how this works, first try the command tar -cC /old ..In this command,
the option c is used to tell tar that it should create an archive. The option C is used to archive
the contents of the directory /old using relative path names. Now, as you may have noticed,
in the tar -cC /var example, the option f /tmp/old.tar isn’t used to specify where the out-
put goes, and so all the output is sent to STDOUT, which is your console. This means that if
you press Enter now, you will see the contents of all files scrolling through the console of your
computer, which is not very useful.

So that’s the first half of the command, and you ended up with a lot of output dumped on
the console. Now, in the second part of the command, you'll use a pipe to redirect all that out-
put to another command, which is tar -xC /new. This command will capture the tar archive
from STDOUT and extract it to the directory /new (make sure that new exists before you run this
command). You'll see that this method allows you to create a perfect copy of one directory to
another. So the complete command that you need in this case looks like this:

tar -cC /old . | tar -xC /new

Creating Incremental Backups

Based on the information in the previous section, you can probably see how to create a
backup of one or more directories. For instance, the tar -cvf /backup.tar /var /home /srv
command creates a backup of three directories: /home, /var, and /srv. Depending on the size
of these directories, this command may take some time. Because such large backups can take
so long, it’s often useful to make incremental backups; in an incremental backup, the only files
that get written to the backup are those that have changed since the last backup. To do this,
you need the option g to create a snapshot file.

61

62

CHAPTER 3 ADMINISTERING THE LINUX FILE SYSTEM

An incremental backup always follows a full backup, and so you have to create the full
backup first. In this full backup, you should create a snapshot file, which contains a list of all
files that have been written to the backup. The following command does this for you (make
sure that the directory /backup exists before running the command):

tar -czvg /backup/snapshot-file -f /backup/full-backup.tar.gz /home

The interesting thing about the snapshot file is that it contains a list of all files that have
been written to the backup. If, two days after the full backup, you want to make a backup of
only the files that have been changed in those two days, you can repeat essentially the same
command. This time, the command will check the snapshot file to find out what files have
changed since the last full backup, and it’ll back up only those changed files. So your Monday
backup would be created by the following command:

tar -czvg /backup/snapshot-file -f /backup/monday-backup.tar.gz /home

These two commands created two files: a small file that contains the incremental backup
and a large file that contains the full backup. In an incremental backup scheme, you'll need to
make sure that at some point in time a full backup is created. To do this, just remove the snap-
shot file that was used in the preceding example. Since tar doesn’t find a snapshot file, it will
assume that you need to make a full backup and create the new snapshot file for you.

If you want to restore all files from an incremental backup, you need to restore every sin-
gle file, starting with the first file that was created (typically the full backup) and ending with
the last incremental backup. So, in this example, the following two commands would restore
the file system back to the status at the time that the last incremental backup was created:

tar -xzvf /backup/full-backup.tar.gz
tar -xzvf /backup/monday-backup.tar.gz

In this section you've read about different options that you can use with tar. For your
convenience, the most relevant options are listed here:

-c: Use this option to create an archive.

-v: Use this option to let tar display output verbosely. Useful for longer tar commands so
that you show what they are doing.

-f: Use this option to specify the name of the output file that tar should write to.

-C: Use this option followed by a directory name to change to this directory before starting
the tar job.

-x: Use this option to extract files from an archive.
-g: Use this option to make an incremental or a differential backup.
-z: Use this option to compress the tar file using gzip compression.

-j: Use this option to compress the tar file using bzip2 compression.

Making Device Backups Using dd

You won'’t find a more versatile utility than tar to create a file system-based backup. In some
cases, however, you don’t need a backup based on a file system; instead, you want to create a
backup of a complete device or parts of it. This is where the dd command comes in handy.

CHAPTER 3 ADMINISTERING THE LINUX FILE SYSTEM

Tip This may sound rather abstract. You can, however, do very useful things with the dd command. For
example, imagine the option to clone the entire contents of your hard disk to an external USB hard disk. | do
it every Friday night, just to make sure that if something happens to my hard drive, | just have to install the
cloned hard drive to get my data back. That’s not more than five minutes of work (and a couple of hours of
waiting before all the data is copied)!

The basic use of the dd command is rather easy because it takes just two arguments: if=
to specify the input file, and of= to specify the output file. The arguments to those options can
be either files or block devices. So, the command dd if=/etc/hosts of=/home/somefile can be
used as a complicated way to copy a file. I would, however, not recommend using dd to copy
files; cp does that in a much simpler way. However, cloning a hard disk, which you would do
with the command dd if=/dev/sda of=/dev/sdb bs=4096, is something that only dd can do.
(The option bs=4096 specifies that dd should work on 4K blocks, which offers a much better
performance.)

Note dd s, strangely enough, short for “convert and copy.” Unfortunately, the cc command was already
being used by something else, so the developers choose to use dd instead.

Or what would you think, for example, of the command dd if=/dev/cdrom of=/mycd.iso?
It helps you create an ISO file of the CD that’s in the drive at that moment. You may wonder
why not just copy the contents of your CD to a file with the name /mycd.iso? Well, the reason
is, a CD, like most other devices, typically contains information that cannot be copied by a
mere file copy. For example, how would you handle the boot sector of a CD? You can’t find
that as a file on the device because it’s just the first sector. Because dd copies sector by sector,
on the other hand, it will copy that information as well.

Tip Did you know that it’s not hard to mount an ISO file that you created with dd? The only thing that you
need to know is that you have to use the -o loop option, which allows you to mount a file like any normal
device. So, to mount /mycd. iso on the /mnt directory, you would need mount -o loop /mycd.iso /mnt.

Working with Links

A very useful Linux feature—although one that is often misunderstood—is the link. A link can
be compared to a shortcut: it’s basically a pointer to another file. On Linux (as on any UNIX
system), two different kinds of links are supported: the hard link and the symbolic link.

63

64

CHAPTER 3 ADMINISTERING THE LINUX FILE SYSTEM

Why Use Links?

Basically, a link makes it easier to find files you need. You can create links for the operating
system and program files that you use on that operating system, and you can use them to
make life easier for users as well. Imagine that some users belong to the group account and
you want the group members to create files that are readable by all other group members
in the directory /home/groups/account. To do this, you can ask the users to change to the
proper directory every time they want to save a file. Or you can create a link for each user
in his or her home directory. Such a link can have the name account and can be placed in
the home directory of all users who need to save work in the shared directory for the group
account, and it’s easy to see how this link makes it a lot easier for the users to save their files
to the proper location.

Another example of why links can be useful comes from the world of FHS, the Filesystem
Hierarchy Standard. This standard prescribes in which directory a Linux system should store
files of a particular kind. In the old days, the X Windowing System had all its binaries installed
in the /usr/X11 directory. Later, the name of the directory where the X Windowing System
stored its configuration files was changed to /usr/X11R6. Now imagine what would happen
if an application referred to the /usr/X11 directory after this change. It would naturally fail
because that directory no longer exists. A link is the solution here as well. If the administrator
just creates a link with the name /usr/X11 that points to the /usr/X11R6 directory, all applica-
tions that refer to /usr/X11 can still be used.

On a Linux system, links are everywhere. After Linux is installed, several links already
exist, and, as an administrator, it’s easy for you to add new ones. To do so, you should under-
stand the difference between a symbolic link and a hard link, which is explained in the next
two sections, “Working with Symbolic Links” and “Working with Hard Links.”

Working with Symbolic Links

As mentioned previously, a link can refer to two different things: a symbolic link and a hard
link. A symbolic link is a link that refers to the name of a file. Its most important advantage
is that it can be used to refer to a file that is anywhere, even on a computer on the other side
of the world. The symbolic link will still work. However, the biggest disadvantage is that the
symbolic link is naturally dependent on the original file. If the original file is removed, the
symbolic link will no longer work.

To create a symbolic link, use the 1n command with the option -s. When using the 1n
command, make sure that you first refer to the name of the original file and then to the name
of the link you want to create. If, for example, you want to create a symbolic link with the
name computers in your home directory that refers to the file /etc/hosts, use the following
command:

1n -s /etc/hosts ~/computers

As aresult, a shortcut with the name ~/computers will be created in your home direc-
tory. This shortcut refers to /etc/hosts. Therefore, any time you open the ~/computers file,
you would really be working in the /etc/hosts file. Listing 3-7 shows you that in the output

CHAPTER 3 ADMINISTERING THE LINUX FILE SYSTEM

of 1s -1, you can actually see that the resulting file is not a file by itself, but a symbolic link.
This is indicated by the letter 1 in the first position of the 1s -1 output and also by the arrow
at the end of the listing, which indicates the file the name is referring to.

Listing 3-7. With 1Is -1 You Can See That the File Actually Is a Symbolic Link

nuuk:~ # 1n -s /etc/hosts computers
nuuk:~ # 1s -1 computers
lrwxrwxrwx 1 root root 10 Jan 19 01:37 computers -> /etc/hosts

Understanding Inodes

To understand the difference between a hard link and a symbolic link, you should understand
the role of inodes on a Linux file system. Every Linux file or directory (from a technical point of
view, there’s no real difference between them) has an inode, and this inode contains all of the
file’s metadata (that is, all the administrative data needed to read a file is stored in its inode).
For example, the inode contains a list of all the blocks in which a file is stored, the owner infor-
mation for that file, permissions, and all other attributes that are set for the file. In a sense,
you could say that a file really is the inode, and names are attached to these inodes to make it
easier for humans to work with them.

If you want to have a look at inodes, on an Ext2 or Ext3 file system you can use the (poten-
tially dangerous!) command debugfs. This opens a low-level file system debugger from which
you can issue advanced repair commands. You can also just check the properties of the file
system and files that are used in it (which is not dangerous at all). The following procedure
shows how to display the inode for a given file using this file system debugger on Ext2 or Ext3.

Note Only the Ext2/Ext3 command debugfs offers you the possibility to show inodes. The fact that this
file system has powerful utilities like this one helps in making it a very popular file system.

1. Use the command 1s -il to find the inode number of the file /etc/hosts. As you can
see in Listing 3-8, the inode number is the first item mentioned in the output of this
command.

Listing 3-8. The Command 1s -1l Shows the Inode Number of a File

sander@ubuntu:/$ 1ls -il /etc/hosts
15024138 -rw-r--Y-- 1 root root 253 2007-06-05 00:20 /etc/hosts

2. Asroot, open the file system debugger. While starting it, use as an argument the name
of the Ext2 or Ext3 file system on which your file resides. For example, our example
file /etc/hosts is on a partition with the name /dev/sda3, so the command would be
sudo debugfs /dev/sda3. This opens the debugfs interactive prompt.

65

66 CHAPTER 3 ADMINISTERING THE LINUX FILE SYSTEM

3. Now use the debugfs command stat to display the contents of the inode that you want
to examine. For example, in this case you would type stat <15024138>. The result of
this command is similar to what you see in Listing 3-9.

Listing 3-9. Showing the Contents of an Inode

Inode: 13 Type: regular Mode: 0644 Flags: 0x0 Generation: 5
84821287

User: 0 Group: 0 Size: 1763308

File ACL: 0 Directory ACL: 0

Links: 1 Blockcount: 3460

Fragment: Address: 0 Number: O Size: 0

ctime: 0x4664e51e -- Tue Jun 5 00:22:54 2007

atime: 0x4664e51e -- Tue Jun 5 00:22:54 2007

mtime: 0x4621e007 -- Sun Apr 15 04:19:19 2007

BLOCKS:

(0-11):5716-5727, (IND):5728, (12-267):5729-5984, (DIND):5985, (IND):
5986, (268-523):5987-6242, (IND):6243, (524-779):6244-6499, (IND):650
0, (780-1035):6501-6756, (IND):6757, (1036-1291):6758-7013, (IND):701
4, (1292-1547):7015-7270, (IND):7271, (1548-1721):7272-7445

TOTAL: 1730

(END)

4. Use the quit command to close the debugfs interface.

Understanding the Differences Between Hard and Symbolic Links

When comparing the symbolic link and the original file, you will notice a clear difference
between them. First, the symbolic link and the original file have different inodes: the original
file is just a name that is connected directly to the inode, and the symbolic link refers to the
name. The latter can be seen from the output of 1s -il (-i displays the inode number): after
the name of the symbolic link, an arrow is used to indicate what file you are really working on.
Also, you can see that the size of the symbolic link is significantly different from the size of the
real file. The size of the symbolic link is the number of bytes in the name of the file it refers to,
because no other information is available in the symbolic link. As well, you can see that the
permissions on the symbolic link are completely open. This is because the permissions are not
managed here, but on the original file instead. Finally, you can see that the file type of the sym-
bolic link is set to 1, which indicates that it is a symbolic link (see Listing 3-10).

Listing 3-10. Showing the Differences Between Symbolic and Hard Links

root@ubuntu:~# 1n -s /etc/hosts symhosts

root@ubuntu:~# 1n /etc/hosts hardhosts

root@ubuntu:~# 1s -il /etc/hosts hardhosts symhosts

15024138 -IW-1--T-- 2 root root 253 2007-06-05 00:20 /etc/hosts
15024138 -IW-1--T-- 2 root root 253 2007-06-05 00:20 hardhosts

13500422 lrwxrwxrwx 1 root root 10 2007-07-02 05:45 symhosts -> /etc/hosts

CHAPTER 3 ADMINISTERING THE LINUX FILE SYSTEM

You may ask what happens to the symbolic link when the original file is removed. Well,
that isn’t hard to predict! The symbolic link fails. Linux will show this when displaying file
properties with the 1s command; you'll get a “File not found” error message when you try to
open it.

Working with Hard Links

Every file on a Linux file system has an inode. As explained earlier, all of a file’s administrative
data is kept in its inode. Your computer actually works entirely with inodes, and the file names
are only a convenience for people who are not too good at remembering numbers. Every name
that is connected to an inode can be considered a hard link. So, when you create a hard link
for afile, all you really do is add a new name to an inode. To do this, use the 1In command. The
interesting thing about hard links is that there is no difference between the original file and the
link: they are just two names connected to the same inode. The disadvantage of using them
is that hard links must exist on the same device, which is rather limiting. But, if possible, you
should always create a hard link instead of a symbolic link because they are faster.

Figure 3-1 depicts the relationship between inodes, hard links, and symbolic links.

Inode
Hard Link Hard Link
Symbolic Link Symbolic Link

Figure 3-1. Relationship between inodes, hard links, and symbolic links

Links Recap

If you really want to understand what a link is all about, you do need to know about the role of
the inodes. If you just want a basic knowledge of links, remember the following:

¢ A symbolic link is like a shortcut. It points to the original file and helps you find it eas-
ily. However, it breaks if you remove the original file.

e Ahard link is like a copy of the file that is synchronized continuously. There is no dif-
ference between the original file and the hard link; they both refer to the same blocks.

67

68

CHAPTER 3 ADMINISTERING THE LINUX FILE SYSTEM

Summary

In this chapter, you have learned about some of the more advanced features and mainte-
nance tasks on the Linux file systems. You have read how to use the mount command to access
devices. You've also learned how to automate mounting of devices by using the /etc/fstab
file. Next, the fsck command was discussed to teach you how to check and, if necessary, repair
a file system. Following that, you've read how to create backups of files and complete devices,
using tar and dd. In the last part of this chapter, you've seen how to work with links to make
your Linux file system more versatile. The following commands and configuration files were
discussed in this chapter:

e mount: Mounts a device to a directory. Mounting devices is mandatory in Linux; without
mounting a device, you can’t use it.

e fstab: Indicates a configuration file in /etc that is used to automate mounting of
devices on system startup.

¢ mtab: Indicates a configuration file in /etc that keeps track of the current mount status
of devices.

¢ umount: Disconnects a mounted device.

e fuser: Shows you what files are currently open in a directory.

e 1sof: Like fuser, but shows more detail.

e fsck: Checks the integrity of the file system.

e tar: Archives files. This means that it puts together multiple files into one big file.
» gzip: Compresses files. Often used in conjunction with tar.

e gunzip: Decompresses files that were compressed with gzip. Often used in conjunction
with tar.

* bzip2: Alternative for gzip.
e bunzip2: Alternative for gunzip.
¢ dd: Utility that helps you in cloning devices.

¢ 1n: Creates links.

In the next chapter, you'll learn how to work with text files.

CHAPTER 4

Working with Text Files

A n important part of working on the Linux command line consists of working with text files.
If you need to configure services, they’ll store their configuration in text files. If you need to
write program code, you'll do that in a text file as well. Linux text files are all over your com-
puter, and to be good at the Linux command line, you'll have to know how to handle them.

In this chapter, you'll learn how to work with text files. Different methods are discussed for
manipulating the contents of them. First, you'll learn about the only editor that matters on
Linux, Vi. Next, I'll explain different ways of displaying the contents of text files. After that,
we’ll talk about some useful utilities that help you in sorting and comparing the contents of
different text files—and more. You’ll then learn how regular expressions can help you in find-
ing text patterns in a file in a clever way. You'll also read how the programmable filters sed and
awk can help you batch-manipulate text files. At the end of this chapter, you'll also get familiar
with some of the most useful commands in command-line printing.

Working with Vi

For your day-to-day management tasks from the command line, you'll often need a text edi-
tor to change ASCII text files. Although many editors are available for Linux, Vi is still the most
popular and probably the most used editor as well. It is a rather complicated editor, however,
and most Linux distributions fortunately include Vim, which stands for Vi Improved, the user-
friendly version of Vi. When talking about Vi in this book, I'll assume that you are using Vim.

Note Most distributions use Vim, not Vi, and will start Vim when you enter the command vi. Clear, huh?
If the commands that | describe in this chapter don’t work for you, you’re probably working with Vi, not Vim.
In that case, use the following command as root: echo alias vi=vim >> /etc/profile. This makes
sure that after the next time you log in to your computer, Vim is started, not Vi.

Even if Vi looks quite difficult to first time users, seen in its historical context, it was quite
an improvement in the year 1976 when it was invented. In those days, only line editors such as
ex were available. These editors didn’t give a complete overview of a text file a user was work-
ing with, but just the current line the user was at, like an old typewriter. Vi, which stands for
visual, was the first editor that worked in a mode where the complete text file was displayed.

Everyone who wants to work from the Linux command line should be capable of work-
ing with Vi. Why? You'll find it on every Linux distribution and every version of UNIX. Another

69

70

CHAPTER 4 WORKING WITH TEXT FILES

important reason why you should get used to working with Vi is that some other commands,
especially commands that are important for a Linux administrator, are based on it. For exam-
ple, to edit quota (which limits available disk space) for the users on your server, you would
use edquota, which is just a macro built on Vi. If you want to set permissions for the sudo com-
mand, use visudo which, as you likely guessed, is another macro that is built on top of Vi. Or if
you want to schedule a task to run at a given moment in time, use crontab -e, which is based
on Vi as well.

Note Well, to tell you the truth, there is a variable setting. The name of the variable is VISUAL. Only when
this variable is set to vi (VISUAL=vi) will commands like edquota and visudo use Vi. If it is set to some-
thing else, they will use that something else instead.

In this section, I'll provide the bare minimum of information that you need to work with
Vi. The goal here is just to get you started. You'll learn more about Vi if you really start working
with it on a daily basis.

Vi Modes

One of the hardest things to get used to when working with Vi is that it uses two modes: com-
mand mode, which is used to enter new commands, and insert mode (also referred to as the
input mode), which is used to enter text. Before being able to enter text, you need to enter
insert mode, because, as its name suggests, command mode will just allow you to enter com-
mands. Notice that these commands also include cursor movement. The nice thing about Vi is
that it offers you many choices. For example, you can use many methods to enter insert mode.
I'll list just four of them:

¢ Press i to insert text at the current position of the cursor.
¢ Use a to append text after the current position of the cursor.
e Use o to open a new line under the current position of the cursor (my favorite option).

e Use 0 to open a new line above the current position of the cursor.

After entering insert mode, you can enter text, and Vi will work just like any other
editor. Now if you want to save your work, you should next get back to command mode and
use the appropriate commands. Pressing the Esc key returns you to command mode from
insert mode.

Tip When starting Vi, always give as an argument the name of the file you want to create with it or the
name of an existing file you would like to modify. If you don’t do that, Vi will display help text, and you will
have the problem of finding out how to get out of this help text. Of course, you can always just read the entire
help text to find out how that works (or just type :q to get out there).

CHAPTER 4 WORKING WITH TEXT FILES

Saving and Quitting

After activating command mode, you can use commands to save your work. The most com-
mon method is to use the :wq! command, which performs several tasks at once. First, a colon
is used just because it is part of the command. Then, w is used to save the text you have typed
so far. Because no file name is specified after the w, the text will be saved under the same file
name that was used when opening the file. If you want to save it under a new file name, just
enter the new name after the :w command (not that you have to start the command with a
colon also); for instance, the following would save your file with the name newfile:

:w newfile

Next in the :wq! command is g, which makes sure that the editor is quit as well. Last, the
exclamation mark tells Vi that it shouldn’t complain, but just do its work. Vi has a tendency to
get smart with remarks like “A file with this name already exists” (see Listing 4-1), so you are
probably going to like the exclamation mark. After all, this is Linux, and you want your Linux
system to do as you tell it, not to second-guess you all the time.

Listing 4-1. Vi Will Tell You If It Doesn’t Understand What You Want It to Do

#

hosts This file describes a number of hostname-to-address
mappings for the TCP/IP subsystem. It is mostly

used at boot time, when no name servers are running.
On small systems, this file can be used instead of a
"named" name server.

Syntax:

#

IP-Address Full-Qualified-Hostname Short-Hostname

#

127.0.0.1 localhost

special IPv6 addresses

i1 localhost ipv6-localhost ipv6-loopback

fe00::0 ipv6-localnet

ff00::0 ipv6-mcastprefix

ffo2::1 ipv6-allnodes

ffo2::2 ipv6-allrouters

ffo2::3 ipv6-allhosts

127.0.0.2 nuuk.sander.gl nuuk

E13: File exists (add ! to override) 1,1 All

As you have just learned, you can use :wq! to write and quit Vi. You can also use the parts
of this command separately. For example, use :w if you just want to write changes while work-
ing on a file without quitting it, or use :q! to quit the file without writing changes. The latter
option is a nice panic key if something has happened that you absolutely don’t want to store

4l

72

CHAPTER 4 WORKING WITH TEXT FILES

on your system. This is useful because Vi will sometimes work magic with the content of your
file when you hit the wrong keys. Alternatively, you can recover by using the u command to
undo the most recent changes you made to the file.

Cutting, Copying, and Pasting

You don’t need a graphical interface to use cut, copy, and paste features; Vi could do this back
in the 70s. But you have two ways of using cut, copy, and paste: the easy way and the hard
way. If you want to do it the easy way, you can use the v command to enter visual mode, from
which you can select a block of text by using the arrow keys. After selecting the block, you can
cut, copy, and paste it.

e Used to cut (in fact, delete) the selection. This will remove the selection and place it in
a buffer.

e Usey to copy the selection to the area designated for that purpose in your server’s
memory.

e Use p to paste the selection. This will copy the selection you have just placed in the
reserved area of your server’s memory back into your document. It will always paste
the selection at the cursor’s current position.

Deleting Text

Deleting text is another thing you’ll have to do often when working with Vi, and you can use
many different methods to delete text. The easiest, however, is from insert mode: just use
the Delete key to delete any text. This works in the exact same way as in a word processor.
As usual, you have some options from Vi command mode as well:

* Use x to delete a single character. This has the same effect as using the Delete key while
in insert mode.

¢ Use dw to delete the rest of the word. That is, dw will delete everything from the cursor’s
current position of the end of the word.

e Use dd to delete a complete line. This is a very useful option that you will probably like
alot.

That’s enough of Vi for now because I don’t want to bother you with any other commands. Let
me show you how to display the contents of text files next.

Moving Through Text Files

Vi also offers some possibilities to move through text files. The following commands are used
to search for text and to manipulate your cursor through a text file:

¢ Use the g key twice to go to the beginning of a text file.

* By using the G key twice, you can go directly to the end of a text file.

CHAPTER 4 WORKING WITH TEXT FILES

» To search text, you can use /, followed by the text you are searching. For instance, the
command /root would find the first occurrence of the text root in the current file. This
command would search from the current position down in the text file. To repeat this
search action, use n (for next). To repeat the search in the opposite direction, use N.

e Use ?, followed by text you are using to search text from the current position in the
text upward in the text file. For example, the command ?root would search for the text
“root” from the current position in the text upward. To repeat this search action, use n
for next. To repeat the search in the opposite direction, use N.

Tip To work with advanced search patterns, Vi supports regular expressions as well. Read the section
“Working with Basic Regular Expressions” later in this chapter to find out all about these.

Changing All Occurrences of a String in a Text File

When working with Vi, it may happen that you need to change all occurrences of a given word
in a text file. Vi has a useful option for this, which is referred to as the global substitute. The
basic syntax of a global substitution is as follows:

:s/o0ld/new/g

This command starts with : s, which tells Vi that it should make a substitution. Next, it
mentions the old text string, in this case old, which in turn is followed by the new text string,
new. At the end of the command, the g tells Vi that this is a global action; it will make sure that
the substitution is used all over the text file.

I recommend that you analyze your text file carefully after applying a global substitution.
Did it work out well? Then save the changes to your text file. If it didn’t work out so well, use
the u command to undo the global substitution and restore the original situation.

Vi Summarized

In this section you've learned how to work with Vi. Although there are many more commands
that you can use when working with Vi, the commands that I've covered in this section will
help you perform all basic tasks with Vi. Table 4-1 summarizes all commands that were treated
in this section.

Table 4-1. Summary of Vi Commands

Command Explanation

i Opens insert mode for editing. Inserts text after the current cursor position.

Esc Returns to command mode.

a Opens insert mode for editing. Inserts text at the current cursor position.

0 Opens 'insert mode for editing. Opens a new line after the current line where the
cursor is.

Continued

73

74

CHAPTER 4 WORKING WITH TEXT FILES

Table 4-1. Continued

Command Explanation

0 Opens insert mode for editing. Opens a new line before the current line where the
cursor is.

wq! Writes and quits the current document. Suppresses any warnings.

W Writes the current file using the same name. Appends a file name to write the file
with another name.

:q! Quits without saving. Ignores any warnings.

u Undoes the last command.

Enters visual mode to mark a block on which you can use commands.
Deletes the current selection.

Yanks (copies) the current selection.

Pastes.

Goes to the top of the current text file.

O 00 T < a <

Goes to the bottom of the current text file.
/text Searches text from the current position of the cursor downward.

?text Searches text from the current position of the cursor upward.

Displaying Contents of Text Files

When working on the command line, you will find that you often need to modify configuration
files, which take the form of ASCII text files. Therefore, it’s very important to be able to browse
the content of these files. You have several ways of doing this:

¢ cat: Displays the contents of a file

¢ tac: Does the same as cat, but displays the contents in reverse order
e tail: Shows just the last lines of a text file

¢ head: Displays the first lines of a file

¢ less: Opens an advanced file viewer

¢ more: Like less, but not as advanced

Showing File Contents with cat and tac

First is the cat command. This command just dumps the contents of a file on the screen

(see Listing 4-2). This can be useful, but, if the contents of the file do not fit on the screen,
you'll see some text scrolling by, and when it stops, you’ll only see the last lines of the file dis-
played on the screen. As an alternative to cat, you can use tac as well. Not only is its name the
opposite of cat, its result is too. This command will dump the contents of a file to the screen,
but it reverses the file contents.

CHAPTER 4 WORKING WITH TEXT FILES

Listing 4-2. The cat Command Is Used to Display the Contents of a Text File

100t@RNA: /boot# cat /etc/hosts
127.0.0.1 localhost
127.0.1.1 RNA.lan RNA

The following lines are desirable for IPv6 capable hosts
| ip6-localhost ip6-loopback

fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts

Showing a File’s Last Lines with tail

Another very useful command is tail. If no options are used, this command will show the last
ten lines of a text file. You can also modify the command to show any number of lines on the
bottom of a file; for example, tail -2 /etc/passwd will display the last two lines of the configu-
ration file in which usernames are stored.

Also very useful for monitoring what happens on your system in real time is the option -f,
which keeps tail open and refreshes the output as soon as new lines are added. For example,
ifyouuse tail -f /var/log/messages, the most generic log file on your system is opened, and,
when a new line is written to the bottom of that file, you will see it immediately. Use Ctrl+C
to get out of a file that you've opened using tail -f. Listing 4-3 shows you what the result of
tail-f /var/log/messages may look like. In particular, the last two lines here are of interest;
you can see that user sander has tried to work as root using the su command, but failed in
doing so.

Listing 4-3. Monitoring System Events in Real Time with tail -f

BTN:~ # tail -f /var/log/messages

Nov 11 08:57:27 BTN sshd[11993]: Accepted keyboard-interactive/pam for root from
192.168.1.53 port 62992 ssh2

Nov 11 09:00:01 BTN su: (to beagleindex) root on none

Nov 11 09:00:01 BTN su: (to beagleindex) root on none

Nov 11 09:02:53 BTN su: (to nobody) root on none

Nov 11 09:02:58 BTN syslog-ng[2407]: last message repeated 3 times

Nov 11 09:02:58 BTN su: (to cyrus) root on none

Nov 11 09:02:58 BTN ctl mboxlist[12745]: DBERROR: reading /var/lib/imap/db/skipstamp
, assuming the worst: No such file or directory

Nov 11 09:02:59 BTN ctl mboxlist[12745]: skiplist: recovered /var/lib/imap/mailboxes
.db (0 records, 144 bytes) in 0 secondslListing 4-3: Use tail -f to monitor log

files in real time

Nov 11 09:03:59 BTN sux: FAILED SU (to root) sander on /dev/pts/1i

Nov 11 09:03:08 BTN sux: (to root) sander on /dev/pts/1

75

76

CHAPTER 4 WORKING WITH TEXT FILES

Displaying the First Lines in a File with head

The opposite of tail is the head command, which displays the top lines of a text file. As with
tail, this command is useful in a shell script, if you want to display only the first line of a file,
for instance. You can even combine head and tail to specify exactly which line in a file you
want to display. Consider the example file that you see in Listing 4-4.

Listing 4-4. Example Text File

Username Current status
Linda enabled

Lori disabled

Lisa enabled

Laura enabled

Imagine that, for some reason, you need to see the name of the first user only. You
wouldn’t get that by just using tail or by just using head. If, however, you first take the head of
the first two lines, and next the tail of the result of that, you would get the required result:

head -n 2 textfile | tail -n 1

As you can see in this example, once again, by using a pipe you get a command that has
some powerful additional options.

Browsing File Contents with less and more

The last two commands used to view the contents of text files are less and more. The most
important thing you need to remember about them is that you can do more with less. Con-
trary to common sense, the less command is actually the improved version of more. Both
commands will open your ASCII text file in a viewer as you can see in Listing 4-5, which shows
the contents of the /etc/hosts file (mappings between node names and IP addresses). In this
viewer, you can browse down in the file by using the Page Down key or the spacebar. Only less
offers the option to browse up as well. Also, both commands have a search facility. If the less
utility is open and displays the contents of your file, use /sometext from within the less viewer
to locate sometext in the file. Useful to remember: both utilities are based on the Vi editor;
therefore, many key strokes that you can use in Vi will work in less and more as well. To quit
both utilities, use the g command.

Listing 4-5. You Can Use the less Command As a Viewer to View File Contents

BTN:~ # less /etc/hosts

127.0.0.1 localhost

127.0.1.1 RNA.lan RNA
192.168.1.100 RNA.lan RNA
192.168.1.101 ZNA.lan ZNA
192.168.1.102 BTN.lan BTN

192.168.1.103 XTN.lan XTN
/etc/hosts (END)

CHAPTER 4 WORKING WITH TEXT FILES

Cool Text File Manipulation Tools

To change the contents of text files, you can use an editor. Apart from editors that oblige you to
make changes word by word, you can also use some automated tools to do batch changes. The
tools mentioned in the following text are all classical tools from the UNIX era, and you can use
them to apply batch changes. You will notice though that these tools don’t make their changes
in the files you're working on but show the modifications on the standard output. This means
that in all cases, you'll have to work with redirection to write the changes to a new file. You will
see some examples explaining how this works.

Changing Contents in a Batch with tr

The tr utility is used to translate or delete characters from a file. Since it doesn’t have any
options to work with input or output files, you have to using piping and redirection to apply
changes to files when using tr. A classical use of tr is to translate lowercase into uppercase.
In the example in Listing 4-6, you can see the contents of the ~/users file before and after it is
translated with tr.

Listing 4-6. Changing Lowercase into Uppercase with tr

BTN:~ # cat users
linda

sanne

anja

sylvia

zeina

BTN:~ # cat users | tr a-z A-Z
LINDA

SANNE

ANJA

SYLVIA

ZEINA

As you can see, in this example the cat command is used first to display the contents of
the file user, and the result of the cat command is piped to the tr command, which translates
a-z into A-Z. The result, however, is written to the standard output only, and not to a file. To
write the result of the command from Listing 4-6 to a text file with the name users2, you can
use the following:

cat users | tr a-z A-Z > users2

Instead of working with cat and a pipe that has tr process the results of the cat command,
you can also work with the input redirector, <. The next command shows an alternative for the
preceding command that translates and next writes the results to a new text file:

tr a-z A-Z < users > users2

77

78

CHAPTER 4 WORKING WITH TEXT FILES

Sorting Text Files with sort

Imagine that you have a list of users, and you want to sort that list. In this case, you can use the
sort command. For instance, if applied to the users file from Listing 4-6, sort users would
give you the result that you see in Listing 4-7.

Listing 4-7. Sorting File Contents with sort

BTN:~ # sort users

anja
linda
sanne
sylvia
zeina

At first sight, sort appears to be a simple utility that is pretty straightforward. You may be
surprised, though. For instance, consider the example in Listing 4-8, in which another users
file is sorted.

Listing 4-8. Sorting in Alphabetical Order?

BTN:~ # sort users

Angy
Caroline

Susan
anja
linda
sanne
sylvia
zeina

As you can see, in the example from Listing 4-8, sort first gives names that start in
uppercase, and next it gives all lowercase names. This is because by default it doesn’t respect
alphabetical order, but it takes the order as defined in the ASCII table. Fortunately, sort has
the -f option, which allows you to apply real alphabetical order and ignore case. Also useful is
the option -n, which makes sure that numbers are sorted correctly. Without the -n option, sort
would consider 8, 88, 9 the correct order. With this option applied, you can make sure that the
numbers are sorted as 8, 9, 88.

Finding Differences Between Text Files with diff

If you want to find out differences between files, the diff utility is very useful. Typically, you
would use diff to compare an old version with a newer version of a file. For instance, if you
make a copy of the user database in /etc/passwd to /etc/passwd.old, you can compare these
files later by using the diff utility to see whether any differences have occurred. Listing 4-9
gives an easy-to-understand example of the diff utility.

CHAPTER 4 WORKING WITH TEXT FILES

Listing 4-9. Comparing Files with diff

BTN:~ # diff users users2
7d6
< pleuni

In the example in Listing 4-9, there is only one difference between the two files that are
compared: one file contains a line that reads pleuni, whereas the other line doesn’t. The diff
utility uses the coordinates 7d6 to indicate where it has found differences. In these coordi-
nates, it uses a d to indicate that a line was deleted from the first file. The following indicators
can be used in the coordinates:

e d: Line was deleted from the first file
¢ a: Line was added to the first file

e ¢: Line was changed in the first file

The number to the left of the letter corresponds to the line number found in the first file.
The number to the right of the letter corresponds to the line in the second file used during
comparison. Since diff finds the longest common sequence in both files, 7d6 means that the
line pleuni was deleted from the first file to make it the same as the second file.

< and > are also clear indications of where the differences can be found. < refers to the first
file, while > refers to the second file.

Another way of presenting the output given by diff is to use the --side-by-side option as
well, to show the contents of both files and where exactly the differences are. You can see an
example of this in Listing 4-10.

Listing 4-10. Use the --side-by-side Option to Clearly See Differences

BTN:~ # diff --side-by-side users users2

linda linda
Angy Angy
Susan Susan
sanne sanne
anja anja
Caroline Caroline
pleuni <

sylvia sylvia
zeina zeina

Checking Whether a Line Exists Twice with uniq

When working on a text configuration file, it is a rather common error to have a given
configuration parameter twice. The risk of getting this is very real, especially if you have a con-
figuration file that contains hundreds of lines of configuration parameters. By using the uniq
utility, you'll find these lines easily. Let’s consider the input file users, which is displayed in
Listing 4-11.

79

80

CHAPTER 4 WORKING WITH TEXT FILES

Listing 4-11. Test Input File

BTN:~ # cat users
linda
Angy
Susan
sanne
anja
Caroline
pleuni
linda
sylvia
zeina
sylvia

As you can see, some of the lines in this input file occur twice. If, however, you use the
uniq users command, the command shows you unique lines only. That is, if a given line
occurs twice, you will only see the first occurrence of that line as you can see in Listing 4-12.

Listing 4-12. Displaying Unique Lines Only

BTN:~ # uniq users
linda

Angy

Susan

sanne

anja

Caroline

pleuni

sylvia

zeina

Like most other commands, uniq has some specific switches as well that allow you to tell
it exactly what you need it to do. For instance, use uniq --repeated yourfile to find out which
lines occur repeatedly in yourfile.

Getting Specific Information with cut

Another very useful command is cut. This command allows you to get fields from structured
files. To do this, it helps if you tell cut what the field delimiter is. In Listing 4-13, you see an
example. First, I've displayed the last seven lines of the /etc/passwd file in which user accounts
are stored, and next, I've piped this to the cut command to filter out the third column.

CHAPTER 4 WORKING WITH TEXT FILES

Listing 4-13. Filtering a Specific Column from the passwd User Database

nuuk:~ # tail -n 7 /etc/passwd
lori:x:1006:100::/home/lori:/bin/bash
laura:x:1007:100: : /home/laura:/bin/bash
lucy:x:1008:100: : /home/lucy:/bin/bash
lisa:x:1009:100: :/home/lisa:/bin/bash
lea:x:1010:100: : /home/lea:/bin/bash
leona:x:1011:100: : /home/leona:/bin/bash
1i11y:x:1012:100: : /home/1illy:/bin/bash
nuuk:~ # tail -n 7 /etc/passwd | cut -d : -f 3
1006

1007

1008

1009

1010

1011

1012

In this example command, the option -d : is used with cut to specify the field delimiter,
which is a : in the /etc/passwd file. Next, with the option -f 3, cut learns that it should filter
out the third field. You can really benefit from the options that cut has to offer, if you combine
it with other commands in a pipe. Listing 4-13 already shows an example of this, but you can
go beyond this example. For instance, the command cut -d : -f 3 /etc/passwd | sort -n
would display a sorted list of user IDs from the /etc/passwd file.

Advanced Text File Filtering and Processing

Up to now, we’ve talked about the simple text-processing tools only. There are some
advanced tools as well, among which are the old and versatile sed and awk. Although these
are complicated tools, you may benefit from some basic knowledge about these tools. In the
next sections, you’ll learn about their basics. Before diving into sed and awk details, you’ll
read about an advanced way to work with text patterns by using regular expressions. Each
of these three subjects merits a book on its own; consider what I give here just a very basic
introduction to these complex matters.

Working with Basic Regular Expressions

Many programs discussed in this chapter are used to search for and work with text patterns
in files. Because working with text patterns is so important in Linux, a method is needed to
refer to text patterns in a flexible way that goes beyond just quoting the text pattern literally.
For instance, try a command like grep -r host /; it will give you a huge result because every
word that contains the text “host” (think, for example, about words like ghostscript) would
give a match. By using a regular expression, you can be much more specific about what you
are looking for. For instance, you can tell grep that it should look only for lines that start with
the word host.

81

82

CHAPTER 4 WORKING WITH TEXT FILES

Regular expressions are not available for all commands; the command that you use must
be programmed to work with regular expressions. The most common examples of such com-
mands are the grep and vi utilities. Other utilities, like sed and awk, which are covered later in
this section, can also work with regular expressions.

An example of the use of a regular expression is in the following command:

grep 'lin.x' *

In this example, the dot in the regular expression '1lin.x' has a special meaning; it
means every character at that particular position in the text string is seen as a match. To pre-
vent interpretation problems, I advise you to always put regular expressions between single
quotes. By doing this, you’ll prevent the shell from interpreting the regular expression.

As mentioned in the introduction of this section, you can do many things with regular
expressions. In the following list, I give examples of some of the most common and useful
regular expressions:

¢ *:Indicates that the text string has to be at the beginning of a line. For instance, to
find only lines that have the text hosts at the beginning of a line, use the following
command:

grep -1s '“hosts' *

¢ $: Refers to the end of a line. For instance, to find only lines that have the text hosts at
the end of the line, use the following command:

grep -1s 'hosts$' *

Tip You can combine ~ and $ in a regular expression. For instance, to find lines that contain only the word
“yes,” you would use grep -1s '“yes$' *.

e .:Serves as a wildcard to refer to any character, with the exception of a newline char-
acter. To find lines that contain the text tex, tux, tox, or tix, for instance, use the
following command:

grep -1s 't.x' *

¢ []:Indicates characters in the regular expression that should be interpreted as alterna-
tives. For instance, you would use the following command to find users who have the
name pinda or linda:

grep -1s '[pl]linda’ *

e [~]:Ignores all characters that you put between square brackets after the * sign. For
instance, the following command would find all lines that have the text inda in them,
but not lines that contain the text 1inda or pinda:

grep -1s '[*pl]inda’ *

CHAPTER 4 WORKING WITH TEXT FILES

e -:Refers to a class or a range of characters. You have already seen an example of this
in the tr command where the following was used to translate all lowercase letters into
uppercase letters:

tr a-z A-Z < mytext

Likewise, you could use a regular expression to find all files that have lines that start
with a number, using the following command:

grep -1s '~0-9' *

e \<and \>: Search for patterns at the beginning of a word or at the end of a word. For
instance, the following would show lines that have text beginning with san:

grep \<san *

These regular expressions have two disadvantages though. First is that they don’t find
lines that start with the provided regular expression. The other disadvantage is that
they are not supported by all utilities, though Vi and grep do work with them.

¢ \: Makes sure that a character that has a special meaning in a regular expression is not
interpreted. For instance, the following command will search a text string that starts
with any character, followed by the text host:

grep -1s '.host' *

If, however, you need to find a text string that has a dot at the first position, which is
followed by the text host, you need the following regular expression:

grep -1s '\.host' *

The regular expressions just discussed help you find words that contain certain text
strings. You can also use regular expressions to specify how often a given string should occur
in a word by using regular expression repetition operators. For instance, you can use a regular
expression to search for files containing the username linda exactly three times. When working
with repetition operators, you must make sure that the entire regular expression is in quotes;
otherwise, you may end up with the shell interpreting your repetition operator. Next is a list of
the most important repetition operators:

¢ *: The asterisk is used to indicate that the preceding regular expression may occur
once, more than once, or not at all. It is not the most useful character in a regular
expression, but I mainly mention it so that you don’t try to use it as a * in the shell. In
a shell environment, * stands for any character; in regular expressions, it just indicates
that the preceding regular expression may exist.

e ?:The question mark is used to indicate that there may be a character at this position,
but there doesn’t have to be a character. Consider the following example, where both
the words “color” and “colour” will be found:

grep -1s 'colo.r' *

83

84

CHAPTER 4 WORKING WITH TEXT FILES

¢ +: The preceding character or regular expression has to be present at least once.

e \{n\}: The preceding character or regular expression occurs at least n times. This is
useful in a regular expression where you are looking for a number, say, between 100
and 999, as in the following command:

grep -1s '0-9\{3\}' *

Working with Programmable Filters

In the first part of this chapter, you've read about utilities that you can use to manipulate text
files. Most of the utilities discussed so far are in some way limited in use. If they just don’t do
what you need them to do, you may need more powerful utilities. In that case, programmable
filters such as sed and awk may offer what you need.

Once you start working with power tools like sed and awk, you may end up using program-
ming languages such as Perl and Python. You could consider languages like these as a further
extension to the powerful sed and awk, with more options and more possibilities that allow you
to process text files in real time, something that is quite important if, for instance, you want
to offer dynamic web pages to end users. In this chapter, we won’t go that far. You'll just get a
basic introduction to working with sed and awk, with the purpose of making text file processing
easier for you.

Working with sed

In fact sed, which stands for Stream EDitor, is just a further development of the old editor ed.
With sed, you can automate commands on text files. To do this, sed processes the text file line
by line to see whether a command has to be executed on these lines. By default, sed will write
its result to standard output. This means you must redirect it somewhere else if you also really
need to do something with this standard output.

The basic sed syntax is as follows:

sed 'list of commands' file ...

Normally, sed will walk through the files it has to work on line by line, apply its commands
to each line, and then write the output to the standard output. Let’s have a look at an example
involving a file with the name users, shown in Listing 4-14.

Listing 4-14. Example Text File

nuuk:~ # cat users
lori:x:1006:100::/home/lori:/bin/bash
laura:x:1007:100: : /home/laura:/bin/bash
lucy:x:1008:100: : /home/lucy:/bin/bash
lisa:x:1009:100: :/home/lisa:/bin/bash
lea:x:1010:100::/home/lea:/bin/bash
leona:x:1011:100: : /home/leona:/bin/bash
1i11y:x:1012:100: :/home/1illy:/bin/bash

CHAPTER 4 WORKING WITH TEXT FILES

If you just want to display, say, the first two lines from this file, you can use the sed com-
mand 2q. With this command, you tell sed to show two lines, and then quit (q). Listing 4-15
shows the results of this command.

Listing 4-15. Showing the First Two Lines with sed and Quitting

nuuk:~ # sed 2q users
lori:x:1006:100::/home/lori:/bin/bash
laura:x:1007:100: : /home/laura:/bin/bash

Basically, to edit lines with sed automatically, you need to find the proper way to address
lines. To do this, you can just refer to the line number you want to display, but far more useful
is to have sed search for lines that contain a certain string and execute an operation on that
line. To refer to a string in a certain line, you can use regular expressions, which have to be
between slashes. An example of this is in the following sed command, where only lines con-
taining the string or are displayed:

sed -n /or/p users

In this example, the option -n is used to suppress automatic printing of pattern space.
Without this option, you would see every matching line twice. Next, /or/ specifies the text
you are looking for, and the command p is used on this text to print it. As the last part, the
name of the file on which sed should do its work is mentioned. Following is a list of examples
where regular expressions are used in combination with sed on the example text file from
Listing 4-14:

e sed -n /or/p users: Gives the line that contains the text lori; only those lines that
contain the literal string or are displayed.

e sed -n /"or/p users: Doesn’t give any result, as there are no lines starting with the
text or.

e sed -n /./p users: Gives all lines; the dot refers to any character, so all lines give
a match.

e sed -n /\./p users: Still gives all lines. Since no quotes are used in the regular
expression, the shell interprets the \ sign before sed can treat it as part of the regular
expression. Therefore, the dot refers to any character, and all lines from the example
file are displayed.

e sed -n /\./p users: Shows only lines that contain a dot. Since these don’t exist in the
example file, no result is given.

e sed -n /me\/le/p users: Shows the lines containing the text lea and leona. The regular
expression in this example uses me\/le, which means that in this case sed searches for
the literal string 'me/le’. Note that this command would also fail without the quotes.

Up to now, you have read about line addressing only, and just one command was dis-
played, which is the command p for print. sed has many other commands as well, of which the
s (substitute) command is without a doubt the single most popular. By using the s command,
you can substitute a string with another string. In the next example you can see how the s

85

86

CHAPTER 4 WORKING WITH TEXT FILES

command is used to replace /home with /users in the example file from Listing 4-14. See also
Listing 4-16 for the complete results of this command:

sed s/home/users/g users

Note that in this command, the first element that is used is the s command itself. Then
follow two addresses: the name of the string to search for and the name of the string this
should be replaced with. Next, the g command tells sed this is a global command, meaning
that it will perform the replace action all over the file. Last, the name of the file on which sed
should work is given.

The result of this command is written to STDOUT by default, and therefore is not saved
in any file. If you want to save it, make sure to use redirection to write the result to a file (e.g.,
sed s/home/users/g users > Newusers).

Listing 4-16. Using the sed Substitute Command to Replace Text

nuuk:~ # sed s/home/users/g users
lori:x:1006:100::/users/lori:/bin/bash
laura:x:1007:100: : /users/laura:/bin/bash
lucy:x:1008:100: : /users/lucy:/bin/bash
lisa:x:1009:100::/users/lisa:/bin/bash
lea:x:1010:100:: /users/lea:/bin/bash
leona:x:1011:100::/users/leona:/bin/bash
1i11y:x:1012:100: : /users/1illy:/bin/bash

Manipulating Text Files with awk

Another powerful tool to manipulate text files is awk. Like sed, awk is also a programming lan-
guage by itself, with many possibilities. Personally I like it a lot, because it is a very versatile
utility that helps you to get the information you need fast and easy.

As is the case with sed, each awk command also works with a pattern that specifies what to
look for. Next, you'll use a command to specify what to do with it. Typically, the patterns are
put between slashes, and the actions that you want to perform are put in braces. Since awk also
works with regular expressions, it is wise to put awk patterns between single quotes as well, to
avoid the shell from interpreting them by accident. The global structure of an awk command is
as follows:

awk '/pattern/{action}' file

In case you don’t specify a pattern, the action is performed on every line in the file. You
can interpret this as “every line that matches the pattern null.” If no action is specified, awk just
shows you the lines that match the pattern; hence, there is no big difference with a tool such as
grep. An example of this is shown in Listing 4-17, where awk displays lines containing the text
lori.

Listing 4-17. Displaying Lines That Contain a Given Text Pattern with awk

nuuk:~ # awk '/lori/' users
lori:x:1006:100::/home/lori:/bin/bash

CHAPTER 4 WORKING WITH TEXT FILES

The awk utility becomes really interesting combined with its abilities to filter columns
or fields out of a text file. The default field separator is a space, but you can tell awk to use
something else instead by using the option -F followed by the character you want to use as a
separator. In the next example line, the awk print command and the colon field separator are
used to find the user ID of user lori from the users file:

awk -F : '/lori/{print $3]' users

In the preceding example, you see that $3 is used to refer to the third field in the file. You
can also use $0 to refer to the entire record. Because awk is able to refer to specific fields, it’s
possible as well to compare fields with one another. The following operators are available for
this purpose:

e ==: Equals (searches for a field that has the same value)
e |=:Not equals

e <:Smaller than

¢ <=:Smaller than or equal to

e >: Bigger than

e >=: Bigger than or equal to

With these operators, you can make some useful calculations on text files. For instance,
the following example would search the /etc/passwd file and show all lines where the third
field contains a value bigger than 999:

awk '$3 > 999 { print $1 }' /etc/passwd

Tip The preceding example allows you to find all names of user accounts that have a UID bigger than 999
(vou’ll learn more about commands like this in Chapter 6, which discusses user management). Typically, this
gives you real usernames, and not the names of system accounts.

Printing Files

On Linux, the CUPS print system is used to print files. Typically, you would set up a CUPS
printing environment with the management tools that are provided with your distribution, so
Iwon’t cover that here. Once installed, you can use several command-line tools to send jobs to
CUPS printers. You can find examples of some of these in the following text.

Managing CUPS Print Queues

CUPS offers a lot of tools from the command line that you can use to manage print jobs and
queues. The flow of a print job is easy: a print job is placed in the printer queue, where it waits
for the printer process to get it out of there and have it served by a printer. If you have worked
with older UNIX print systems, I have good news for you: CUPS works with tools from the

87

88

CHAPTER 4 WORKING WITH TEXT FILES

Berkeley UNIX dialect as well as the System V UNIX dialect. Since the Berkeley UNIX dialect is
more common, in this subsection I will focus on the Berkeley tools.

Creating Print Jobs

To create a print job from the command line, you need the 1pr tool. With this tool, you can send a
file directly to a printer. In its most basic configuration, you can issue the command 1pr somefile;
this command will send somefile to the default printer. If you want to specify the printer where
the file is sent to, you can use the -P option followed by the name of the print queue. For example,
use 1pr -P hplj4l somefile to send somefile to the queue for hplj41l. Want to print to a remote
printer? That’s also possible using 1pr; use 1pr -P hplj4l@someserver somefile to send somefile
to the queue named hplj41 at someserver.

Tuning Print Jobs

From time to time, as an administrator it is useful to display print job information. For this
purpose, you can use the 1pqg command. To get a list of all print jobs in the default queue, just
issue 1pq. Want to show print jobs in another queue? Specify the name of the queue you want
to monitor, like 1pq -P somequeue. This will get you a fairly high-level overview of the jobs and
their properties. Want to see more detail? Use 1pr -1 -P somequeue. The option -a lets you
check print jobs in all queues—just issue 1pq -a.

Removing Print Jobs

Have you ever sent a print job to a queue that wasn’t supposed to be sent after all? Good news:
if you are fast enough, you can remove that job using the 1prm command. This command can
be used in many different ways. The most brute-force way of using it is with the - option and
nothing else. This will remove all jobs that you have submitted to the queue, and if you are the
root user, it will remove all jobs from the queue. You can be more specific as well; for example,
lprm -P hplj4l 3 would remove job number 3 from the queue hplj4. To find out what job
number your queue is using, you can use the 1pqg command.

Tip When hacking CUPS from the command line, it can happen that changes are not automatically
activated. If you've made a change, but you don’t see any result, use the rccups restart command to
restart CUPS.

Finding Files

Since Linux is a very file-oriented operating system, it is important that you know how to find
files. The utility used for this purpose, find, allows you to find files based on any of the file
properties that were used when storing the file on disk. Let’s start with an example: the follow-
ing find command helps you find all files with names that start with host on the entire hard
drive of the computer:

find / -name "hosts*"

CHAPTER 4 WORKING WITH TEXT FILES

One cool thing about find is that it allows you to do a lot more than just find files based on
their file names. For instance, you can find files based on their size, owner, permissions, and
much more. Following is a short list of file properties that you can use to find files:

e -amin n: Finds all files that were last accessed less than n minutes ago. For instance,
find -amin 5would give all files that were accessed less than five minutes ago.

e -executable: Finds all files that are executable.

e -group gname: Shows all files that have gname as their group owner. (Read Chapter 7
for more information about ownership.)

e -mmin n: Shows all files that were last modified less than n minutes ago.
e -newer file:Shows allfiles that are newer than file.
e -nogroup, -nouser: Show all files that do not have a group or a user owner.

e -perm [+]-]mode: Finds all files that have a specific permission mode set. (See Chap-
ter 7 for more details about permissions.)

e -size n: Finds all files of a specific size. With this parameter, you can also find files big-
ger than or smaller than a specific size. For instance, find / -size +2Gwould find all
files larger than 2 gigabytes. When using this parameter, use K, M, and G for kilobytes,
megabytes, and gigabytes, respectively. Use the + sign to indicate that you want to see
files greater than a specific size.

e -type t:Finds files of a specific type. The most interesting file types that you can
search for using this option are d for directory or f for a regular file (which is any file
that is not a directory).

The interesting part of find is that you can combine different options as well. For exam-
ple, you can run a find command that finds all files owned by user linda that are larger than
100MB using the following command:

find / -user linda -size +100M

Even more interesting is that you can issue any other command on the result of your find
command using the -exec statement. Let’s have a look at an example where find is used to
find all files owned by jerry and next moves these files to the directory /root:

find / -user jerry -exec mv {} /root \;

Here you can see some specific items are used with the command you start with
-exec. For instance, normally the mv command would refer to the name of some files, as in
mv * /root. In this specific case, mv has to work on the result of the previous find command.
You refer to this result by using {}. Next, you have to close the exec statement. To do this, use
\; at the end each time you open -exec.

Let’s have a look at one more example. This file first looks up all files that are owned by user
linda and next executes grep to look in these files to see whether any of them contains the text blah:

find / -user linda -exec grep -1 blah {} \;

As you can see, find is a useful tool that helps you in finding files, no matter what proper-
ties the file may have.

89

90

CHAPTER 4 WORKING WITH TEXT FILES

Summary

In this chapter, you've learned about commands that help you in manipulating text files. Apart
from these commands, you have learned how to work with regular expressions that help you
in finding text patterns in a clever way. Following is a short list in which all commands that are
covered in this chapter are summarized:

vi: Brings up a text editor that allows you to create and modify text files

cat: Displays the contents of a text file

tac: Displays the contents of a text file, but inversed

tail: Shows the last 7 lines of a text file

head: Shows the first n lines of a text file

less: Allows you to walk page by page through a text file

tr: Substitutes characters, for instance, changing all lowercase letters to uppercase
diff: Finds differences between files

sort: Sorts files into alphabetical or any other order

unig: Finds a line that has multiple occurrences in a file

cut: Filters fields from a structured file with clearly marked field separators
sed: Brings up a stream editor, especially useful for finding and replacing text

awk: Applies a programmable filter, especially useful for displaying specific fields from
files that contain specific text

1pr: Allows you to send files to a printer
1pg: Helps you in monitoring files that are waiting to be printed

1prm: Removes jobs from the print queue

In the next chapter, you'll learn how to manage a Linux file system.

CHAPTER 5

Managing Partitions and
Logical Volumes

To work with files, you need to store them. In most situations, you'll need to create a logical
storage unit before you do so. Creating such a storage unit makes it easier to configure your
hard drive in a flexible way. In Linux, you can choose between two solutions: partitions and
logical volumes. Choose partitions if you want to work easily and you don’t have very specific
needs for what you do with your hard drive. If, however, you need maximal flexibility and easy
resizing, working with logical volumes is a better solution. In this chapter, you'll read how to
create partitions and logical volumes, how to make a file system on them, and how to manage
that file system.

Addressing Storage Devices

Up to now, you've read how to address devices based on device names such as /dev/sda and
/dev/hda. There is a problem though with these device names: they are not guaranteed to be
unique. This is because normally the device name is determined at the moment the kernel
finds out that a new device has been attached to the system. The following example explains
the problem.

Imagine that your computer currently has a local hard disk as the only storage device.
The name of this hard disk will most likely be /dev/sda. Imagine that you have two USB drives,
a 1GB USB key and an 80GB USB hard disk. Say you attach the 1GB USB key first to your
computer. The computer will give it the device name /dev/sdb, as the devices are named in
sequential order. If after that you attach the 80GB USB hard disk, it becomes /dev/sdc. Now
imagine you do the opposite and first attach the 80GB hard disk. You can probably guess what
happens—it becomes /dev/sdb instead of /dev/sdc, which it was before. So you cannot be sure
that these device names are always unique.

To guarantee uniqueness of device names, there are two solutions. When creating the
file system with mkfs, you can put a label in the file system. You can also work with the unique
device names that are created automatically in the /dev/disk directory. The next two sections
give more details about both.

File System Labels

The oldest method to refer to devices in always the same way is by adding a file system label.
This label is stored in the file system and not in the metadata. Using file system labels is useful

91

92

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

for mounting devices, as the mount command will check for a label. However, you cannot
depend on it in situations where you need to address the device itself and not the file system
thatis in it.

Typically, you will add a label to a file system when formatting it. For instance, to add a
label to an Ext3 file system, you would use the following command:

mkfs.ext3 -L mylabel /dev/sda2

On most file systems, you can also set a label to an existing file system. On Ext2/Ext3, you
would do this using the tune2fs utility:

tune2fs -L mylabel /dev/sda2

There is more information on the use of these commands later in this chapter.

Once the file system label is set, you can use it when mounting the device. Just replace the
name of the device by LABEL=1abeIname to do this. For instance, the following command would
mount the file system that has the label mylabel:

mount LABEL=mylabel /mnt

udev Device Names

File system labels are useful, but only in situations where you need to address the file system
that is on the device. If you need to address the device itself, they will not do. Modern Linux
distributions have an alternative. This alternative is created by the udev process, which is
started on all modern Linux distributions automatically. udev is the process that detects device
changes on the hardware bus and is responsible for creating device names. Not only does

it create the device names /dev/sdb and so on, but for each storage device it also creates a
unique device name in the directory /dev/disk. In Listing 5-1, you can see an example of these
device names.

Listing 5-1. udev Creates Unique Device Names for All Storage Devices

xen:~ # 1s -R1 /dev/disk

/dev/disk:

total 0

drwxr-xr-x 2 root root 280 Jan 13 10:36 by-id
drwxr-xr-x 2 root root 140 Jan 13 10:36 by-path
drwxr-xr-x 2 root root 80 Jan 13 12:16 by-uuid

/dev/disk/by-id:

total 0

lrwxrwxrwx 1 root root 10 Jan 13 10:36 ata--part1l -> ../../sdal

lrwxrwxrwx 1 root root 10 Jan 13 10:36 ata--part2 -> ../../sda2

lrwxrwxrwx 1 root root 10 Jan 13 10:36 ata--part3 -> ../../sda3

lrwxrwxrwx 1 root root 9 Jan 13 10:36 ata-WDC_WD5002ABYS-18B1B0O_WD-WMASY5022406
-> ../../sda

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

Irwxrwxrwx 1 root root 9 Jan 13 10:36 edd-int13_dev80 -> ../../sda

lrwxrwxrwx 1 root root 10 Jan 13 10:36 edd-int13 dev80-part1l -> ../../sdal
lrwxrwxrwx 1 root root 10 Jan 13 10:36 edd-int13 dev80-part2 -> ../../sda2
lrwxrwxrwx 1 root root 10 Jan 13 10:36 edd-int13_dev80-part3 -> ../../sda3

Irwxrwxrwx 1 root root 9 Jan 13 10:36 scsi-SATA WDC_WD5002ABYS- WD-WMASY5022406
-> ../../sda

lrwxrwxrwx 1 root root 10 Jan 13 10:36 scsi-SATA WDC_WD5002ABYS- WD-WMASY5022406
-part1 -> ../../sda1

lrwxrwxrwx 1 root root 10 Jan 13 10:36 scsi-SATA WDC_WD5002ABYS- WD-WMASY5022406
-part2 -> ../../sda2

lrwxrwxrwx 1 root root 10 Jan 13 10:36 scsi-SATA WDC_WD5002ABYS- WD-WMASY5022406
-part3 -> ../../sda3

/dev/disk/by-path:
total 0
lrwxrwxrwx 1 root root 9 Jan 13 10:36 pci-0000:00:1f.2-scsi-0:0:0:0 -> ../../sda
lrwxrwxrwx 1 root root 10 Jan 13 10:36 pci-0000:00:1f.2-scsi-0:0:0:0-partl
-> ../../sda1
lrwxrwxrwx 1 root root 10 Jan 13 10:36 pci-0000:00:1f.2-scsi-0:0:0:0-part2
-> ../../sda2
lrwxrwxrwx 1 root root 10 Jan 13 10:36 pci-0000:00:1f.2-scsi-0:0:0:0-part3
-> ../../sda3
lrwxrwxrwx 1 root root 9 Jan 13 10:36 pci-0000:00:1f.2-scsi-0:0:1:0 -> ../../sr0

/dev/disk/by-uuid:

total 0

lrwxrwxrwx 1 root root 10 Jan 13 10:36 4e77311a-ce39-473c-80c4-caf6e53ef0cs
-> ../../dm-0

lrwxrwxrwx 1 root root 10 Jan 13 10:36 cd200dac-4466-4a1f-a713-64e6208b5d6d
-> ../../sda2

As you can see in Listing 5-1, under /dev/disk are three subdirectories; there could be
more, depending on the hardware you are using. These subdirectories are by-path, by-id,
and by-uuid, and each of them provides a unique way of addressing the device. The by-path
devices refer to the hardware path the device is using. The devices in the subdirectory by-id
use the unique hardware ID of the device, and the devices in by-uuid use the universal unique
ID that is assigned to the device. If you want to use a file system-independent way to refer to a
device, a way that also will never change, pick one of these device names. In case of doubt, to
find out which device is which, you can use 1s -1; the udev device names are all symbolic links,
and 1s -1shows you what device these links are referring to, as you can see in Listing 5-1.

Creating Partitions

The partition is the basic building block on a computer hard drive. As an alternative to using
partitions, you could use logical volumes as well to create your computer’s file systems. In
this section, you'll learn everything you need to know about partitions. First, you'll see how

93

94

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

partitions are used on the computer’s hard drive. Following that, you'll learn how to create
them using fdisk and cfdisk, the two most important partition management utilities. As the
last part in this section, you’ll learn how to recover lost partitions.

Understanding Partitions

Compare the hard disk in your computer to a pizza. To do something with it, you'll need a file
system on the hard drive. You can put the file system directly on the hard drive, which is like
cooking a pepperoni pizza: the ingredients are the same throughout. On Linux, different file
systems have to be used on the same hard drive, which is basically like cooking a pizza quattro
stagioni, four different pizzas in one—you don’t want everything mixed together. To make it
easier to make such a pizza, you could consider cutting the pizza into slices. The same goes for
computer hard drives, but rather than slices, you divide a drive into partitions. In this section,
you’ll learn how your computer works with partitions from the moment it boots.

If you were to put just one file system on your computer hard drive, there would be no
need to create partitions. You can do this, for instance, with a USB key. If there is just one hard
drive in your computer, however, you normally need to create different file systems on it. The
least you would need is a swap file system and a “normal” file system. Therefore, you will need
to create partitions on your hard drive.

When a computer boots, it reads the Master Boot Record (MBR) from the hard drive that
is marked as primary in the BIOS. From the MBR, it starts the boot loader, which is typically
GRUB. Next, it checks the partition table, which is also in the MBR, to find out about the file
systems that it can use. In the MBR, 64 bytes are reserved for partitions. This is 16 bytes per
partition, just enough to store the begin and end cylinders, the partition type, and info indi-
cating whether the partition is active. You can also display this information by issuing the
command fdisk -1 on your hard drive; for instance, fdisk -1 /dev/sda shows a list of all par-
titions that have been created on hard drive /dev/sda. Listing 5-2 shows what the result of this
command looks like.

Listing 5-2. With fdisk -1, You Can Show Basic Properties of Your Partitions
nuuk:~ # fdisk -1 /dev/sda
Disk /dev/sda: 8589 MB, 8589934592 bytes

255 heads, 63 sectors/track, 1044 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System
/dev/sdal * 1 13 104391 83 Linux
/dev/sda2 14 951 7534485 8e Linux LVM
/dev/sda3 952 1044 747022+ 8e Linux LVM

A special role is played by the active partition. The boot loader will check the 512-byte
boot sector that it finds at the beginning of this partition to find out whether a boot loader is

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

stored in it. For the rest, all you need to access a partition is the start and end cylinders. This
tells the kernel of the operating system where exactly it has to look to find the file system
within the partition.

In the 64 bytes that are allocated in the MBR to create partitions, you can create four parti-
tions only. As this may not be enough, you can create one of these partitions as an extended
partition. In an extended partition, you can create logical partitions. These have the same role
as normal partitions, with one exception only: they are not stored in the MBR, but in the boot
sectors of the four primary partitions. You can create a maximum of 56 logical partitions.

Every partition has a specific partition type. This partition type is used to indicate what
type of data is found in it. As an administrator, you should make sure that the partition types
are correct, because some utilities depend on the correct partition type being set and will
refuse services if this is not the case. Four partition types are of particular interest in a Linux
environment:

¢ 83 (Linux): This is the native Linux partition type. You can use it for any Linux file
system.

* 82 (Linux swap): Use this partition type for Linux swap partitions.

e 8e (Linux LVM): Use this partition type for working with LVM logical volumes (see the
section “Creating Logical Volumes” later in this chapter).

e 5 (Extended): Use this for extended partitions.

Managing Partitions with fdisk

The most common, though rather old, utility for creating partitions on Linux is fdisk. fdisk
offers a command-line interface that allows you to perform all partition manipulations that
you can think of. In the following procedure description, you'll read how to work with fdisk.

Creating Partitions

In this procedure, you'll see how to create partitions with fdisk. This procedure assumes that
you are working on a hard drive that is completely available and contains no important data.
If you want to test the steps as described in this procedure, I recommend using an empty
USB key. After attaching it to your computer, it will show up as /dev/sdb in most cases.

Since making a mistake about the hard drive on which you create partitions would be
fatal, let’s have a look first at how to recognize which drive is which on your computer. If
you've just attached an external medium like a USB drive to your computer and want to find
out the device name of this medium, use the dmesg utility. In Listing 5-3, you can see the last
part of its output, right after I've attached a USB key to my computer. As you can see, the ker-
nel recognizes the USB key and initializes it as /dev/sdc.

95

96

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

Listing 5-3. Using dmesg, It Is Easy to Find Out How the Kernel Recognizes Your USB Key

usb 1-1: new device found, idVendor=0951, idProduct=1603

usb 1-1: new device strings: Mfr=1, Product=2, SerialNumber=3

usb 1-1: Product: DataTraveler 2.0

usb 1-1: Manufacturer: Kingston

usb 1-1: SerialNumber: 899000000000000000000049

usb 1-1: configuration #1 chosen from 1 choice

scsi2 : SCSI emulation for USB Mass Storage devices

usb-storage: device found at 3

usb-storage: waiting for device to settle before scanning
Vendor: Kingston Model: DataTraveler 2.0 Rev: 1.00
Type: Direct-Access ANSI SCSI revision: 02

SCSI device sdc: 15769600 512-byte hdwr sectors (8074 MB)

sdc: Write Protect is off

sdc: Mode Sense: 23 00 00 00

sdc: assuming drive cache: write through

SCSI device sdc: 15769600 512-byte hdwr sectors (8074 MB)

sdc: Write Protect is off

sdc: Mode Sense: 23 00 00 00

sdc: assuming drive cache: write through

sdc: sdc1

sd 2:0:0:0: Attached scsi removable disk sdc

sd 2:0:0:0: Attached scsi generic sg2 type 0

usb-storage: device scan complete

After connecting the USB key to your system, it will have multiple drives attached. There
are two ways of getting an overview of all of them. If you are using a modern system that has sd
devices only and no hd devices (which refer to old parallel ATA IDE drives), you can use 1sscsi.
This command lists all drives that are using the SCSI driver. This includes not only SCSI drives
(which are pretty rare in end-user computers), but also SATA drives and USB drives. Listing
5-4 gives an overview of what the result of this command could look like.

Listing 5-4. Use 1sscsi to Get an Overview of All SCSI, SATA, and USB Disks on Your Computer

nuuk:~ # lsscsi

[0:0:0:0] disk VMware, VMware Virtual S 1.0 /dev/sda
[0:0:1:0] disk VMware, VMware Virtual S 1.0 /dev/sdb
[2:0:0:0] disk Kingston DataTraveler 2.0 1.00 /dev/sdc

If your computer also uses older parallel IDE attached drives, you can use the fdisk -1
command. This command will give you a list of all drives attached to your computer. When
using fdisk -1, look specifically for hd and sd devices, as this command may give you informa-
tion on other devices as well.

At this point you should be able to find out which is which on your computer hard drives.
Time to start configuring partitions. The next procedure describes how to do this with fdisk.
In this procedure, I'll assume that you are working on a USB disk that is attached as /dev/sdb.
If needed, replace /dev/sdb with the actual name of the disk you are working on.

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

1. Before you start creating partitions, check whether your disk already contains some
partitions. To do this, open fdisk on the disk by using the fdisk /dev/sdb command.
Next, type p to print the current partition table. This gives you a result such as the one
in Listing 5-5. The error messages are returned because this is a completely empty disk
device, on which not even a partition table exists.

Listing 5-5. Displaying Partition Information with fdisk

nuuk:~ # fdisk /dev/sdb

Device contains neither a valid DOS partition table, nor Sun, SGI or OSF
disklabel Building a new DOS disklabel. Changes will remain in memory
only,until you decide to write them. After that, of course, the previous
content won't be recoverable.

The number of cylinders for this disk is set to 1044.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other 0Ss
(e.g., DOS FDISK, 0S/2 FDISK)
Warning: invalid flag 0x0000 of partition table 4 will be corrected by w(rite)

Command (m for help): p

Disk /dev/sdb: 8589 MB, 8589934592 bytes
255 heads, 63 sectors/track, 1044 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System

Command (m for help):

2. Asyou can see in Listing 5-5, no partitions exist yet. To create a new partition, press
n now. fdisk will first ask you what type of partition you want to create. As no parti-
tions exist yet, you can type p to create a primary partition. Next, provide the partition
number that you want to create. Since nothing exists yet, type 1 to create the first par-
tition. Now fdisk asks for the start cylinder. It will suggest you use the first available
cylinder it has found, which is a good idea, so press Enter to accept this suggestion.
Next, it asks what you want to use as the end cylinder. You can enter a cylinder number
here, but it is more convenient to enter the size of the partition that you want to cre-
ate. Start this size with a + sign, next specify the amount, and following that use M or G
for megabytes or gigabytes; for instance, entering +1G would create a 1GB partition. In
Listing 5-6, you can see the code for this procedure.

98 CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

Listing 5-6. Creating a New Partition in fdisk

Using default value 1044

Command (m for help): d
Selected partition 1

Command (m for help): p

Disk /dev/sdb: 8589 MB, 8589934592 bytes
255 heads, 63 sectors/track, 1044 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System

Command (m for help): n
Command action
e extended
p primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-1044, default 1):
Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-1044, default 1044): +1G

Command (m for help):

3. As fdisk doesn’t show you the result, it is a good idea to use the p command now; this
will give you an overview of currently existing partitions.

4. When you have finished creating partitions, you would normally write the partitions
to the partition table. Before doing so, I will first show you how to create an extended
partition with a logical partition inside, and how to change the partition type. So with
the fdisk interface still open, type n now to create another new partition. Next, type e
to create an extended partition. You would normally use an extended partition to fill
up the rest of the available disk space with logical partitions; therefore, you can press
Enter twice now to use all remaining disk space for the extended partition.

5. After creating the extended partition, you can now create logical partitions inside it.
To do this, type n again to start creating a new partition. fdisk now asks whether you
want to create a logical or a primary partition. Type 1 now for logical partition. Next,
as when creating a normal partition, you need to specify the start cylinder and size of
the partition. When you have done that, type p again for the partition overview. You’ll
now see that the first logical partition is created as /dev/sdb5, and it has the Linux
partition type.

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

6. In some cases, you have to change the default partition type. Every partition that you
create is automatically defined as type 83 (Linux). For instance, if you need to create
a swap partition, you have to change this partition type. In most cases, however, the
default Linux partition type works well, as you can format any Linux file system on it.
Let’s have a look now at how to change the default partition type. To do this, enter the
1 command to display a list of all supported partition types. This shows you that for a
Linux swap, you have to use partition type 82. To apply this partition type, use the t
command now. Next, enter the partition number and the partition type you want to
use on that partition to change it. fdisk will now tell you that it has sucessfully changed
the partition type (see Listing 5-7).

Listing 5-7. In Some Situations, You Need to Change the Partition Type

Command (m for help): t

Partition number (1-5): 5

Hex code (type L to list codes): 82

Changed system type of partition 5 to 82 (Linux swap / Solaris)

Command (m for help):

7. Once you have made all changes that you want to apply to your partitions, it’s time
to write the changes if you are happy with them, or just quit if you are not sure about
the parameters you have changed. Before doing anything, use the p command again.
This shows you the current changes in the partition table. Are they what you wanted?
Use w to write the changes to disk. If you've made an error and don’t want to mess
up the current partitioning on your hard drive, use g to bail out safely. When using
g, nothing is changed, and the drive remains as it existed before you started working
with fdisk.

Telling the Kernel About the New Partitions

You have now written the new partition table to the MBR. If you changed partitions on a
device that was in use at the moment you changed the partition parameters, you will have
seen an error message indicating the device was busy and that you have to reboot to apply

the changes you've made to the partition table. This is because fdisk has updated the parti-
tion table, but by default it doesn’t tell the kernel about the updated partition table. You can
check this in the file /proc/partitions, which contains a list of all the partitions that the kernel
knows about (see Listing 5-8).

99

100

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

Listing 5-8. The File /proc/partitions Contains a List of All Partitions That the Kernel
Knows About

nuuk:~ # cat /proc/partitions
major minor #blocks name

8 0 8388608 sda
8 1 104391 sdal
8 2 7534485 sda2
8 3 747022 sda3
8 16 8388608 sdb
8 17 987966 sdb1
8 18 1 sdb2
8 21 1959898 sdbs
253 0 4194304 dm-0
253 1 131072 dm-1

If the device on which you have changed partitions has mounted partitions on it, the
/proc/partitions file doesn’t get updated automatically. Fortunately, there is a command
that you can use to force an update: partprobe. Issuing this command tells the kernel about
updated partitions, even for devices that were in use when you were manipulating the parti-
tion table.

Caution The partprobe utility works very well for adding new partitions. It doesn't work so well if
you've also removed partitions. To make sure that your computer knows that some partitions have disap-
peared, you better reboot your computer after removing partitions.

Deleting Partitions

If you know how to create a partition, deleting a partition is not hard. You use the same
fdisk interface, only with a different command. There is only one thing that you should be
aware of: when deleting a logical partition, you risk changing the order of the remaining
logical partitions. Assume that you have partitions /dev/sdb5 and /dev/sdb6. After deleting
/dev/sdbs, the partition /dev/sdb6 will be renumbered to /dev/sdb5, and all partitions after
/dev/sdb6 will also get renumbered. This will cause problems accessing the remaining parti-
tions, so be very careful when removing logical partitions! Fortunately, this problem only
exists for logical partitions; the number that is assigned to a primary or an extended parti-
tion will never change.

The next procedure shows you how to delete a partition.

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

1. Open fdisk on the device where you want to delete a partition; for instance, use
/dev/sdb if you want to delete a partition from the sdb device. Next, use p to display a
list of all partitions that exist on the device.

2. Determine the number of the partition that you want to delete, and enter that number
to delete it from your hard disk.

3. Use the p command again to verify that you have deleted the right partition. If so, use w
to write the changes to disk. If not, use q to quit without saving changes.

Tip If you have deleted the wrong partition, it doesn't necessarily mean that all your data is lost. As long
as you haven't created another file system at this partition, just re-create it with the same parameters—this
allows you to access the data in that partition again without any problems.

Fixing the Partition Order

In some cases, you will need to use some of the advanced partition options to change partition
parameters. You might, for instance, have to change the order of partitions. By deleting and re-
creating logical partitions, you may accidentally change the partition order. In Listing 5-9, you

can see an example in which this has happened.

Listing 5-9. Occasionally, You Will See Problems Like a Wrong Partition Order
nuuk:~ # fdisk /dev/sdb

The number of cylinders for this disk is set to 1044.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other 0Ss

(e.g., DOS FDISK, 0S/2 FDISK)

Command (m for help): p
Disk /dev/sdb: 8589 MB, 8589934592 bytes

255 heads, 63 sectors/track, 1044 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

101

102

CHAPTER 5

Device Boot

/dev/sdb1
/dev/sdb2
/dev/sdb5
/dev/sdb6

MANAGING PARTITIONS AND LOGICAL VOLUMES

Start End Blocks Id
1 123 987966 83

124 1044 7397932+ 5
368 490 987966 83
124 367 1959898+ 83

Partition table entries are not in disk order

Command (m for help):

System
Linux
Extended
Linux
Linux

The fact that the partitions are out of order will severely disturb some utilities. Therefore,
this is a problem that you should fix. fdisk makes this possible through some of its advanced
options. The following procedure describes how to fix this problem:

1. Start fdisk on the hard disk where you want to modify the partition table.

2. Type xto enter fdisk expert mode. In this mode, you'll have access to some advanced
options. Listing 5-10 gives an overview of the options in expert mode.

Listing 5-10. In fdisk Expert Mode, You Will Get Access to Advanced Options

Vv
W
X

verify the partition table
write table to disk and exit
extra functionality (experts only)

Command (m for help): x

Expert command (m for help): m
Command action

b

= < 0w H O T = 0K 0 an

move beginning of data in a partition
change number of cylinders

print the raw data in the partition table
list extended partitions

fix partition order

create an IRIX (SGI) partition table
change number of heads

print this menu

print the partition table

quit without saving changes

return to main menu

change number of sectors/track

verify the partition table

write table to disk and exit

Expert command (m for help):

3. From the expert interface, use f to fix the partition order. fdisk replies with a simple
“done” to tell you that it has finished doing so. You can now use r to return to the main
menu, and from there, use p to print the current partition layout. If you are happy with
the changes, use w to write them to disk and exit fdisk.

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

Working with cfdisk

If you don’t like the fdisk interface, another partitioning utility is available for you to try as
well: cfdisk. This utility is not as advanced as fdisk and lacks several options, but if you just
want to perform basic partition operations, you may like it. Listing 5-11 shows the cfdisk
interface.

Listing 5-11. cfdisk Offers an Easier Interface to Perform Basic Partitioning Actions

cfdisk 2.12r

Disk Drive: /dev/sdb
Size: 8589934592 bytes, 8589 MB
Heads: 255 Sectors per Track: 63 Cylinders: 1044

Name Flags Part Type FS Type [Label] Size (MB)

sdb1 Primary Linux 1011.71

sdb5 Logical Linux 2006.97
Logical Free Space 213.83*

sdbb Logical Linux 797.89*
Logical Free Space 4556.81

[Bootable] [Delete] [Help] [Maximize] [Print]

[

Quit] [Type] [Units] [Write]

Print partition table to the screen or to a file

cfdisk offers a menu interface that gives you different options that are context sensitive.
That is, based on the current partition type that you have selected by manipulating the arrow
keys, you'll see different options. To navigate between the different options, use the Tab key.
Following are short descriptions of these options:

Bootable: Use this option to mark a partition as bootable. This is equivalent to the
fdisk option to mark the active partition.

New: Use this option to create a new partition in unallocated disk space.
Delete: Use this option to remove a partition.
Help: This option shows usage information about cfdisk.

Maximize: With this option, you can increase the size of a partition on a disk where
unallocated cylinders are still available. Note that after using this option, you should
increase the file system in that partition also.

Print: This option gives you three different choices for printing partition information;
you can print the raw partition information, information about partitions sectors, and
the contents of the partition table.

Quit: Use this option to close the cfdisk interface.

103

104

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

e Type: With this option, you can change the partition type.
e Units: This option changes the units in which the partition sizes are displayed.

e Write: Use this option to write changes to the partition table to disk and exit.

Recovering Lost Partitions with gpart

Occasionally, something may go terribly wrong, and you may lose all partitions on your hard
disk. The good news is that a partition is just a marker for the start and end of a file system that
exists within the partition. If you lose the information in the partition table, it doesn’t neces-
sarily mean that you also lose the file system that exists in it. Therefore, in many cases, if you
re-create the lost partition with the same partition boundaries, you will be able to access the
file systems that existed in the partition as well. So if you have good documentation of how the
partition table once was structured, you can just re-create it accordingly.

On the other hand, if you have no documentation that shows you how the partitioning
on your hard disk once was, you can use the gpart utility. This utility analyzes the entire hard
disk to see whether it can recognize the start of a file system. By finding the start of a file sys-
tem, it automatically also finds the partition in which the file system was created. However,
gpart doesn’t always succeed in its work, especially on extended partitions, where it may fail
to detect the original partitioning. Let’s have a look at how well it does its work based on the
partition table in Listing 5-12.

Listing 5-12. The Original Partition Table for This Example
nuuk:~ # fdisk -1 /dev/sdb
Disk /dev/sdb: 8589 MB, 8589934592 bytes

255 heads, 63 sectors/track, 1044 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System
/dev/sdb1l 1 123 987966 83 Linux
/dev/sdb2 124 367 1959930 83 Linux
/dev/sdb3 368 1044 5438002+ 5 Extended
/dev/sdbs 368 490 987966 83 Linux
/dev/sdb6 491 856 2939863+ 83 Linux

gpart does have some options, but you may find that those options don’t really add much
to its functionality. It just tries to read what it finds on your hard drive, and that’s it. In Listing
5-13, you can see how well it did in trying to find the partition table from Listing 5-12.

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

Listing 5-13. gpart Results

nuuk:~ # gpart /dev/sdb

Begin scan...
Possible partition(Linux ext2), size(964mb), offset(omb)
Possible partition(Linux ext2), size(1913mb), offset(964mb)
Possible extended partition at offset(2878mb)
Possible partition(Linux ext2), size(964mb), offset(2878mb)
Possible partition(Linux ext2), size(2870mb), offset(3843mb)
End scan.

Checking partitions...

Partition(Linux ext2 filesystem): primary

Partition(Linux ext2 filesystem): primary
Partition(Linux ext2 filesystem): logical
Partition(Linux ext2 filesystem): logical

ok.

Guessed primary partition table:
Primary partition(1)
type: 131(0x83)(Linux ext2 filesystem)
size: 964mb #s(1975928) s(63-1975990)
chs: (0/1/1)-(122/254/59)d (0/1/1)-(122/254/59)1

Primary partition(2)
type: 131(0x83)(Linux ext2 filesystem)
size: 1913mb #s(3919856) s(1975995-5895850)
chs: (123/0/1)-(366/254/59)d (123/0/1)-(366/254/59)r

Primary partition(3)
type: 015(0x0F)(Extended DOS, LBA)
size: 3835mb #s(7855785) s(5895855-13751639)
chs: (367/0/1)-(855/254/63)d (367/0/1)-(855/254/63)1

Primary partition(4)
type: 000(0x00) (unused)
size: omb #s(0) s(0-0)
chs: (0/0/0)-(0/0/0)d (0/0/0)-(0/0/0)x

Asyou can see, gpart did a pretty good job in this case, but you can’t just take the infor-
mation as is when re-creating the partitions. When using gpart, you should start by analyzing
the first part of the gpart output. This part gives you a list of all partitions that it has found,
including their sizes. As fdisk works primarily on cylinders, you may find the end of the gpart
output more usable. The four Primary partition indicators refer to either primary or extended

105

106

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

partitions that are normally stored in the MBR. Also very useful: it gives you chs (cylinder/
head/sector) information, telling you exactly the first cylinder and the last cylinder used by the
partition. By using the chs information, gpart tells you exactly on which cylinder, head, and
sector the partition started, which helps you in re-creating the partition. Be aware, however,
that fdisk calls the first cylinder on a disk cylinder 1, whereas gpart calls it cylinder 0. There-
fore, when re-creating the partitions, add 1 to the list of cylinders as displayed by gpart to
re-create the right partition sizes.

Creating Logical Volumes

In the first part of this chapter, you have read about partitions. Working with partitions is
fine if you have a simple setup without any special requirements. However, if you need more
flexibility, you may need another solution. Such a solution is offered by the Logical Volume
Manager (LVM) system. Some distributions, such as Red Hat and derived distributions, even
use LVM as their default hard disk layout. Working with LVM offers some benefits, of which
the most important are listed here:

¢ You can resize logical volumes easily.

¢ By using the snapshot feature, it is easy to freeze the state of a logical volume, which
makes it possible to make a stable backup of a versatile file system.

¢ Logical volumes offer support for use in a cluster environment, where multiple nodes
may access the same volumes.

¢ The number of logical volumes that you can create is much higher than the number of
traditional partitions.

In the next sections, you'll read about the way logical volumes are organized and the man-
agement of logical volumes.

Understanding Logical Volumes

The Linux LVM uses a three-layer architecture. At the bottom layer are the storage devices.
In LVM terminology, these are referred to as physical volumes. These can be hard disks, RAID
arrays, and partitions, and you can even use sparse files (these are files that are completely
filled with zeroes to have them occupy disk space) as the storage back end. In order to use
the storage back end in an LVM setup, you need to run the pvcreate command, which tells
the LVM subsystem that it can use this device to create logical volumes. If you want to put

a partition in an LVM setup, you need to create that partition is type 8e as well. The section
“Understanding Partitions” earlier in the chapter described how to do so with fdisk.

Based on the physical volumes, you can create the second level, which consists of volume
groups. These are just collections of storage devices. You can use a one-on-one solution in
which one physical volume represents one volume group. You can also use a multiple-on-one
solution, which means you can put multiple storage devices in one volume group and cre-
ate multiple volume groups on one storage device. However, the former solution is not such
a good idea. If you have multiple storage devices in one volume group, the volume group will

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

break if one of the devices in it fails. So better not to do it that way, and make sure that you
have some redundancy at this level.

The third level consists of the logical volumes. These are the flexible storage units that you
are going to create and on which you are going to put a file system. A logical volume is always
created on top of a volume group, and you can create multiple logical volumes from one vol-
ume group or just one logical volume on each volume group—whichever you prefer. In the
next section, you'll learn how to set up an LVM environment.

Setting Up a Disk with Logical Volume Manager

Setting up an environment that uses logical volumes is a three-step procedure. First you need
to set up the physical volumes. Next, you have to create the volume group. Finally, you need to
create the logical volumes themselves.

Creating Physical Volumes

Creating the physical volume is not too hard—you just need to run the pvcreate command
on the storage device that you want to use. If this storage device is a partition, don’t forget to
change its partition type to 8e before you start. Next, use the pvcreate command, followed by
the name of the storage device. The following line creates a physical volume for the partition
/dev/sdb2:

pvcreate /dev/sdb2

After creating it, you can use pvdisplay /dev/sdb2 to show the properties of the physical
volume that you've just created. Listing 5-14 shows the results of both commands.
Listing 5-14. Creating a Physical Volume and Showing Its Properties

nuuk:~ # pvcreate /dev/sdb2

Physical volume "/dev/sdb2" successfully created
nuuk:~ # pvdisplay /dev/sdb2

--- NEW Physical volume ---

PV Name /dev/sdb2

VG Name

PV Size 7.06 GB

Allocatable NO

PE Size (KByte) 0

Total PE 0

Free PE 0

Allocated PE 0

PV UUID MH3NLh-TR27-tPmk-51Wi-jZrH-NKwb-rBN3WY

The pvdisplay command shows information about the different properties of the physical
volume:

107

108 CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

e PV Name: The name of the physical volume.

e VG Name: The name of the volume group, if any, that is already using this physical
volume.

e PV Size: The size of the physical volume.
¢ Allocatable: Indicator of whether this physical volume is usable or not.

e PE Size: The size of the physical extents. Physical extents are the building blocks of
physical volumes, as blocks are the building blocks on a computer hard drive.

e Total PE: The total number of physical extents that is available.
e Free PE: The number of physical extents that is still unused.
e Allocated PE: The number of physical extents that is already in use.

e PV UUID: A random generated unique ID for the physical volume.

Creating Volume Groups

Now that you have created the physical volume, you can use it in a volume group. To do this,
you need the vgcreate command. This command does have some options that you will nor-
mally never use; to create the volume group, it’s usually enough to specify the name of the
volume group and the name of the physical volume(s) that you want to use for them. If you
don’t want to use the entire volume group, you may use the option -L as well, to specify the
size you want to use. And if you want to use the volume group in a clustered environment, you
should use the option -c to tell the cluster manager that other nodes may access this volume.
Also, you can specify the size of the physical extents that are used in building the volume.
As mentioned previously, physical extents are the building blocks for logical volumes, and you
set the size of these building blocks when creating the volume group. The default size of the
physical extent is 4MB, which allows you to create LVM volumes with a maximal size of 256GB.
If you need bigger volumes, you need bigger physical extents. For example, to create an LVM
volume with a size of 1TB, you would need a physical extent size of 16MB. In the following
example, you can see how to create a volume group that uses a physical extent size of 16MB:

vgcreate -s 16M volgroup /dev/sdb2

After creating your volume group, you may want to verify its properties. You can do this by
using the vgdisplay command. Listing 5-15 shows the result of this command.

Listing 5-15. Showing Properties of a Volume Group with vgdisplay

nuuk:~ # vgdisplay /dev/volgroup
--- Volume group ---

VG Name volgroup
System ID

Format lvm2
Metadata Areas 2

Metadata Sequence No 1

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

VG Access read/write

VG Status resizable

MAX LV 0

Cur LV 0

Open LV 0

Max PV 0

Cur PV 2

Act PV 2

VG Size 7.05 GB

PE Size 4.00 MB

Total PE 1805

Alloc PE / Size 0/0

Free PE / Size 1805 / 7.05 GB
VG UUID 011soU-FKou-oafC-3KxU-HuLH-cBpf-VoK9e0

As you can see, the vgdisplay command shows you what size is allocated currently to the
volume group. Since it is a new volume group, this size is set to 0 (Alloc PE / Size).Italso
shows you how many physical volumes are assigned to this volume group (Cur PV). To get
more details about which physical volumes these are, use the pvdisplay command again with-
out arguments. This will show all available physical volumes, and also to which volume group
they currently are assigned.

Creating Logical Volumes

Now that you have created the physical volumes as well as the volume group, it’s time to cre-
ate the logical volumes. As shown when issuing lvcreate --help (see Listing 5-16), there are
many options that you can use with lvcreate.

Listing 5-16. When Creating Logical Volumes, There Are Many Options You Can Use

nuuk:~ # lvcreate --help
lvcreate: Create a logical volume

lvcreate
-A|--autobackup {y|n}]
--addtag Tag]
--alloc AllocationPolicy]
-C|--contiguous {y|n}]
-d|--debug]
-h|-?|--help]
-i|--stripes Stripes [-I|--stripesize StripeSize]]
{-1|--extents LogicalExtentsNumber |

-L|--size LogicalVolumeSize[kKmMgGtTpPeE]}
M|--persistent {y|n}] [--major major] [--minor minor]
m|--mirrors Mirrors [--nosync] [--corelog]]

n|--name LogicalVolumeName]

p|--permission {r|rw}]

[
[
[
[
[
[
[

[_
[_
[_
[_

109

110

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

[-1|--readahead ReadAheadSectors]
[-R|--regionsize MirrorLogRegionSize]
[-t|--test]
[--type VolumeType]
[-v|--verbose]
[-Z]--zexo {y|n}]
[--version]
VolumeGroupName [PhysicalVolumePath...]
For example, you can use the --readahead parameter to configure read-ahead, an option
that will enhance the performance of file reads on the logical volume. There are, however, only
a few options that are really useful:

e -L: Use this option to specify the size that you want to assign to the logical volume. You
can do this in kilobytes, megabytes, gigabytes, terabytes, petabytes, or exabytes, as well
as bits. Alternatively, you can use -1 to specify the volume size in extents, the build-
ing blocks for logical volumes. Typically, these extents have a size of 4MB, which is set
when creating the volume group. It is mandatory to use either -L or -1.

¢ -n: The optional option -n allows you to specify a name for the logical volume. If you
don’t specify a name, the volume will get its name automatically, and typically, this
name will be Iv1 for the first volume you create, Iv2 for the second volume, and so on.
To use a name that has more meaning, use -n yourname.

* VolumeGroupName: This is a mandatory parameter that has you specify in which volume
group you want to create the logical volume.

e PhysicalVolumePath: This optional parameter allows you to specify exactly on which
physical volume you want to create the logical volume. This option is useful if your vol-
ume group has more than one physical volume. By using this option, you can ensure
that the logical volume still works if the physical volume that doesn’t contain the logi-
cal volume goes down.

Based on this information, you can create a logical volume. For example, if you want
to create a logical volume that has the name data, uses the physical volume /dev/sdb2, and
is created in the volume group volgroup with a size of 500MB, you would use the following
command:

lvcreate -n data -L 500M volgroup /dev/sdb2

After creating a logical volume, you can display its properties using lvdisplay. To do this,
you need to use the complete device name of the logical volume. In this device name, you'll
first use the name of the device directory /dev, followed by the name of the volume group,
which in turn is followed by the name of the logical volume. For instance, the logical volume
data in volume group volgroup would use the device name /dev/volgroup/data. In Listing
5-17, you can see an example of the output of this command.

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

Listing 5-17. Showing the Properties of a Logical Volume with Ivdisplay

nuuk:~ # lvcreate -n data -L 500M volgroup /dev/sdb2
Logical volume "data" created

nuuk:~ # lvdisplay /dev/volgroup/data
--- Logical volume ---

LV Name /dev/volgroup/data
VG Name volgroup

LV UUID PVZLFz-W6fX-Vrma-BLYM-rCN1-YnTn-ZUTpT+
LV Write Access read/write

LV Status available

open 0

LV Size 500.00 MB

Current LE 125

Segments 1

Allocation inherit

Read ahead sectors 0

Block device 253:2

In Listing 5-17, the following information is provided:

e LV Name: The name of the logical volume.
e VG Name: The name of the volume group.
e LV UUID: A unique ID that is given to the volume.

e LV Write Access: The read/write status of the volume. As you can see, users who have
enough file system permissions can write to this volume.

e LV Status: The current status of the volume. This should read available; otherwise, the
volume cannot be used.

¢ open: The number of files that are open on the volume.
e LV Size: The size of the volume.

e Current LE: The number oflogical extents. A logical extent is the logical representation
of the physical extent in the volume.

e Segments: The number of physical devices on which this volume is contained.
e Allocation: The current allocation status. This parameter should be set to inherit.

e Read Ahead Sectors: The number of sectors the operating system should read ahead
on a volume. For performance optimization, you can set this number. That is, if the
operating system asks for the information in section 13 and the Read Ahead Sectors
parameter is set to 4, it would read sectors 13 to 17. Although this sounds like some-
thing you would want to do, on modern hardware the controller of the storage device
takes care of this, so there is no need to set this parameter.

e Block Device: The address that the kernel uses to find this volume.

11

112

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

At this point, you have logical volumes. As the next step, you need to create file systems on
them. Read the section “Working with File Systems” later in this chapter for information how
to do that.

Working with Snapshots

Among the many things you can do with logical volumes is the option to work with snapshots.
For instance, snapshots can be useful when creating a backup of a volume that has many open
files. Normally, backup software will fail to back up a file that is open. Working with snapshots
allows the backup software to back up the snapshot instead of the actual files, and by doing
this it will never fail on open files.

A snapshot freezes the current status of a volume. It does so by initially copying the meta-
data of the volume into the snapshot volume. This metadata tells the file system driver where
it can find the blocks in which the files are stored. When the snapshot is initially created, the
metadata redirects the file system to the original blocks that the file system uses. This means
that by reading the snapshot, you follow pointers to the original volume to read the blocks of
this volume. Only when a file gets changed do the original blocks get copied to the snapshot
volume, which at that moment grows. This also means that the longer the snapshot volume
exists, the bigger it will grow. Therefore, you should make sure to use snapshots as a temporary
measure only; otherwise they may trash your original volume as well.

Caution A snapshot is meant to be a temporary solution, not a permanent solution. Make sure that you
remove it after some time, or it may trash the associated volume.

Before creating a snapshot, you have to determine the approximate size that it’s going to
have. Ultimately, this depends on the time you think the snapshot is going to be around and
the amount of data that you expect will change within that time frame. A good starting point
is to create it with a size that is 10% larger than the original volume. However, if you think it’s
going to be around longer, make sure that it is bigger so that it can keep all data that changes
on the original volume from the moment that you have created the snapshot.

Creating a snapshot volume works basically the same as creating a normal volume. There
are two differences though: you need to use the option -s to indicate that it is a snapshot vol-
ume, and you need to indicate the original volume that you want to make the snapshot for.
The next line shows how you can create a snapshot with the name data_snap for the volume
/dev/volgroup/data:

lvcreate -s -L 50M -n data_snap /dev/volgroup/data

After creating the snapshot, you can access it like any other volume device. This means
you can mount it or have your backup software take a copy of it. Don’t forget that when you
are done with it and don’t need it anymore, you have to remove it. To do that for a snapshot
with the name data_snap, use the following command:

lvremove /dev/volgroup/data_snap

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

Caution Failing to remove your snapshot volume may make the original volume inaccessible. So never
forget to remove your snapshot after usage!

Basic LVM Troubleshooting

Occasionally, you may run into trouble when working with LVM. The first problem arises when
the computer fails to initialize the logical volumes when booting. This may occur when the
service that scans for logical volumes comes up when your devices are not all connected yet. If
that happens, you need to initialize the logical volumes manually. In the following procedure,
to show you how to fix this problem, I have attached a device containing logical volumes after
booting the computer. First, I will show you that the device is not activated as a physical vol-
ume automatically, and following that, you’ll read how you can activate it manually.

1. If you have just attached the device that contains logical volumes, use the dmesg com-
mand. This command shows you kernel messages and will display which device was
connected last. Listing 5-18 shows you the last part of its output.

Listing 5-18. Use dmesg to Show the Name of the Device That You've Just Connected

usb 2-1: Manufacturer: Kingston
usb 2-1: SerialNumber: 5B7A12860AFC
usb 2-1: configuration #1 chosen from 1 choice
Initializing USB Mass Storage driver...
scsil : SCSI emulation for USB Mass Storage devices
usb-storage: device found at 2
usb-storage: waiting for device to settle before scanning
usbcore: registered new driver usb-storage
USB Mass Storage support registered.
Vendor: Kingston Model: DataTraveler 2.0 Rev: PMAP
Type: Direct-Access ANSI SCSI revision: 00
SCSI device sdc: 8060928 512-byte hdwr sectors (4127 MB)
sdc: Write Protect is off
sdc: Mode Sense: 23 00 00 00
sdc: assuming drive cache: write through
SCSI device sdc: 8060928 512-byte hdwr sectors (4127 MB)
sdc: Write Protect is off
sdc: Mode Sense: 23 00 00 00
sdc: assuming drive cache: write through
sdc: sdcl < sdc5 sdc6 > sdc2
sd 1:0:0:0: Attached scsi removable disk sdc
sd 1:0:0:0: Attached scsi generic sg2 type 0
usb-storage: device scan complete

As you can see from the dmesg output, I have connected a 4GB USB key to the system
that has obtained the device name /dev/sdc.

113

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

2. Use the pvs command to show a list of all physical volumes that the system knows

about at the moment. This gives a result like the one in Listing 5-19.

Listing 5-19. Use pvs to Show a List of All Known Physical Volumes

nuuk:~ # pvs

PV VG Fmt Attr PSize PFree
/dev/sda2 system lvm2 a- 7.18G 3.06G
/dev/sda3 vmi lvm2 a- 728.00M 728.00M
/dev/sdb2 volgroup lvm2 a- 2.71G 2.28G
/dev/sdb3 volgroup lvm2 a- 4.28G 4.28G

As you can see, some physical volumes are known to the system, but /dev/sdc is not
among them.

. At this point, you should tell the LVM subsystem to scan for physical volumes. To do
this, use the pvscan command. This command will check all currently connected stor-
age devices and show you all physical volumes that it has found on them. As a result, it
will now also see the /dev/sdc device. Listing 5-20 shows you what the result looks like.

Listing 5-20. With pvscan You Scan All Storage Devices for the Occurence of
Physical Volumes

nuuk:~ # pvscan
PV /dev/sdc2 VG group lvm2 [956.00 MB / 156.00 MB free]
PV /dev/sdb2 VG volgroup lvm2 [2.77 GB / 2.28 GB free]
PV /dev/sdb3 VG volgroup lvm2 [4.28 CGB / 4.28 GB free]
PV /dev/sda3 VG vmi lvm2 [728.00 MB / 728.00 MB free]
PV /dev/sda2 VG system lvm2 [7.18 GB / 3.06 GB free]
Total: 5 [15.88 GB] / in use: 5 [15.88 GB] / in no VG: 0 [0]

. Now that the physical volumes have been initialized, it’s time to go up in the stack and
see what volume groups your computer knows about. For this purpose, use the vgs
command (see Listing 5-21).

Listing 5-21. The vgs Command Gives a List of All Available Volume Groups

nuuk:~ # vgs

VG #PV #LV #SN Attr VSize VFree
group 1 2 1 wz--n- 956.00M 156.00M
system 1 2 0 wz--n- 7.18G 3.06G
vmi 1 0 0 wz--n- 728.00M 728.00M

. At this point, if you don’t see all the volume groups that you've expected, use the
vgscan command to tell your computer to scan all physical volumes for volume groups.
Listing 5-21 shows you what the result of this command looks like. For instance, the
volume volgroup is not listed. Running vgscan will fix this problem, as you can see in
Listing 5-22.

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES 115

Listing 5-22. The vgscan Command Scans All Physical Devices for Volume Groups

nuuk:~ # vgscan
Reading all physical volumes. This may take a while...
Found volume group "group" using metadata type lvm2
Found volume group "volgroup" using metadata type lvm2
Found volume group "vmi" using metadata type lvm2
Found volume group "system" using metadata type lvm2

6. Now that all volume groups are available, it’s time for the last task: to see whether you
can access the logical volumes that exist in them. To do this, first use the 1vs command
(see Listing 5-23).

Listing 5-23. Use the 1vs Command for a List of All Logical Volumes

nuuk:~ # lvs

LV VG Attr LSize Origin Snap% Move Log Copy%
one group owi--- 300.00M

one_snap group swi--- 100.00M one

two group -wi--- 400.00M

root system -wi-ao 4.00G

swap system -wi-ao 128.00M

data volgroup -wi-a- 500.00M

7. In case there are missing logical volumes, use lvscan to scan all devices for logical
volumes. This should now activate all volumes that you've got.

8. At this point, all logical volumes are available, but they probably are not activated
yet. To confirm if this is the case, use the 1vdisplay command on the volume group
that you’ve just activated. For instance, if the name of the volume group is group,
lvdisplay group shows you the current status of the volumes in it. As you can see in
Listing 5-24, all logical volumes have the status inactive.

Listing 5-24. After Scanning for Volumes Manually, They Still Are in an Inactive State

nuuk:~ # lvdisplay group
--- Logical volume ---

LV Name /dev/group/one
VG Name group
LV UUID bYvwJU-8e30-1Um-xWCK-v8nE-pIqT-CUYk0O9
LV Write Access read/write
LV snapshot status source of
/dev/group/one_snap [INACTIVE]
LV Status NOT available
LV Size 300.00 MB
Current LE 75
Segments 1
Allocation inherit

Read ahead sectors 0

116 CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

--- Logical volume ---

LV Name /dev/group/two

VG Name group

LV UUID yBxTuU-mHvh-3HCb-MIoU-D2ic-6257-hVHIxXI
LV Write Access read/write

LV Status NOT available

LV Size 400.00 MB

Current LE 100

Segments 2

Allocation inherit

Read ahead sectors 0

--- Logical volume ---

LV Name /dev/group/one_snap

VG Name group

LV UUID DCBU50-w4SD-HPEu-J32S-pnVH-1inen-YOMcoU
LV Write Access read/write

LV snapshot status INACTIVE destination for /dev/group/one
LV Status NOT available

LV Size 300.00 MB

Current LE 75

COW-table size 100.00 MB

COW-table LE 25

Snapshot chunk size 8.00 KB

Segments 1

Allocation inherit

Read ahead sectors 0

9. At this point, you need to activate the logical volumes. You can do that by using the
vgchange command to change the status of the volume group the volumes are in. So if
the name of the volume group is group, use vgchange -a y group to change the group
status to active (see Listing 5-25).

Listing 5-25. Use vgchange to Change the Group Status to Active

nuuk:~ # vgchange -a y group
2 logical volume(s) in volume group "group" now active

10. Using vgchange has activated all logical volumes. At this point, you can mount them
and use the file systems that are on them.

Working with File Systems

Working with file systems is a very important task for the Linux administrator. Different file
systems are available; you have to choose the best file system for the tasks that you want to
perform, and make sure that it is available and performing well. In this section, you'll learn
about the different file systems and how to format them. Next, you will find information

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

on maintaining, tuning, and resizing them. At the end of this section, you will also find infor-
mation on how to work with Windows file systems.

Understanding File Systems

A file system is the structure that is used to access logical blocks on a storage device. For
Linux, different file systems are available, of which Ext2, Ext3, XFS, and to some extent
ReiserFS are the most important ones. What they have in common is that all organize logical
blocks on the storage device in a certain way. All also have in common that inodes and direc-
tories play a key role in allocating files. Other distinguishing features play a role as well. In
the following sections, you'll learn about common elements and distinguishing features that
file systems are using.

About Inodes and Directories

The basic building block of a file system is the block. This is a storage allocation unit on disk
your file system is using. Typically, it exists on a logical volume or a traditional partition. To
access these data blocks, the file system collects information on where the blocks of any given
file are stored. This information is written to the inode. Every file on a Linux file system has
an inode, and the inode almost contains the complete administration of your files. To give
you an impression, in Listing 5-26 you can see the contents of an inode as it exists on an Ext2
file system, as shown with the debugfs utility. Use the following procedure to display this
information:

1. Locate an Ext2 or Ext3 file system on your machine. Make sure files on the file system
cannot be accessed while working in debugfs. You could consider remounting the file
system using mount -o remount /yourfilesystem.

2. Open a directory on the device that you want to monitor and use the 1s -i command
to display a list of all file names and their inode numbers. Every file has one inode
that contains its complete administration. Make sure that you'll remember the inode
number later, as you will need it in step 4 of this procedure.

3. Use the debugfs command to access the file system on your device in debug mode. For
example, if your file system is /dev/sda1, you would use debugfs /dev/sdal.

4. Use the stat command that is available in the file system debugger to show the con-
tents of the inode. When done, use exit to close the debugfs environment.

Listing 5-26. The Ext2/Ext3 debugfs Tool Allows You to Show the Contents of an Inode

root@mel:/boot# debugfs /dev/sda1l

debugfs 1.40.8 (13-Mar-2008)

debugfs: stat <19>

Inode: 19 Type: regular Mode: 0644 Flags: 0x0 Generation: 2632480000
User: 0 Group: 0 Size: 8211957

File ACL: 0 Directory ACL: 0

Links: 1 Blockcount: 16106

Fragment: Address: O Number: 0 Size: 0

ctime: 0x48176267 -- Tue Apr 29 14:01:11 2008

117

118

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

atime: 0x485ea3e9 -- Sun Jun 22 15:11:37 2008
mtime: 0x48176267 -- Tue Apr 29 14:01:11 2008
BLOCKS:
(0-11):22749-22760, (IND):22761, (12-267):22762-23017, (DIND):23018, (IND):23019,
(268-523):23020-23275, (IND):23276, (524-779):23277-23532, (IND):23533, (780-1035
):23534-23789, (IND):23790, (1036-1291):23791-24046, (IND):24047, (1292-1547):
24048-24303, (IND):24304, (1548-1803):24305-24560, (IND):24561, (1804-1818):24562
-24576, (1819-2059):25097-25337, (IND):25338, (2060-2315):25339-25594, (IND):
25595, (2316-2571):25596-25851, (IND):25852, (2572-2827):25853-26108, (IND):
26109, (2828-3083):26110-26365, (IND):26366, (3084-3339):26367-26622, (IND):26623,
(3340-3595):26624-26879, (IND):26880,(3596-3851):26881-27136, (IND):27137, (3852
-4107):27138-27393, (IND):27394, (4108-4363):27395-27650, (IND):27651, (4364-4619)
127652-27907, (IND):27908, (4620-4875):27909-28164, (IND):28165, (4876-5131):28166
-28421, (IND):28422, (5132-5387):28423-28678,(IND):28679, (5388-5643):28680-28935
, (IND):28936, (5644-5899):28937-29192, (IND):29193,(5900-6155):29194-29449, (IND)
129450, (6156-6411):29451-29706, (IND):29707, (6412-6667):29708-29963, (IND):
29964, (6668-6923):29965-30220, (IND):30221, (6924-7179):30222-30477, (IND):

If you look hard enough at the information that is displayed by using the stat command
in debugfs, you’ll recognize some of the information that is displayed when using 1s -1 on
a give file. For instance, the mode parameter tells you what permissions are set, and the user
and group parameters give information about the user and group that are owners of the file.
The debugfs utility adds some information to that. For instance, in its output you can see the
blocks that are in use by your file as well, and that may come handy when restoring a file that
has been deleted by accident.

The interesting thing about the inode is that within the inode, there is no information
about the name of the file. This is because from the perspective of the operating system, the
name is not important. Names are for users who normally can’t handle inodes too well. To
store names, Linux uses a directory tree.

A directory is a special kind of file, containing a list of files that are in the directory, plus
the inode that is needed to access these files. Directories themselves have an inode number as
well; the only directory that has a fixed location is /. This guarantees that your file system can
always start locating files.

If, for example, a user wants to read the file /etc/hosts, the operating system will first look
in the root directory (which always is found at the same location) for the inode of the directory
/etc. Once it has the inode for /etc, it can check what blocks are used by this inode. Once the
blocks of the directory are found, the file system can see what files are in the directory. Next,
it checks what inode it needs to open the /etc/hosts file and will present the data to the user.
This procedure works the same for every file system that can be used.

In a very basic file system such as Ext2, it works exactly in the way just described.
Advanced file systems may offer options to make the process of allocating files somewhat
easier. For instance, the file system can work with extents. An extent is a large number of con-
tiguous blocks that are allocated by the file system as one unit. This makes handling large files
a lot easier. Since 2006, there is a patch that enhances Ext3 to support extent allocation. You
can see the result immediately, when comparing the result of Listing 5-26 with Listing 5-27.
This is the inode for the same file after it has been copied from the Ext2 volume to the Ext3 vol-
ume. As you can see, it has lots fewer blocks to manage.

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

Listing 5-27. A File System That Supports Extents Has Fewer Individual Blocks to Manage and
Therefore Is Faster

root@mel:/# debugfs /dev/system/root
debugfs 1.40.8 (13-Mar-2008)
debugfs: stat <24580>

Inode: 24580 Type: regular Mode: 0644 Flags: 0x0 Generation: 2026345315
User: 0 Group: 0 Size: 8211957

File ACL: 0 Directory ACL: 0

Links: 1 Blockcount: 16064

Fragment: Address: 0 Number: O Size: 0

ctime: 0x487238ee -- Mon Jul 7 11:40:30 2008

atime: 0x487238ee -- Mon Jul 7 11:40:30 2008

mtime: Ox487238ee -- Mon Jul 7 11:40:30 2008

BLOCKS:

(0-11) :106496-106507, (IND):106508, (12-1035):106509-107532, (DIND):107533,
(IND):107534, (1036-2004):107535-108503

TOTAL: 2008

(END)

A file system may use other techniques to work faster as well, such as allocation groups.
By using allocation groups, a file system divides the available space into chunks and manages
each chunk of disk space individually. By doing this, the file system can achieve a much higher
1/0 performance. All Linux file systems use this technique; some even use the allocation group
to store backups of vital file system administration data.

About Superblocks, Inode Bitmaps, and Block Bitmaps

To mount a file system, you need a file system superblock. Typically, this is the first block on

a file system, and it contains generic information about the file system. You can make it vis-
ible using the stats command from a debugfs environment. In Listing 5-28, the logical volume
/dev/system/root is first opened with debugfs, and next the stats utility is used to display
information from the file system superblock.

Listing 5-28. Example of an Ext3 Superblock

root@mel:~# debugfs /dev/system/root
debugfs 1.40.8 (13-Mar-2008)
debugfs: stats

Filesystem volume name: <none>

Last mounted on: <not available>

Filesystem UUID: d40645e2-412e-485€e-9225-8e7f87b9f568

Filesystem magic number: OXEF53

Filesystem revision #: 1 (dynamic)

Filesystem features: has_journal ext attr resize inode dir index filetype needs

_Trecovery sparse super large file
Filesystem flags: signed directory hash

119

120

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

Default mount options: (none)
Filesystem state: clean
Errors behavior: Continue
Filesystem 0S type: Linux
Inode count: 6553600
Block count: 26214400
Reserved block count: 1310720
Free blocks: 23856347
Free inodes: 6478467
First block: 0

Block size: 4096
Fragment size: 4096
Reserved GDT blocks: 1017
Blocks per group: 32768
Fragments per group: 32768

Without the superblock, you cannot mount the file system, and therefore most file systems
keep backup superblocks at different locations in the file system. If the real file system gets bro-
ken, you can mount using the backup superblock and still access the file system anyway.

Apart from the superblocks, the file system contains an inode bitmap and a block bitmap.
By using these bitmaps, the file system driver can determine easily whether a given block or
inode is available. When creating a file, the inode and blocks used by the file are marked as in
use; when deleting a file, they will be marked as available and can be overwritten by new files.

After the inode and block bitmaps, the inode table is stored. This contains the administra-
tion of all files on your file system. Since it normally is big (an inode is at least 128 bytes), there
is no backup of the inode table.

Journaling

For modern computers, journaling is an important feature. With the exception of Ext2, all cur-
rent Linux file systems support journaling. The journal is used to track changes. This concerns
changes to files and changes to metadata as well. The goal of using a journal is to make sure that
transactions are processed properly. This is especially the case for situations involving a power
outage. In those cases, the file system will check the journal when it comes back up again, and
depending on the journaling style that is configured, do a rollback of the original data or a check
on the data that was open while the computer crashed. Using a journal is essential on large file
systems where lots of files get written to. Only if a file system is very small or writes hardly ever
occur on the file system can you configure the file system without a journal.

Tip An average journal takes about 40MB of disk space. If you need to configure a very small file system,
such as the 100MB /boot partition, it doesn't make sense to create a journal on it. Use Ext2 in those cases.

When using journaling, you can specify three different journaling modes for the file sys-
tem. All of these are specified as options while mounting the file system, which allows you to
use different journaling modes on different file systems.

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

First, there is the data=ordered option, which you can use by adding the -o option to
mount. To activate it, use a command like the following:

mount -o data=ordered /dev/sda3 /data

When using this option, only metadata is journaled, and barriers are enabled by default.
This way, data is forced to be written to hard disk as fast as possible, which reduces chances of
things going wrong. This journaling mode uses the optimal balance between performance and
data security.

In case you want the best possible performance, use the data=writeback option. This
option only journals metadata, but does not guarantee data integrity. This means that based
on the information in the journal, when your computer crashes, the file system can try to
repair the data but may fail, in which case you will end up with the old data after a system
crash. At least it guarantees fast recovery after a system crash, and for many environments,
that is good enough.

If you want the best guarantees for your data, use the data=journal option. When using
this option, data and metadata are journaled. This ensures the best data integrity, but gives
bad performance because all data has to be written twice—first to the journal, and then to
the disk when it is committed to disk. If you need this journaling option, you should always
make sure that the journal is written to a dedicated disk. Every file system has options to
accomplish that.

Indexing

When file systems were still small, no indexing was used. You don’t need an index to get a file
from a list of a couple of hundreds of files. Nowadays, directories can contain many thou-
sands, sometimes even millions of files, and to manage these amounts of files, you can’t do
without an index.

Basically, there are two approaches to indexing. The easiest approach, directory indexing,
is used by the Ext3 file system; it adds an index to all directories and thus makes the file system
faster when many files exist in a directory. This, however, is not the best way of performing
indexing, because it doesn’t offer any significant increase of performance if your file system
uses many directories and subdirectories.

For optimal performance, it is better to work with a balanced tree (also referred to as
b-tree), which is integrated in the heart of the file system itself. In such a balanced tree, every
file is a node in the tree, and every node can have child nodes. Because of this method where
every file is represented in the indexing tree, the file system is capable of finding files in a
very fast way, no matter how many files there are in a directory. Using a b-tree for indexing
makes the file system also a lot more complicated. If things go wrong, the risk exists that you
have to rebuild the entire file system, and that can take a lot of time. In this process, you even
risk losing all data on your file system. Therefore, when choosing a file system that is built on
top of a b-tree index, make sure it is a stable file system. Currently, XFS and ReiserFS have an
internal b-tree index. Of these two, ReiserFS isn’t considered a very stable file system, so better
use XFS if you want indexing.

121

122

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

Choosing the Best File System

Based on the information in the preceding sections, you should now be able to choose the
file system that fits your needs best. Table 5-1 gives an overview of the most important fea-
tures to help you compare the file systems. In this table, performance and stability are rated
on a scale from 1 to 10, where 1 is very bad and 10 is excellent. Although opinions about the
ratings may differ slightly, they give a general impression of the performance and stability of
these file systems.

Table 5-1. File System Features

File System Journaling Indexing Performance Rating Stability Rating
Ext2 No None 7 9
Ext3 Yes H-tree 8 9
XFS Yes B-tree 9 8
ReiserFS Yes B-tree 9 3

Formatting File Systems

Now that you know more about the different file systems and their properties, you can make
a choice for the file system that best addresses your needs. After making that choice, you can
format the file system. In the next sections, you will read how to do this for the different file
systems.

The basic utility to create a file system is mkfs. This utility works with modules to address
different file systems. You can choose the module that you want to employ by using the -t
option, followed by the file system type that you want to create. Alternatively, you can use
mkfs, followed by a dot and the name of the file system that you want to create. In this way, you
can create every file system that is supported; for instance, mkfs.ext3 is used to create an Ext3
file system, and mkfs.xfs is used to create an XFS file system.

Maintaining File Systems

Normally, your file systems will work just fine. Occasionally, you may run into problems, and
instead of mounting the file system properly, you'll get a message indicating that there is a
problem that you have to fix. If this happens, different tools are at your disposal, depending
on the file system that you are using. Ext2/Ext3 offers the most extensive tools, but there are
options for ReiserFS and XFS as well.

Analyzing and Repairing Ext2/Ext3

In some situations, problems will occur on your Ext2/Ext3 file system. If that happens, the file
system offers some commands that can help you in analyzing and repairing the file system.
The first command is e2fsck, the file system check utility that works on Ext2 as well as Ext3.

If you think that anything may be wrong with your file system, run e2fsck. You should make
sure though that the file system on which you run it is not currently mounted. Since this is
hard to accomplish if you want to run it on your root file system, it is not a bad idea to use the

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

automatic check that occurs every once in a while when mounting an Ext2/Ext3 file system.
This check is on by default, so don’t switch it off!

When running e2fsck on an Ext3 file system, the utility will check the journal and repair
any inconsistencies. Only if the superblock indicates that there is a problem with the file sys-
tem will the utility check data as well. On Ext2 it will always check data, since this is the only
option. Normally, it will automatically repair all errors it finds, unless a certain error requires
human intervention. In that case, e2fsck will notify you, and you can use one of the advanced
options. Table 5-2 gives an overview of the most useful options that e2fsck has to offer.

Table 5-2. Most Useful e2fsck Options

Option Description

-b superblock Use this option to read one of the backup superblocks. Contrary to the
mount command, you can refer to the normal block position where the
file system can find the backup superblock, which will be block 32768 in
most cases.

-C This option lets e2fsck check for bad blocks. If it finds them, it will write
them to a specific inode reserved for this purpose. In the future, the file
system will avoid using any of these blocks. Be aware though that bad
blocks are often an indication of real problems on your hard drive. Use
the -c option with e2fsck as a temporary solution until you replace your
hard drive.

-f This option forces checking, even if the file system seems to be without
problems.

-j external journal Use this option to specify where the external journal can be found. You'll
need this option if your file system uses an external journal.

-p This option automatically repairs everything that can be repaired without
human intervention.

-y Use this to have e2fsck assume an answer of yes to all questions. This
goes further than default -p behavior and will also automatically enter
yes on questions that normally require human intervention.

In some situations, e2fsck may not do its work properly. If that is the case, there are two
useful utilities to analyze a little bit further what is happening. The first of them is dumpe2fs.
This utility dumps the contents of the superblock and also the information about all block
group descriptors. The latter is information that you will hardly ever find useful at all; therefore
Irecommend you use dumpe2fs with the -h option, which makes it more readable. In List-
ing 5-29, you can see what the output of this command looks like.

Listing 5-29. The dumpe2fs Utility Shows the Contents of the Superblock and All Group
Descriptors

Filesystem volume name: <none>

Last mounted on: <not available>

Filesystem UUID: 3babfd35-de36-4c81-9fb9-1a988d548927
Filesystem magic number: OXEF53

Filesystem revision #: 1 (dynamic)

Filesystem features: filetype sparse super

123

124 CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

Default mount options: (none)

Filesystem state: not clean

Errors behavior: Continue

Filesystem 0S type: Linux

Inode count: 490560

Block count: 979933

Reserved block count: 48996

Free blocks: 898773

Free inodes: 490529

First block: 1

Block size: 1024

Fragment size: 1024

Blocks per group: 8192

Fragments per group: 8192

Inodes per group: 4088

Inode blocks per group: 511

Last mount time: Tue Jul 8 02:58:33 2008
Last write time: Tue Jul 8 02:58:33 2008
Mount count: 1

Maximum mount count: 30

Last checked: Tue Jul 8 02:58:16 2008
Check interval: 0 (<none>)

Reserved blocks uid: 0 (user root)

Reserved blocks gid: 0 (group root)

First inode: 11

Inode size: 128

Group 0: (Blocks 1-8192)
Primary superblock at 1, Group descriptors at 2-5
Block bitmap at 6 (+5), Inode bitmap at 7 (+6)
Inode table at 8-518 (+7)
2029 free blocks, 4070 free inodes, 2 directories
Free blocks: 532-2560
Free inodes: 17, 20-4088
Group 1: (Blocks 8193-16384)
Backup superblock at 8193, Group descriptors at 8194-8197
Block bitmap at 8198 (+5), Inode bitmap at 8199 (+6)
Inode table at 8200-8710 (+7)
2095 free blocks, 4088 free inodes, 0 directories
Free blocks: 14290-16384
Free inodes: 4089-8176
Group 2: (Blocks 16385-24576)
Block bitmap at 16385 (+0), Inode bitmap at 16386 (+1)
Inode table at 16392-16902 (+7)
5749 free blocks, 4088 free inodes, 0 directories
Free blocks: 16387-16391, 16903-22646
Free inodes: 8177-12264

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

If you see a parameter that you don’t like when using dumpe2fs, you can use tune2fs to
change it. Basically, tune2fs works on the same options as mkfs.ext3, so you won’t have a hard
time understanding its options. For instance, in the preceding listing, the maximum mount
count is set to 30. That means that after being mounted 30 times, on the next mount the file
system will be checked automatically, which may take a lot of time. To change this, use the -C
option with tune2fs. For instance, the following command would set the maximum mount
count to 60 on /dev/sda1:

tune2fs -C 60 /dev/sda1

If you really are ready for a deep dive into your file system, debugfs is the utility you need.
Before starting with it, make sure that you use it on an unmounted file system. The debugfs
tool is working at a very deep level and may severely interfere with other processes that try to
access files while you are debugging them. So if necessary, take your live CD and use debugfs
from there.

After starting debugfs, you’ll find yourself in the debugfs interface. In this environment,
some specific commands are available for you. You will also recognize some generic Linux
commands that you know from a Bash environment, but as you will find out, they work a bit
differently in a debugfs environment. For example, the 1s command in debugfs will not only
show you file names, but also the number in blocks in use by this item and the inode of this
item, which is very useful information if you really need to start troubleshooting. In Listing
5-30, you can see what happens when using the 1s command from the debugfs interface.

Listing 5-30. The 1s Command in debugfs Gives Information Other Than What You Are Used to
from It

root@mel:/# debugfs /dev/system/root
debugfs 1.40.8 (13-Mar-2008)

debugfs: 1s

2 (12) . 2 (12) .. 11 (20) lost+found 6135809 (12) var
4202497 (12) boot 5095425 (12) srv 335873 (12) etc

2924545 (16) media 24577 (16) cdrom 24578 (20) initrd.img
5808129 (12) lib 1073153 (12) usr 1417217 (12) bin

5865473 (12) dev 1966081 (12) home 1572865 (12) mnt
6168577 (12) proc 6086657 (12) root 2277377 (12) sbin
4947969 (12) tmp 360449 (12) sys 5586945 (12) opt

(

1302529 (16) initrd 24579 (16) vmlinuz 4808705 (16) tftpboot
2949121 (20) clonezilla 1785857 (12) isos

24580 (36) initrd.img-2.6.24-16-server 24581 (3692) 335873

(END)

In case you wonder how this information may be useful to you, imagine a situation where
you can’t access one of the directories in the root file system anymore. This information gives
you the inode that contains the administration of the item. Next, you can dump the inode
from the debugfs interface to a normal file. For instance, the command dump <24580> /24580
would create a file with the name 24580 in the root of your file system and fill that with the

125

126

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

contents of inode 24580. That allows you to access the data that file occupies again and may
help in troubleshooting.

This information may also help when recovering deleted files. Imagine that a user comes
to see you and tells you that he or she has created a few files, of which one has been lost. Say
the names of these files are /home/user/file1, /home/user/file2, and /home/user/file3s.
Imagine that file2 was deleted by accident and no matter what, the user needs to get it back.
The first thing you can do is use the 1sdel command from the debugfs interface. Chances are
it gives you a list of deleted inodes, including their original size and deletion time; see List-
ing 5-31 for an example.

Listing 5-31. debugfs’ 1sdel Can Give You an Overview of Deleted Files

root@mel:/# debugfs /dev/sdal
debugfs 1.40.8 (13-Mar-2008)
debugfs: 1sdel

Inode Owner Mode Size Blocks Time deleted

233029 0 100644 16384 17/ 17 Sun Jul 6 11:27:49 2008

233030 0 100644 16384 17/ 17 Sun Jul 6 15:41:01 2008
17 0 100644 814 1/ 1 Tue Jul 8 06:33:45 2008

3 deleted inodes found.

(END)

As you can see, the information that 1sdel gives you includes the inode number, origi-
nal owner, size in blocks and—most important—the time the file was deleted. Based on that,
it’s easy to recover the original file. If it was the file in inode 233030, from the debugfs inter-
face, use dump <233030> /originalfile to recover it. Unfortunately, due to some differences
between Ext2 and Ext3, 1sdel works well on Ext2 and rarely on Ext3.

Given the fact that the user in our example has created some files, it may be interesting
to see what inodes were used. Let’s say file1 still uses inode 123, file2 uses 127, and file3
is removed, so you can’t find that information anymore. Chances are, however, that the
inode that file3 has used was not too far away from inode 127, so you can try and dump all
inodes between inode 128 and 140. This likely allows you to recover the original file, thanks to
dumpe2fs.

There are many other commands available from debugfs as well. I recommend you at least
take a look at these commands. The help command from within the debugfs interface will give
you a complete list. Have a look at these commands, and try to get an impression of the pos-
sibilities they offer—you may need them some day.

Analyzing and Repairing XFS File Systems

Since it is a completely different file system, the XFS file system offers options that are totally
different from the Ext2/Ext3 options. There are four commands that are useful when getting
into trouble with XFS. The first and most important of them is xfs_check. As its name sug-
gests, this command will check you XFS file system and report whether it has found any errors.
Before running xfs_check, you must unmount the file system on which you want to run it.
Next, just run the command without additional arguments; it will tell you whether some seri-

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

ous errors were found. For instance, the following command would check the XFS file system
that has been created in /dev/sdb1:

xfs_check /dev/sdb1

If no problems were found, xfs_check will report nothing. If problems were found, it will
indicate what problems these are and try to give an indication of what you can do about them
as well. The next step would then be to run the xfs_repair utility. Again, you can run this util-
ity on an unmounted file system only. This utility does have some advanced options, which
you would use in specific situations only. Normally, by just running xfs_repair on the device
that you want to check, you should be able to fix most issues. For instance, the following
example command would try to repair all issues on the XFS file system in /dev/sdb1:

xfs_repair /dev/sdbl

Basically, if with these commands you can'’t fix the issue, you are lost. But XFS also has
an advanced option to dump the file system metadata to a file, which you can send over for
support. However, this is not an option that you are very likely to use, as it requires extensive
knowledge of the file system that normally only one of the file system developers would have.

Resizing File Systems

When resizing file systems, you should be aware that the procedure always involves two steps.
You have to resize the storage device on which you have created the file system as well as the
file system itself. It is possible to resize logical volumes. If you want to resize a partition, you
have to use a special utility with the name GParted. I will first explain how to resize a file sys-
tem that is in a logical volume. All file systems can be resized without problems.

Resizing a File System in a Logical Volume

The following procedure details how the volume is first brought offline and then the file sys-
tem that sits on the volume is resized. It is presumed that the volume you want to shrink is
called data, and it is using an Ext3 file system. It is mounted on the directory /data.

Caution Online resizing of a file system is possible in some cases. For example, the command
ext2online makes it possible to resize a live file system. However, because resizing file systems is very
labor intensive, | wouldn’t recommend doing it this way. There’s always a risk that it won’t work out simply
because of all of the work that has to be done. So, to stay on the safe side, umount your volume before resiz-
ing it.

1. Use umount /data to unmount the volume from the directory /data.

2. Before shrinking the volume itself, you must shrink the file system used on it. Use
resize2fs /dev/system/data 2Gto make it a 2GB file system.

3. Now you have to resize the volume itself: use lvreduce -L -1G /dev/system/data.

127

128 CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

4. Finally, you can mount the volume again. Use mount /dev/system/data /data.

5. Use the df -h command to show the current size of the file system. It should be a giga-
byte smaller than it was before.

In this procedure, you learned how to shrink a volume, and of course you can increase its
size as well. When increasing a volume, you just have to invert the order of the steps. First, you
need to extend the size of the volume, and then the size of the file system can be increased as
well. After dismounting the volume, this is a two-step procedure:

1. Use lvextend -L+10G /dev/system/data to add 10GB of available disk space from the
volume group to the volume.

2. Next, use resize reiserfs -f /dev/system/data. This command will automatically
increase the ReiserFS file system that is sitting in the volume to the maximum amount
of available disk space.

You now know how to resize a volume with a ReiserFS file system in it. Of course, you
can resize Ext3 and Ext2 as well. To increase the size of an Ext3 file system, you would use
resize2fs -f /dev/system/data.

Resizing Partitions with GParted

This book is about command-line administration. GParted is not a command-line adminis-
tration tool, and therefore I will not cover it in a step-by-step description. It does need to be
mentioned though, as it offers an easy-to-use interface that helps you in resizing partitions.
You can install it locally on your Linux computer, but to unleash its full power, it’s better to
download the GParted live CD at http://gparted. sourceforge.net. Reboot your computer
from this live CD and start GParted to resize any partition on your computer, Windows as well
as Linux partitions. As you can see in Figure 5-1, GParted shows a graphical representation of
all partitions on your computer. To resize a partition, click the partition border, and drag it to
the new intended size.

GPared Elit Wiew [evice Partition Help

ﬂ =l | | 9 L4 Movhda (3816 Gi) ¥
New Delete Resize/Mave Copy Faste Undo. Apply
[dexfhdal devihdaz fev/hdab idevihda?
7.45 Gigt L8863 Cif 233 Ci8 928 GiEt
Partiion |Fiesysiem Sz used Unused Flags
fdevihdal ntés 745 GiB 67 GIE 681,07 M8 boot
mewraaz (@Y [tz 1883 GIE = — Iba
= Kevihdal extended 1208 GiE - -
wowhdas [linuxswap 486,31 MiE - =
2.33 Gif 218 GiB
wevmaar e 928 GiB 436 GiB 12 GIE
operations pending Y

Figure 5-1. GParted helps you to resize partitions from an easy-to-use graphical interface.

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

Working with Windows File Systems

On Linux, you can work with Windows file systems as well. For all FAT-based needs, the vfat file
system is the best option. Almost all Linux distributions have support for this file system built in
by default. This means that if you connect a USB key that is formatted with FAT32 to your sys-
tem, for instance, it will mount automatically, and you will be able to read and write files on it.

The support for NTFS is a different story. Until recently, most Linux distributions did
include only the read-only ntfs driver, because stable write support for NTFS is a recent devel-
opment. Therefore, if you can’t write to an NTFS device, make sure to upgrade to the latest
driver that is available. Also, with the new version of NTFES, some cool utilities have become
available. Following is a short list of the most important of these utilities:

e mkntfs: This is the utility you need to create an NTFS file system.

e ntfsresize: Use this utility to resize an NTFS file system. Using this, you can resize an
NTEFS partition on Windows as well.

e ntfsclone: Use this to clone an NTFS partition. This utility makes sure that the cloned
partition has a unique ID, which is required for all NTFS file systems.

e ntfsfix: Use this tool to fix issues on an NTES file system. This also works to repair
Windows file systems that have errors.

* ntfsundelete: Use this to recover files that you have deleted by accident from an NTFS
file system.

e ntfswipe: This utility cleans out all data from an NTES file system. Use it if you want to
make sure that recovery of your NTFS data is never possible.

Cloning Devices

If you need to clone a device, you can use dd. For instance, you can use it to write the contents
of an optical drive to an ISO file or to make an exact copy of one disk to another. The dd com-
mand has two mandatory options. Use if= to specify the input device. Next, by using of=, you
specify what output device to use. For optimal efficiency, it is a good idea to add the parameter
bs=4096. Most file systems work with 4K blocks, and this option makes sure that the copy is
made block by block instead of byte by byte. It will offer you a performance that is about four
times better than without using the bs= option.

To clone an entire hard drive with dd, use the following:

dd if=/dev/sda of=/dev/sdb bs=4096

This command assumes that there is a second hard drive available in your computer,
which has the name /dev/sdb. It will completely overwrite all data on this /dev/sdb with data
from /dev/sda. Because this command will make an exact copy of /dev/sda, you must make
sure that the drive you are writing to is as least as big as the original drive. If the destination
drive is bigger, you'll later have to resize the file systems on that drive.

Using dd, you can also write the contents of an optical disk to an ISO file (or make boot
floppies in the old days). The following command shows how to do this, assuming that your
optical disk is available via the /dev/cdrom device:

dd if=/dev/cdrom of=/mycd.iso bs=4096

129

130

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES

Summary

In this chapter, you have read all about management of the information on your hard disk.
You have read how to manage partitions, volumes, and file systems. Based on this infor-
mation, you will be able to use the best possible configuration on your disk. The following
commands have been covered:

fdisk: Creates partitions.

cfdisk: Creates partitions. This is not as easy to use as fdisk, but it does have an inter-
face that is easier to use.

pvcreate: Creates LVM physical volumes.

pvdisplay: Displays properties of LVM physical volumes.

vgcreate: Creates LVM volume groups.

vgdisplay: Displays properties of LVM volume groups.

lvcreate: Creates LVM logical volumes.

lvdisplay: Displays the properties of an LVM logical volume.

pvs: Shows a short list of all present LVM physical volumes.

pvscan: Scans storage devices for the presence of LVM physical volumes.
vgscan: Scans storage devices for the presence of LVM volume groups.
vgs: Shows a list of LVM volume groups.

lvscan: Scans storage devices for the presence of LVM logical volumes.
lvs: Shows alist of LVM logical volumes.

vgchange: Changes the status from LVM volume groups and the volumes in it from
active to inactive and vice versa.

debugfs: Serves as an advanced debugger for the Ext2/Ext3 file systems.
e2fsck: Checks the integrity of the Ext2/Ext3 file systems.
tune2fs: Changes the properties of the Ext2/Ext3 file systems.
dumpe2fs: Shows the properties of the Ext2/Ext3 file systems.
reiserfsck: Checks the integrity of a ReiserFsS file system.
reiserfstune: Changes the properties of a ReiserFS file system.
resize reiserfs: Resizes a ReiserFS file system.

debugreiserfs: Shows the properties of the ReiserFS file system.
mkfs: Creates file systems.

xfs_check: Checks the integrity of an XFS file system.
xfs_repair: Repairs an XFS file system that has errors.

ext2online: Resizes an Ext2/Ext3 file system without taking it offline.

CHAPTER 5 MANAGING PARTITIONS AND LOGICAL VOLUMES 131

e resize2fs: Serves as an offline Ext2/Ext3 resizing utility.

¢ lvextend: Extends the size of an LVM logical volume.

e mkntfs: Creates an NTFS file system.

e ntfsresize: Resizes an NTFS file system.

e ntfsclone: Clones an NTFS file system.

e ntfsfix: Fixes the integrity of a damaged NTES file system.
e ntfsundelete: Undeletes a file in an NTFS file system.

e ntfswipe: Wipes all data in an NTFS file system, without the possibility to undelete the
data.

In the next chapter, you'll learn how to manage users and groups.

CHAPTER 6

Managing Users and Groups

This chapter is about the user environment. You will learn how to set up a user account,
which is an important task, even if you are not a computer administrator. You will also learn
about the way authentication is handled using the PAM (pluggable authentication module)
and nsswitch systems, as well as explore the configuration files that contain the definition of
the working environment for your users. For instance, you will see how to provide a user with
default settings by using the /etc/profile file and all related files. Also, you will get a look at
the sudo mechanism, which allows you to work as root without needing to log in as root.

Setting Up User Accounts

There are different ways to create a user. You can use one of the commands that are available,
like useradd or adduser. (useradd is the default utility; some distributions have a utility named
adduser, which in most cases is just a symbolic link to useradd.) It is also possible to create a
user by editing the user database directly. This database is stored in the two configuration files,
/etc/passwd en /etc/shadow, and you can modify it using the vipw command, or just plain vi.
If you decide to change the configuration files directly, it’s a good idea to use vipw, not plain
vi. The vipw command does a check on the consistency of the configuration files once you are
done, which is not the case for vi.

Before taking your first steps in user management, you need to understand a little bit
more about users and their properties. In the following sections, you'll first learn which
properties a user has. Following that, you’ll read how to manage users using commands like
useradd and usermod, and how to modify the user database directly.

Understanding Users and Their Properties

Before starting to create users, it makes sense to know about the different properties that
Linux users typically have. These properties are stored in the /etc/passwd and /etc/shadow
files. Based on this knowledge, you’ll be better able to create the user according to your spe-
cific needs. When creating a user, you need to provide a value for the following properties,
which you can read more about in the next sections:

¢ Username

e Password

e User ID (UID)

¢ ID of the primary group of the user

133

134 CHAPTER 6 MANAGING USERS AND GROUPS

e Comment field
e Home directory

e Default shell

Username

Every user has a unique username. This name is used when the user authenticates to the sys-
tem. In most cases, it will be a real name, like lori, but you can use a numeric name as well,
such as an employee number. [recommend using letters and numbers only in the username.
After installation, your computer will already have some usernames. One of them is the user-
name root, which is used for system administration purposes. You'll also find that some other
system accounts are created by default. These are needed for system tasks and services, and
you should never change or remove them. The names of these accounts depend on the ser-
vices that are installed on your computer. In general, you can recognize them because they
have a UID that is lower than 500.

Password

Every user should have a password. This is required for authentication to the Linux system.
When choosing a password, make sure that it is strong. A strong password is a password that
can’t be found in any dictionary and is a combination of upper- and lowercase letters as well
as numbers. User passwords should be difficult to guess, and in general it is a good idea not
to use passwords shorter than six characters. When setting a password, the administrator can
set some properties for the password as well, such as the expiration date of the password. The
user root can also disable the password if he or she doesn’t want the user to log in anymore.
As an administrator, you can determine how long it takes before the user password expires.
Related settings are in the /etc/shadow file, which is covered later in this chapter.

uiD

The UID is another major piece of information when creating a user. For your computer, this
is the only way to identify a user; usernames are just a convenience for humans (who can’t
quite handle numbers as well as a computer does). In general, all users need a unique UID.
Most Linux distributions start generating UIDs for local users at 1000. A total of 16 bits is avail-
able for creating UIDs. This means that the highest available UID is 65535, and so that’s also
the maximum number of local users that your computer will support. If you exceed this limit,
you’ll need a directory server such as OpenLDAP. Typically, UIDs below 500 are reserved for
system accounts that your computer needs to start services such as a web server or the print-
ing process. The UID 0 is also a special one: the user with it has complete administrative
permissions to the computer. UID 0 is typically reserved for the user root.

Group Membership

On Linux, all users must be a member of at least one group. This is referred to as the primary
group assignment. Apart from the primary group, users can be a member of additional groups
as well. The primary group setting is stored in the /etc/passwd file, and secondary groups are
in the /etc/group file, which is discussed later in this chapter.

CHAPTER 6 MANAGING USERS AND GROUPS

Gecos Field

The official name for the next field in the documentation is the General Electric Compre-
hensive Operating System (Gecos) field, and it is used to include some comment to make it
easier to identify the user. It is a good habit to put a description of the user account in this
field, although you can do without it as well. The finger utility (see Chapter 2) displays the
content of the Gecos field if someone requests information about a user. You can put in any
description you like.

Home Directory

Most users have a home directory. This directory, which typically resides in /home, is where
users can store private files. You will also find that some default configuration files often exist
in the user’s home directory. These configuration files make the user’s default environment.
Also, some subdirectories are created that allow users to store different types of files. Apart
from the home directory, the only directory where users are allowed to write files is /tmp. You
are free to change this at will, of course; you'll read how to do so in Chapter 7, which is about
permissions. In Listing 6-1, you can see an example of the home directory of user linda, which
is /home/1inda, with all of the default files that were copied into that directory.

Listing 6-1. Example of a Home Directory and Its Contents

nuuk:/home/linda # 1s

.bash_history .fonts .muttrc .xim.template public_html
.bashrc .gnu-emacs .profile .xinitrc.template

.dvipsrc .inputrc .urlview .xtalkrc

.emacs .kermrc .xcoralrc Documents

.exIc .mozilla .Xemacs bin

Shell

Any user who needs to log in to your computer needs a shell. The shell will enable the user’s
commands to be interpreted. SUSE and Red Hat use /bin/bash as the default shell, where
Ubuntu uses the /bin/dash shell. Most users won’t notice the difference; after all, the shell is
just a command interpreter.

You should know that not every user needs a shell. A user with a shell is allowed to log
in locally to your system and access any files and directories stored on that system. If you're
using your system as a Samba file server, for example, the user will typically never need to log
in to your system directly. In this case, it is a good idea to use /bin/false as the default shell;
this will prohibit users from ever logging in to your system.

Commands for User Management

For user management, your distribution provides some commands. If you want to add users
from the command line, useradd is just the ticket. You can use this command to add a user and
all of the properties mentioned previously. The other commands for user management are just
as convenient. Following is an overview of all commands available to manage user accounts:

135

136

CHAPTER 6 MANAGING USERS AND GROUPS

¢ useradd: Adds users to the local authentication system
¢ usermod: Modifies properties for users
e userdel: Deletes users from a system

¢ passwd: Modifies passwords for users

Using useradd is simple. In its easiest form, it just takes the name of a user as its argument;
thus useradd zeina creates a user called zeina to the system. It is a good idea, however, to use
the option -m as well, because if you don’t, that user will be without a home directory, which in
most cases is useless.

Note It's a good idea to create an alias so that useradd creates home directories automatically. To do
this, add the following line to the file . profile in user root’s home directory:

alias useradd=" useradd -m'

Unfortunately, there is no easy way to create that home directory later. (There is a hard
way though. You'll understand all about that after reading Chapter 7, which is about file sys-
tem permissions.) In most cases, a user should have a home directory because it allows that
person to store files somewhere, and it allows the administrator to put the configuration files
for the user somewhere.

Following is a list of the most important options that you can use with useradd:

e -c comment: Allows you to enter a comment field to the user account. If this comment
has white spaces or other special characters, make sure that they are in quotations.
Information set this way can be requested with the finger command, and this com-
ment field typically is used for the user’s name. You will notice that for some of the
system processes, this field gives a short description of the process that is responsible
for the user account.

e -e date: Sets the expiration date for the user. Use this option to automatically disable
the user’s account on the specified date. This can be entered in the YYYY-MM-DD for-
mat or as the number of days since January 1, 1970. You'll probably prefer to specify
the date.

e -G groups: Makes the user a member of some additional groups. By default, the user
becomes a member of only those groups listed in /etc/default/useradd.

* -g gid: Sets the primary group of a user (see the section “Group Membership” later in
this chapter for more details).

e -m: Creates a home directory automatically. For instance, if you use this option when
creating a user named linda, the home directory that is created is /home/linda.

CHAPTER 6 MANAGING USERS AND GROUPS

Note The useradd command also has the option -p. If you read the man page, you'll notice that this
option can be used to change the password of a user. There is a catch though; the -p option can only be
used to specify a password that is already encrypted by a program that uses the crypt (3) function. This is
not typically the way you want to change a password, so use the passwd command instead.

If you understand the useradd command, it’s not hard to understand usermod as well. This
command works on the same user properties as useradd. However, you will notice that some
options are not available with usermod. For instance, you can’t use usermod to create a home
directory for a user who doesn’t have a home directory yet.

If a user account is no longer needed, you can use userdel as follows: to remove a user
with the name chris, issue userdel chris. By default, userdel does not remove the home direc-
tory and mail spool for the user. If you want these to be removed as well, use the option -r. So,
userdel -r chris removes chris and his home directory as well. You will notice that this does
not work if in chris’s home directory files exist that are not owned by this user. If you are sure
that you want to remove these as well, add the -f option.

Tip Before removing a user and his or her home directory, it might be a good idea to make a backup
of that home directory and all other files that the user has created first. The following command shows
how to do this. It uses find to locate all files that are owned by user chris and copies them to the direc-
tory /root/chris. This location ensures that no one else but root has permissions to read and, if needed,
recover these files:

find / -user chris -exec cp {} /root/chris \;

Chapter 4 has more details on the find command.

Working with Default Values for User Management

When managing users, two configuration files are involved that allow you to specify default
settings for users. First is /etc/defaults/useradd, which specifies default values for the useradd
command. Next is /etc/login.defs, which is used to specify the default user environment.

Setting Default Values Using /etc/default/useradd

As you have seen, a few options come with the useradd command. If an option isn’t speci-
fied, useradd will read its configuration file in /etc/default/useradd, where it finds some
default values such as what groups the user should become a member of and where to create
the user’s home directory. When using an option with useradd, you will always overwrite the
default values. Listing 6-2 shows the contents of this file as it is used on a Fedora system.

137

138

CHAPTER 6 MANAGING USERS AND GROUPS

Listing 6-2. Default Options for Creating Users in the Configuration File /etc/default/useradd

[Toot@fedora ~]# cat /etc/default/useradd
useradd defaults file

GROUP=100

HOME=/home

INACTIVE=-1

EXPIRE=

SHELL=/bin/bash

SKEL=/etc/skel

CREATE_MAIL_SPOOL=yes

In this example /etc/default/useradd file, the following options are used:

¢ (GROUP=100: Ensures that new users will get the group with group ID (GID) 100 as their
default primary group.

* HOME=/home: Specifies that user home directories must be created in /home.

e INACTIVE=-1: Makes sure that the user account is set to inactive, until the moment that
someone sets a password for the user.

e EXPIRE=: Makes sure that the user password expires after a given number of days.
e SHELL=/bin/bash: Specifies what to use as the default shell for new users.

e SKEL=/etc/skel: Specifies the name of the skeleton directory that has some default
configuration files for new users. When creating a user who has a home directory
with useradd -m, the contents of this skeleton directory are copied to the user’s home
directory.

e (REATE_MAIL SPOOL=yes: Ensures that new users will have a directory in /var/mail
where the mail process can store mail messages. If your users don’t need to work with
the internal Linux mail facility (for more about this, see the section “Sending Mail from
the Command Line” in Chapter 2), you can give this variable the value no.

Creating a Default Environment Using /etc/login.defs

The /etc/login.defs file is a configuration file that relates to the user environment but is used
only in the background. This file defines some generic settings that determine all kinds of things
relating to user login. The login.defs file is a readable configuration file that contains variables.
Each line in this file corresponds to one variable and its value. The variable relates to logging in
or to the way in which certain commands are used. This file must exist on every system because
you would otherwise experience unexpected behavior. The following list contains some of the
more interesting variables that you can use in the login.defs file:

e DEFAULT_HOME: By default, a user will be allowed to log in, even if his or her home direc-
tory does not exist. If you don’t want that, change this parameter’s default value of 1 to
the value 0.

e ENV_PATH: This variable contains the default search path that’s applied for all users who
do not have UID 0.

CHAPTER 6 MANAGING USERS AND GROUPS

e ENV_ROOTPATH: This variable works in the same manner as ENV_PATH, but for root.

e FAIL DELAY: After a login failure, it will take a few seconds before a new login prompt is
generated. This variable, set to 3 by default, specifies how many seconds it takes.

e GID MAX and GID_MIN: This lets you specify the minimum and maximum GID used
by the groupadd command (see “Commands for Group Management” later in this
chapter).

e LASTLOG_ENAB: If enabled by setting the Boolean value to 1, LASTLOG_ENAB specifies that
all successful logins must be logged to the file /var/log/lastlog. This only works if the
lastlog file also exists. (If it doesn't, create it by using touch /var/log/lastlog.)

e PASS MIN_LEN: This is the minimum number of characters that must be used for new
passwords.

e UID MAX and UID_MIN: These are the minimum and maximum UIDs to be used when
adding users with the useradd command.

Managing Passwords

If your user really needs to do anything on your system, he or she needs a password. By
default, login for a user you create is denied, and no password is supplied. Basically, your
freshly created user can’t do anything on your computer because the password is disabled.
However, the simple passwd command will let the user get to work. If the user uses the com-
mand to change his or her password, he or she will be prompted for the old password and then
the new one. It’s also possible for the root user to change passwords as well. Only the user root
can change passwords for other users. To do this, root can specify the name of the user he or
she wants to change the password for as the argument of the passwd command. For example,
root can use the command passwd linda to change the password for user linda, which is
always useful in case of forgotten user passwords.

The passwd command can be used in three ways. First, you can use it for password main-
tenance (such as changing a password, as you have just seen). Second, it can also be used to
set an expiration date for the password. Third, the passwd command can be used for account
maintenance. For example, an administrator can use it to lock a user’s account so that login is
temporarily disabled. In the next section, you'll learn more about password management.

Performing Account Maintenance with passwd

In an environment in which many users use the same computer, it’s crucial that you per-
form some basic account maintenance. These tasks include locking accounts when they are
unneeded for a longer time, unlocking an account, and reporting password status. Also, an
administrator can force a user to change his or her password after logging in for the first time.
To perform these tasks, the passwd command has the following options:

¢ -1: Enables an administrator to lock an account. For example, passwd -1 jeroen locks
the account for user jeroen.

¢ -u: Unlocks a previously locked account. For instance, the account for user jeroen,
which was locked in the previous example, would be unlocked with the command
passwd -u jeroen.

139

140

CHAPTER 6 MANAGING USERS AND GROUPS

e -S:Reports the status of the password for a given account:

nuuk:/home/linda # passwd -S linda
linda PS 12/10/2008 0 99999 7 -1

This status line contains the following information:
e Name of the user
¢ Date on which the password was set
* Days before a password may be changed
* Days after which the password must be changed
¢ Days before the password is to expire that the user is warned
¢ Days after which the password expires that the account is locked

e -e: Forces the user to change his or her password upon next login.

Managing Password Expiration

Although not many people are aware of the password expiration feature, it allows you to
manage the maximum number of days that a user can use the same password. The passwd
command has four options to manage expirations:

e -n min: This rarely used option is applied to set the minimum number of days that a
user must use his or her password. If this option is not used, the user can change his or
her password anytime.

e -x max: With this option, you can set the maximum number of days that the user can
use his or her password without changing it.

e -c warn: Use this option to send a warning to the user when his or her password is
about to expire. The argument of this option specifies how many days the user is
warned before his or her password expires.

e -i inact: Use this option to make an account expire automatically if it hasn’t been
used for a given period. The argument of this option specifies the exact duration in
days of this period.

Caution By default, a password can be used for 99,999 days. So, if you do nothing, a user may use his
or her password for 273 years without changing it. If you don’t want that, make sure you use the -x option.

Behind the Commands: Configuration Files

In the previous section, you learned about the commands to manage users from a console
environment. All of these commands put user-related information into the user database,
which is stored in the configuration files /etc/passwd, /etc/shadow, and /etc/group. The aim
of this section is to give you some insight into these configuration files.

CHAPTER 6 MANAGING USERS AND GROUPS

/etc/passwd

The first and probably most important of all user-related configuration files is /etc/passwd,
which is the primary database for user information: everything except the user password is
stored in this file. Listing 6-3 gives you an impression of what the fields in this file look like.

Listing 6-3. Contents of the User Database File /etc/passwd

ToOt@RNA:~# cat /etc/passwd

root:x:0:0:r00t:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh

dhcp:x:100:101: :/nonexistent:/bin/false
syslog:x:101:102::/home/syslog:/bin/false
klog:x:102:103::/home/klog:/bin/false

mysql:x:103:106:MySQL Server,,,:/var/lib/mysql:/bin/false
bind:x:104:109::/var/cache/bind:/bin/false
sander:x:1000:1000:sander, , , : /home/sander:/bin/bash
messagebus:x:105:112::/var/run/dbus:/bin/false
haldaemon:x:106:113:Hardware abstraction layer,,,:/home/haldaemon:/bin/false
gdm:x:107:115:Gnome Display Manager:/var/lib/gdm:/bin/false
sshd:x:108:65534: :/var/run/sshd:/usr/sbin/nologin
linda:x:1001:1001: :/home/linda:/bin/sh

zeina:x:1002:1002: :/home/zeina:/bin/sh

You can see that /etc/passwd uses different fields to store user properties. These fields are
separated with a colon. The following list gives the order of fields from left to right; see the sec-
tion “Understanding Users and Their Properties” earlier in this chapter for more details:

e Username

e Password

e UID

e GID

e GECOS

¢ Home directory

e Shell

As an administrator, you can manually edit /etc/passwd and the related /etc/shadow. If
you intend to do this, however, don’t use any editor. Use vipw instead. This tailored version of
the Vi editor is specifically designed for editing these critical files. Any error can have serious
consequences, such as no one being able to log in. Therefore, if you make manual changes to
any of these files, you should check their integrity. Besides vipw, another way to do this is to
use the pwck command, which you can run without any options to see whether there are any
problems you need to fix. Listing 6-4 shows you the results of pwck on a healthy user environ-
ment. As you can see, it notifies you about nonexisting directories, and if it finds a line that
contains a serious error, it proposes to remove that line.

141

142

CHAPTER 6 MANAGING USERS AND GROUPS

Listing 6-4. To Check the Integrity of the User Database, Use the puck Command

[root@fedora ~]# pwck

user adm: directory /var/adm does not exist

user uucp: directory /var/spool/uucp does not exist
user gopher: directory /var/gopher does not exist
user ftp: directory /var/ftp does not exist

user avahi-autoipd: directory /var/lib/avahi-autoipd does not exist
user pulse: directory /var/run/pulse does not exist
invalid password file entry

delete line 'linda:x:501:::/home/linda:/bin/bash'? y
no matching password file entry in /etc/passwd
delete line 'linda:!!1:14224:0:99999:7:::'? y

pwck: the files have been updated

/etc/shadow

Encrypted user passwords are stored in the /etc/shadow file. The file also stores information
about password expiration. Listing 6-5 shows an example of its contents.

Listing 6-5. Example Contents of the /etc/shadow File

Toot:$1$15CyWuRM$g72U2058j67LUN10PtDS7/:13669:0:99999:7: : :
daemon:*:13669:0:99999:7:::

bin:*:13669:0:99999:7:::

Sys:*:13669:0:99999:7:::

dhcp:1:13669:0:99999:7: ::

syslog:!:13669:0:99999:7:::

klog:!:13669:0:99999:7:::

mysql:1:13669:0:99999:7:::

bind:!:13669:0:99999:7:::

sander:$1$0qnOp2NN$L7WoulL 3mweqBa2ggrBhTB0:13669:0:99999:7: ::
messagebus:!:13669:0:99999:7:::
haldaemon:!:13669:0:99999:7:::

gdm:1:13669:0:99999:7:::

sshd:1:13669:0:99999:7:::

linda:!:13671:0:99999:7:::

zeina:1:13722:0:99999:7:::

Just as in /etc/passwd, the lines in /etc/shadow are divided into several fields as well. The
first two fields matter especially for the typical administrator. The first field stores the name
of the user, and the second field stores the encrypted password. Note that in the encrypted
password field, the ! and * characters can be used as well. The ! denotes the login is currently
disabled, and the * denotes a system account that can be used to start services but that is not
allowed for interactive shell login (so basically it has the same effect as the !). Following is a
short list of all the fields in /etc/shadow. Use the passwd command to change these fields:

CHAPTER 6 MANAGING USERS AND GROUPS

¢ Login name.
e Encrypted password.
¢ Days between January 1, 1970, and the date when the password was last changed.

e Minimum: Days before password may be changed. (This is the minimum amount of
time that a user must use the same password.)

¢ Maximum: Days after which password must be changed. (This is the maximum
amount of time that a user may use the same password.)

e Warn: Days before password expiration that user is warned.

¢ Inactive: Days after password expiration that account is disabled. (If this happens,
administrator intervention is required to unlock the password.)

» Expire: Days between January 1, 1970, and the date when the account was disabled.

¢ Reserved field (this field is currently not used).

Group Membership

In any Linux environment, a user can be a member of two different kinds of groups. First,
there’s the primary group, which every user has. (If a user doesn’t have a primary group, he or
she won’t be able to log in.) The primary group is the group that is specified in the fourth field
of /etc/passwd.

There are two approaches to handling primary groups. On Ubuntu and Red Hat, all users
get their own private groups as their primary groups, and this private group has the same
name as the user. On SUSE, a group with the name users is created, and all users are added as
members to that group.

A user can be a member of more than just the primary group and will automatically
inherit the permissions granted to these other groups (more about permissions in Chapter
7). The most important difference between a primary group and other groups is that the
primary group will automatically become group owner of any new file that a user creates. If
a user has his or her own private group, this won’t be a great challenge for your computer’s
security settings (as the user is the only member). If, however, a scheme is used where all
users are member of the same group, this means that everyone has access to all files this
user creates by default.

Creating Groups

As you've already learned, all users require group membership. You've read about the differ-
ences between the primary group and the other groups, so let’s have a look at how to create
these groups. We'll discuss the commands that you can run from the shell and the related
configuration files.

Commands for Group Management

Basically, you manage the groups in your environment with three commands: groupadd,
groupdel, and groupmod. So, as you can see, group management follows the same patterns as

143

144

CHAPTER 6 MANAGING USERS AND GROUPS

user management. And, there’s some overlap between the two as well. For example, usermod as
well as groupmod can be used to make a user a member of some group. The basic structure for
the groupadd command is simple: groupadd somegroup, where somegroup of course is the name
of the group you want to create. Also, the options are largely self-explanatory: it probably
doesn’t surprise you that the option -g gid can be used to specify the unique GID number
you want to use for this group. Because groups don’t have many properties, there are no other
important options.

Behind the Commands: /etc/group

When a group is created with groupadd, the information entered needs to be stored some-
where, and that’s the /etc/group file. As shown in Listing 6-6, this is a rather simple file that
has just a few fields for each group definition.

Listing 6-6. Content of /etc/group

plugdev:x:46:sander,haldaemon
staff:x:50:
games:x:60:
users:x:100:
nogroup:x:65534:
dhcp:x:101:
syslog:x:102:
klog:x:103:
scanner:x:104:sander
nvram:x:105:
mysql:x:106:
crontab:x:107:
ssh:x:108:
bind:x:109:
sander:x:1000:
lpadmin:x:110:sander
admin:x:111:sander
messagebus:x:112:
haldaemon:x:113:
powerdev:x:114:haldaemon
gdm:x:115:
linda:x:1001:
zeina:x:1002:

The first field in /etc/group is reserved for the name of the group. The second field stores
the password for the group (an ! signifies that no password is allowed for this group). You
can see that most groups have an x in the password field, and this refers to the /etc/gshadow
file where you can store encrypted group passwords. However, this feature isn’t used often
because it is very uncommon to work with group passwords. The third field of /etc/group pro-
vides a unique group ID, and, finally, the last field lists the names of the members of the group.
These names are only required for users for whom this is not the primary group; primary

CHAPTER 6 MANAGING USERS AND GROUPS

group membership itself is managed from the /etc/passwd configuration file. However, if you
want to make sure that a user is added to an additional group, you have to do it here or use
usermod -G.

The Use of Group Passwords

As mentioned, group passwords are used so rarely, you probably won'’t ever need them.

But what can they be used for anyway? In all cases, a user has a primary group. When the
user creates a file, this group is assigned as the group owner for that file automatically. This
means that all members of the same group can normally access the file. If a user wants to
create files that have a group owner different from their primary group, the user can use the
newgrp command.

For example, newgrp sales would set the primary group of a user to the group sales.
Using this command would work without any question if the user is a member of the group
sales. However, if the user is not a member of that group, the shell will prompt the user to
enter a password. This password is the password that needs to be assigned to that group. To
set a group password, you need the passwd -g command. Because this feature is hardly ever
used, you'll find that this feature is not available on all Linux distributions.

Managing the User’s Shell Environment

To make sure that a user account can do its work properly, the user needs a decent shell
environment as well. When creating a user, a shell environment is created as well, and this
environment will do in most situations. Sometimes, however, a user has specific needs, and
you need to create a specific environment for him or her.

Without going into detail about specific shell commands, this section provides an over-
view of how you create a shell environment. I'll first explain about the files that can be used as
login scripts for the user, and next you'll learn about files that are used to display messages for
users logging in to your system.

Note The tasks described next are typically ones that you would perform on a file server that is accessed
by users directly. However, if a user never logs in to the computer, there is no need to perform these tasks.

Creating Shell Login Scripts

When a user logs in to a system, the /etc/profile configuration file is used. This generic shell
script (which can be considered a login script) defines environment settings for users. Also,
commands can be included that need to be issued when the user first logs in to a computer.
The /etc/profile file is a generic file processed by all users logging in to the system. It also has
a user-specific version (.profile) that can be created in the home directory of the user. The
user-specific . profile of the shell login script is executed last, so if there is a conflict in set-
tings between the two files, the settings that are user specific will always be used. In general,

145

146

CHAPTER 6 MANAGING USERS AND GROUPS

itisn’t a good idea to give a login file to too many individual users; instead, work it all out in
/etc/profile. This makes configuring settings for your users as easy as possible.

Note If you are working on SUSE Linux, you shouldn’t modify the /etc/profile file. When updating the
computer, the update process may overwrite your current /etc/profile. Instead, make your modifications
to /etc/profile.local, which is included when logging in.

Now /etc/profile and the user-specific . profile are not the only files that can be pro-
cessed when starting a shell. If a user starts a subshell from a current environment, such as by
executing a command or by using the command /bin/sh again, the administrator may choose
to define additional settings for that. The name of this configuration file is /etc/bashrc, and it
also has a user-specific version, ~/.bashrc. On some distributions the most important part of
the default shell settings is in profile and .profile; other distributions use bashrc and .bashrc
to store these settings.

After making changes to these configuration files, you can source them to activate the new
settings. To do this, you can use the source command or its equivalent, the . (dot) command.
The advantage of this technique is that you don’t have to log out and in again to activate the
changes. The following two example lines show how to do this:

source ~/.bashrc
. ~/.bashrc

Showing Messages to Users Logging In

It may be useful to display messages to users logging in to your computer. However, this only
works if a user logs in to a nongraphical desktop. On a graphical desktop, the user is not able
to see messages that are in these files. You can use two files for this: /etc/issue and /etc/motd.
The first, /etc/issue, is a text file whose content is displayed to users before they log in. To
process this file, the /sbin/getty program, which is responsible for creating login terminals,
reads it and displays the content. You may, for example, use the file to display a message
instructing users how to log in to your system, or include a message if login has been disabled
on a temporary basis.

Another way to show messages to users logging in is by using /etc/motd. This file shows
messages to users after they complete the login procedure. Typically, this file can be used to
display messages related to day-to-day system maintenance.

Applying Quota to Allow a Maximum Amount
of Files

As a part of maintaining the user environment, you should know about user quota. This can be
used to limit the amount of disk space available to a user. Configuring user quota is a five-step
procedure:

1. Install the quota software.

CHAPTER 6 MANAGING USERS AND GROUPS

2. Prepare the file system where you want to use quota.
3. Initialize the quota system.
4. Apply quota to users and groups.

5. Start the quota service.

Quotas are always user or group related and apply to a complete volume or partition.
That is, if you have one disk in your computer, with one partition on it that holds your com-
plete root file system, and you apply a quota of 100MB for user zeina, this user can create no
more than 100MB of files, no matter where on the file system. The Linux quota system does
not allow you to limit the maximal amount of data that a directory can contain. If you want
to accomplish that, put the directory on a separate partition or volume and limit the size of
the volume.

The quota system works with a hard limit, a soft limit, and a grace period:

¢ The soft limit is a limit that cannot be surpassed on a permanent basis, but the user can
create more data than the quota allows on a temporary basis. That means that the soft
limit is a limit that you shouldn’t surpass, but if you do, the quota system tolerates it on
a temporary basis.

¢ The grace period relates to the soft limit. It is the length of time that the user can tem-
porarily exceed the soft limit.

¢ The hard limit is an absolute limit, and after it’s reached (or when the grace period
elapses, whichever is sooner), the user will not be permitted to create new files. So
users can never create more files than specified in the hard limit.

Working with soft and hard limits is confusing at first glance, but it has some advantages:
if a user has more data than the soft limit allows, he or she still can create new files and isn’t
stopped in his or her work immediately. The user will, however, get a warning to create some
space before the hard limit is reached.

Installing the Quota Software

Most distributions don’t install the quota software by default. It’s easy to find out whether the
quota software is installed on your system: if you try to use one of the quota management utili-
ties (such as edquota) when the quota software has yet not been installed, you'll see a message
that it has to be installed first. Use the software management solution for your distribution to
install the quota software, which typically is in the quota package in that case. In Chapter 8,
you can read more about software installation.

Preparing the File System for Quota

Before you can use the quota software to limit the amount of disk space that a user can use
on a given file system, you must add an option to /etc/fstab for all file systems that must
support quota.

147

148

CHAPTER 6 MANAGING USERS AND GROUPS

Tip If it's not possible to restart your server at this moment so that the file system can be mounted
with the newly added options, you can use mount -o remount,usrquota,grpquota instead. For
example, if you need to apply the quota options to your root file system and can’t reboot now, just use
mount -o remount,usrquota,grpquota /.Atthe same time, change your fstab as well to make sure
that the new settings will also be applied when your server reboots.

Here’s the procedure to modify fstab:

1. Open /etc/fstab with an editor.

2. Select the column with options. Add the option usrquota if you want to apply quota
to users and grpquota for groups. Repeat this procedure for all file systems where you
want to use quota.

3. Remount all partitions in which quota has been applied (or restart your computer).

Initializing Quota
Now that you've finished the preliminary steps, you need to initialize the quota system. This is
necessary because all file systems have to be searched for files that have already been created,
and for a reason that’s probably obvious: existing files count toward each user’s quota, and so
areport must be created in which the quota system can see which user owns which files. The
report generated by this quota initialization is saved in two files that should be in the root of
the mount point where you want to apply the quota: aquota.user is created to register user
quotas, and aquota.group is created for group quotas.

To initialize a file system for the use of quotas (which will also create the quota files
for you), you need to use the quotacheck command. This command can be used with some
options, and I'll list only the most important ones here:

¢ -a: This option ensures that all file systems are searched when initializing the quota
system.

e -u: This option ensures that user information is searched. This information will be writ-
ten to the aquota.user file.

¢ -g: This option ensures that group information is searched as well. This information is
written to the aquota. group file.

e -m: Use this option to make sure that no problems will occur on file systems that are
currently mounted.

e -v: This option ensures that the command will work in verbose mode to show exactly
what it is doing.

So, the best way to initialize the quota system is to use the quotacheck -augmv command,
which (after a while) creates the files aquota.user and aquota.group to list all quota informa-
tion for current users. This can take a few minutes on a large file system, as the quota system
has to calculate current file usage on the file system where you want to create the quota. So if

CHAPTER 6 MANAGING USERS AND GROUPS

you want to apply quota to /home where /home is on the dedicated partition /dev/sda3, which
uses Ext3, make sure to do the following:

1.

Include the following line in /etc/fstab:

/dev/sda3 /home ext3 usrquota,grpquota 00

2. Activate the new setting using the following command:

mount -o remount,rw,usrquota,grpquota /home

3. Run the quotacheck -a command to generate the quota files automatically.

4. Make sure that the quota files are in /home/aquota.user and /home/aquota.group.

Setting Quota for Users and Groups

Now that the quota databases have been created, it’s time for the real work because you're
ready to apply quota to all users and groups on your system. You'll do this with the edquota
command, which uses the vi editor to create a temporary file. This temporary file is where
you’ll enter the soft and hard limits you've decided upon for your users and groups. If, for
example, you want to apply a soft limit of 100,000 blocks and a hard limit of 110,000 blocks for
user florence, follow these steps:

1.

The edquota command works only with blocks and not bytes, kilobytes, or anything
else. So, to set quota properly, you need to know the block size that’s currently used. To
find that, use the dumpe2fs | less command. You'll find the block size in the second
screen.

Issue the command edquota -u florence. This opens the user’s quota file in the quota
editor as you can see in Listing 6-7.
Listing 6-7. Example User Quota File

Disk quotas for user florence (uid 1014):
Filesystem blocks soft hard inodes soft hard
/dev/mapper/system-root 116 0 0 25 0 0

"/tmp//EdP.af6tIky" 3L, 220C 1,1 All

149

150

CHAPTER 6 MANAGING USERS AND GROUPS

3. In the editor screen, represented by Listing 6-7, six numbers specify the quota for all
file systems on your computer. The first of these numbers is the number of blocks that
are currently being used by the user you're creating the quota file for. The second and
third numbers are important as well: the second number is the soft limit for the num-
ber of blocks, and the third number is the hard limit on blocks in kilobytes. The fifth
and sixth numbers do the same for inodes, which roughly equal the number of files
you can create on your file system. The first and fourth numbers are used to record the
number of blocks and inodes that are currently being used for this user.

4. Close the editor and write the changes in the quota files to disk.

In this procedure, you learned that quota can be applied to the number of inodes and
blocks. If quotas are used on inodes, they specify the maximum number of files that can be
created. Most administrators think it doesn’t make sense to work this way, so they set the val-
ues for these to 0. A value of 0 indicates that this item currently has no limitation.

After setting the quota, if the soft limit and hard limit are not set to the same value, you
need to use the edquota -t command to set the grace time. This command opens another
temporary file in which you can specify the grace time you want to use, either in hours or in
days. The grace time is set per file system, so there’s no option to specify different grace time
settings for different users.

Once you have set quotas for one user, you may want to apply them to other users. Instead
of following the same procedure for all users on your system, you can use the edquota -p com-
mand. For example, edquota -p florence alex copies the quotas currently applied for user
florence to user alex.

Caution To set quotas, the user you are setting quotas for must be known to the quota system. This is
not done automatically. To make sure that new users are known to the quota system, you must initialize the
quota system again after creating the new users. | recommend setting up a cron job (see Chapter 9) to do
this automatically.

When all the quotas have been set the way you want, you can use the repquota command
to monitor the current quota settings for your users. For example, the repquota -aug command
shows current quota settings for all users and groups on all volumes. You can see an example of
this in Listing 6-8. Now that you've set all the quotas you want to work with, you just have to start
the quota service, and you'll do this with the /etc/init.d/quota start command.

Listing 6-8. Use repquota -aug to Show a List of Current Quota Usage

nuuk:~ # repquota -aug
***k Report for user quotas on device /dev/mapper/system-root
Block grace time: 7days; Inode grace time: 7days

CHAPTER 6 MANAGING USERS AND GROUPS

Block limits File limits
User used soft hard grace used soft hard grace
root -- 2856680 0 0 134133 0 0
uucp -- 8 0 0 2 0 0
wwwrun -- 4 0 0 1 0 0
sander -- 108 0 0 25 0 0
linda -- 140 0 0 29 0 0
sanne -- 120 0 0 25 0 0
stephanie -- 116 0 0 25 0 0
alex -- 120 0 0 25 0 0
caroline -- 116 0 0 25 0 0
lori -- 116 0 0 25 0 0
laura -- 116 0 0 25 0 0
lucy -- 116 0 0 25 0 0
lisa -- 116 0 0 25 0 0
lea -- 116 0 0 25 0 0
leona -- 116 0 0 25 0 0
1illy -- 116 0 0 25 0 0
florence -- 116 110000 100000 25 0 0

Techniques Behind Authentication

When a user authenticates, a lot of settings have to be applied. For instance, the system needs
to know where to get the login information from and what restrictions apply to the user. To

do this, your system uses a pluggable authentication module, or PAM. PAM modules make
authentication modular; by using PAM modules, you can enable functionality for specific situ-
ations. Also, your system needs to know where it has to read information about users. For this
purpose, it uses the /etc/nsswitch. conf file. In this file, it reads—among other things—what
files to consult to get user information. On the following pages, you can read how to configure
both of these systems for viable user authentication.

Understanding Pluggable Authentication Modules

Normally, the local user database in the Linux files /etc/passwd and /etc/shadow is checked
at login to a Linux workstation. In a network environment, however, the login program must
fetch the required information from somewhere else (for example, an LDAP directory service
such as OpenLDAP). But how does the login program know where it has to search for authenti-
cation information? That’s where PAM modules come in.

PAM modules are what make the login procedure on your workstation flexible. With a
PAM, you can redirect any application that has anything to do with authentication to any ser-
vice that handles authentication. A PAM is used, for example, if you want to authenticate with

151

152

CHAPTER 6 MANAGING USERS AND GROUPS

a private key stored on a USB stick, to enable password requirements, to prevent the root user
from establishing a telnet session, and in many other situations. The cool thing about a PAM
is that it defines not only how to handle the login procedure, but also authentication for all
services that have something to do with authentication. The only requirement is a PAM that
supports your authentication method.

The main advantage of a PAM is its modularity. In a PAM infrastructure, anything can be
used for authentication, provided there’s a PAM module for it. So, if you want to implement
some kind of strong authentication, ask your supplier for a PAM module, and it will work. PAM
modules are stored in the directory /1ib/security, and the configuration files specifying how
these modules must be used (and by which procedures) are in /etc/pam.d. Listing 6-9 is an
example of just such a configuration file, in which the login procedure learns that it first has
to contact an LDAP server before trying any local login.

Listing 6-9. Sample PAM Configuration File

auth sufficient /1ib/security/pam_ldap.so
account sufficient /1ib/security/pam_ldap.so
password sufficient /1ib/security/pam_ldap.so
session optional /1ib/security/pam_ldap.so
auth requisite pam_unix2.so

auth required pam_securetty.so

auth required pam_nologin.so

#auth required pam_homecheck.so

auth required pam_env.so

auth required pam mail.so

account required pam_unix2.so

password required pam_pwcheck.so nullok
password required pam_unix2.so nullok use first pass use authok
session required pam_unix2.so

session required pam_limits.so

The authentication process features four different instances, and these are reflected in
Listing 6-9. Authentication is handled in the first instance; these are the lines that start with
the keyword auth. During the authentication phase, the user login name and password are first
checked, followed by the validity of the account and other account-related parameters (such
as login time restrictions). This happens in the lines that start with account. Then, all settings
relating to the password are verified (the lines that start with password). Last, the settings relat-
ing to the establishment of a session with resources are defined, and this happens in the lines
that start with session.

The procedure that will be followed upon completion of these four instances is defined by
calling the different PAM modules. This occurs in the last column of the example configuration
file in Listing 6-9. For example, the module pam_securetty can be used to verify that the user
root is not logging in to a Linux computer via an insecure terminal. Think of a remote connec-
tion where user root tries to log in with telnet, which by default uses unencrypted passwords.

The keywords sufficient, optional, required, and requisite are used to qualify the degree
of importance that the conditions in a certain module are met. Except for the first four lines
(which refer to the connection a PAM has to make to a server that provides LDAP authentication

CHAPTER 6 MANAGING USERS AND GROUPS

services and work with the option sufficient), conditions defined in all modules must be met;
they are all required. Without going into detail, this means that authentication will fail if one of
the conditions implied by the specified module is not met.

By default, many services on Linux work with PAM, and you can see this from a simple 1s
command in the directory /etc/pam.d, which will show you that there is a PAM file for login,
su, sudo, and many other programs.

The true flexibility of PAM is in its modules, which you can find in /1ib/security. Each of
these modules has a specific function. The next section provides a short description of some of
the more interesting modules.

Discovering PAM Modules

The usefulness of a system like PAM is entirely determined by its modules. Some of these mod-
ules are still experimental, and others are pretty mature and can be used to configure a Linux
system. I'll discuss some of the most important modules.

pam_deny
The pam_deny module can be used to deny all access. It’s very useful if used as a default policy

to deny access to the system. If you ever think there is a security hole in one of the PAM-
enabled services, use this module to deny all access.

pam_env

The module pam_env is used to create a default environment for users when logging in. In
this default environment, several system variables are set to determine what the environ-
ment a user is working in looks like. For example, there is a definition of a PATH variable in
which some directories are included that must be in the search path of the user. To create
these variables, pam_env uses a configuration file in /etc/security/pam_env.conf. In this file,
several variables are defined, each with its own value to define essential items like the PATH
environment variable.

pam_limits
Some situations require an environment in which limits are set to the system resources that a
user can access. Think, for example, of an environment in which a user can use no more than
a given number of files at the same time. To configure these limitations, you would modify the
/etc/security/limits.conf file. To make sure that the limitations you set in /etc/security/
limits.conf are applied, use the pam_limits module.

In /etc/security/limits.conf, limits can be set for individual users as well as groups. The
limits can be applied to different items, some of which are listed here:

e fsize: Maximum file size

¢ nofile: Maximum number of open files
e cpu: Maximum CPU time in minutes

e nproc: Maximum number of processes

¢ maxlogins: Maximum number of times this user can log in simultaneously

153

154

CHAPTER 6 MANAGING USERS AND GROUPS

The following code presents two examples of how these limitations can be applied. In the
first line, the user ftp is limited to start a maximum of one process simultaneously. Next, every-
one who is a member of the group student is allowed to log in four times simultaneously.

ftp hard nproc 1
@student - maxlogins 4

When applying these limitations, you should remind yourself of the difference between
hard and soft limits: a hard limit is absolute, and a user cannot exceed it. A soft limit can be
exceeded, but only within the settings that the administrator has applied for these soft limits.
If you want to set the hard limit to the same as the soft limit, use a - character as shown in the
previous code example for the group student.

pam_mail
The useful pam_mail module looks at the user’s mail directory and indicates whether there is

any new mail. It is typically applied when a user logs in to the system with the following line in
the relevant PAM configuration file:

login session optional pam_mail.conf

pam_mkhomedir

If a user authenticates to a machine for the first time and doesn’t have a home directory yet,
pam_mkhomedir can be applied to create this home directory automatically. This module will
also make sure that the files in /etc/skel are copied to the new home directory. This module is
especially useful in a network environment in which users authenticate through an authenti-
cation server and do not always work on the same machine.

pam_nologin

If an administrator needs to conduct system maintenance like installing new hardware, and
the computer must be brought down for a few moments, the pam_nologin module may prove
useful. This module makes sure that no users can log in when the file /etc/nologin exists. So,
before performing any maintenance, make sure to create this file. The user root will always be
allowed to log in to the system, regardless of whether this file exists or not.

pam_permit

pam_permit is by far the most insecure PAM service available. It does only one thing, and that’s
to grant access—always—no matter who tries to log in. All security mechanisms will be com-
pletely bypassed in this case, and even users who don’t have a valid user account can use the
services that are configured to use pam_permit. The only sensible use of pam_permit is to test
the PAM awareness of a certain module or to disable account management completely and
create a system that is wide open to everyone.

CHAPTER 6 MANAGING USERS AND GROUPS

pam_rootok

The pam_rootok module lets user root access services without entering a password. It’s used,
for example, by the su utility to make sure the user root can su to any account, without having
to enter a password for that user account.

pam_securetty

In the old days when telnet connections were still very common, it was important for the user
root never to use a telnet session for login because telnet sends passwords in clear text over
the network. For this purpose, the securetty mechanism was created: the file /etc/securetty
can be created to provide a list of all TTYs from which root can log in. By default, these only
include local TTYs 1 through 6. On modern distributions, this module is still used by default,
which means that you can limit the TTYs where root can log in by manipulating this file. List-
ing 6-10 shows the default contents of this file on a computer running Fedora Linux.

Listing 6-10. The /etc/securetty File Is Used to Limit the Terminals Where Root Can
Authenticate

nuuk:~ # cat /etc/securetty

#

This file contains the device names of tty lines (one per line,
without leading /dev/) on which root is allowed to login.
#

tty1

tty2

tty3

ttys

ttys

tty6

for devfs:

vc/1

vc/2

vc/3

vc/4

vc/5

vc/6

pam_tally

The useful pam_tally module can be used to keep track of attempts to access the system. It
also allows the administrator to deny access if too many attempts fail. pam_tally works with an
application that uses the same name, pam_tally, which can be used to set the maximum num-
ber of failed logins that are allowed. All attempts are logged by default in the /var/log/faillog
file. If this module is called from a configuration file, be sure to at least use the options deny=n
and lock_time. The first determines the maximum number of login attempts a user can make,
and the second determines how long an account will be locked after that number of login
attempts has been reached. The value given to lock time is expressed in seconds by default.

155

156

CHAPTER 6 MANAGING USERS AND GROUPS

pam_time

Based upon the configuration file /etc/security/time.conf, the pam_time module is used to
limit the times between which users can log in to the system. You can use this module to limit
access for certain users to specific times of the day. Also, access can be further limited to ser-
vices and specific TTYs that the user logs in from. The configuration file time.conf uses lines
with the following form:

services;ttys;users;times

The next line is an example of a configuration line from time.conf that denies access to all
users except root (the ! character in front of the times is used to deny access). This might be a
perfect solution to prevent users from breaking into a system that they shouldn’t be trying to
log in to anyway.

login ; tty* ; lroot ; !Al0000-2400

pam_unix

pam_unix is probably the most important of all modules: it is used to redirect authentication
requests through the /etc/passwd and /etc/shadow files. The module can be used with sev-
eral arguments, such as nullok and try first pass. The nullok argument allows a user with
an empty password to connect to a service, and the try first pass argument will always

try the password a user has already used (if a password is asked for again). Notice that many
PAM configuration files include a line to call the common configuration file common-auth. The
pam_unix file is called from here.

pam_warn

The pam_warn module is particularly useful with log errors: its primary purpose is to enable log-
ging information about proposed authentication or password modification. For example, it
can be used in conjunction with the pam_deny module to log information about users trying to
connect to your system.

The role of /etc/nsswitch.conf

Whereas PAM is used to determine what exactly is allowed and what is not during the authen-
tication process, /etc/nsswitch.conf is used to tell different Linux services where they should
look for specific services. These services include authentication services, but other services as
well, such as host-resolving services that tell your computer if it has to use DNS or something
else, like the /etc/hosts file. The nsswitch mechanism is used not only while authenticating,
but also at other moments. The only requirement is that the service in question has to be pro-
grammed to use nsswitch. You don’t have to worry about that though,; this is the responsibility
of the person who wrote the program.

Listing 6-11 shows the default contents of the nsswitch. conf file on SUSE Linux.

CHAPTER 6 MANAGING USERS AND GROUPS

Listing 6-11. nsswitch. conf Lines Related to Authentication

nuuk:~ # cat /etc/nsswitch.conf
/etc/nsswitch.conf

An example Name Service Switch config file. This file should be
sorted with the most-used services at the beginning.

The entry '[NOTFOUND=return]' means that the search for an

entry should stop if the search in the previous entry turned

up nothing. Note that if the search failed due to some other reason
(1like no NIS server responding), then the search continues with the
next entry.

Legal entries are:

compat Use compatibility setup

nisplus Use NIS+ (NIS version 3)

nis Use NIS (NIS version 2), also called YP
dns Use DNS (Domain Name Service)

files Use the local files

[NOTFOUND=return] Stop searching if not found so far

For more information, please read the nsswitch.conf.5 manual page.

H oH HF HF H HF H O H H HFH O H R HE HH HE H

passwd: files nis
shadow: files nis
group: files nis

passwd: compat
group: compat

hosts: files dns
networks: files dns
services: files
protocols: files
IpC: files
ethers: files
netmasks: files
netgroup: files nis
publickey: files
bootparams: files
automount: files nis

aliases: files

157

158

CHAPTER 6 MANAGING USERS AND GROUPS

As you can see, for different subsystems, the nsswitch.conf file tells where to look for con-
figuration. The following specifications are available:

e files: Uses the normal default configuration files (/etc/passwd and /etc/shadow),
which are stored locally. Red Hat uses this as the default to handle authentication.

e compat: Serves as an alternative way to tell the authentication processes only that they
should look in the /etc/passwd and /etc/shadow configuration files. Using this option
makes it easier to hook up your system to an LDAP-based authentication service.

* nis, nisplus: Refer to the legacy UNIX NIS authentication services.
e ldap: Uses an LDAP Directory Server for authentication.

¢ dns: Specifies that host- and network-specific information must be looked up in DNS.

Configuring Administrator Tasks with sudo

If you want to perform administration tasks, you could just log in as the user root. However,
this has some security risks, the most important of which is that you might make a mistake and
thus by accident remove everything from your computer. Therefore, on some Linux distribu-
tions such as Ubuntu, the root account is disabled by default. It doesn’t even have a password,
so you cannot log in as root after a default installation. To perform tasks for which root privi-
leges are required, use the sudo mechanism instead.

Even if the account for user root is not disabled by default, it may still be a good idea to
use sudo. This is especially true for environments where specific users or groups of users need
root permissions to accomplish a limited set of tasks. Imagine the developer who needs root
permissions to compile new programs, the network administrator who just needs to be able to
modify network parameters, or the help desk employee who needs to be able to reset a pass-
word for a user.

The idea of sudo is that specific administrator tasks can be defined for specific users. If
one such user wants to execute one of the sudo commands that he or she has been granted
access to, that user has to run it with sudo. For example, where normally the user root would
enter useradd -m caroline to add the user caroline if the user would work with root per-
missions, a user with sudo privileges would enter sudo useradd -m caroline, thus telling
sudo that he or she needs to run a sudo task. Next, the user enters his or her password, and
the user is created. In Listing 6-12, you can see what happens when user alex tries to create
another user in this way.

Listing 6-12. Adding a User with sudo

alex@nuuk:~> sudo /usr/sbin/useradd -m caroline

We trust you have received the usual lecture from the local System
Administrator. It usually boils down to these three things:

#1) Respect the privacy of others.
#2) Think before you type.
#3) With great power comes great responsibility.

CHAPTER 6 MANAGING USERS AND GROUPS

alex's password:
alex@nuuk:~>

As you can see, the user first uses the sudo command, followed by the complete path to
the command he or she needs to use. That is because the user needs to run a command from
the /usr/sbin directory, and this directory is not in the default user search path. Next, the user
sees a message that indicates he or she should be careful and following that, the user needs
to enter his or her password. This password is cached for the duration of the session, which
means that if a short while later the user wants to use sudo again, he or she doesn’t have to
enter his or her password again.

To create a sudo configuration, you need to use the editor visudo. This editor is used to
open a temporary file with the name /etc/sudoers. In this file, you can define all sudo tasks
that must be available on your computer. You should never open the /etc/sudoers file for
editing directly because that involves the risk of completely locking yourself out if you make
an error.

Tip On Ubuntu, visudo uses the text editor ano by default. If you are a Linux veteran who is used to Vi,
you'll probably won’t like this. Want to use Vi instead of nano? Then use the command export VISUAL=vi.
Like what you see? Put it as the last line in /etc/profile or your own .profile, and from now on, every
time you use either visudo or edquota, Vi is started instead of nano. In this book, I'm using the Vi alterna-
tive because it automatically saves all files in the locations where they have to be saved.

In Listing 6-13, you can see what the default configuration in /etc/sudoers looks like.

Listing 6-13. Default Configuration in /etc/sudoers

100t@RNA: /etc# cat sudoers
/etc/sudoers

This file MUST be edited with the 'visudo' command as root.
See the man page for details on how to write a sudoers file.

Host alias specification
User alias specification

#
#
#
#
#
#
#
Cmnd alias specification
Defaults

Defaults lecture, tty tickets, Ifgdn

User privilege specification
root ALL=(ALL) ALL

159

160

CHAPTER 6 MANAGING USERS AND GROUPS

Members of the admin group may gain root privileges
%admin ALL=(ALL) ALL

It's really just two lines of configuration. The first line is root ALL=(ALL) ALL, which speci-
fies that user root has the right to run all commands from all machines. Next, you can see that
the same is true for all users who belong to the user group admin. If, for example, you would
like to specify that user linda is allowed to run the command /sbin/shutdown, no matter what
host she is connecting from, add the following line:

linda ALL=/sbin/shutdown

This line consists of three parts. In the first part, the username is entered. Instead of the
name of a specific user, you can refer to groups as well, but if you do that, make sure to puta %
sign before the group name. The second part—ALL in this example—refers to the name of the
host where the user is logged on. Here, that host name has no limitations, but you can specify
the name of a specific machine to minimize the risk of abuse by outsiders. Next, the command
that this user is allowed to use (/sbin/shutdown, no options) is specified. This means that the
user is allowed to run all options that can be used with this command. If you want to allow the
user just one option, you need to include that option in the command line. If that’s the case,
all options that do not match the pattern you have specified in sudoers are specifically denied.

Now that the sudo configuration is in place, the specified user can run his or her com-
mands. To do this, the complete command should be referred to because the directories that
typically house the root commands (/sbin, /usr/sbin) are not in the search path for normal
users. So, user linda should use the following command to shut down the machine:

sudo /sbin/shutdown -h now

Summary

In this chapter, you have learned how to manage the user environment. First, you have read
about management of users, passwords, and groups. You've also learned how to manage the
default user environment in the shell files /etc/profile and ~/.profile. Next, you've learned
how to use the quota system to limit the amount of disk space available to a user. After that,
you’'ve read how PAM and nsswitch.conf are used to determine where your Linux computer
gets user-related information from. At the end of this chapter, you saw how to use sudo to
allow nonroot users to perform administration tasks with root permissions. The following
commands were covered in this chapter:

¢ useradd: Adds new users

¢ usermod: Modifies user properties

¢ userdel: Deletes users

* passwd: Sets or changes user passwords
e groupadd: Adds new groups

e groupdel: Deletes groups

e groupmod: Modifies group properties

CHAPTER 6 MANAGING USERS AND GROUPS 161

¢ quotacheck: Enables quotas on all file systems that have the quota options
¢ addquota: Opens editor to change user quota settings
e repquota: Generates a report of current quota usage

¢ sudo: Allows end users to execute tasks with root permissions

In the next chapter, you'll learn how to create a secure environment, working with Linux
permissions.

CHAPTER 7

Managing Permissions

0n a Linux system, permissions are used to secure access. In this chapter, you'll learn how to
modify ownership to accommodate permissions. To begin with, the basic read, write, and exe-
cute permissions are covered. Next, you'll learn how to apply advanced Linux permissions for
some extra security. Finally, at the end of this chapter you'll learn how to create Access Control
Lists to give permissions to more than one user or group and how to work with attributes to
add an extra layer of protection to files.

Setting Ownership

File and directory ownership is vital for working with permissions. In this section, you'll learn
how you can determine ownership, as well as how to change user and group ownership for
files and directories.

Displaying Ownership

On Linux, every file and every directory has an owner. To determine whether you as a user
have permissions to a file or a directory, the shell checks ownership. First, it will see whether
you are the user owner, which is also referred to as the user of the file. If you are the user, you
will get the permissions that are set for the user, and the shell looks no further. If you are not
the user owner, the shell will check whether you are a member of the group owner, which is
also referred to as the group of the file. If you are a member of the group, you will get access to
the file with the permissions of the group, and the shell looks no further. If you are neither the
user nor the group owner, you'll get the permissions of others.

Note Unless specifically mentioned otherwise, in this chapter all that is true for files is true for directories
as well. So if you read about a file, you can assume that it also goes for a directory.

To see current ownership assignments, you can use the 1s -1 command. This command
shows the user as well as the group owner. In Listing 7-1, you can see the ownership settings
for directories in the directory /home on a system that uses the public group approach where all
users are members of the same group, users. In this output, you can see the name of the user
owner in the third column, followed by the name of the group in the fourth column.

163

164

CHAPTER 7 MANAGING PERMISSIONS

Listing 7-1. Use 1s -1 to Show User and Group Ownership

nuuk:/home # 1s -1

total 24

drwxr-xr-x 8 alex users 4096 Dec 12 12:02 alex
drwxr-xr-x 8 caroline users 4096 Dec 12 12:02 caroline
drwxr-xr-x 8 linda users 4096 Dec 10 11:36 linda
drwxr-xr-x 8 sander users 4096 Dec 10 13:22 sander
drwxr-xr-x 8 sanne users 4096 Dec 12 11:59 sanne
drwxr-xr-x 8 stephanie users 4096 Dec 12 12:01 stephanie

With 1s, you can display ownership for files in a given directory. It may on occasion be
useful to get a list of all files on the system that have a given user or group as owner. To do
this, you may use find together with its -user argument. For instance, the following com-
mand would show all files that have user linda as their owner:

find / -user linda

You can also use find to search for files that have a specific group as their owner. For
instance, the following command would search for all files that are owned by the group users:

find / -group users

Changing User Ownership

When working with permissions, it is important to know how to change them. For this pur-
pose, there is the chown command. The syntax of this command is not hard to understand:

chown who what

For instance, the following command would change ownership for the file account to
user julie:

chown julie account

The chown command has one important option: -R. You may guess what it does, as this
option is available for many other commands as well; it allows you to set ownership recur-
sively, which allows you to set ownership of the current directory and everything below. This
includes files as well as directories. The following command would change ownership for the
directory /home and everything beneath it to user julie:

chown -R julie /home

Changing Group Ownership

You actually have two ways to change group ownership. You can do it with chown, but there’s
also a specific command with the name chgrp that does the job. If you want to use the chown
command, use a . or : in front of the group name. The following would change the group
owner of directory /home/account to the group account:

chown .account /home/account

CHAPTER 7 MANAGING PERMISSIONS

To see how to use the chgrp command to change group ownership, imagine the follow-
ing example in which chgrp sets group ownership for the directory /home/account to the group
account:

chgrp account /home/account

As is the case for chown, you can use the option -R with chgrp to change group ownership
recursively. If you need to change user ownership as well as group ownership, chown offers you
that option. After specifying the options, specify the username followed by a dot or a colon,
and immediately after that the name of the group you want to set as the owner. As the last part
of the command, mention the name of the file or the directory you want to set ownership for.
For example, the following command would set user linda and group sales as the owner in
one command:

chown -R linda.sales /home/sales

Default Ownership

You may have noticed that when a user creates a file, default ownership is applied. The user
who creates the file will automatically become user owner, and the primary group automati-
cally becomes group owner. Normally, this will be the group that is set in the /etc/passwd file
as the user’s primary group. However, if the user is a member of more groups, he or she can
change the effective primary group.

To show the current effective primary group, a user can use the groups command. The
group that is effective as the primary group at that moment is listed first, followed by the
names of all other groups the user is a member of. Following is an example:

linda@nuuk:~> groups
users dialout video

If the current user linda wants to change the effective primary group, she can use the
newgrp command, followed by the name of the group she wants to set as the new effective pri-
mary group. In Listing 7-2, you can see how user linda uses this command to make sales her
effective primary group.

Listing 7-2. Using newgrp to Change the Effective Primary Group

linda@nuuk:~> groups

users dialout video sales
linda@nuuk:~> newgrp sales
linda@nuuk:~> groups

sales dialout video users
linda@nuuk:~>

After changing the effective primary group, all new files that the user creates will get this
group as their group owner. To return to the original primary group setting, use exit. This will
bring you back to the previous effective primary group setting.

165

166

CHAPTER 7 MANAGING PERMISSIONS

Basic Permissions: Read, Write, and Execute

The Linux permissions system was invented in the 1970s. Since computing needs were limited
in those years, the basic permission system that was created then was rather limited as well.
This system consists of three permissions that you can apply to files and directories. In this
section, you'll learn how the system works and how to modify these permissions.

Before doing this, let’s have a look at how to read the current permissions. The best
method to do so is by using 1s -1, which will show you a list of all files and directories in the
current directory. The first character indicates the type of file. For instance, it gives d if it is a
directory or 1 if it is a symbolic link. Next are nine characters to specify the permissions that
are set to the file or directory. The first set of three are the user permissions, the next set of
three are the group permissions, and the last set of three refer to the permissions granted to
others. So in the example command listing that follows, user linda has rwx, group owner sales
has r-x, and others have no permissions at all:

1s -1d /home/sales
drwxr-x--- 2 linda sales 4096 sales

Understanding Read, Write, and Execute Permissions

The three basic permissions allow you to read, write, and execute files. The effect of these
permissions will be different when applied to files or directories. If applied to a file, the read
permission gives you the right to open the file for reading. This means that you can read its
contents, but it also means that your computer can open the file to do something with it.

A program file that needs access to a library might require, for example, read access to that
library. From this, it follows that the read permission is the most basic permission you need to
work with files.

If applied to a directory, read permission allows you to list the contents of that directory.
You should be aware that this permission does not allow you to read files in the directory as
well. The Linux permission system does not know inheritance, and the only way to read a file
is by using the read permissions on that file. To open a file for reading, however, you do need
read permissions to the directory, because you wouldn'’t see the file otherwise.

As you can probably guess, the write permission, if applied to a file, allows you to write in
the file. Stated otherwise, write allows you to modify the contents of existing files. However, it
does not allow you to create new files or delete existing files. To do that, you need write per-
mission on the directory where you want to create the file. On directories, this permission also
allows you to create and remove new subdirectories.

The execute permission is what you need to execute a file. It will never be set by default,
which makes Linux almost immune to viruses. Only someone with administrative rights to a
directory will be capable of applying the execute permission. Typically, this would be the user
root, but also a user who is owner of a directory has the right to change permissions in that
directory.

CHAPTER 7 MANAGING PERMISSIONS

Note Although there are almost no viruses for Linux, it doesn’t mean that you are immune from secu-
rity problems when using Linux. The Linux alternative for a virus is called a root kit. You can compare
a root kit to a trojan in the Windows world: a root kit is a back door that allows others to take control of
your computer. The best security measure to protect against root kits is not to work with root permissions
unless it is really necessary.

Whereas the execute permission on files allows the user to run a program file, if applied to
a directory, the user is allowed to use the cd command to go to that directory. This means that
execute is an important permission for directories, and you will see that it is normally applied
as the default permission to directories. Without it, there is no way to change to that directory!
So if you want to have read permission on a directory, you must have execute permission as
well. It makes no sense just to give a user read permission on a directory. Table 7-1 summa-
rizes the use of the basic permissions.

Table 7-1. Use of Read, Write, and Execute Permissions

Permission Applied to Files Applied to Directories
Read Open afile List contents of a directory
Write Change contents of a file Create and delete files
Execute Run a program file Change to the directory

Applying Read, Write, and Execute Permissions

To apply permissions, you use the chmod command. When using chmod, you can set permis-
sions for user, group, and others. You can use this command in two modes: relative mode and
absolute mode. In absolute mode, three digits are used to set the basic permissions. Table 7-2
gives an overview of the permissions and their numerical representation.

Table 7-2. Numerical Representation of Permissions

Permission Numerical Representation
Read 4
Write 2
Execute 1

When setting permissions, you should calculate the value that you need. For example, if
you want to set read, write, and execute permissions for the user, read and execute permis-
sions for the group, and read and execute permissions for others on the file /somefile, you
would use the following chmod command:

chmod 755 /somefile

167

168

CHAPTER 7 MANAGING PERMISSIONS

When using chmod in this way, all current permissions are replaced by the permissions you
set. If you want to modify permissions relative to the current permissions, you can use chmod
in relative mode. When using chmod in relative mode, you work with three indicators to specify
what you want to do. First, you'll specify for whom you want to change permissions. To do
this, you can choose between user (u), group (g), and others (0). Next, you use an operator to
add or subtract permissions from the current mode, or set them in an absolute way. At the
end, you use 1, w, and x to specify what permissions you want to set.

Note You will set read and write permissions quite often. This is not the case for the execute permission.
Though you will set it on directories all the time, you will rarely apply execute permission to files, unless they
are files that should be run as program files.

When changing permissions in relative mode, you may omit the “to whom” part to add or
remove a permission for all entities. For instance, the following would add the execute permis-
sion for all users:

chmod +x somefile

When working in relative mode, you may use more complex commands as well. For
instance, the following would add the write permission to the group and remove read for
others:

chmod g+w,0-r somefile

Advanced Permissions

Apart from the basic permissions that you've just read about, Linux has a set of advanced
permissions as well. These are not permissions that you would set by default, but on some
occasions they provide a useful addition. In this section, you’ll learn what they are and how
to set them.

Understanding Advanced Permissions

There are three advanced permissions. The first is the Set User ID (SUID) permission. On some
specific occasions, you may want to apply this permission to executable files. By default, a user
who runs an executable file runs this file with his or her own permissions (provided that user
has all permissions needed to run this file). For normal users, this normally means the use

of the program is restricted. In some cases, however, the user needs special permissions just
for the execution of a certain task. Consider, for example, the situation where a user needs to
change his or her password. To do this, the user needs to write his or her new password to the
/etc/shadow file. This file, however, is not writable for users with nonroot permissions:

nuuk:/home # 1s -1 /etc/shadow
~IW-T----- 1 root shadow 853 Dec 12 12:02 /etc/shadow

CHAPTER 7 MANAGING PERMISSIONS

The SUID permission offers a solution for this problem. On the /usr/bin/passwd utility,
this permission is applied by default. So when changing his or her password, the user tempo-
rarily has root permissions, which allow the user to write to the /etc/passwd file. You can see
the SUID permission with 1s -1 as an s at the position where normally you would expect to
see the x for the user permissions:

nuuk:/ # 1s -1 /usr/bin/passwd
-TwsT-xr-x 1 root shadow 73300 May 4 2007 /usr/bin/passwd

The SUID permission may look useful—and it is—but at the same time, it is potentially
dangerous. If applied wrongly, you may give away root permissions by accident. I therefore
recommend you use it with greatest care only. Let me explain why.

Imagine a shell script with the name gone that has the following contents:

#!/bin/bash
m -xf /

Now imagine that user linda finds this shell script and tries to execute it. What will hap-
pen? She will remove her own files only. That is because for all the other files, she doesn’t have
enough permissions to remove them. Now imagine that this shell script has root as its owner
and the SUID permission set. So 1s -1 on this script would give the following:

1s -1 gone
-IWST-XT-X 1 root root 19 gone

What if linda tries to run this script in this scenario? Can you imagine what would happen?
It would actually remove all files on the hard drive of this computer. This is because user root
is owner of the script, and the SUID permission is set. So linda would run it as root, and given
this, she would have more than enough permissions to perform her destructive command.

The second special permission is Set Group ID (SGID). This permission has two effects.

If applied on an executable file, it gives the user who executes the file the permissions of the
group owner of that file. So SGID can accomplish more or less the same thing that SUID does.
For this purpose, however, SGID is hardly used.

When applied to a directory, SGID may be useful, as you can use it to set default group
ownership on files and subdirectories created in that directory. By default, when a user cre-
ates afile, his or her effective primary group is set as the owner for that file. For example, if you
have a shared group environment, this is not very useful.

Imagine a situation where users linda and lori work for the accounting department and
are both members of the group accounting. For security reasons, however, the administrator
has decided to work with private primary groups. That means that linda is the only member of
her primary group, linda, and lori is the only member of her primary group, lori. Both users,
however, are members of the accounting group as well, but as a secondary group setting.

The default situation would be that when either of these users creates a file, the primary
group becomes owner. However, if you create a shared group directory (say, /groups/account)
and make sure that the SGID permission is applied to that directory and that the group
accounting is set as the group owner for the directory, all files created in this directory and all
of its subdirectories would also get the group accounting as the default group owner.

169

170

CHAPTER 7 MANAGING PERMISSIONS

The SGID permission shows in the output of 1s -1 with an s at the position where you
normally find the group execute permission:

nuuk:/groups # 1s -1d account
drwxr-sr-x 2 root account 4096 Dec 14 15:17 account

The third of the special permissions is sticky bit. This permission is useful to protect files
against accidental deletion in an environment where multiple users can create files in the
same directory. It is for that reason applied as a default permission to the /tmp directory.

Without the sticky bit permission, if a user can create files in a directory, he or she can also
delete files from that directory. In a shared group environment, this may be annoying. Imagine
users linda and lori both have write permissions to the directory /groups/account because of
their membership in the group accounting. This means that linda is capable of deleting files
that lori has created and vice versa. This may not be an ideal situation.

When applying the sticky bit permission, a user can delete files only if either of the follow-
ing is true:

¢ The user is owner of the file.

¢ The user is owner of the directory where the file exists.

When using 1s -1, you can see sticky bit as a t at the position where you normally see the
execute permission for others:

nuuk:/groups # 1ls -1d account/
drwxr-sr-t 2 root account 4096 Dec 14 15:17 account/

Applying Advanced Permissions

To apply SUID, SGID, and sticky bit, you can use chmod as well. SUID has numerical value 4,
SGID has numerical value 2, and sticky bit has numerical value 1. If you want to apply these
permissions, you need to add a four-digit argument to chmod, of which the first digit refers to
the special permissions. The following line, for example, would add the SGID permission to a
directory, and set rwx for the user and rx for the group and others:

chmod 2755 /somedir

It is rather impractical if you have to look up the current permissions that are set before
working with chmod in absolute mode (you would risk overwriting permissions if you didn’t).
Therefore, I recommend working in relative mode if you need to apply any of the special per-
missions. For SUID, use chmod u+s; for SGID, use chmod g+s; and for sticky bit, use chmod +t
followed by the name of the file or the directory that you want to set the permissions on.
Table 7-3 presents all you need to know about these special permissions.

CHAPTER 7 MANAGING PERMISSIONS

Table 7-3. Working with SUID, SGID, and Sticky Bit

Numerical Relative

Permission Value Value On Files On Directories

SUID 4 u+s User executes file with No meaning.
permissions of file owner.

SGID 2 g+s User executes file with File created in directory
permissions of group gets the same group
owner. owner.

Sticky bit 1 +t No meaning. Users are prevented from

deleting files from other
users.

When applying these permissions with chmod in absolute mode, you’ll use four digits (nor-
mally you would use three only) to set the permissions. Of these four digits, the first relates to
the special permissions. So in the command chmod 4755 somefile, the SUID permission is set
to somefile, and in chmod 3755, SGID as well as sticky bit are applied.

Working with Access Control Lists

Even with the additional features that were added with SUID, SGID, and sticky bit, serious
functionality was still missing in the Linux permission scheme. For that reason, Access Control
Lists (ACLs) were added. In this section, you'll learn what ACLs are and how to apply them.

Understanding ACLs

The Linux permissions system without ACLs has two serious shortcomings:

* There can only be one user owner and one group owner.

¢ It’s not possible to work with inheritance.

These shortcomings are addressed by the ACL subsystem. By adding this feature to your
file system, you can make it possible to grant permissions to additional entities on your file
systems and work with inheritance as well.

Although the ACL subsystem adds great functionality to your server, there is one draw-
back: not all utilities support it. This means that you may lose ACL settings when copying
or moving files, and also that your backup software may not be capable of backing up ACL
settings. This doesn’t have to be a problem though. ACLs are often applied to directories to
make sure that new files that are created in a directory will get the permissions you want
them to have automatically. You will rarely set these on individual files. This means you
won’t have lots of ACLs, just a few applied on smart places in the file system. Hence, it will
be relatively easy to restore the original ACLs you were working with, even if your backup
software doesn’t support them.

1

172

CHAPTER 7 MANAGING PERMISSIONS

Preparing Your File System for ACLs

Before starting to work with ACLs, you must prepare your file system for ACL support. As the
file system metadata needs to be extended, there is no default support for ACLs in the file sys-
tem itself. To fix this, you need to make sure your file system is mounted with the acl option
(which most distributions will do automatically for you). For a mounted file system, you can
do that by remounting the file system with the acl option. The following line shows how to do
that for the root file system:

mount -o remount,acl /

The more elegant solution is to put the ACL option in fstab so that it is activated at all
times when your system reboots. Listing 7-3 shows how this is done by default on a SUSE
system.

Listing 7-3. To Work with ACLs, You Need to Mount File Systems with ACL Support

nuuk:/ # cat /etc/fstab

/dev/system/root / ext3 acl,user xattr 11
/dev/sdal /boot ext2 acl,user xattr 12
/dev/system/swap swap swap defaults 00

Once your file system is remounted with ACL support, you can use the setfacl command
to set ACLs.

Changing and Viewing ACL Settings with setfacl and getfacl

To work with ACLs, you need the setfacl command. This command has many options, some
of them rather confusing. In this section, I'll just discuss the useful options, which are not too
hard to understand. The basic syntax of setfacl is as follows:

setfacl [options] operation entity:entityname:permissions file
In this example, the following components are used:

e Options: Use this part for specific options to moderate the way setfacl does its work. A
few options can be useful:

e -d: Use this option to set a default ACL. This is an ACL setting that is inherited by
subdirectories and files as well.

e -k: Use this option to remove a default ACL.

e -R: Use this option to apply the ACL setting recursively.

Note The difference between a default ACL (option -d) and the option to set the ACL recursively may not
be clear. A default ACL is for new files and does not influence existing files. All new files will get the permis-
sion as you set them in the default ACL. Basically, by using the option -d, you enable permission inheritance.
The option -R works on existing files only and does nothing for new files.

CHAPTER 7 MANAGING PERMISSIONS

e Operation: The operation tells setfacl to either add or remove an ACL setting. The
following operations are available:

* --set: Use this operation to set an ACL. It will replace any existing ACL, so use it
with care.

e -m: If you need to modify an ACL, use -m. It will not replace an existing ACL, instead
adding to the current settings.

e -x: Use this option to remove an existing ACL.

o Entity and entity name: These two define for whom you want to set the ACL. There are
two types of entity: u for user and g for group. After specifying the type of entity, you
need to specify the name of the entity.

* Permissions: These are the permissions that you want to set using ACLs. Use the Linux
permissions as discussed previously.

e File: This is the name of the file or the directory to which you want to apply the ACLs.

Based on this information, it’s time to have a look at some examples, starting with some
easy ones. Assume you want to add the group account as someone who has rights (this is called
a trustee) to the directory account. The setfacl command to do this would be as follows:

setfacl -m g:account:rwx account

However, it does not make sense to start working on ACLs without having a look at the
current permissions first. Therefore, in Listing 7-4, you can see the permission settings for the
directory /groups/account before and after I've changed the ACL.

Listing 7-4. Permission Settings Before and After Changing the ACL

nuuk:/groups # 1s -1

total 4

drwxr-sr-t 2 root users 4096 Dec 14 15:17 account
nuuk:/groups # setfacl -m g:account:rwx account
nuuk:/groups # 1s -1

total 8

drwxrwsr-t+ 2 root users 4096 Dec 14 15:17 account

As you can see, there was already a group owner, users, and this group owner was not
touched by changing the ACLs with setfacl. The only thing indicating that something is going
on is the + sign that is shown directly after the permission listing in 1s -1. This + indicates that
an ACL is effective.

To see the ACLs themselves, you need the getfacl command. In Listing 7-5, you can see
what this command shows for the directory account on which I've just applied an ACL.

173

174

CHAPTER 7 MANAGING PERMISSIONS

Listing 7-56. Showing ACL Settings with getfacl

nuuk:/groups # getfacl account
file: account

owner: root

group: users

USEeT: :TWX

group::r-x

group:account : rwx

mask: : Twx

other::r-x

As you can see in the output of getfacl, this command shows you the names of user and
group owners and the permissions that are set for them. Following that, it shows there is also
a group account that has rwx permissions. Just ignore the information that is shown in the mask
line; ACL masks are a complex and confusing feature that you only need to compensate for in
a bad directory structure design, and therefore I will ignore it in this book. On the last line, the
permissions of others are displayed as well.

In the second example, I'll show you how to modify an existing ACL so that it becomes
a default ACL. Basically, you use the same command that you've seen before, but with the
option -d added to it. Also, the command adds a second group in the ACL setting by using
a comma to separate the names of the two groups:

nuuk:/groups # setfacl -d -m g:account:rwx,g:sales:rx account

At this moment, you have a default ACL. This means that all files and all directories cre-
ated under /groups/account will get the same ACL setting. You can show this with the getfacl
command, as demonstrated in Listing 7-6.

Listing 7-6. Using getfacl to Show Default ACL Settings

nuuk:/groups # getfacl account
file: account

owner: root

group: users

User: :Iwx

group::r-X
group:account : Twx
mask: : Twx

other::r-x
default:user: :Twx
default:group::xr-x
default:group:sales:r-x
default:group:account:rwx
default:mask::rwx
default:other::r-x

CHAPTER 7 MANAGING PERMISSIONS

As you can see, shown are not only the user and group owner names, but also their per-
missions and the default settings that will be applied to new files. You should notice that at
this point, however, an interesting mix exists between the normal Linux permission scheme
and the ACL settings. This shows when user linda, who belongs to the group users, creates a
subdirectory in the directory /groups/account. You can see the getfacl result on that direc-
tory in Listing 7-7: for the “normal” user and group owners, the normal rules of ownership are
applied, and the ACL settings are added to that. This means that when you are working with
default ACLs, you should always carefully plan what you want to do before applying them!

Listing 7-7. ACLs and Normal Ownership Rules Are Both Effective

linda@nuuk:/groups/account> getfacl subdir
file: subdir

owner: linda

group: users

USer: :Iwx

group::r-x
group:sales:r-x
group:account : rwx
mask: : Twx

other::r-x
default:user: :rwx
default:group::r-x
default:group:sales:r-x
default:group:account:rwx
default:mask::rTwx
default:other::r-x

You have now learned how to work with an ACL. This is a useful feature if you need to
enhance the capabilities of Linux file system permissions. I personally rely on it a lot when
configuring a Linux file server, which typically is an environment where one group has
requirements different from another group. I've also used it on a web server environment to
grant access to a developer to all the files in the HTML document root without changing the
default permissions in that environment, which could have negative impact on the working
of the web server. Use this feature sparsely though, because a Linux system that has too many
ACLs applied is a Linux system that is more difficult to understand.

Setting Default Permissions

In the discussion about ACLs, you have learned how to work with default ACLs. If you don’t
use ACLs, there is a shell setting that determines the default permissions that you will get:
umask. In this section, you’ll learn how to modify default permissions using this setting.

You have probably noticed that when creating a new file, some default permissions are
set. These permissions are determined by the umask setting, a shell setting that is applied
to all users when logging in to the system. In the umask setting, a numeric value is used that

175

176

CHAPTER 7 MANAGING PERMISSIONS

is subtracted from the maximum permissions that can be set automatically on a file; the
maximum setting for files is 666 and for directories is 777. In other words, to derive numeric
permissions from the umask, subtract the umask from 666 for files and from 777 for directories.
There are, however, some exceptions to this rule; you can find a complete overview
of umask settings in Table 7-4. Of the digits used in the umask, like with the numeric argu-
ments for the chmod command, the first digit refers to end-user permissions, the second digit
refers to the group permissions, and the last refers to default permissions set for others. The
default umask setting of 022 gives 644 for all new files and 755 for all new directories that are
created on your server.

Table 7-4. umask Values and Their Result

Value Applied to Files Applied to Directories
0 Read and write Everything

1 Read and write Read and write

2 Read Read and execute

3 Read Read

4 Write Write and execute

5 Write Write

6 Nothing Execute

7 Nothing Nothing

There are two ways to change the umask setting: for all users and for individual users. If
you want to set the umask for all users, you must make sure the umask setting is entered in the
configuration file /etc/profile. If the umask is changed in this file, it applies to all users after
logging in to your server. You can set a default umask by just adding a line like the following to
/etc/profile:

umask 027

An alternative to setting the umask in /etc/profile, where it is applied to all users logging
in to the system, is to change the umask settings in a file with the name .profile, which is cre-
ated in the home directory of an individual user. Settings applied in this file are applied for the
individual user only; therefore this is a nice method if you need more granularity. I personally
like this feature to change the default umask for user root to 027, whereas normal users work
with the default umask 022 on many distributions.

Working with Attributes

Permissions always relate to a trustee, which is a user or a group who has permissions to a file
or directory. Attributes offer a different way to specify what can be done to a file. Attributes
do their work, regardless of the user who accesses the file. Of course, there is a difference: the
owner of a file can set file attributes, whereas other users (except for root who is almighty)
cannot do that.

CHAPTER 7 MANAGING PERMISSIONS

For file attributes as well, an option must be provided in /etc/fstab before they can
be used. This is the user_xattr option that can be seen in the fstab example in Listing 7-3
earlier in this chapter. Some attributes are available, but not yet implemented. Don’t use
them, because they bring you no benefit. Following are the most useful attributes that can
be applied:

¢ A: This attribute ensures that the access time of the file is not modified. Normally, every
time a file is opened, the file access time must be written to the file’s metadata. This
affects performance in a negative way; therefore, on files that are accessed on a regular
basis, the A attribute can be used to disable this feature.

¢ a: This attribute allows a file to be added to, but not to be removed. For example, you
could use it on log files as an additional layer of security that ensures that entries can
be added, but the log file cannot be removed by accident.

e c:Ifyou are using a file system where volume-level compression is supported, this file
attribute makes sure the file is compressed the first time the compression engine gets
active.

e D: This attribute makes sure that changes to files are written to disk immediately, and
not to cache first. This is a useful attribute on important database files to make sure
that they don’t get lost between file cache and hard disk.

e d: This attribute makes sure the file is not backed up in backups where the dump utility is
used.

¢ I:This attribute enables indexing for the directory where it is enabled (see Chapter 5
for more details on indexing). This allows faster file access for primitive file systems like
Ext3 that don’t use a b-tree database for fast access to files.

¢ j: This attribute ensures that on an Ext3 file system the file is first written to the jour-
nal and only after that to the data blocks on the hard disk. Use this to make sure that
the journal offers maximum protection, and the chance of losing data is reduced to a
minimum.

¢ s: This overwrites the blocks where the file was stored with zeros after the file has
been deleted. This makes sure that recovery of the file is not possible after it has been
deleted.

 u: This attribute saves undelete information. This allows a utility to be developed that
works with that information to salvage deleted files.

Note Although there are quite a few attributes that can be used, you should be aware that most attri-
butes are rather experimental and only of any use if an application is employed that can work with the given
attribute. For example, it doesn’t make sense to apply the u attribute as long as no application has been
developed that can use this attribute to recover deleted files.

177

178

CHAPTER 7 MANAGING PERMISSIONS

If you want to apply attributes, you can use the chattr command. For example, use
chattr +s somefile to apply the attribute s to somefile. Need to remove the attribute again?
Then use chattr -s somefile, and it will be removed. To get an overview of all attributes that
are currently applied, use the 1sattr command.

Summary

In this chapter, you have learned how to work with permissions. You've first discovered the
role of ownership when determining your effective permissions. Next, you have learned about
the three basic permissions: read, write, and execute. Following that, you have seen how to
work with advanced features such as the SUID, SGID, and sticky bit permissions as well as
ACLs. You've also read how to apply file attributes to add an additional layer of security to your
file system. In this chapter, the following commands have been discussed:

¢ chown: Change ownership of files and directories.

e chgrp: Change group ownership of files and directories.

e groups: List group ownership for users.

* newgrp: Temporarily change the effective primary group for a user.
¢ chmod: Change permission mode on files and directories.

¢ setfacl: Set ACLs.

e getfacl: Read current ACLs.

¢ chattr: Change file attributes.

e lsattr: List file attributes.

In the next chapter, you will learn about process management.

CHAPTER 8

Managing Software

By default, your Linux distribution will come with lots of software packages. Even if lots of
packages are available by default, you will encounter soon enough a situation where you need
to install new packages. In this chapter, you’ll learn how to do this. First, I'll tell you about the
different ways that software management is handled on Linux. Next, you'll read about how to
work with RPM-based packages. Then you'll learn how to install packages that are delivered
in the .deb format. You’ll also learn about software and package management tools such as
yum, apt-get, and zypper; tracking and finding software packages; and managing updates and
patches.

Note AQuite often, software packages are delivered as tar archives. Refer to Chapter 3 for additional
information about tar.

Understanding Software Management

Linux software packages are very modular. This means that everything you need is rarely in
one software package. Most software packages have dependencies. These dependencies are
packages that also need to be installed for your software package to function well.

Managing these software package dependencies is among the greatest challenges when
working with software packages in Linux. If you choose a solution that doesn’t know how to
handle dependencies, you may see error messages indicating that in order to install package A,
you also need to install packages B, C, and D. This is also referred to as dependency hell, and in
the past it has been a very good reason for people not to use Linux.

Nowadays, all Linux distributions have some solution to manage these dependencies.
These solutions are based on software repositories. A repository contains a list of all installable
packages. This means that your distribution’s software management solution knows which
software packages are available and installs dependencies automatically. By default, your
installation medium will be a repository; to add new software, you will find yourself adding
new repositories regularly.

179

180

CHAPTER 8 MANAGING SOFTWARE

Managing RPM Packages

RPM is the package management standard that was invented by Red Hat, and nowadays it

is used by important distributions like Red Hat itself, SUSE, and Mandriva. RPM is based on
packages that have the extension .rpm. These packages typically include name, version, and
architecture of the software you are about to install. In this section, I'll show you how to man-
age the package iftop-0.16-1.1386.rpm, which contains a useful utility that allows you to
monitor your network card. This package name tells you not only the name and version, but
also the processor architecture that the software is written for. Make sure that you select the
package that is written for your architecture. You will see packages that are written for noarch
as well. These are installable on all hardware platforms.

Working with RPM

The most basic way to handle RPM packages is by using the rpm command. Although this com-
mand provides an easy method for package management, it doesn’t care about dependencies.
This means that you may need to install all dependencies themselves. However, if you just
want to install a simple package, this command does provide a decent solution. First, you may
use it to install packages. To do this, use the -i option as in the following example command:

rpm -i iftop-0.16-1.1386.rpm

If all goes well, this command just installs the package without showing any output. If
some condition exists that prevents your package from installing smoothly, however, this
command will complain and stop installing immediately, which you can see in the following
example:

nuuk:~ # rpm -i iftop-0.16-1.1386.rpm
package iftop-0.16-1 is already installed

A common reason why package installation may fail is that a package with the same name
is already installed, which was the case in the second attempt to install the package iftop. It’s
easy to avoid that problem: instead of using rpm -1i, better use rpm -Uvh.

If a package with the name of the package you are trying to install is already installed, it
will be upgraded by using the option -U. If it’s not installed yet, the rpm command will install
it. Therefore, I'd recommend always using this command and not rpm -i. The other options
are used to show more output to the user. The -v option adds verbosity, meaning it will show
what the rpm command is actually doing. Finally, the -h option shows hashes, meaning you’ll
be able to see progress while installing the software. Listing 8-1 shows two examples where
rpm -Uvh is used.

Listing 8-1. Using rpm -Uvh to Install Packages

nuuk:~ # rpm -Uvh iftop-0.16-1.1386.rpm
Preparing... HHHHHHHHHEHHHHH AR [100%)]
package iftop-0.16-1 is already installed
nuuk:~ # rpm -Uvh logtool-1.2.8-1.1386.rpm
Preparing... HHHHHHHHHEHEHHAH AR [100%)]
1:logtool HHHHHHHHHEHHHHA AR [100%)]

CHAPTER 8 MANAGING SOFTWARE

Apart from installing packages, you can also use rpm to remove packages. To do this, issue
rpm with the option -e, as demonstrated in the following command:

rpm -e iftop-0.16-1-1386.1pm

Although the rpm command offers an easy solution for installing individual packages, you
may not want to use it as your preferred package management solution. There are two pack-
age management interfaces that make package management really easier, yum and zypper,
and you can read more about them in the next two sections.

Working with yum

The yum system makes working with RPM packages easy. This package management interface
works with repositories that contain lists of installable software. As an administrator, your first
task is to make sure that you have all the software repositories you need in your configuration.
Based on this repository list, the yum command is used to perform all kinds of software package
management tasks.

Managing yum Repositories

Managing yum all starts with managing software repositories. For this purpose, your dis-
tribution provides the /etc/yum.conf configuration file; most distributions also include the
directory /etc/yum.repos.d, which can contain configuration files for individual software
repositories. In Listing 8-2, you can see what the default repository configuration for Fedora
software packages looks like.

Listing 8-2. Default Software Repository Configuration for Fedora

[root@fedora yum.repos.d]# cat fedora.repo

[fedora]

name=Fedora $releasever - $basearch

failovermethod=priority

#baseurl=http://download.fedoraproject.org/pub/fedora/linux/releases/$releasever/
Everything/$basearch/os/

mirrorlist=http://mirrors.fedoraproject.org/mirrorlist?repo=fedora-
$releaseverdarch=$basearch

enabled=1

gpgcheck=1

gpgkey=file:///etc/pki/xrpm-gpg/RPM-GPG-KEY-fedora-$basearch

[fedora-debuginfo]

name=Fedora $releasever - $basearch - Debug

failovermethod=priority

#baseurl=http://download.fedoraproject.org/pub/fedora/linux/releases/$releasever/Eve
rything/$basearch/debug/

mirrorlist=http://mirrors.fedoraproject.org/mirrorlist?repo=fedora-debug-
$releaseverBarch=$basearch

181

182

CHAPTER 8 MANAGING SOFTWARE

enabled=0
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-fedora-$basearch

[fedora-source]

name=Fedora $releasever - Source

failovermethod=priority

#baseurl=http://download.fedoraproject.org/pub/fedora/linux/releases/$releasever/Eve
rything/source/SRPMS/

mirrorlist=http://mirrors.fedoraproject.org/mirrorlist?repo=fedora-source-
$releaseverBarch=$basearch

enabled=0

gpgcheck=1

gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-fedora-$basearch

As you can see, each of the package sources contains a few common items:

e Name of the repository: This is just the identification for your repository. Make sure that
it is unique.

e Failover method: It is possible to configure repositories in a failover configuration.
This means you refer to two or more different repositories that contain the same soft-
ware. This is useful for creating some redundancy for repositories: if one repository
fails, the other one will take over. If you choose to do that, this line indicates whether
this is the repository with priority.

* Base URL: This is the base URL that brings you to the repository. As you can see, the
URL mentioned here is commented out, which ensures that only the mirrors as speci-
fied in the mirror list are used.

o Mirror list: This line refers to a location where a list of mirror servers is found.

e Enabled status: This indicates whether this repository is on or off. You can see that on
installation of the Fedora software, three repositories are listed in this file, but of these
three, only one has the value of 1 and is on.

* GPG configuration: To check the integrity of software packages, GPG is used. The line
gpgcheck=1 switches this feature on. In the line gpgkey=, there is an indication of what
GPG key to use.

Note GPG offers PGP (Pretty Good Privacy)-based integrity checking of software packages. GPG is just
the GNU version of PGP, which is available for free usage.

Note that on some Linux distributions, only online package repositories are used. This
ensures that you'll always get the latest version of the package you need to install, and it also
makes sure that you can update your software smoothly. If you have already installed soft-
ware from the online repositories, it is a bad idea to install packages from the installation
media later, as you may end up with the wrong version of the package and some installation

CHAPTER 8 MANAGING SOFTWARE

problems. If you are sure that you will never do online package management on a particular
system, however, it is a good idea to configure yum to work with the local installation media
only. The following procedure describes how you can do this for a Fedora system:

1. Before working with yum, make sure that the installation media is mounted at a fixed
mount point. In this example, I'll assume that you have configured your system to
mount the installation media on /cdrom. You need to not only configure fstab for this
purpose, but also make sure that it is actually mounted at this moment.

2. Open the /etc/yum. conf file and make sure that you switch off PGP checking. The fol-
lowing line accomplishes this:

gpgcheck=1

3. Open the repository files one by one and disable all online repositories. Just check for a
repository that has enable=1 and change that to enable=0.

4. In any of the repository files (you can create a new file in /etc/yum.repos.d or include
this information in one of the existing files), include the following lines:

[fedora-dvd]
name=Fedora installation DVD
baseurl=file:///cdrom

At this point, you have configured your system to look on the installation DVD only. Don’t
forget to switch the online resources back on again if you ever intend to connect this system
to the Internet to install software packages. You can do so by changing the value for the enable
parameter that you used in step 3 of the procedure back to 1.

Managing Software Packages with yum

Based on the software repositories you have installed, you can use the yum command. This
command is written to be intuitive. You want to install a package? Use yum install. Need to
update? yum update will help. Following are some examples of the most important arguments
that you can use with yum:

e install: Use this to install a package. For instance, yum install nmap would search
the software repositories for the nmap package and, if found, install it (see Listing 8-3).
This installation is interactive; yum will first show you what it found and next install that
for you.

Listing 8-3. Installing Software Packages with yum

[root@fedora etc]# yum install nmap

Loaded plugins: refresh-packagekit

fedora-dvd | 2.8 kB 00:00
Setting up Install Process

Parsing package install arguments

Resolving Dependencies

--> Running transaction check

---> Package nmap.i386 2:4.68-3.fc10 set to be updated

--> Finished Dependency Resolution

183

184 CHAPTER 8 MANAGING SOFTWARE

Dependencies Resolved

Package Arch Version Repository Size
Installing:
nmap 1386 2:4.68-3.fc10 fedora-dvd 914 k

Transaction Summary

Install 1 Package(s)
Update 0 Package(s)
Remove 0 Package(s)

Total download size: 914 k
Is this ok [y/N]: y
Downloading Packages:
Running rpm_check_debug
Running Transaction Test
Finished Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : nmap 1/1

Installed:
nmap.i386 2:4.68-3.fc10

Complete!

e update: Use yum update if you want to update your entire system. You can also use the
update command on a specific package; for instance, yum update nmap would search
the software repositories to see whether a newer version of nmap is available, and if
this is the case, install it.

¢ remove: Use this to remove a package from your system. For instance, yum remove nmap
would delete the nmap package, including all dependencies that become obsolete after
removing this package.

¢ list: This option contacts the repositories to see what packages are available and show
you which are and which are not installed on your system. Just use yum list to see a
complete list of all packages. This command used in combination with grep allows you
to search for specific packages.

CHAPTER 8 MANAGING SOFTWARE 185

The yum list command has some specific options itself. By default, it shows all pack-
ages, installed or not, that are available. In case you just want to see a list of packages
that are installed, you can use yum 1ist installed.

e info: If you want more information about any of the installed packages on your system,
use yum info, followed by the name of the package. For instance, yum info nmap would
give you all available details about the nmap package (see Listing 8-4). Based on this
information, you can make the decision whether or not you need this package.

Listing 8-4. Use yum info to Get More Information About a Package

[root@fedora etc]# yum info nmap
Loaded plugins: refresh-packagekit
Installed Packages

Name : nmap

Arch 1 1386

Epoch 12

Version : 4.68

Release 1 3.fc10

Size 3.2 M

Repo : installed

Summary ¢ Network exploration tool and security scanner

URL : http://waw.insecure.org/nmap/

License : GPLv2

Description: Nmap is a utility for network exploration or security auditing.
It

: supports ping scanning (determine which hosts are up), many port
: scanning techniques (determine what services the hosts are

: offering), and TCP/IP fingerprinting (remote host operating

: system

: identification). Nmap also offers flexible target and port

: specification, decoy scanning, determination of TCP sequence

1 predictability characteristics, reverse-identd scanning, and

: more.

e provides: The yum provides command tells you what RPM package provides a given
file. Listing 8-5 shows you the result of this command when used to find out where the
file /etc/samba/smb.conf comes from.

186

CHAPTER 8 MANAGING SOFTWARE

Listing 8-5. Use yum provides to Find Out What RPM Package a Given File Comes From

[root@fedora ~]# yum provides /etc/samba/smb.conf

Loaded plugins: refresh-packagekit

samba-common-3.2.4-0.22.fc10.1386 : Files used by both Samba servers and
clients

Matched from:

Filename : /etc/samba/smb.conf

¢ search: The yum search command allows you to search for a specific package, based on
a search string that is composed as a regular expression. For instance, yum search nmap
would give you the names of all packages whose name contains the text nmap.

Working with zypper

On SUSE Linux, an alternative to the RPM package manager is used, the zypper package
manager. The intention of this package manager was to provide the same functionality that
yum does, but in a faster way. The zypper package also works with package repositories and
command-line utilities. Novell has developed this utility to work together with its ZENworks
Linux Management Solution, with the rug command-line utility that it uses on its enterprise
products, but also to work with common RPM repositories such as yum. In some cases, you
will see zypper referring to the rug, ZEN, and YaST utilities (see Listing 8-6 in the next section
for an example of this); you can safely ignore those messages because zypper also works well
without them.

Managing zypper Software Repositories

In zypper, a repository is called an installation source. Installation sources are kept in the zyp-
per database, which is in /var/1ib/zypp. To manage zypper installation sources, you have to
use the zypper command. The most important options that are related to package manage-
ment are listed here:

e service-add URI: The zypper service-add command will add an installation source.
This command is followed by a Universal Resource Identifier (URI), which can be a
web address, but which can also refer to a local directory on your system. For instance,
the command zypper service-add file:///packages would add the contents of the
directory /packages to the installation sources, as shown in Listing 8-6.

Listing 8-6. Adding an Installation Source with zypper

nuuk:~ # zypper service-add file:///packages
3211 zmd

CHAPTER 8 MANAGING SOFTWARE

ZENworks Management Daemon is running.
WARNING: this command will not synchronize changes.
Use rug or yast2 for that.
Determining file:/packages source type...
. not YUM
. not YaST
Unknown source type for file:/packages

As you can see, the zypper service-add command uses URL format. In Listing

8-6, the URL that was used refers to something on the local file system. However,
you can also use zypper to refer to something that is on the Internet. For instance,
zypper service-add http://www.example.com/packages would add an installation
source that is on a web server. zypper uses the same URL syntax that you use when
working with a browser and is therefore intuitive to work with.

e service-list: As its name suggests, this command allows you to display a list of all
available zypper installation sources (zypper uses services as a synonym for installation
sources).

e service-remove: Use this to remove installation sources from the list of available
services.

Managing RPM Packages with zypper

Once the service lists are all configured, you can use zypper at the command line to manage
software packages. In its use, zypper looks a lot like the yum utility; basically, you can just
replace the yum command by the zypper command in most cases. However, there are also
some useful additions to the zypper command that do not have yum equivalents. Following is
an overview of the most important zypper command-line options:

e install: Use zypper install to install a package. For instance, to install the package
nmap, you would use the command zypper install nmap.

 remove: Use zypper remove to remove a package from your system. For instance, to
remove the package nmap, type zypper remove nmap.

¢ update: Use this to update either your complete system or just one package. To update
the entire system, use zypper update; to update one package only, add the name of the
package you want to update to this command. For instance, if you want to update the
package nmap, use zypper update nmap.

¢ search: Use this to search for a particular package. By default, zypper will search in
the list of installed packages, as well as the list of packages that haven’t been installed
yet. If you want to modify this behavior, add the option -1i to search in installed
packages only or -u to search in uninstalled packages only. The argument used with

187

188 CHAPTER 8 MANAGING SOFTWARE

zypper search is interpreted as a regular expression. For instance, the command
zypper search -i samba would just look for all packages that have the string samba in
their name and show a list of these. Listing 8-7 shows what the result of this command
looks like.

Listing 8-7. Use zypper search to Get a List of All Packages That Contain a Given String in
Their Name

nuuk:~ # zypper search -i samba
Restoring system sources...
Parsing metadata for SUSE Linux Enterprise Server 10 SP2-20090121-231645...
S | Catalog | Type | Name
| Version | Arch

i | SUSE Linux Enterprise Server 10 SP2-20090121-231645 | package | samba
| 3.0.28-0.5 | i586
i | SUSE Linux Enterprise Server 10 SP2-20090121-231645 | package |
samba-client
| 3.0.28-0.5 | i586
i | SUSE Linux Enterprise Server 10 SP2-20090121-231645 | package |
yast2-samba-client | 2.13.40-0.3 | noarch
i | SUSE Linux Enterprise Server 10 SP2-20090121-231645 | package |
yast2-samba-server | 2.13.24-0.3 | noarch

e patches: This useful command will show a list of all available patches. Use this com-
mand if you not only want to update, but also would like to know what exactly an
update will do to your system.

In some cases, the zypper command will give you a lot of information. To filter out only
the parts you need, use the grep utility.

Managing DEB Packages

RPM is not the only way to package software for Linux. Another very popular package format
is the .deb format. This format was originally developed on Debian Linux but is now also the
default package format for other distributions, of which Ubuntu is the most important. In

this section, you'll learn how to manage packages in this format. I've based this section on
Ubuntu; you may therefore find some differences with the way other distributions handle .deb
packages.

Managing .deb Software Repositories

On an Ubuntu system, a list of all these installation sources is kept in the file /etc/apt/
sources.list. Although the most important software repositories are added to this file

CHAPTER 8 MANAGING SOFTWARE

automatically, you may occasionally want to add other software repositories to this list. To
understand how this works, it is useful to distinguish between the different package categories
that Ubuntu uses. This will tell you more about the current status of a package, for example,
if the package is considered safe or if it has licensing that doesn’t comply to common open
source standards.

In all repositories, you'll always find the following five package categories:

¢ Main: The main category portion of the software repository contains software that is
officially supported by Canonical, the company behind Ubuntu. The software that is
normally installed to your server is in this category. By working with only this software,
you can make sure that your system remains as stable as possible and—very important
for an enterprise environment—that you can get support for it at all times.

* Restricted: The restricted category is basically for supported software that uses a license
that is not freely available, such as drivers for specific hardware components that use a
specific license agreement, or software that you have to purchase. You'll typically find
restricted software in a specific subdirectory on the installation media.

e Universe: The universe category contains free software that is not officially supported.
You can use it, and it is likely to work without problems, but you won'’t be able to get
support from Canonical for software components in this category.

¢ Multiverse: The multiverse component contains unsupported software that falls under
license restrictions that are not considered free.

¢ Backports: In this category, you'll find bleeding-edge software. If you want to work with
the latest software available, you should definitely get it here. Never use it if your goal is
to install a stable server.

When installing software with the apt-get utility, it will look for installation sources in the
configuration file /etc/apt/sources.list. Listing 8-8 shows a part of its contents.

Listing 8-8. Definition of Installation Sources in sources.list

deb http://security.ubuntu.com/ubuntu ibex-security main restricted
deb-src http://security.ubuntu.com/ubuntu ibex-security main restricted
deb http://security.ubuntu.com/ubuntu ibex-security universe

deb-src http://security.ubuntu.com/ubuntu ibex-security universe

deb http://security.ubuntu.com/ubuntu ibex-security multiverse

deb-src http://security.ubuntu.com/ubuntu ibex-security multiverse

As you can see, the same format is used in all lines of the sources.1ist file. The first field
in these lines specifies the package format to be used. Two different package formats are used
by default: .deb for binary packages (basically precompiled program files) and .deb-src for
packages in source file format. Next, the URI is mentioned. This typically is an HTTP or FTP
URL, but it can be something else as well. For instance, it can refer to installation files that you
have on an installation CD or in a directory on your computer. After that you'll see the name of

189

190

CHAPTER 8 MANAGING SOFTWARE

the distribution (hardy-security), and you'll always see the current distribution version there.
Last, every line refers to the available package categories. As you can see, most package catego-
ries are in the list by default. Only installation sources for security patches have been included
in the partial listing of sources in Listing 8-8. For a complete overview, take a look at the con-
figuration file itself.

Now that you understand how the sources.1ist file is organized, it follows almost auto-
matically what should happen if you want to add some additional installation sources to this
list: make sure that all required components are specified in a line, and add any line you like
referring to an additional installation source. Once an additional installation source has been
added, it will be automatically checked when working on software packages. For example, if
you should use the apt-get update command to update the current state of your system, the
package manager will check your new installation sources as well.

A second important management component used by package managers on your com-
puter is the package database. The most fundamental package database is the dpkg database,
which is managed by the Debian utility dpkg. On Ubuntu as well as Debian, however, the
Advanced Packaging Tools (apt) set is used for package management. These Ubuntu tools
add functionality to package management that the traditional dpkg approach typically can-
not offer. Because of this added functionality, the apt tools use their own database, which is
stored in /var/1lib/apt. By communicating with this database, the package manager can query
the system for installed software, and this enables your server to automatically solve package-
dependency problems.

Every time a package is installed, a list of all installed files is added to the package data-
base. By using this database, the package manager can even see whether certain configuration
files have been changed, which is very important if you want to update packages at your
server!

Caution Because working with two different package management databases can be confusing,
| suggest that you choose the package management system that you want to work with and stick to it.
In this book, | will cover only the apt utilities for Ubuntu and Debian.

Ubuntu Package Management Utilities

You can use any of several command-line package management utilities on Ubuntu. The most
important of these interact directly with the package database in /var/1lib/apt. You would
typically use the apt-get command for installation, updates, and removal of packages, and
so you'll find yourself working with that utility most of the time. You should also know of the
aptitude utility, which works in two ways. You can use aptitude as a command-line utility to
query your server for installed packages, but aptitude also has a menu-driven interface that
offers an intuitive way to manage packages.

Another approach to managing packages is the Debian way. Because Ubuntu package
management is based on Debian package management, you can use Debian package man-
agement tools like dpkg as well. However, these do not really add anything to what Ubuntu
package management already offers, and so I will not cover the Debian tools in this book.

CHAPTER 8 MANAGING SOFTWARE

Understanding apt

Before you start working on packages in Ubuntu, it is a good idea to decide what tool you want
to use. It’s a good idea because many tools are available for Ubuntu, and each of them uses

its own database to keep track of everything installed. To prevent inconsistencies in software
packages, it’s best to choose your favorite utility and stick to that. In this book, I'll focus on

the apt-get utility, which keeps its database in the /var/1lib/apt directory. This is my favorite
utility because you can run apt-get as a very easy and convenient tool from the command line
to perform tasks very quickly. The apt-get utility works with commands that are used as its
argument, such as apt-get install something. In this example, install is the command you
use to tell apt-get what you really want to do. Likewise, you can use some other apt-get com-
mands. The following four commands are the most important building blocks when working
with apt-get:

e update: This is the first command you want to use when working with apt-get. It
updates the list of packages that are available for installation. Use it to make sure that
you install the most recent version of a package.

¢ upgrade: Use this command to perform an upgrade of your server’s software packages.

e install: This is the command you want to use every time you install software. It’s
rather intuitive. For example, if you want to install the nmap software package, you
would just type apt-get install nmap.

e remove: You've probably guessed already, but you'll use this one to remove installed
packages from your system.

Showing a List of Installed Packages

Before you start managing packages on Ubuntu Server, you probably want to know what pack-
ages are already installed, and you can do this by issuing the dpkg -1 command. It'll generate a
long list of installed packages. Listing 8-9 shows a partial result of this command.

Note The apt- get utility is not the most appropriate way to list installed packages because it can see
only those packages that are installed with apt. If you have installed a package with dpkg (which | would not
recommend), you won’t see it with apt-get. So, to make sure that you don’t miss any packages, | recom-
mend using dpkg -1 to get a list of all installed packages.

Listing 8-9. The dpkg -1 Command Shows Information About Installed Packages

$ dpkg -1
ii xvidtune 1.0.1-0Oubuntu1l X client - xvidtune
ii xvinfo 1.0.1-0ubuntul XVideo information
il xwd 1.0.1-0Oubuntu1l X client - xwd
ii xwininfo 1.0.1-0ubuntul X client - xwininfo
il xwud 1.0.1-Oubuntu1l X client - xwud

2

ii yelp .18.1-0Oubuntu Help browser for GNOME 2

191

192

CHAPTER 8 MANAGING SOFTWARE

ii
ii
ii
ii

zenity 2.18.1-0Oubuntu Display graphical dialog boxes from shell sc
zip 2.32-1 Archiver for .zip files
zlibig 1.2.3-13ubuntu compression library - runtime

z1lib1g-dev 1.2.3-13ubuntu compression library - development

The result of the dpkg command shows information about packages and their status. The

first character of the package shows the desired status for a package, and this status indicates
what should happen to the package. The following status indicators are used:

e i:You'll see this option in most cases, indicating that the package should be installed.
¢ h: This option (for “hold”) indicates that the package cannot be modified.
¢ p: This option indicates that the package should be purged.

¢ 1: This option indicates that the package is supposed to be removed without removing
associated configuration files.

¢ u: This option indicates that the current desired status is unknown.

The second character reveals the actual state of the package. You'll find the following

options:

e I: The package is installed.

¢ c: Configuration files of the package are installed, but the package itself is not.
o f: The package is not guaranteed to be correctly installed.

¢ h: The package is partially installed.

¢ n: The package is not installed.

* u: The package did install, but the installation was not finalized because the configura-
tion script was not successfully completed.

The third character indicates any known error state associated with the package. In most

cases you'll just see a space (so, basically, you don’t see anything at all) indicating that nothing
is wrong. Other options are as follows:

¢ H: The package is put on hold by the package management system. This means that
dependency problems were encountered, in which case some required packages are
not installed.

¢ R: Reinstallation of the package is required.

¢ X: The package requires reinstallation and has been put on hold.

The dpkg command can be used to show a list of packages that are already installed in

your system, but you can also use it to display a list of packages that are available to your sys-
tem. The only difference is that you have to provide some information about the package. For
example, the command dpkg -1 "samba*" would provide information about the current instal-
lation status of the Samba package. Listing 8-10 shows the result of this command.

CHAPTER 8 MANAGING SOFTWARE

Listing 8-10. Dpkg Can Be Used to Display a List of Packages That Are Available

sander@mel:~$ dpkg -1 "samba*"

Desired=Unknown/Install/Remove/Purge/Hold

| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-installed

|/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err: uppercase=bad)
||/ Name Version Description

un samba-common <none> (no description available)

As you can see in the output that is provided for each package, the first two positions
show that the package status is currently unknown. In combination with some smart use of
the grep command, you can even use this construction to find out what packages are available
for installation on your server. In the command dpkg -1 "*" | grep “un, the grep command
is used to filter out all packages that show a result that starts with the letters un, which is very
typical for a package that is not installed.

You can also use the dpkg utility to find out what package owns a certain file. This is very
useful information. Imagine that a file is broken and you need to refresh the package’s instal-
lation. To find out what package owns a file, use dpkg --seach /your/file. The command will
immediately return the name of the package that owns this file.

Using aptitude

On Ubuntu, a few solutions are available for package management. One of these is aptitude.
The major benefit of this solution is that it is somewhat more user friendly because it can work
with keywords, which are words that occur somewhere in the description of the package. For
example, to get a list of all packages that have samba (the name of the well-known Linux file
server package that you can use to provide Windows file services on your Linux computer) in
their description, you would use aptitude search samba. Listing 8-11 shows the result of this
command.

Listing 8-11. Showing Package Status Based on Keywords

sander@mel:~$ aptitude search samba

[sudo] password for sander:

p dpsyco-samba - Automate administration of access to samba
p ebox-samba - ebox - File sharing

p egroupware-sambaadmin - eGroupWare Samba administration applicatio
p gsambad - GTK+ configuration tool for samba

p samba - a LanManager-like file and printer server
v samba-client -

p samba-common - Samba common files used by both the server
p samba-dbg - Samba debugging symbols

p samba-doc - Samba documentation

p samba-doc-pdf - Samba documentation (PDF format)

p system-config-samba - GUI for managing samba shares and users

193

194

CHAPTER 8 MANAGING SOFTWARE

Once you have found a package using the aptitude command, you can also use it to
show information about the package. To do this, you'll use the show argument. For example,
aptitude show samba will show you exactly what the package samba is all about (see List-
ing 8-12). As you can see, in some cases very useful information is displayed.

Listing 8-12. The aptitude show Command Shows What Is Offered by a Package

sander@mel:~$ aptitude show samba

Package: samba

State: not installed

Version: 3.0.28a-1ubuntu4

Priority: optional

Section: net

Maintainer: Ubuntu Core Developers <ubuntu-devel-discuss@lists.ubuntu.com>

Uncompressed Size: 9425k

Depends: adduser, debconf (»>= 0.5) | debconf-2.0, libacli (»>= 2.2.11-1),
libattr1 (>= 2.4.4-1), 1libc6 (>= 2.7-1), libcomerr2 (>= 1.33-3),
libcupsys2 (>= 1.3.4), libgnutlsi3 (>= 2.0.4-0), libkrb53 (>=
1.6.dfsg.2), libldap-2.4-2 (>= 2.4.7), libpam-modules, libpam-runtime
(>= 0.76-13.1), libpamog (>= 0.99.7.1), libpopto (>= 1.10), logrotate,
lsb-base (>= 3.0-6), procps, samba-common (= 3.0.28a-1ubuntu4),
update-inetd, z1libig (>= 1:1.2.3.3.dfsg-1)

Suggests: openbsd-inetd | inet-superserver, smbldap-tools

Replaces: samba-common (<= 2.0.5a-2)

Description: a LanManager-like file and printer server for Unix

The Samba software suite is a collection of programs that implements the

SMB/CIFS protocol for unix systems, allowing you to serve files and printers to

Windows, NT, 0S/2 and DOS clients. This protocol is sometimes also referred to

as the LanManager or NetBIOS protocol.

This package contains all the components necessary to turn your Debian
GNU/Linux box into a powerful file and printer server.

Currently, the Samba Debian packages consist of the following:

samba - LanManager-like file and printer server for Unix.

samba-common - Samba common files used by both the server and the client.

smbclient - LanManager-like simple client for Unix.

swat - Samba Web Administration Tool

samba-doc - Samba documentation.

samba-doc-pdf - Samba documentation in PDF format.

smbfs - Mount and umount commands for the smbfs (kernels 2.2.x and above).

libpam-smbpass - pluggable authentication module for SMB/CIFS password

database

libsmbclient - Shared library that allows applications to talk to SMB/CIFS

servers

CHAPTER 8 MANAGING SOFTWARE

libsmbclient-dev - libsmbclient shared libraries
winbind - Service to resolve user and group information from Windows NT
servers

It is possible to install a subset of these packages depending on your
particular needs. For example, to access other SMB/CIFS servers you should only
need the smbclient and samba-common packages.

http://www.samba.org/

Adding and Removing Software with apt-get

The best tool for Ubuntu and Debian to perform package management from the command
line is apt-get. It provides a very convenient way to install, update, or remove software pack-
ages on your machine. It requires root permissions, so you should always start the command
with sudo.

Before you do anything with apt-get, you should always use the apt-get update com-
mand first. Because apt-get gets most software packages online, it should always know
about the latest available versions of those packages. The apt-get update command makes
sure of this, and it caches a list of the most recent version of packages that are available on
your server. Once the update is performed, you can use apt-get to install and remove soft-
ware. Installation is rather easy: to install the package blah, use apt-get install blah. The
advantage of the apt-get command is that it really tries to understand what you are doing.
This is shown in Listing 8-13, where the apt-get command is used to install the Samba
server software.

Listing 8-13. The apt-get Command Tries to Understand What You Want to Do

sander@mel:~$ sudo apt-get install samba
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
libcupsys2 samba-common
Suggested packages:
cupsys-common openbsd-inetd inet-superserver smbldap-tools
The following NEW packages will be installed:
libcupsys2 samba samba-common
0 upgraded, 3 newly installed, 0 to remove and 0 not upgraded.
Need to get 6849kB of archives.
After this operation, 16.8MB of additional disk space will be used.
Do you want to continue [Y/n]? y
Get:1 http://us.archive.ubuntu.com hardy/main libcupsys2 1.3.7-1ubuntu3 [174kB]
1% [1 libcupsys2 99595/174kB 57%]

In the example from Listing 8-13, everything went all right because a package with the
name samba exists. In some cases, you'll see that apt-get doesn’t understand what you want
it to do. If that happens, it sometimes gives a hint on the package that you need to install

195

196

CHAPTER 8 MANAGING SOFTWARE

instead. If that doesn’t happen either, try to search the appropriate package first, using the
aptitude search command.

You can also use apt-get to remove software, upgrade your system, and much more. The
following list provides an overview of the most important functions of the apt-get command.
Be aware that you should always run the command with root permissions, so use sudo to start
apt-get (or set a root password and work as root directly).

e Install software: Use sudo apt-get install package.

* Remove software: Use sudo apt-get remove package. This option does
not remove configuration files. If you need to remove those as well, use
sudo apt-get remove --purge package.

e Upgrade software: To upgrade your complete operating system, use
sudo apt-get update first so that you're sure that apt-get is aware of the most recent
version of the packages. Then use sudo apt-get dist-upgrade.

Summary

In this chapter, you have read how to manage software packages. You have learned that soft-
ware packages can be installed as individual packages, but because of dependencies, this is
not a very good idea. Therefore, all distributions currently work with a package management
solution where the software repository is used to list installable packages and an intelligent
command is used to manage packages as well as their dependencies. You have read how to
manage packages from the RPM world with the yum and zypper commands, as well as packages
from the Debian world with the apt commands. The following commands and utilities were
discussed in this chapter:

e rpm: Command to create and manage RPM-based packages.
e yum: Package management utility in the Red Hat world.

e zypper: Package management utility in the SUSE works. Works more or less the same
as yum.

e apt-get: Ubuntu/Debian package management utility. Does a great job in installing
and updating software.

¢ dpkg: Original Debian package management utility, which has been made more or less
obsolete by apt-get. Still, dpkg is useful, especially for listing where the files from a
package are installed.

» aptitude: Alternative for apt-get. According to some, this utility is easier to use.

In the next chapter, you'll learn how to manage processes on your Linux computer.

CHAPTER 9

Process and System
Management

When working with Linux, from an administrative perspective, working with processes is
important. Every application or task you start on a Linux computer is started as a process. You
will find that in some instances, a task may hang, or something else may happen that urges
you to do some process management. In this chapter, you will learn how to monitor and man-
age processes. You will also learn how to schedule processes for automatic startup.

Understanding Linux Processes

When your computer boots, it will start a kernel. The kernel on its turn is responsible for
starting the first process, which normally is the init process. This process is responsible for
all other processes. When starting a process, init starts the process as a child of its own. For
instance, from init the mingetty process is started, which is responsible for opening a login
shell. From mingetty, the bash process is started to allow users to work with a Linux command
line.

From this follows that in Linux process management, there is a parent-child relationship.
init is the first parent that launches the child process mingetty. The mingetty process on its
turn is a parent for the bash process, and every command you start from bash is a child of the
bash process. The pstree command, of which you can see the output in Listing 9-1, shows this
relation between processes.

Listing 9-1. pstree Shows the Parent-Child Relation Between Processes

nuuk:~ # pstree
init----acpid

| --auditd---{auditd}
--cron
--cupsd
-dbus-daemon
-dhcpcd
--events/0
--gdm--gdm---X

| --gdmgreeter

197

198

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT

-- hald--ald-addon-acpi

|
| | --hald-addon-stor
|
[--

To run a process, the Linux kernel works with a queue of runnable processes. In this
queue, every process waits for its turn. By default, Linux works with time slices for process
handling. This means that every process gets a fair amount of system time before it has to
make place for other processes. If a process needs more attention, you can use the nice func-
tion to increase (or decrease if necessary) the system time that is granted to the process. More
on using nice on processes later in this chapter.

In some situations, you will have to stop a process yourself. This may happen if the pro-
cess doesn’t reply anymore, or if the process behaves in a way that harms other processes. To
stop a process, the Linux kernel will tell the responsible parent process that this process needs
to be stopped. Under normal circumstances, the parent process that was responsible for start-
ing a given process will always be present until all its children are stopped.

In the abnormal situation where the child is still there, but the parent is already stopped,
the child process cannot be stopped anymore, and it becomes a zombie. From the command
line there is nothing that you can do to stop a zombie process; the only solution is to restart
your computer.

You will find that if zombie processes occur, often the same processes are involved. That
is because the occurrence of zombie processes is often due to bad programming. So you may
have to update the software that creates the zombie process to get finally rid of your zombie
processes. In the following sections, you will learn how to monitor and manage processes.

Apart from zombie status, processes can be in other states as well. You can see these states
when using the ps aux command, which shows current process status; these are displayed in
the STAT column (see Listing 9-2). Processes can be in the following states:

* Running: The process is active.
¢ Sleeping: The process is loaded in memory but hasn’t been active recently.
e Zombie: The process is in defunctional state.

* Stopped: The process is stopped and about to be removed from computer memory.

Listing 9-2. Processes Can Be In Different States

nuuk:~ # ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

Toot 1 0.0 0.0 732 284 ? S 07:46 0:00 init [5]
root 2 0.0 0.0 0 0 ? SN 07:46 0:00 [ksoftirqd/o0]
root 3 0.0 0.0 0 0 7 < 07:46 0:00 [events/0]
root 4242 0.0 0.3 4188 1888 pts/0 Ss 07:52 0:00 -bash

root 4979 0.0 0.1 2436 836 pts/0 R+ 08:09 0:00 ps aux

You should know that there a different kinds of processes. Among these are the service
processes, the so-called daemons. An example is the httpd process, which provides web ser-
vices on your system. On the flip side are the interactive processes, which typically are started
by typing some command at the command line of your computer.

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT

Finally, there are two ways in which a process can do its work to handle multiple tasks.
First, it can just launch a new instance of the same process to handle the incoming request. If
this is the case, you will see the same process listed multiple times in ps aux. The alternative
is that the process works with one master process only, but launches a thread, which is a kind
of a subprocess, for each new request that comes in. Currently, processes tend to be multi-
threaded, as this uses system resources more efficiently.

Monitoring Processes

All work on processes that you'll need to do will start by monitoring what the process is doing.
Two commands are particularly important: top and ps. The ps command allows you to display
alist of all processes that are running on your computer. Because ps lists all processes (when
used as root), that makes it an excellent choice if you need to find a given process to perform
management tasks on it. The top command gives an overview of the most active processes.
This overview is refreshed every 5 seconds by default. As it also offers you a possibility to per-
form management tasks on these active processes, top is a very useful command for process
management, especially for users who are taking their first steps on the Linux command line.

Monitoring Processes with top

The single most useful utility for process management is top. You can start it by typing the top
command at the command line. Make sure that you have root permissions when doing this;
otherwise, you can’t do process management. In Listing 9-3, you can see what the top screen
looks like.

Listing 9-3. top Makes Process Management Easy

nuuk:~ # top

top - 14:10:46 up 21:56, 4 users, load average: 0.00, 0.00, 0.00

Tasks: 80 total, 2 running, 78 sleeping, 0 stopped, 0 zombie

Cpu(s): 0.1%us, 0.1%sy, 0.0%ni, 99.7%id, 0.1%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 516288k total, 434744k used, 81544k free, 35220k buffers

Swap: 131064k total, Ok used, 131064k free, 308192k cached
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
6778 root 15 0 2228 916 688 R 1.9 0.2 0:00.03 top
1 root 16 0 728 284 244 S 0.0 0.1 0:00.69 init
2 root 34 19 0 0 0S 0.0 0.0 0:00.00 ksoftirqd/0
3 root 10 -5 0 0 0S 0.0 0.0 0:00.02 events/0
4 root 10 -5 0 0 0S 0.0 0.0 0:00.00 khelper
5 root 1 -5 0 0 0S 0.0 0.0 0:00.00 kthread
8 root 10 -5 0 0 0S 0.0 0.0 0:00.06 kblockd/0
9 root 20 -5 0 0 0S 0.0 0.0 0:00.00 kacpid
10 root 20 -5 0 0 0S 0.0 0.0 0:00.00 kacpi notify
110 root 20 0 0 0 0S 0.0 0.0 0:00.00 pdflush
111 root 15 0 0 0 0S 0.0 0.0 0:00.37 pdflush
112 root 15 0 0 0 0S 0.0 0.0 0:00.02 kswapdo

199

200

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT

113
320
321
365
723

root 20 -5 0 0 0S 0.0 0.0 0:00.00 aio/0
root 11 -5 0 0 0S 0.0 0.0 0:00.00 cqueue/0
root 10 -5 0 0 0S 0.0 0.0 0:00.00 kseriod
root 11 -5 0 0 0S 0.0 0.0 0:00.00 kpsmoused
root 11 -5 0 0 0S 0.0 0.0 0:00.00 scsi eh 0

top basically shows you all you need to know about the current status of your system, and
it refreshes its output every 5 seconds by default. Its results are divided in two parts. On the top
part of the output window, you can see how busy your system is; in the lower part, you'll see a
list of the busiest processes your computer currently has.

The upper five lines of the top output (see Listing 9-3) shows you what your system cur-
rently is doing. This information can be divided into a few categories:

* Data about uptime and users: On the first line, top shows you the current time (14.10 in

this example), which is followed by the time the system has been up and the number
of users connected to the system. Although useful, this is not critical information for
process management.

Current usage statistics: Still on the first line, there are three numbers related to current
system usage. These three numbers indicate how busy your computer is relative to the
amount of CPUs or CPU cores in your computer (from the perspective of top, there is
no difference between a CPU and a CPU core): they give you the average for the last
minute, the last 5 minutes, and the last 15 minutes. Each number that you see has to
be divided by the number of CPUs installed in your system. The anchor value per CPU
is 1.00. If any of the values you see here is under 1.00, it means that your system is over
capacity, and there is no queuing of processes. A parameter that is higher than 1.00
indicates there is more demand currently than your system can handle.

Overview of tasks: The second line of top shows you information about the total
number of tasks and their current status. On an average computer, you won’t see many
more than about 200 tasks here. The following status information for these tasks is
displayed:

* Running: These are tasks that have been actively serviced during the last polling
loop.

 Sleeping: These are tasks that have not been active in the last polling loop.

* Stopped: These are tasks that are stopped but haven’t released all of their resources
yet.

o Zombie: These are tasks of which the parent no longer is available and hence can-
not be stopped or managed anymore.

Overview of CPU usage: If the load average of your computer is relatively high, the CPU
usage line can give an indication of exactly what your computer is doing. In this line,

a subdivision is made of the different kinds of demands that processes are issuing on
your CPU. On a multi-CPU system, you'll see the summary for all CPUs together. If you
want to see the load statistics for each of the CPUs from the top interface, press 1. The
following options are listed:

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT

us: The amount of load that was issued in user space. These typically are tasks that
run without root privileges and cannot access kernel functions directly.

sy: The amount of load that was issued in system space. These typically are tasks

that were started with root privileges and can access kernel functions directly. As
compared to user space-level tasks, the number of tasks that you see here should
be relatively low.

ni: Processes of which the priority has been adjusted using nice.

id: The activity of the idle loop. This gives the percentage of inactivity on your sys-
tem. It is no problem at all if this parameter is high.

wa: The amount of time that your system has spent in waiting mode. This is the
time that your system has been waiting for I/O. If you see a high value here, it indi-
cates that you have a lot of I/O-related tasks on your computer. An average that is
higher than 30% may indicate that your I/O channel doesn’t perform as it should.

hi: The amount of time that your computer has spent handling hardware inter-
rupts. It should be low at all times. If you see a high value here, it normally
indicates that some badly functioning drivers are used.

si: The amount of time that your system has spent handling software interrupts.

st: This parameter applies to environments where virtualization is used. It indi-
cates the amount of time that was stolen from the processor in this machine by
other virtual machines.

e Current memory use: In the last part of the upper lines of top output, you can see infor-
mation about the amount of memory your computer is using. These two lines give
information about the usage of real memory and swap memory, which is emulated
memory on the hard disk of your computer, at the same time. The following param-
eters are listed:

Mem total: This is the total amount of real RAM memory that is installed in your
computer.

Mem used: This parameter indicates the amount of memory that is in use. The
amount of memory that you see here also indicates memory that is used for buffers
and swap memory (discussed later in this list).

Mem free: The total amount of memory minus the amount of memory that is in
use.

Buffers: The amount of memory that is currently reserved for write buffers. When
writing data to storage, your computer will put the data in write buffers first, where
it waits for availability of the storage channel. By using write buffers, your Linux
computer optimizes write requests. As soon as a write request is in write buffers,
the application that issued the write request thinks that the data is written and
doesn’t have to wait anymore. In case the write buffers are needed for something
else, your system can free them immediately.

201

202

CHAPTER 9

PROCESS AND SYSTEM MANAGEMENT

Cache: This is memory in which recent read requests are cached. If a file was
recently requested a read, chances are that it will be needed again shortly. By keep-
ing recent files in cache, your computer has a mechanism to access these files as
fast as possible. Cache memory is also memory that your computer can free instan-
taneously if it is needed for something else.

Swap total: As mentioned previously, swap memory is emulated memory on the
hard disk of your computer. On Linux, it works as an overflow, and it is only used if
you are completely out of physical memory. Since swap memory is about a thou-
sand times slower than real memory, you should avoid using swap memory at all
times.

Swap used: This parameter indicates how much swap memory is currently in use.
This value should be close to 0. If more than a few megabytes of swap memory are
in use, this normally is an indication that your computer lacks physical memory.
You should install more physical memory in such cases.

The lower part of the top output shows you process information, divided in a couple of

columns that are displayed by default. You should know that more columns are available than
the ones displayed by default. If you want to activate the display of other columns, you should
press the F key while in the top screen. This shows you a list of all columns that are available,
indicating with an * which are currently active, as you can see in Listing 9-4. To toggle the sta-
tus of a column, press the letter associated with that column. For instance, pressing J will show
you which CPU was last used by a process.

Listing 9-4. You Can Toggle Other Columns to Be Displayed As Well in top

Current Fields: AEHIOQTWKNMbcdfgjplrsuvyzX for window 1:Def
Toggle fields via field letter, type any other key to return

*OX X X X X X X X X X

(400 N o E=Z2RR=ZT 40O +H=ITm>

: PID

USER
PR
NI
VIRT
RES
SHR

%CPU
ZMEM
TIME+
PPID
RUSER
uID
GROUP
TTY

o

= Process Id u: nFLT = Page Fault count

= User Name v: nDRT = Dirty Pages count

= Priority y: WCHAN = Sleeping in Function
= Nice value z: Flags = Task Flags <sched.h>
= Virtual Image (kb) * X: COMMAND = Command name/line

= Resident size (kb)

= Shared Mem size (kb) Flags field:

= Process Status 0x00000001 PF_ALIGNWARN
= CPU usage 0x00000002 PF_STARTING
= Memory usage (RES) 0x00000004 PF _EXITING

= CPU Time, hundredths 0x00000040 PF_FORKNOEXEC
= Parent Process Pid 0x00000100 PF_SUPERPRIV

= Real user name 0x00000200 PF_DUMPCORE
= User Id 0x00000400 PF_SIGNALED
= Group Name 0x00000800 PF_MEMALLOC
= Controlling Tty 0x00002000 PF_FREE_PAGES (2.5)

= Last used cpu (SMP) 0x00008000 debug flag (2.5)

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT

p: SWAP = Swapped size (kb) 0Xx00024000 special threads (2.5)
1: TIME = CPU Time 0x001D0000 special states (2.5)
r: CODE = Code size (kb) 0x00100000 PF_USEDFPU (thru 2.4)
s: DATA = Data+Stack size (kb)

The following list describes the columns that are listed by default:

PID: This is the process identification (PID) number of the process. Every process has a
unique PID, and you will need this PID number to manage the process.

USER: This indicates the name of the user who started the process.

PR: This indicates the current process priority. Processes with a higher priority will be
serviced before processes with a lower priority. If a process with a higher priority needs
CPU time, it will always be handled before the process that has a lower priority. Some
processes have the RT (real time) priority, which means that they can access system
resources at all times.

NI: Between processes that have the same priority, the nice value indicates which has
precedence. Processes with a low nice value are not so very nice and will always go
before processes with a high nice value. However, this works only for processes that
have the same priority.

VIRT: This column refers to the total amount of memory that is used by a process. This
includes shared memory, which is code that the process shares with other processes.

RES: This column indicates the amount of resident memory, which is memory that
the process has allocated and is currently also actively using. You may see differences
between VIRT and RES because processes like to ask for more memory than they really
need at the moment, which is referred to as memory over allocation.

SHARE: This refers to shared memory. Typically, these are libraries the process uses that
are used by other processes as well.

S: This column gives the process status. The values that you find here are the same as
the values in the second line of the top output, as discussed previously.

%CPU: This column shows the percentage of CPU cycles that the process has been using.
This is also the column that top sorts by default; the most active process is listed at the
top of the list.

%MEM: This column refers to the percentage of memory that the process is using.

TIME: This indicates the accumulated real time that the process has used the CPU dur-
ing the total period since it has started.

COMMAND: This indicates the command that was used to start this process.

By default, top output is sorted on CPU usage. You can sort the output on any other infor-
mation as well; there are over 20 different ways to do so. Some of my favorites are listed here:

b: By process parent ID. This allows you to see in a quick overview all processes that are
started by the same parent process.

w: By process status. This allows you to group all processes that have the same status in
an easy way.

203

204

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT

¢ d: By UID. This allows you to see all processes that were started by the same user.
e h: By priority. This allows you to see processes with the highest priority listed on top.

e n: By memory usage. This shows the processes that have the largest amount of memory
in use listed first.

When done monitoring process activity with top, you can exit the utility. To do this, issue
the g command. Apart from the interactive mode that you've just read about, you can also use
top in batch mode. This is useful if you want to redirect the output of top to a file or pipe it to
some other command. When using top in batch mode, you can’t use any of the commands
discussed previously. You tell top to start in batch mode by passing some options to it when
starting it:

e -b: Starts top in batch mode
e -d: Tells top what delay it should use between samples

¢ -n: Tells top how often it should produce its output in batch mode

For instance, the following would tell top to run in batch mode with a 5-second interval,
doing its work two times:

top -b -d 5 -n 2

Finding Processes with ps

If you want to manage processes from scripts in particular, the ps command is invaluable.
This command shows you a list of all processes that are currently active on your computer. ps
has many options, but most people use it in two ways only: ps aux and ps -ef. The value of
ps is that it shows all processes in its output in a way that you can grep for the information you
need. Imagine that you see in top that there is a zombie process; ps aux | grep defunc will
show you which is the zombie process. Or imagine that you need the PIDs of all instances of
your Apache web server; ps aux | grep httpd will give you the result.

One way of displaying all processes and their properties is by using ps aux. Listing 9-5
shows a part of the output of this command. To make it more readable I've piped the results
of this command through less.

Listing 9-5. ps aux Shows All Processes and a Lot of Details About What the Processes Are Doing

nuuk:/ # ps aux | less

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.0 728 284 ? S Dec16 0:00 init [5]

root 2 0.0 0.0 0 0? SN Deci6 0:00 [ksoftirgd/o0]
root 3 0.0 0.0 0 0°? S< Deci6 0:00 [events/0]
root 4 0.0 0.0 0 0? S< Deci6 0:00 [khelper]

root 5 0.0 0.0 0 0? S< Deci6 0:00 [kthread]

root 8 0.0 0.0 0 0°? S< Deci6 0:00 [kblockd/0]
root 9 0.0 0.0 0 0°? S< Deci6 0:00 [kacpid]

root 10 0.0 0.0 0 0°? S< Deci6 0:00 [kacpi notify]

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT

root 110 0.0 0.0 0 0? S Dec16 0:00 [pdflush]
root 111 0.0 0.0 0 0? S Dec16 0:00 [pdflush]
root 112 0.0 0.0 0 0? S Dec16 0:00 [kswapdo]
root 113 0.0 0.0 0 0°? S< Deci6 0:00 [aio/0]
root 320 0.0 0.0 0 0? S< Deci6 0:00 [cqueue/0]
root 321 0.0 0.0 0 0? S< Deci6 0:00 [kseriod]
root 365 0.0 0.0 0 0? S< Deci6 0:00 [kpsmoused]
root 723 0.0 0.0 0 0°? S< Deci6 0:00 [scsi eh O]
root 833 0.0 0.0 0 0? S< Deci6 0:00 [ksnapd]
root 837 0.0 0.0 0 0? S< Deci6 0:00 [ata/0]
root 838 0.0 0.0 0 0? S< Deci6 0:00 [ata aux]
root 895 0.0 0.0 0 0°? S Dec16 0:00 [kjournald]
root 964 0.0 0.1 2408 684 ? S<s Dec16 0:00 /sbin/udevd --daemon
lines 1-22

In the command ps aux, three options are used to ask the system to show process infor-

mation. First, the option a makes sure that all processes are shown. Next, the option u gives
extended usage information, whereas the option x also shows from which TTY and by what
user a process is started. You can see the results in Listing 9-5, in which the following columns
are listed. Because many of these columns are similar to the columns in top, I will give a short
description of them only.

USER: The name of the user who started the process.

PID: The PID of the process. The command ps aux sorts the processes by their PID.
%CPU: The percentage of CPU time the process has used since startup.

%MEM: The percentage of memory the process is currently using.

VSZ: The virtual memory size, which is the total amount of memory claimed by this
process.

RSS: The resident memory size, which is the amount of memory the process currently
has in use.

TTY: The terminal (TTY) from which the process was started. A question mark indicates
a daemon process that is not associated to any TTY.

STAT: The current status of the process.
START: The time at which the process was started.
TIME: The total amount of system time this process has been using since it started.

COMMAND: The command that was used to start this process. If the name of this com-
mand is between square brackets (you can see quite a few examples of this in
Listing 9-5), the process is not started with a command at the command line, but is
a kernel thread.

205

206

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT

Note The ps command can be used in two ways, both of which go back to the time when there were two
major styles in UNIX versions: the BSD style and the System V style. The command ps aux was used in the
BSD style to give a list of all processes and their properties, and ps -ef was used in System V style to do
basically the same. There are some minor differences, but basically both commands have the same result.
So feel free to make your choice here!

The second way in which the ps command is often used is by issuing the ps -ef com-
mand. You can see a partial output of this command in Listing 9-6.

Listing 9-6. ps -ef Provides Just Another Way of Displaying Process Information

nuuk:~ # ps -ef | less

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 Deci6 ? 00:00:00 init [5]

root 2 1 0 Deci6 ? 00:00:00 [ksoftirgd/o0]
root 3 1 0 Dec16 ? 00:00:00 [events/0]
root 4 1 0 Dec16 ? 00:00:00 [khelper]
root 5 1 0 Deci6 ? 00:00:00 [kthread]
root 8 5 0 Dec16 ? 00:00:00 [kblockd/0]
root 9 5 0 Deci6 ? 00:00:00 [kacpid]

root 10 5 0 Deci6 ? 00:00:00 [kacpi notify]
root 110 5 0 Deci6 ? 00:00:00 [pdflush]
root 111 5 0 Deci6 ? 00:00:00 [pdflush]
root 112 1 0 Deci6 ? 00:00:00 [kswapdo]
root 113 5 0 Dec16 ? 00:00:00 [aio/0]

root 320 5 0 Dec16 ? 00:00:00 [cqueue/0]
root 321 5 0 Deci6 ? 00:00:00 [kseriod]
root 365 5 0 Deci6 ? 00:00:00 [kpsmoused]
root 723 5 0 Deci6 ? 00:00:00 [scsi eh 0]
root 833 5 0 Deci6 ? 00:00:00 [ksnapd]

root 837 5 0 Dec16 ? 00:00:00 [ata/o0]

root 838 5 0 Deci6 ? 00:00:00 [ata_aux]
root 895 1 0 Deci6 ? 00:00:00 [kjournald]
root 964 1 0 Deci16 ? 00:00:00 /sbin/udevd --daemon
root 1530 5 0 Deci6 ? 00:00:00 [khubd]

lines 1-23

Just two columns in ps -ef are new compared to the output for ps aux. First is the PPID
column. This column tells you which process was responsible for starting this process, the
so-called parent process. Then there is the column with the name C, which refers to the CPU
utilization of this process and hence gives the same information as the %CPU column in ps aux.

Personally, I like ps aux alotif I need to terminate all processes that were started with
the same command. On my SUSE box, it happens that the management program YaST
crashes. This program basically uses two kinds of processes: processes that have yast in their

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT

command name and processes that have y2 in their command line. To get a list of PIDs for
these processes, I use the following commands:

ps aux | grep yast | grep -v grep | awk '{ print $2 }'
ps aux | grep y2 | grep -v grep | awk '{ print $2 }'

Next, it is fairly easy to kill all instances of this process based on the list of PIDs that these
two commands will show. You'll read more about this in the section “Killing Processes with
kill, pkill, and killall” later in this chapter.

Finding PIDs with pgrep

In the preceding section, you read how you can find processes with ps and grep. There is a
different option also: the pgrep command. This command is fairly easy to use: enter pgrep fol-
lowed by the name of the process whose PID you are looking for. For instance, if you want to
know all PIDs that the Gnome processes are using, use pgrep gnome. This will display a result
similar to what you see in Listing 9-7.

Listing 9-7. The pgrep Command Offers an Alternative If You Need to Find PIDs Easily

nuuk:~ # pgrep gnome
3781
3836
3840
3854
3860
3882
3889
3893
3921
3922

A useful feature of pgrep is that you can search for processes based on specific attributes
as well. For instance, you can use -u to locate processes that are owned by a specific user, as in
the following command:

pgrep -u linda

Also useful is that you can have it display processes if you are not sure about a prop-
erty. For example, if you want to see processes that are owned by either linda or lori, use the
following:

pgrep -u linda,lori

Showing Parent-Child Relations with pstree

For process management purposes, it is useful to know about parent-child relations between
processes as well. You can use the pstree command without arguments to show a complete
hierarchical list of all processes on your computer, or with a PID as an argument to show

207

208

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT

a process tree that starts on the selected PID only. If the output of pstree looks weird, you
should use the -G option to give the result of pstree in a specific format for your terminal.

I need this to ensure proper display in a PuTTY window, for example. In Listing 9-8, you can
see a partial output of this command.

Listing 9-8. Use pstree to Find Out More About the Hierarchical Relation Between Processes

nuuk:~ # pstree -G
ilulissat:~ # pstree -G
init---acpid
| -application-bro
|-auditd---{auditd}
| -bonobo-activati
| -cron
| -cupsd
| -2*[dbus-daemon]
| -dbus-1aunch
| -dhcped
|-esd
|-events/0
|-events/1
| -gconfd-2
| -gdm---gdm---X
| | -gnome-session
| -gnome-keyring-d
| -gnome-panel
| -gnome-power-man
| -gnome-screensav
| -gnome-settings---{gnome-settings-}
| -gnome-terminal---bash
| | -gnome-pty-helpe
| | -{gnome-terminal}
| -gnome-vfs-daemo- - -{gnome-vfs-daemo}
| -gnome-volume-ma
| -gpg-agent
| -hald---hald-addon-acpi
| | -hald-addon-stor
|-intlclock-apple
| -irgbalance
| -khelper
| -kjournald
| -klogd
| -ksoftirqd/o
|-ksoftirqd/1
| -kswapdo

| -kthread---aio/0
| |-aio/1

| |-ata/o

| |-ata/1

| | -ata_aux

| | -cqueue/o

| | -cqueue/1

| |-kacpi notify
| | -kacpid

| | -kauditd

| | -kblockd/0

| | -kblockd/1

| | -kgameportd

| | -khubd

| | -kpsmoused

| | -kseriod

| |-2*[pdflush]

| |-scsi eh 0

| -main-menu---{main-menu}
| -master---pickup

| |-qngx

| -metacity

|-migration/o0
|-migration/1
[-6*[mingetty]
|-mixer_applet2
|-nautilus---3*[{nautilus}]
|-nscd---6*[{nscd}]

| -portmap

| -powersaved

| -resmgrd

| -shpchpd_event

|-slpd

| -sshd---sshd---bash---pstree
|-startpar

|-syslog-ng

| -udevd

| -zen-updater---6*[{zen-updater}]

| -zmd---13*[{zmd}]

CHAPTER 9

PROCESS AND SYSTEM MANAGEMENT

In the output of pstree, you can see which process is responsible for calling which other
process. For instance, in Listing 9-8, init is the first process that is started. This process calls
basically all the other processes such as acpid, application-bro, and so on. If a process has
started other processes, you will see that with pstree as well. For instance, you can see that the
pstree command used for this example listing actually is in the output listing as well, as a child
of the bash process, which on its turn is started from an SSH environment.

209

210

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT

Note Some people like to run a graphical user interface on their server; some people don’t. From the
process perspective, it certainly makes sense not to run a GUI on your server. If you are not sure this really
is useful, you should compare the result of pstree on a server that does have a GUI up and running with the
result of the same command on a server that does not have a GUI up and running. You'll see amazing differ-
ences as the result.

Displaying Memory Usage with free

The last important command that is related to system management is free, which tells you
about current memory usage. I like the output of free alot, especially when compared to the
memory usage summary that you can see in top. The important addition that free provides

is it gives you a line that shows how much memory is available immediately from the operat-
ing system'’s perspective. This is the line -/+ buffers/cache, which you see in the example in
Listing 9-9. On this line, the free column gives you the amount of memory that is available for
immediate usage on your computer. So if there is an application that needs 250MB of RAM for
immediate usage, this system can offer that, just by clearing buffers and cache currently in use.
When using free, use the -m option to give the result in megabytes, instead of blocks.

Listing 9-9. The free Command Also Shows You How Much Memory Is Available for
Immediate Usage

nuuk:~ # free -m

total used free shared buffers cached
Mem: 504 343 160 0 18 224
-/+ buffers/cache: 101 402
Swap: 127 0 127

Managing Processes

At this point you know how to monitor the generic state of your computer. You have read how
to see what processes are doing and know about monitoring process activity. In this section,
you'll learn about some common process management tasks. These include killing processes
that don’t listen anymore and adjusting process priority with nice. In a dedicated subsection,
you can read how to manage processes from the top utility.

Killing Processes with kill, pkill, and killall

Among the most common process management tasks is the killing of processes. Killing a pro-
cess, however, goes beyond the mere termination of a process. If you use the kill command
or any of its alternatives, you can send a signal to the process. Basically, by sending it a signal,
you give the process a command that it simply cannot ignore. A total of 32 signals are avail-
able, but of these only four are common. Table 9-1 gives an overview of these common signals.

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT

Table 9-1. Common Process Management Signals

Signal Value Comment

SIGHUP 1 Forces a process to reread its configuration without really stopping the
process. Use it to apply changes to configuration files.

SIGKILL 9 Terminates the process using brute force. You risk losing data from
open files when using this signal. Use it only if the process doesn’t stop
after sending it a signal 15.

SIGTERM 15 Requests the process to terminate. The process may ignore this.

SIGUSR1 30 Sends a specific user-defined signal to the process. Only works if
defined within the command.

When sending a signal to the process, you normally can choose between the signal name
or the signal number. In the next three sections, you will see how to do this with the kill,
pkill, and killall commands.

Killing Processes with kill

The kill command provides the most common way to send signals to processes, and you will
find it quite easy to use. This command works with only two arguments: the signal number or
name and the PID upon which you want to act. If you don’t specify a signal number, kill by
default sends signal 15, asking the process to terminate.

kill does not work with process names, just PID numbers. This means you first have to
find the PIDs of the processes you want to send a signal to, which you can do with a command
such as pgrep. You can specify multiple PIDs as arguments to kill. The following example
shows you how to kill three PIDs with a single command:

kill 3019 3021 3022

Only some commands listen to user-defined signals. An example of these is the dd com-
mand, which you can use to clone a device. You can send this command signal USR1, which
will ask dd to show its current progress. To find out whether a command listens to one of the
USR signals, go to the man page for kill.

Killing Processes with killall

Compared to kill, killall is a more versatile command, specifically due to its ability to work
with some arguments that allow you to specify which processes you want to kill in a versatile
way. For instance, you can use killall to terminate processes that have a specific file open
at that time by just mentioning the file name. Some of the most useful options for killall are
listed here:

e -I: This option tells killall to ignore case. Useful if you don’t want to think about
upper- and lowercase.

e -1i: This option puts killall in interactive mode. You’ll have to confirm before any
process is killed.

211

212 CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT

¢ -1: This option allows you to work with regular expressions. This is useful because you
won’t have to enter the exact process name.

» -u: This option kills only processes that a specific user owns. Useful if you need to
terminate everything a user is doing right now.

For example, if you want to kill all processes that linda currently has opened, use the
following command:

killall -u linda

Or if you need to terminate all http processes, use regular expressions as in the following
command:

killall -1 http

Killing Processes with pkill

The third command that you can use to send signals to processes is pkill. Like killall, pkill
can also look up processes based on their name or other attributes, which you can address
using specific options. For instance, to kill all processes that are owned by user linda, use the
following:

pkill -u linda

Another useful feature of pkill is that you can kill processes by their parent ID. For exam-
ple, if you need to kill all processes that have process 1499 as their parent ID, use the following:

pkill -P 1499

Adjusting Process Priority with nice

As discussed earlier in this chapter, every process is started with a default priority. You can see
the priority in the default output of the top command. By default, all processes that have the
same priority are treated as equal by the operating system. If within these priorities you want
to give more CPU time to a process, you can use the nice and renice commands to change
their nice status. Process niceness ranges from -20 to 19. -20 means that a process is not very
nice and will get the most favorable scheduling. 19 means that a process is very nice to others
and gets the least favorable scheduling.

There are two ways to change the niceness of a program: use nice to start a program with
the niceness that you specify, and use renice to change the niceness of a program that has
already been started. The following shows how to change the niceness of top to the value of 5:

nice -n 5 top

In case you need to change the nice value for a program that is already running, you
should use renice. A useful feature is the option to change the nice status of all processes that
a given user has started. For instance, the following command would change the niceness of
all processes linda has started to the value -5:

renice -5 -u linda

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT

You can also just use a PID to change the nice value of a process:

renice -5 1499

Process Management from top

You have already learned how to monitor processes using top. You've also learned how to
manage processes using different command-line tools. From within the top interface, you can
also perform some process management tasks. Two tasks are available: you can send proc-
esses a signal using kill functionality, and you can renice a process using nice functionality.
To do this, use the following options from within the top interface:

¢ k: Sends a signal to a process. It will first ask for the PID, and then what signal to send
to that PID. You should use the numerical PID to manipulate the process.

¢ 1: Changes the niceness of a process. When using this command, you next have to
enter the PID of the process whose niceness you need to change.

Scheduling Processes

On your computer, some processes will start automatically. In particular, these are the service
processes your computer needs to do its work. Other processes are started manually. This
means that you have to type a command at the command line to start them. There is also a
solution between these two options. If you need a certain task to start automatically at pre-
defined intervals, you can use cron to do so.

There are two parts in cron. First is the cron daemon crond. This process starts automati-
cally on all computers and will check its configuration every minute to see whether it has to
issue a certain task. By default, cron reads its master configuration file, which is /etc/crontab.
Listing 9-10 shows what this file looks like on an Ubuntu server system.

Listing 9-10. Example /etc/crontab File

root@mel:~# cat /etc/crontab

/etc/crontab: system-wide crontab

Unlike any other crontab you don't have to run the “crontab’

command to install the new version when you edit this file

and files in /etc/cron.d. These files also have username fields,
while none of the other crontabs do.

SHELL=/bin/sh
PATH=/usx/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

m h dom mon dow user command

17 * ok ok root cd / && run-parts --report /etc/cron.hourly

25 6 ¥ ** root test -x /usr/sbin/anacron || (cd / 8& run-parts
--report /etc/cron.daily)

213

214

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT

47 6 * * 7 root test -x /usr/sbin/anacron || (cd / & run-parts
--report /etc/cron.weekly)

52 6 1 ** root test -x /usr/sbin/anacron || (cd / & run-parts
--report /etc/cron.monthly)

#

This file contains three different elements. First, you can see an indication of the time
when a command should run. Next is the name of the user with whose permissions the job has
to execute, and the last part is the name of the command that has to run.

You can use five time positions to indicate when a cron job has to run:

e Minute

e Hour

¢ Day of month
* Month

* Day of week

For instance, a task definition in /etc/crontab can look as follows:
10 5 3 12 * nobody /usr/bin/false

This task would start 10 minutes after 5 a.m. on December 3 only. A very common error
that people make is shown in the following example:

* 5k ¥ * nopody /usr/bin/false

The purpose of this line is probably to run a task at 5 a.m. every morning; however, it
would run every minute between 5:00 a.m. and 5:59 a.m., because the minute specification is
an asterisk, which means “every.” Instead, to run the task at 5 a.m. only, the following should
be specified:

0 5 * * * nobody /usr/bin/false

Apart from the system crontab, individual users can have crontabs as well. This can be
very useful. Imagine that you want to make a backup every morning. To do so, you probably
have a backup program, and this backup program may run automatically with the permis-
sions of a specific user. You can, of course, make the definition in /etc/crontab, with the
disadvantage that only root can schedule jobs this way. Therefore, the alterative in which
users themselves specify the cron job may be more appealing. To do this, you have to use the
crontab command. For instance, if user linda wants to install a cron job to send a mail message
to her cell phone every morning at 6 a.m., she would use the following command:

crontab -e

This opens an editor window in which she can define the tasks that she wants cron to run
automatically. Because the crontab file will be installed as her crontab file, there is no need
to include a user specification there. This means just including the following line would be
enough:

0 6 * * 1-5 mail -s "wakeup" mycellphone@example.com < .

CHAPTER 9 PROCESS AND SYSTEM MANAGEMENT

Notice the use of 1-5 in the specification of the day of the week. This tells the cron process
to run this job only on days 1 through 5, which is from Monday to Friday.

If you are logged in as the root user, you can also create cron jobs for other users. To do
this, use crontab -u followed by the name of the user you want to create the cron job for. The
command crontab -u linda, if issued as root for example, would create a cron job for user
linda. This command also opens the crontab editor, which allows you to enter all the required
commands. Also useful if you are root: the command crontab -1 gives an overview of all the
crontab jobs that are currently scheduled for a given user account.

Summary

In this chapter, you have learned how to tune and manage processes and memory on your
computer. You have learned about the way that Linux works with processes and also about
memory usage on Linux. You acquired knowledge about some of the most important com-
mands related to process management, including top and ps. In this chapter, the following
commands and utilities have been discussed:

init: First process loaded on a Linux computer.

mingetty: Process responsible for initializing terminal windows.

pstree: Command that shows a hierarchical overview of parent and child processes.
nice: Command that sets priority of a process as it starts up.

renice: Command that resets nice value for processes that are currently active.

ps: Command that shows a list of processes and much useful information about each
of them.

top: Command that allows you to monitor processes and perform basic process
management actions.

pgrep: grep utility that is optimized for process management.

free: Command that shows the amount of memory that is still available.
kill: Command for terminating processes.

pkill: Command for terminating processes.

killall: Command for terminating processes. Optimized to terminate multiple
processes using one command.

crond: Process that allows you to run processes at a fixed time on a regular basis.

crontab: Command that interfaces with crond to schedule processes.

In the next chapter, you’ll learn how to configure system logging.

215

CHAPTER 10

System Logging

M ost of the time, your Linux computer will work just fine. From time to time, however, your
program won't start, or system components will break. When this is the case, you'll need all
the help that you can get. Assuming that you've already used the available command docu-
mentation that is on your computer, such as man and --help, you’ll need to find out now what
exactly is happening when you try to accomplish your task. That brings us to system logging.

Understanding Logging

One of the items that you will like on Linux—once you’ll understand how it works—is the

way that Linux handles system logging. Logging on Linux is extensive, and you’ll be able to
tell it to send log messages anywhere you want. The result is not only a bunch of files that are
created in /var/log, but in many cases also more important messages that are written to the
virtual consoles on your computer. Think about the virtual consoles that Linux works with; for
instance, just while installing, several consoles are available through which you can monitor
the output of different commands.

Note In Chapter 2, you read how to activate a virtual console, using Ctrl-+Alt-+F1 up to Ctrl+Alt+F6. On
most distributions, even the graphical console is a virtual console, which is available using the Ctrl-+Alt+F7
keystroke.

Behind all these messages is often a process with the name syslog. This process is con-
figured to monitor what happens on your computer. It does that by watching the messages
that the commands you use are generating. syslog captures these messages and sends them
to a destination, which is often a file, but as mentioned can also be a virtual console on your
computer.

Apart from the syslog process that captures the messages and directs them somewhere,
there is also the command or process that generates the messages. Not all of these are handled
by syslog. Some messages may just not be handled because you normally don’t care about
them. These are the messages that have a status of “informational” on your computer. These
messages also do help though, and in some cases you'll see them passing by when you start
the command. Many commands also work with the -v option, which gives you verbosity.

217

218

CHAPTER 10 SYSTEM LOGGING

A random example of this is the cp command, which by default does not show you what it is
doing. However, if you add the -v option to it, it shows exactly what it is doing, even if it just
succeeds in copying the file. Listing 10-1 gives an example of this.

Listing 10-1. Many Commands Can Work with -v to Show Exactly What They Are Doing

nuuk:~ # cp -v /etc/[qx]* /tmp
“/etc/xattr.conf' -> " /tmp/xattr.conf’

cp: omitting directory "/etc/xdg'
“/etc/xinetd.conf' -> "/tmp/xinetd.conf’
cp: omitting directory "/etc/xinetd.d’

cp: omitting directory "/etc/xml'

cp: omitting directory "/etc/xscreensaver'

Then there are also the commands that you run from a graphical interface. Normally, they
don’t show what they are trying to do. However, if you find out what the name and exact loca-
tion of the command are, and you try running the command from a command line instead
of just clicking its icon, you’ll be surprised by how much output the command gives. In List-
ing 10-2, you can see what running the Gnome file explorer Nautilus from the command line
looks like. Notice that doing so also displays any error messages about networking that you
would never see when starting the command the normal way.

Listing 10-2. Starting a Graphical Command from the Command Line Often Produces a Lot of
Startup Information

login as: root

Using keyboard-interactive authentication.

Password:

Last login: Sat Dec 20 03:50:05 2008 from 192.168.26.1
nuuk:~ # /opt/gnome/bin/nautilus

Initializing nautilus-open-terminal extension
Initializing nautilus-share extension

*k (nautilus:10427): WARNING **: Cannot calculate NET NUMBER OF DESKTOPS
*k (nautilus:10427): WARNING **: Cannot calculate NET NUMBER OF DESKTOPS
*k (nautilus:10427): WARNING **: Cannot get NET WORKAREA

*k (nautilus:10427): WARNING **: Cannot determine workarea, guessing at layout
Nautilus-Share-Message: REFRESHING SHARES

Nautilus-Share-Message: -------------—-———————--oomm
Nautilus-Share-Message: spawn arg "net
Nautilus-Share-Message: spawn arg "usershare"
Nautilus-Share-Message: spawn arg "info"
Nautilus-Share-Message: end of spawn args; SPAWNING

CHAPTER 10 SYSTEM LOGGING

Nautilus-Share-Message: returned from spawn: SUCCESS:

Nautilus-Share-Message: exit code 255

Nautilus-Share-Message: ---------------——-——————om—

Nautilus-Share-Message: Called "net usershare info" but it failed: 'net
usershare' returned error

255: net usershare: usershares are currently disabled

Most commands, however, write to the system log to indicate that something is wrong.
Before discussing the workings of this system log, the next section explains more about the log
files it writes and how you can monitor them.

Monitoring Log Files

There is no golden rule about log files on your computer, but among the different distribu-
tions, just one file will always exist. It has the name /var/log/messages, and its purpose is to
store all log messages generated by processes and commands on your computer. As it is just
a text file, you can monitor it as you would any other text file—open it with less, for instance,
or watch the last couple of lines with the tail command. A particularly useful way of monitor-
ing the content of these files, however, is through tail -f, in which -f stands for follow. When
invoked in this way, tail opens the last ten lines of the log file and automatically shows new
lines as they are created. This technique is particularly useful when trying to understand what
exactly a command is doing. As it shows you real-time information, you’ll see immediately
whether something doesn’t work out, which allows you also to take action straight away.
When watching log files, many people tend to forget that there are more than just
/var/log/messages. Have a look at the log files that exist on your computer and try to under-
stand what they are used for. For instance, did you know that most computers write a log
entry not only for every single mail message they receive, but also for every failed attempt to
send an e-mail? This information, which is useful when trying to understand why sending an
e-mail doesn’t work, is not written to /var/log/messages. Hence, have a look at the contents of
/var/log and see what other files you need to know about to find all log information that com-
mands on your computer are generating. Listing 10-3 gives an impression of what the contents
of /var/log looks like on my computer.

Listing 10-3. The Messages File Is Not the Only File in /var/log

nuuk:/var/log # 1s

SaX.log faillog smpppd

XFree86.0.log gdm susehelp.log
XFree86.0.1log.old krbs warn

Xorg.0.log lastlog wtmp

Xorg.0.log.old localmessages zmd-backend.log

YaST2 mail zmd-backend.log-20081119.bz2
acpid mail.err zmd-backend.log-20081121.bz2
apparmor mail.info zmd-backend. log-20081123.bz2

audit mail.warn zmd-backend. log-20081206.bz2

219

220

CHAPTER 10 SYSTEM LOGGING

boot.log messages zmd-backend.log-20081214.bz2
boot.msg news zmd-backend.log-20081217.bz2
boot.omsg ntp zmd-backend.log-20081219.bz2
cups samba zmd-messages. log
evms-engine.1.log scpm

evms-engine.log slpd.log

Configuring the syslog Service

Two log services are available for Linux: syslog and syslog-ng. The ng in syslog-ng stands
for next generation; just consider it syslog on steroids. To understand syslog-ng, you'll need
to know about syslog also, so you better just start reading this section before proceeding to
the next.

The syslog process has two parts: the process itself (typically /usr/sbin/syslogd) and the
configuration file that tells the process what to do when it starts up. The name of this configu-
ration file is /etc/syslog.conf. Listing 10-4 gives an example of what this file can look like.

Listing 10-4. The Classical syslog Service Uses the /etc/syslog. conf Configuration File

root@ubuntu:/etc# cat syslog.conf

#

auth,authpriv.* /var/log/auth.log
.;auth,authpriv.none -/var/log/syslog
#cron.* /var/log/cron.log
daemon.* -/var/log/daemon.log
kern.* -/var/log/kern.log
lpr.* -/var/log/lpr.log
mail.* -/var/log/mail.log
user.* -/var/log/user.log
#

mail.info -/var/log/mail.info
mail.warn -/var/log/mail.warn
mail.err /var/log/mail.err

Logging for INN news system

#
news.crit /var/log/news/news.crit
news.err /var/log/news/news.err

news.notice -/var/log/news/news.notice

CHAPTER 10 SYSTEM LOGGING

*.=debug;\

auth,authpriv.none;\
news.none;mail.none -/var/log/debug

* =info;*.=notice;*.=warn;\

#

auth,authpriv.none;\
cron,daemon.none;\
mail,news.none -/var/log/messages

daemon.*;mail.*;\

news.err;\
.=debug;.=info;\
.=notice;.=warn | /dev/xconsole

To understand the /etc/syslog. conf file, you have to know that it contains three ele-
ments: the log facility, the log priority, and the action. The facility defines the services and
other parts of your operating system that can generate log messages. The priority defines the
severity of the log messages that the facility generates. The action field tells the syslog process
what it has to do if the defined facility generates a message with this priority.

The following facilities are available in syslog:

auth: Facility that handles events related to authentication.

authpriv: Facility that handles events related to authentication, as does auth. There is
no difference between auth and authpriv.

cron: Facility that handles messages generated by the cron subsystem (see Chapter 9
for more information about cron).

daemon: Log messages that are generated by a daemon. No further subdivision can be
made for system processes, with the exception of the daemons that have their own
facility, such as ftp and mail.

ftp: Messages that are related to the File Transfer Protocol (FTP).

kern: Kernel-related messages. This facility also defines messages that are generated by
the iptables kernel firewall.

1pr: Messages related to the legacy lpr printing system.
mail: Messages related to handling mail messages.

mark: For internal use only. The syslog process can place a marker in syslog periodi-
cally. If your computer doesn’t log a lot, this can help you make sure that logging is still
enabled.

news: Messages related to the Network News Transport Protocol (NNTP)-related
services.

security: Generic security-related messages.

syslog: Messages that are related to the syslog process itself.

221

222 CHAPTER 10 SYSTEM LOGGING

e user: User-related messages.
e uucp: Messages that are generated by the legacy Unix to Unix Copy Protocol (UUCP).

e localo-local7: Facilities that you can use for all other services. To use these facilities,
you need to configure the service in its configuration file to log to the local facility.
Consult the documentation for the service for more information on how to do this.

Tip If you need to set up logging to handle messages that are generated by individual services, |
recommend that you use syslog-ng instead. syslog-ng offers many more options to tune logging on
your computer. You'll find more information on setting up syslog-ng later in this chapter in the section
“Configuring syslog-ng.”

When writing log messages, the facilities produce messages with a given priority. The fol-
lowing priorities are defined in syslog, listed in ascending order:

¢ debug: Relates to debug information. This gives you detailed information on everything
the facility is doing. In general, this level of information is useful for programmers only
in that it tells you exactly what system and library calls the facility performs.

¢ info: Gives all “normal” information about what the process is doing. This gives you
information about files that are open, for instance, but does not give extensive infor-
mation about system and library calls.

e notice: Gives information about noncritical errors. For instance, this can refer to a file
that should exist, but because it didn't, it was created automatically.

* warn/warning: Give information about warnings that occurred when executing the
process. Both warn and warning have the same meaning, but warning is deprecated.
This means you can still use it, as Linux will understand it, but because it’s “old
school,” so you shouldn’t use it anymore. A warning defines a situation where normal
functionality is disrupted, but the facility still operates.

e err/error: Give information about errors. Typically, err-level messages are about situ-
ations that interrupt normal functioning of the facility. The use of error is deprecated.
Use err instead.

e crit: Gives information about critical situations that endanger normal operation of
your computer.

¢ alert: Gives information about a situation that will cause your computer to stop.

e emerg/panic: Indicate normal operation of your computer has stopped. The use of
panic is deprecated. Use emerg instead.

To define log events, in syslog.conf you'll refer to a facility combined with a priority. If
no other exceptions are defined, the priority you mention includes all higher priorities as well.
For instance, the following would refer to informational messages generated by the kernel and
messages with a higher priority as well:

kern.info

CHAPTER 10 SYSTEM LOGGING

You can also refer to multiple facilities in one line by specifying them in a comma-
separated list. For instance, the following refers to both informational messages related to the
kernel and informational messages related to the cron process:

kern,cron.info

Alternatively, you can refer to all facilities by using an asterisk, as in the following example
line:

*.crit

When referring to a priority, normally by just mentioning the priority you will include all
higher priorities as well. If you want to define what should happen just in case the specified
priority occurs, use an equals sign, as in the following example line, which handles messages
related to mail and not to messages with a higher priority:

mail.=info

You can also include a statement to exclude a priority and every priority beyond it by put-
ting an exclamation mark in front of the name of the priority:

mail. !info

When a log event happens, an action is performed on it. This action typically means that
a message is sent somewhere. In syslog, the available actions are also well defined. Multiple
facilities and priorities can be specified in one line to log to the same destination. Listing 10-4
includes several examples of this. You can send log messages to the following:

* Regular file: When mentioning the name of a file, log messages are written to that file.
You must specify this file name as an absolute path name. To prevent syslog from writ-
ing every single message to the configuration file immediately, you can put a - sign
in front of the file name. This means that changes are buffered first before they are
written to the actual configuration file. In Listing 10-4, this is used to handle logging of
messages that have a debug status. The ; sign in this listing is used as the delimiter, and
the \ sign makes sure that the next part is interpreted as belonging to the same line:

*.=debug;\
auth,authpriv.none;\
news.none;mail.none -/var/log/debug

e Named pipe: By logging to a named pipe, you can pipe log messages to a device. To use
anamed pipe, you should put a pipe symbol in front of the device name. The follow-
ing example from /etc/syslog.conf shows how to log to the xconsole device using a
named pipe:

daemon.*;mail.*;\

news.err;\
.=debug;.=info;\
. =notice;.=warn | /dev/xconsole

e Terminal or console: If the file that you've specified as the actual log destination is a tty,
syslog will handle it as a tty and log messages in real time to it. A very common tty to
use for this purpose is /dev/console.

223

224

CHAPTER 10 SYSTEM LOGGING

e Remote machine: A very useful feature that you can use with syslog is the option to
configure one computer as the log host for all computers in the network. On this com-
puter, you will see the name of the machine from which a message comes in the log
files. To send log messages to a remote computer, you must meet two conditions:

 Start syslog with the remote logging feature enabled. By default, the syslog process
does not accept messages that come from other hosts. You can enable remote log-
ging on the syslog process by starting it with the -r option. This tells your current
machine that it should accept log messages coming from other machines.

* Insyslog.conf, specify the name of the machine you want to log to as the log desti-
nation by putting an @ sign in front of the machine name. For instance, you would
use @RNA to log messages to a machine with the name RNA. This machine name
must be resolvable if you want this to work.

e User: You can send messages directly to a user, who will receive this message in real
time if he or she is logged in. To do this, just use the name of the user or a comma-
separated list of multiple users. For instance, the following would make sure that all
messages generated by the kernel and having a status of critical and higher are sent
directly to the root user:

kern.crit root

e Everyone logged in: If the log message is critical (for instance, because it disrupts all
functionality of the system), it makes sense to send a message to all users who are cur-
rently logged in. To do this, specify an asterisk as the log destination.

Passing Startup Parameters to syslog
and syslog-ng

In some cases, you need to pass a startup parameter to the syslog daemon. For instance, you
need to run it with the option -r to enable remote logging. However, the syslog process is
started automatically when you boot your system. Most distributions have an elegant solution
to pass the startup parameter anyway by using the /etc/sysconfig/syslog file (or any other
file name that is pretty similar). Listing 10-5 shows what this file looks like on SUSE Linux. As
you can see, it not only passes startup parameters to syslog, but also indicates whether the old
syslog or the new syslog-ng should be used. Check your distribution to see whether it also has
a syslog startup file in /etc/sysconfig.

Listing 10-5. Use /etc/sysconfig/syslog to Pass Startup Parameters and More to syslog When It
Starts

nuuk:/etc # cat /etc/sysconfig/syslog

Path: System/Logging
Description: System logging
Type: list(o,1,2,3,4,5,6,7)

Default: 1

CHAPTER 10 SYSTEM LOGGING

Config: "

ServiceRestart: syslog
#

Default loglevel for klogd

#

KERNEL_LOGLEVEL=1

Type: string
Default: "

Config: "

ServiceRestart: syslog
#

1if not empty: parameters for syslogd

for example SYSLOGD PARAMS="-1 -s my.dom.ain"
#

SYSLOGD _PARAMS=""

Type: string
Default: -X

Config: "

ServiceRestart: syslog
#

if not empty: parameters for klogd

for example KLOGD_PARAMS="-x" to avoid (duplicate) symbol resolution
#

KLOGD_PARAMS="-x"

Type: list(syslogd,syslog-ng)

Default: syslogd

Config: syslog-ng

Command: /sbin/rcsyslog restart

PreSaveCommand: /sbin/rcsyslog status & /sbin/rcsyslog stop
#

The name of the syslog daemon used as
syslog service: "syslogd", "syslog-ng"
#

SYSLOG_DAEMON="syslog-ng"

Type: yesno

Default: yes

Config: syslog-ng
ServiceRestart: syslog

#

If you don't want to let SuSEconfig generate your

syslog-ng configuration file, set this to "no".
#

225

226

CHAPTER 10 SYSTEM LOGGING

SuSEconfig is using a template configuration file

/etc/syslog-ng/syslog-ng.in
you can adopt it to your needs instead...
#

SYSLOG_NG_CREATE_CONFIG="yes"

Type: string

Default: "

Config: "

ServiceRestart: syslog

#

Parameters for Syslog New-Generation - see syslog-ng(8)
#

SYSLOG_NG_PARAMS=""

Configuring syslog-ng

The syslog system as discussed previously works pretty well, but it does have some limita-
tions. The most important of these are the inability to filter log messages and the limited
number of log facilities. These limitations are addressed by syslog-ng, the next generation
syslog system that is available for most Linux distributions.

Note At the moment this was written, not all distributions were on syslog-ng yet. Red Hat Enterprise
Linux 5.x versions, for instance, still use the old version of syslog.

In syslog-ng facilities, priorities and log destinations are also used; read the preceding
section if you need to know more about these. The way they are used, however, is much dif-
ferent from standard syslog. In Listing 10-6, you see an example of syslog-ng.conf, which
defines how logging should be handled.

Listing 10-6. Handling Logging with syslog-ng

nuuk:/etc/syslog-ng # cat syslog-ng.conf
#

/etc/syslog-ng/syslog-ng.conf

#

#

Global options.

#

options { long hostnames(off); sync(0); perm(0640); stats(3600); };

CHAPTER 10 SYSTEM LOGGING

#

'src' is our main source definition. you can add
more sources driver definitions to it, or define
your own sources, i.e.:

#
#source my src { };
#
source src {
#
include internal syslog-ng messages
note: the internal() source is required!
#
internal();
#
the following line will be replaced by the
socket list generated by SuSEconfig using
variables from /etc/sysconfig/syslog:
#
unix-dgram("/dev/log");
#
uncomment to process log messages from network:
#
t#tudp(ip("0.0.0.0") port(514));
1
#
Filter definitions
#

filter f iptables { facility(kern) and match("IN=") and match("OUT="); };

filter f console { level(warn) and facility(kern) and not filter(f iptables)
or level(err) and not facility(authpriv); };

filter f newsnotice { level(notice) and facility(news); };
filter f newscrit { level(crit) and facility(news); };
filter f newserr { level(err) and facility(news); };

filter f news { facility(news); };
filter f mailinfo { level(info) and facility(mail); };
filter f mailwarn { level(warn) and facility(mail); };

filter f mailerr { level(err, crit) and facility(mail); };
filter f mail { facility(mail); };

227

228 CHAPTER 10 SYSTEM LOGGING

filter f cron { facility(cron); };

filter f local { facility(localo, locali, local2, local3,
local4, locals, local6, local?7); };

filter f acpid { match("*"\[acpid\]:"); };
filter f netmgm { match('~*NetworkManager:'); };

filter f messages { not facility(news, mail) and not filter(f iptables); };

filter f warn { level(warn, err, crit) and not filter(f iptables); };
filter f alert { level(alert); };

#

Most warning and errors on tty10 and on the xconsole pipe:

#

destination console { pipe("/dev/tty10" group(tty) perm(0620)); };
log { source(src); filter(f console); destination(console); };

destination xconsole { pipe("/dev/xconsole" group(tty) perm(0400)); };
log { source(src); filter(f console); destination(xconsole

#

News-messages in separate files:

#

destination newscrit { file("/var/log/news/news.crit"
owner(news) group(news)); };

log { source(src); filter(f newscrit); destination(newscrit); };

destination newserr { file("/var/log/news/news.err"
owner(news) group(news)); };
log { source(src); filter(f newserr); destination(newserr); };

destination newsnotice { file("/var/log/news/news.notice"
owner(news) group(news)); };
log { source(src); filter(f newsnotice); destination(newsnotice); };

#

Mail-messages in separate files:

#

destination mailinfo { file("/var/log/mail.info"); };

log { source(src); filter(f mailinfo); destination(mailinfo); };

destination mailwarn { file("/var/log/mail.warn"); };
log { source(src); filter(f mailwarn); destination(mailwarn); };

CHAPTER 10 SYSTEM LOGGING

destination mailerr { file("/var/log/mail.err" fsync(yes)); };
log { source(src); filter(f mailerr); destination(mailerr); };

#

and also all in one file:

#

destination mail { file("/var/log/mail"); };

log { source(src); filter(f mail); destination(mail); };

#

acpid messages in one file:

#

destination acpid { file("/var/log/acpid"); };

log { source(src); filter(f acpid); destination(acpid); flags(final); };

#

NetworkManager messages in one file:

#

destination netmgm { file("/var/log/NetworkManager"); };

log { source(src); filter(f netmgm); destination(netmgm); flags(final); };

#

Some boot scripts use/require local[1-7]:

#

destination localmessages { file("/var/log/localmessages"); };

log { source(src); filter(f local); destination(localmessages); };

#

ALl messages except iptables and the facilities news and mail:
#

destination messages { file("/var/log/messages"); };

log { source(src); filter(f messages); destination(messages); };

#

Firewall (iptables) messages in one file:

#

destination firewall { file("/var/log/firewall"); };

log { source(src); filter(f iptables); destination(firewall); };

229

230

CHAPTER 10 SYSTEM LOGGING

#

Warnings (except iptables) in one file:

#

destination warn { file("/var/log/warn" fsync(yes)); };
log { source(src); filter(f warn); destination(warn); };

Caution On SUSE Linux, you'll find the files /etc/syslog-ng/syslog-ng.conf and /etc/
syslog-ng/syslog-ng.conf.in. You should make all modifications to the /etc/syslog-ng/syslog-ng.
conf.1in file, and after making the modifications, run the SuSEconfig command to write them to /etc/
syslog-ng/syslog-ng.conf. This procedure is used because an update procedure to SUSE may alter the
syslog-ng.conf file, which may cause you to lose all changes that you’ve made to it.

In a syslog-ng configuration, three elements are combined in the log statement to define
where messages are logged to:

e source: Defines where messages are accepted from
e filter: Specifies what exactly the log message should match

e destination: Indicates where the message must be written to

To understand what’s happening on your syslog-ng configuration, it makes sense to read
the configuration file bottom up: at the bottom of the file, you’ll find the log statement that
defines how logging should be handled, and in the upper parts of the configuration file, you
can find the different elements that make up this definition. Following is an example of such
a log statement:

log { source(src); filter(f warn); destination(warn); };

In this example, the first part that you see is the source specification, which is defined as
(src). This refers to a definition that is made earlier in the same file, which you can see here:

source src {
#
include internal syslog-ng messages
note: the internal() source is required!
#
internal();

#

the following line will be replaced by the
socket list generated by SuSEconfig using
variables from /etc/sysconfig/syslog:

#

unix-dgram("/dev/log");

CHAPTER 10 SYSTEM LOGGING

#
uncomment to process log messages from network:
#
#udp(ip("0.0.0.0") port(514));
};

As you can see, the src definition by default accepts two sources: messages that are gen-
erated internally and messages for which the operating system uses the /dev/log device to
process them. This definition handles all messages that are generated by your computer, but
does not accept any messages from other computers. However, you may also include these
easily. To accept messages from all computers, make sure the following line is enabled:

udp(ip("0.0.0.0") port(514));

Alternatively, you can refer to messages that come from one host or a range of hosts by
mentioning the IP address of the host or the range from which you want this machine to
accept messages. For instance, you could enable messages from all IP addresses in the net-
work 192.168.1.0 by using the following:

udp(ip("192.168.1.0") port(514));

Looking back at the example, the second part of the log definition defines the filter, which
in this case is f_warn, as shown here:

filter f warn { level(warn, err, crit) and not filter(f iptables); };

In a filter definition, you can indicate what level the message should come from and also
what facility should generate the message. As you can see in the preceding example, you can
also tell the filter not to handle messages that come from another specific filter. Filters in
syslog-ng are very flexible. This is because you can also use a match statement, which uses a
regular expression to tell syslog-ng to look for specific text. Following is an example of this:

filter f acpid { match("*"\[acpid\]:"); };

In this filter, a match is used to look for a regular expression. The regular expression
defines that syslog-ng should handle all lines that start with the text [acpid], which enables
you in this case to specify a specific log target for the acpid service. When building syslog-ng
configurations, you will in particular like this match functionality.

As the last part of your syslog-ng configuration, you'll have to specify where to send the
messages. You do this by defining a log destination. Following is an example of a destination:

destination newscrit { file("/var/log/news/news.crit"
owner(news) group(news)); };

In syslog-ng destinations, you can use all log destinations that you've also seen in syslog.
But here also, it is possible to be very specific. For instance, you can see that the example code
defines not only the name of the file that syslog-ng has to write, but also the user owner and
group assignments for that file.

231

232

CHAPTER 10 SYSTEM LOGGING

Tip Syslog-ng may look intimidating when you first start working with it. If you know it a little better, you
will find out that it is not that hard. | recommend you to study the example syslog-ng.conft file thoroughly,
because it has all the examples you need to build your own configuration.

Sending Logs Yourself with logger

Also very useful when handling logs is the logger command. This command sends messages
to syslog by default, which makes it a useful command to include in scripts where no default
logging is available. You can tell logger to use a certain priority, but normally you won't; if used
in a syslog-ng environment, you'll just employ a matching filter to handle messages that are
generated by the logger command. Using this command is very simple. For example, the fol-
lowing would write a message to your syslog:

logger hi

When using logger, you may like the option to mark every line you write to the log files
with a specific tag. This makes it easier for you to recognize such lines later on. To do this, use
the option -t tag. For instance, the command logger -t blah hi would tag the message hi
in the log file with blah, which makes it easier for you to grep on messages that you've written
with logger.

Rotating Old Log Files

Logging is good, but if your system writes too many log files, it can become rather problematic.
As a solution to this, you can configure the logrotate service. The logrotate service runs as
a daily cron job and checks its configuration files to see whether any rotation has to occur. In
these configuration files, you can configure when a new log file should be opened and, if that
happens, what exactly should happen to the old log file: for example, whether should it be
compressed or just deleted, and if it is compressed, how many versions of the old file should
be kept.

logrotate works with two different kinds of configuration files. The main configuration
file is /etc/logrotate. conf. In this file, generic settings are defined to tune how logrotate
should do its work. You can see the contents of this file in Listing 10-7.

Listing 10-7. Contents of the logrotate. conf Configuration File

see "man logrotate" for details
rotate log files weekly
weekly

keep 4 weeks worth of backlogs
rotate 4

CHAPTER 10 SYSTEM LOGGING

create new (empty) log files after rotating old ones
create

uncomment this if you want your log files compressed
#compress

uncomment these to switch compression to bzip2
compresscmd /usr/bin/bzip2
uncompresscmd /usr/bin/bunzip2

former versions had to have the compresscommand set accordingly
#compressext .bz2

RPM packages drop log rotation information into this directory
include /etc/logrotate.d

no packages own wtmp -- we'll rotate them here
#/var/log/wtmp {

monthly

create 0664 root utmp
rotate 1

#}

system-specific logs may be also be configured here.

The code in Listing 10-7 includes some important keywords. Table 10-1 describes these
keywords.

Table 10-1. logrotate Options

Option Description

weekly This option specifies that the log files should be created on a weekly basis.

rotate 4 This option makes sure that four old versions of the file are saved. If the
rotate option is not used, old files are deleted.

create The old file is saved under a new name and a new file is created.

compress Use this option to make sure the old log files are compressed.

compresscmd This option specifies the command that should be used for creating the
compressed log files.

uncompresscmd Use this command to specify what command to use to uncompress com-

pressed log files.

include This important option makes sure that the content of the directory
/etc/logrotate.dis included. In this directory, files exist that specify how
to handle some individual log files.

As you have seen, the logrotate.conf configuration file includes some generic code
to specify how log files should be handled. In addition to that, most log files have a specific
logrotate configuration file in /etc/logrotate.d/.

233

234

CHAPTER 10 SYSTEM LOGGING

The content of the service-specific configuration files in /etc/logrotate.dis in general
more specific than the contents of the generic logrotate.conf. In Listing 10-8, you can see
what the configuration script that handles log files for /var/log/ntp looks like.

Listing 10-8. Example of the logrotate Configuration for ntp

/var/log/ntp {
compress
dateext
maxage 365
rotate 99
size=+2048k
notifempty
missingok
copytruncate
postrotate

chmod 644 /var/log/ntp
endscript

Listing 10-8 demonstrates some additional options. Table 10-2 gives an overview of these
options and their meaning.

Table 10-2. Options in Service-Specific logrotate Files

Option Description

dateext Uses the date as extension for old versions of the log files.

maxage Specifies the number of days after which old log files should be removed.

rotate Specifies the number of times a log file should be rotated before being removed
or mailed to the address specified in the mail directive.

size Logs files that grow bigger than the size specified here.

notifempty Does not rotate the log file when it is empty.

missingok If the log file does not exist, goes on to the next one without issuing an error
message.

copytruncate Truncates the old log file in place after creating a copy, instead of moving the

old file and creating a new one. This is useful for services that cannot be told to
close their log files.

postrotate Specifies some commands that should be executed after performing the
logrotate on the file.

endscript Denotes the end of the configuration file.

Like the preceding example for the ntp log file, all other log files can have their own
logrotate file. You can even create logrotate files for files that are not log files at all! More
options are available when creating such a logrotate file; for a complete overview, check the
man pages.

CHAPTER 10 SYSTEM LOGGING

Summary

In this chapter, you've learned how to handle logging. First, you've learned where you can
find the default log files on your system and how you can have a look at them. Next, you've
learned how to create your own syslog or syslog-ng configuration. The last part of this
chapter has taught you how to configure log rotation to make sure that your computer’s
file system is not filled completely with log files by accident. The following commands have
been covered in this chapter:

* syslog: Legacy process used for logging files
¢ syslog-ng: Newer process that offers more clever log services

e tail -f /var/log/messages: The way to see what’s happening in /var/log/messages,
the most important log file on your computer

¢ SuSEconfig: Command that you need to use on SUSE Linux to write changes that
you’ve written to the input file /etc/syslog-ng/syslog.conf.in to the file /etc/
syslog-ng/syslog.conf

¢ logger: Useful tool that lets you write messages to syslog

e logrotate: Command that helps you to prevent log files from growing too big and
rotate them after a certain amount of time or once a given size has been reached

In the next chapter, you'll learn how to configure networking on your computer.

235

CHAPTER 11

Configuring the Network

M ost Linux computers operate in a connected world. Therefore, configuring the network
board is of highest importance. In this chapter, you'll first learn how to give your computer an
IP address and related information. You'll also learn about some useful tools that will help you
in analyzing and troubleshooting a failing network connection. The last part of this chapter is
about Secure Shell (SSH), which helps you make secured connections to other computers.

A Quick Introduction to Computer Networking

Before looking at the specifics of network configuration, it’s important you first have a general
understanding of what it is all about. This section explains basic networking for people who
are new to the subject; it’s not a complete tutorial, but it tries to outline the most important
concepts of networking for people who don’t have much knowledge on the subject.

All networking starts with an address. The most basic address, which is on the network
card, is called a Media Access Control (MAC) address. Every network card has a MAC address.
This goes not only for the wired network card in your computer, but also for the mobile phone
that you use to browse the Internet. These MAC addresses are unique worldwide.

Although it is possible to communicate based solely on the MAC address, such a solution
would not be ideal. This is because a MAC address contains no information about where a
specific computer is on the network. The only way to have communication based on the MAC
address is by broadcasting to all computers in the network, querying them to find out which
has the MAC address you are looking for. This works for a small local network (referred to as a
LAN), but it doesn’t work for a computer that is thousands of miles away over the Internet.

The solution for this problem is in the IP address. IP addresses make worldwide commu-
nication between computers possible, as each IP address contains information about the local
computer (referred to as the node part of the IP address—the note before the section “Bring-
ing Interfaces Up and Down with ifconfig” explains more about this) as well as the network
the computer is on. Since each IP address includes this network information, it is possible to
address a computer at the other end of the world directly through an IP.

To connect different IP networks together, a router is used. This is a dedicated machine
that knows how to reach other IP networks. Most routers just know a few other networks and
contain a default route. This default route refers to all other IP network addresses. At the end,
most routed network traffic is handled by one of the backbone routers on the Internet. These
are huge machines that know how to find all IP network addresses.

237

238

CHAPTER 11 CONFIGURING THE NETWORK

As IP addresses are in a numeric format (such as 179.237.39.66), which is not easy to
handle for humans, on the Internet, computers are addressed by their name instead of their IP
address. This name is translated into an IP address by a Domain Name Service (DNS) server.

To make sure your computer can communicate with other computers on the Internet,
your computer needs to have an IP address, and it needs to know where to find the default
router and the DNS servers. You can enter all this information manually (which you’ll learn
how to do later in this chapter), but in many cases, a DHCP server is used to hand out this
information automatically. If you are working on a workstation, your computer will by default
contact a DHCP server, and you'll be fine. However, if you are an administrator who is respon-
sible for having a server up and running in your network, you’ll probably need to set all this
information yourself. The next sections teach you how.

Setting the IP Address

On installation, all Linux distributions work with DHCP to get an IP address. DHCP offers a
very convenient way of configuring the network card, as even simple Internet routers for home
usage have an embedded DHCP server. In some cases, however, you'll need a fixed IP address.
Let’s see how this works.

Using ifconfig

You can use ifconfig to manage and monitor a network interface card. The command has
been around for years; although it’s not the most flexible command, it'll still do the job. And
the biggest advantage: it’s a relatively easy command to use. If you use the ifconfig command
without any parameters, you'll see information about the current configuration of the network
cards in your computer. An example of this is in Listing 11-1.

Listing 11-1. The ifconfig Command Can Show Your Current Network Configuration
Parameter.

etho Link encap:Ethernet HWaddr 00:0C:29:A0:A5:80
inet addr:192.168.1.33 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::20c:29ff:fea0:a580/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:3035 errors:0 dropped:0 overruns:0 frame:0
TX packets:199 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:240695 (235.0 KiB) TX bytes:19035 (18.5 KiB)
Interrupt:18 Base address:0x1400

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

CHAPTER 11 CONFIGURING THE NETWORK

Displaying Information with ifconfig

Asyou have seen in Listing 11-1, the ifconfig command provides different kinds of informa-
tion about a network card. It starts with the name of the protocol used on the network card.
The protocol is indicated by (for example) Link encap: Ethernet, which states that it is an
Ethernet network board. Almost all modern LAN interfaces will show you Ethernet as the
link encapsulation type, but on a WAN connection you may see other protocols such as PPP
instead. Then the MAC address is given as the Hladdr (hardware address). This address is fol-
lowed first by the IPv4-related address information (inet addr) and then the IPv6 address
information, if IPv6 hasn’t been disabled (inet6 addr). Then several statistics about the
network board are given. Pay special attention to the RX packets (received packets) and

TX packets (transmitted packets) because you can see from these statistics what the network
board is doing and if any errors have occurred. Typically, there should be no errors here.

Note Currently, most computers use IP version 4 IP addresses. In version 4, approximately 4 billion IP
addresses can be addressed. However, since the protocol specification is inefficient, there are almost no
more free IPv4 addresses available. Therefore, IPv6 was developed (see www. ipv6.org). The most important
purpose of IPv6 is to make (many) more IP addresses available. Migration to IPv6 goes slowly, however, as
it requires quite a lot of work on the network infrastructure of companies that want to migrate. Linux offers
full support for IPv6, and most distributions even enable it by default. An IPv6 address is represented in hexa-
decimal way, as in this example: feb0:ff66:ab08:0963:badc:afe0:3796:0012. Compare this to the typical IPv4
address, which looks like 129.13.57.192.

Apart from the information about the physical network boards that are present in your
computer, you'll also always see information about the loopback device (10), which is the
network interface that’s used for internal purposes on your computer. Your computer needs
this loopback device because some IP-related services depend on it; for example, the graphi-
cal environment that’s used on Linux is written on top of the IP stack offered by the loopback
interface.

Configuring a Network Card with ifconfig

Although your system is provided with an IP address upon installation, it’s important for you
to be able to manage IP address configuration on the fly, using the ifconfig command. For-
tunately, it’s relatively easy to configure a network board in this way: just add the name of the
network board you want to configure followed by the IP address you want to use on that net-
work board (for example, ifconfig etho 192.168.1.125). This command will configure etho
with a default class C subnet mask of 255.255.255.0, which indicates that the first three bytes of
the IP address are a part of the network address and that the last byte is the unique host identi-
fier within that network.

239

240

CHAPTER 11 CONFIGURING THE NETWORK

Tip Not sure what eth device number is used? You can manage this via the udev mechanism. In the
file /etc/udev/rules.d/nn-persistent-net.rules a mapping is made between the MAC address and
interface number of your network boards. So if you want the eth1 device to be presented as etho, this is the
place where you can change it. Just change the current name (e.g., eth1) in the name you want it to be, and
restart your computer to make the change effective.

If you need a custom subnet mask, add an extra parameter to ifconfig, as in the com-
mand ifconfig etho 172.16.18.18 netmask 255.255.255.0 broadcast 172.16.18.255, which
configures the etho device with the given IP address and a 24-bit subnet mask. If you work with
a nondefault subnet mask, you have to specify the broadcast address that’s used to address
all nodes in the same network as well; the ifconfig command justisn’t smart enough to real-
ize that you're using a nondefault IP address and to calculate the right broadcast address
accordingly.

Note In the IP protocol, subnet masks are used to distinguish the network part from the node part of the
IP address. All IP addresses must have a subnet mask. To make working with IP easier, IP addresses do have
a default subnetmask; for instance, IP addresses starting with 192, such as 192.1.2.3, have the default sub-
net mask 255.255.255.0, which tells the IP stack that the first three bytes are used to address the network,
and the last byte only is used to address the node. In some situations, an administrator may choose to use
nondefault subnet masks, for instance, if he or she needs to address more than one network but doesn’t
have enough network addresses available. There are two ways to write the subnet mask that is to be used: in
the so-called dotted method (e.g., 255.255.255.0) or in the CIDR method. The latter uses a slash, followed by
the number of bytes that are in the subnet mask. Consult http://en.wikipedia.org/wiki/Subnetwork
for a more detailed explanation of subnet masks.

Bringing Interfaces Up and Down with ifconfig

Apart from adding an IP address to a network board, you can use the ifconfig command to
bring a specific network board up or down. For example, ifconfig etho down shuts down the
interface, and ifconfig etho up brings it up again with its default settings. This is useful if you
want to test a new configuration, but you're not sure whether it’s really going to work properly.

Instead of using ifconfig to bring the network card up and down, you can also use ifup
and ifdown. These commands allow you to bring a network card up or down easily, without
changing the configuration of a given network board. For example, to bring a network board
down, use ifdown etho; to bring it up again, use ifup etho.In both cases, the default configu-
ration for the network card is applied.

CHAPTER 11 CONFIGURING THE NETWORK

Using Virtual IP Addresses with ifconfig

In some cases, one network card may need multiple IP addresses. These are called virtual IP
addresses, and you can set them with ifconfig. Using virtual IP addresses is useful if you are
configuring services on your computer that all need their own IP address. Think, for example,
of different virtual Apache web servers that are all reachable on their own IP address.

Note This doesn’t mean that to run multiple instances of Apache, you’ll always need a virtual IP address
configuration. Using virtual IP addresses is just one way of doing this.

You can use the virtual IP address either within the same IP address range or on a differ-
ent one. To add a virtual IP address, add :n where n is a number after the name of the network
interface. For example, ifconfig eth0:0 10.0.0.10 adds the address 10.0.0.10 as a virtual IP
address to etho. The number after the colon must be unique, so you can add a second virtual
IP address with ifconfig etho:1 10.0.0.20, and so on. When you use the ifconfig tool to
display the current configuration of your computer, you'll see all virtual IP addresses that are
configured, as shown in Listing 11-2.

Listing 11-2. The ifconfig Tool Shows Virtual IP Addresses As Well

T00t@ZNA:~# ifconfig eth0:0 10.0.0.10

T00t@ZNA:~# ifconfig eth0:1 10.0.0.20

T00t@ZNA:~# ifconfig

etho Link encap:Ethernet HWaddr 00:0C:29:A0:A5:80
inet addr:192.168.1.33 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::20c:29ff:fea0:a580/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:3035 errors:0 dropped:0 overruns:0 frame:0
TX packets:199 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:240695 (235.0 KiB) TX bytes:19035 (18.5 KiB)
Interrupt:18 Base address:0x1400

etho:o Link encap:Ethernet HWaddr 00:0C:29:A0:A5:80
inet addr:10.0.0.10 Bcast:10.255.255.255 Mask:255.0.0.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
Interrupt:18 Base address:0x1400

etho:1 Link encap:Ethernet HWaddr 00:0C:29:A0:A5:80
inet addr:10.0.0.20 Bcast:10.255.255.255 Mask:255.0.0.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
Interrupt:18 Base address:0x1400

24

242 CHAPTER 11 CONFIGURING THE NETWORK

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Using the ip Tool

You can use ifconfig to display and change IP address information, but it’s not the only tool
available. A more flexible tool is ip. The ip tool has many options that allow you to manage
virtually all aspects of the network connection. For example, you can use it to configure an
IP address, but it manages routing as well, which is something that ifconfig can’t do. When
using ifconfig to change IP address information, you’ll need route to change the routing
table. You'll read more about this command further on in this chapter.

The first option you use with the ip command determines exactly what you want to
do with the tool. It is a reference to the so-called object; you can consider these objects the
secondary command level that determines more precisely what you want to do. Each of the
objects has different possibilities:

¢ link: Used to manage or display properties of a network device.

* addr: Used to manage or display IPv4 or IPv6 network addresses on a device.
e route: Used to manage or display entries in the routing table.

¢ rule: Used to manage or display rules in the routing policy database.

¢ neigh: Used to manage or display entries in the ARP cache. ARP gives information
about which IP address is used by which MAC address. By using this option, you can
modify the ARP information or display it.

e tunnel: Used to manage or display IP tunnels. This is something you'll only need when
setting up Virtual Private Network (VPN) connections over the Internet. VPN technol-
ogy is quite popular in enterprise environments to set up secure connections, but will
not be discussed any further in this book.

¢ maddr: Used to manage or display multicast addresses for interfaces. A multicast
address is a group address that you can add to a network card. Using multicast makes
it possible for a user or an application to address all nodes that provide the same func-
tionality simultaneously.

» mroute: Used to manage or display multicast routing cache entries.

e monitor: Used to monitor what happens on a given device.

For each of the objects, you’ll have to use options. The easiest way to learn about these
options is to use the ip command followed by the object followed by the keyword help. For
example, ip address help provides information on how to use the ip address command, as
shown in Listing 11-3.

CHAPTER 11 CONFIGURING THE NETWORK

Listing 11-3. The ip address help Command Gives Help on Configuring IP Addresses with the ip
Tool

T00t@ZNA:~# ip address help
Usage: ip addr {add|del} IFADDR dev STRING
ip addr {show|flush} [dev STRING] [scope SCOPE-ID]
[to PREFIX] [FLAG-LIST] [label PATTERN]

IFADDR := PREFIX | ADDR peer PREFIX
[broadcast ADDR] [anycast ADDR]
[label STRING] [scope SCOPE-ID]
SCOPE-ID := [host | link | global | NUMBER]

FLAG-LIST := [FLAG-LIST] FLAG
FLAG := [permanent | dynamic | secondary | primary |
tentative | deprecated]

It can be quite a challenge to find out how the help for the ip tool works, so I'll give you
some pointers on this feature. To understand what you need to do, you must first analyze the
Usage: lines. In the example in Listing 11-3, you see two of them: a usage line that starts with
ip addr {add|del}, and another that starts with ip addr {show|flush}.Let’s have alook at the
first one, which allows you to add or remove an IP address.

The complete usage line as described by ip address helpisip addr {add|del} IFADDR
dev STRING. So you can add or delete an IP address that is referred to by IFADDR from a device
(dev) that is referred to by STRING. Now, a string is just a string, and that can be anything
(but normally will be something like etho). The IFADDR part, which is the address that you’ll
assign to the string, offers more options, which are described in the next part. You can find
an explanation of that part in the next section of the help output: IFADDR := PREFIX | ADDR
peer PREFIX [broadcast ADDR] [anycast ADDR] [label STRING] [scope SCOPE-ID].
In this line, the help explains that you have to use a PREFIX or an ADDR statement, which may
be followed by several options like the broadcast address, the anycast address, a label, or a
SCOPE-ID. But from the help also follows that you can just simply add an address. There is no
further explanation of the other options, as this is information that you should know about
when configuring IP addresses. This means ip address help can’t tell you which IP address
you need on which Ethernet interface. Now that you understand how the help works, let’s
have a look at some of the different ways you can use the ip command.

Showing IP Addresses with ip

A common use of ip is to display information about the use of IP addresses for a given inter-
face. The command to use is ip address show, or just ip address. Note that, if it is clear exactly
what you want and there can be no confusion between options, you can specify the options
used with the ip command in short form, such as ip a s, which accomplishes the same thing
as ip address show. Listing 11-4 gives an example.

243

244

CHAPTER 11 CONFIGURING THE NETWORK

Listing 11-4. Showing ip Address Configuration with ip address show

ro0t@ZNA:~# ip address show
1: lo: <LOOPBACK,UP,10000> mtu 16436 qdisc noqueue
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
inet6 ::1/128 scope host
valid 1ft forever preferred 1ft forever
2: etho: <BROADCAST,MULTICAST,UP,10000> mtu 1500 gdisc pfifo fast qlen 1000
link/ether 00:0c:29:a0:a5:80 brd ff:ff:ff:ff:ff:ff
inet 192.168.1.33/24 brd 192.168.1.255 scope global etho
inet 10.0.0.10/8 brd 10.255.255.255 scope global etho:0
inet 10.0.0.20/8 brd 10.255.255.255 scope global secondary etho:1
inet6 fe80::20c:29ff:fea0d:a580/64 scope link
valid 1ft forever preferred 1ft forever

If you look hard enough, you can see that the result of ip address show is almost the same
as the result of ifconfig. It’s just presented differently. In particular the part about etho (nor-
mally your fixed network card) is interesting. First, you can see that broadcast and multicast
are enabled on this device, and that the network card is up. Next, it shows some other proper-
ties of the network card that are interesting if you need to troubleshoot the way a network card
is functioning. However, if you just need to assign an IP address, you typically wouldn’t care
about these parameters. Last, the lines starting with inet show the addresses that are assigned
to the network card, with their corresponding subnet masks.

Showing Device Attributes

Another simple use of the ip tool is to show device attributes, which you can do with the

ip link show command. This command shows usage statistics for the device you've speci-
fied but no address information, which is kind of obvious as well. ip link works on the link,
ip address on the IP address. Listing 11-5 provides an example of its output.

Listing 11-5. Use the ip 1ink show Command for an Overview of Link Attributes

Toot@ZNA:~# ip link show

1: lo: <LOOPBACK,UP,10000> mtu 16436 qdisc noqueue
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: etho: <BROADCAST,MULTICAST,UP,10000> mtu 1500 qdisc pfifo fast qlen 1000
link/ether 00:0c:29:a20:a5:80 brd ff:ff:ff:ff:ff:ff

The information displayed by ip link show is related to the activity on the network board.
Of particular interest are the device attributes returned for each of the devices (they're dis-
played in brackets right after the name of the device). You can see for instance the attributes
BROADCAST,MULTICAST,UP for a normal network interface card. The BROADCAST attribute indicates
that the device is capable of sending broadcasts to other nodes in the network, the MULTICAST
attribute indicates that the device can also send multicast packets (a feature that is disabled in
some networks), and the UP attribute indicates that the device is working. The command also
shows all IP protocol attributes, such as the maximum transmission unit (mtu) that is used on
the interface.

CHAPTER 11 CONFIGURING THE NETWORK

Setting the IP Address

You can also use the ip tool to assign an IP address to a device. To do this, you could use a
command like ip address add 10.0.0.10/16 dev etho. This command sets the IP address

for etho to 10.0.0.10. With this IP address, a 16-bit subnet mask is used, which is indicated by
the CIDR notation of the subnetmask 255.255.0.0 (/16) directly behind the IP address. The
broadcast address is calculated automatically, which you can specify by adding brd + to the
command. Once you have set the IP address with the ip tool, you can use the following com-
mand to check if it’s set correctly: ip address show dev etho (orjustuse ip a, which gives you
the address configuration for all network cards).

You can add more than one IP address to a network interface when using the ip tool as
well. And it isn’t hard: just use ip address add 10.0.0.20/16 brd + dev etho, and 10.0.0.20
with its specified properties is added as a second IP address to etho (assuming that some other
IP address was already defined for this network card). There is a difference between secondary
IP addresses that are added with ifconfig and the IP addresses that are added with the ip tool.
An address added with ip won’t show up when you use ifconfig. So when using secondary IP
addresses, make sure you use the right tool to check their properties.

Note Even if ifconfig is easier, it is a good idea to make a habit of using the ip command instead. You
can use the ip command with most of the utilities that you'll be employing as well, and to display this infor-
mation properly, it just works better if you use the ip command.

Storing Address Configuration

When your computer boots, it normally loads its IP address configuration automatically. In the
next sections you’ll read how this works on the three most important Linux distributions.

Storing IP Address Configuration on Ubuntu

When your computer boots, it starts the networking script from /etc/init.d. The script reads
the configuration that is stored in the /etc/network directory, paying particular attention to
the /etc/network/interfaces file. This configuration file stores the entire configuration of
the network board. Listing 11-6 shows an example configuration for a computer that has two
Ethernet network cards.

Listing 11-6. Example Contents of the interfaces File on Ubuntu

To0t@ZNA:~# cat /etc/network/interfaces
This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(s).

245

246

CHAPTER 11 CONFIGURING THE NETWORK

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface

auto etho

iface etho inet static
address 192.168.1.33
netmask 255.255.255.0
network 192.168.1.0
broadcast 192.168.1.255
gateway 192.168.1.254
dns-* options are implemented by the resolvconf package, if installed
dns-nameservers 193.79.237.39
dns-search lan

#The second network board

auto eth1

iface eth1 inet static
address 10.0.0.10
netmask 255.255.255.0
network 10.0.0.0
broadcast 10.0.0.255

As you can see from the configuration file, the computer has activated three network
interfaces. The first is 1o, and this is the loopback interface. It’s required for many services to
function, even if your computer has no network connection at all. For instance, the X server
that takes care of the graphical display on your computer uses the loopback interface to han-
dle internal communication. The loopback interface always uses the IP address 127.0.0.1.

In most cases, an Ethernet network card is used to connect with the rest of the world.
This network card is represented by the name etho if it’s the first, and names like eth1 and
so on for the next cards. The definition of each of the network boards starts with auto ethn,
in which n is the number of the network interface. This line is used to start the network card
automatically when your computer boots. You can omit this line, but if you do so, you'll
need to use the ifup or ifconfig commands as described earlier to start the network card by
hand. In most situations you don’t want to do that, so make sure that the line that starts with
auto is used at all times.

Following the auto line, there is a definition of the interface itself. In this example, a com-
puter is configured with two static IP addresses. If you need DHCP on an interface, make sure
the iface line reads iface ethn inet dynamic. Following that, there is the rest of the configu-
ration for the network card. You’ll need address, netmask, network, and broadcast in all cases.
The other options are optional.

Storing IP Address Configuration on Fedora

On Fedora, fixed IP address configuration is stored in the /etc/sysconfig/network-scripts/
ifcfg-ethn file. One file is created for each Ethernet interface. In Listing 11-7, you can see what
this file looks like.

CHAPTER 11 CONFIGURING THE NETWORK

Listing 11-7. Network Configuration As Stored on Fedora

[root@fedora ~]# cat /etc/sysconfigu/network-scripts/ifcfg-etho
Advanced Micro Devices [AMD] 79c970 [PCnet32 LANCE]
DEVICE=etho

HWADDR=00:0c:29:de:75:ab

ONBOOT=yes

SEARCH="example.com"

BOOTPROTO=none

NETMASK=255.0.0.0

IPADDR=1.2.3.4

USERCTL=no

PEERDNS=yes

IPV6INIT=no

NM_CONTROLLED=no

GATEWAY=1.0.0.1

TYPE=Ethernet

In this example configuration file, you can see several parameters. You can change them
as needed and deactivate and activate the device after applying the changes with ifdown ethn,
followed by ifup ethn. Alternatively, you can use the system-config-network tool to change
the parameters from a graphical interface. The following parameters are in the ifcfg-ethn file:

e DEVICE: The device name. This should be the eth name of the hardware device.

e HWADDR: The MAC address of the device. Make sure that it is unique for all devices you
are using.

e ONBOOT: Whether or not the device must be activated when your computer boots. You
normally want to set this parameter to yes.

e SEARCH: The default DNS search domain. If an incomplete DNS name is used (e.g., ping
linda), the default DNS search domain is appended.

¢ BOOTPROTO: The specific boot protocol used, if any. Set this to DHCP if you want the net-
work card to obtain an IP address automatically from a DHCP server when activated.

e NETMASK: The netmask that you are using with the IP address on this interface.

o IPADDR: The IP address used by this interface.

e USERCTL: Whether or not an end user is allowed to activate and deactivate this interface.
e PEERDNS: DNS information for the peer in a point-to-point setup.

e IPV6INIT: Whether or not you want to initialize the IPv6 protocol.

¢ NMCONTROL: As an alternative to manual device configuration, you can configure a
network device with the network manager applet. This parameter tells your system
whether this applet should be used.

e GATEWAY: The IP address of the default router that is needed to connect to computers on
other networks.

¢ TYPE: The protocol used by this network card.

247

248

CHAPTER 11 CONFIGURING THE NETWORK

Storing IP Address Configuration on SUSE

On SUSE Linux, the network information is stored in more or less the same way as on
Fedora. The name of the configuration file is /etc/sysconfig/network/ifcfg-nnn, in which
nnn represents the MAC address the network card uses. Listing 11-8 shows what the SUSE
configuration file looks like. In this listing, you can see that the contents of the file ifcfg-eth-
id-00:0c:29:ae:e6:e5 is requested. In the file name, backslashes are used to make sure that
the next character is not interpreted by the shell. You can change the SUSE configuration file
by hand, or by using the YaST configuration tool.

Listing 11-8. Nerwork Card Configuration As Stored on SUSE

nuuk:/etc/sysconfig/network # cat ifcfg-eth-id-00\:0c\:29\:ae\:e6\:e5
BOOTPROTO="dhcp'

BROADCAST=""

ETHTOOL_OPTIONS="'

IPADDR=""

MTU=""

NAME="AMD PCnet - Fast 79C971'
NETMASK="'255.255.255.0'
NETWORK=""

REMOTE_IPADDR="'
STARTMODE="auto'
UNIQUE="1BUF.weGuQoywYPF'
USERCONTROL="no'"
_nm_name="bus-pci-0000:02:00.0"

In the SUSE configuration file, multiple parameters are stored. A short explanation of each
of them follows:

e BOOTPROTO: Indicates whether DHCP should be used or whether the interface has a
static IP address assignment. Use either DHCP or STATIC.

¢ BROADCAST: Specifies the broadcast address of the network.

e ETHTOOL OPTIONS: Specifies ethtool command arguments that will be interpreted by the
ethtool utility. ethtool lets you set specific parameters, such as the link speed, duplex
mode, or receive buffer size of your network card. You can read more about this utility
in the section “Tuning the Network Card with ethtool” later in this chapter.

o IPADDR: Specifies which IP address is to be used.

* MTU: Specifies the maximum transmission unit. By default on Ethernet, it is 1500; set it
to 9000 to enable jumbo frames, which are useful on links that work with large packets.

¢ NAME: Specifies a name for the interface. Enter a unique name here.
* NETMASK: Indicates the netmask in dotted notation (255.255.255.0 and not /24).
¢ NETWORK: Allows you to specify the address of the network. This field is optional.

e REMOTE_IPADDR: Specifies the IP address of the remote node in a peer-to-peer
connection.

CHAPTER 11 CONFIGURING THE NETWORK

STARTMODE: Indicates whether this interface must be started automatically or manually.

e UNIQUE: Contains a unique ID that is used by the YaST management utility.

USERCONTROL: Indicates whether or not an end user is allowed to stop and start this
interface.

e _nm_name: Contains a reference to the hardware location of the NIC.

Configuring Routing

You've read about how a network interface is provided with an IP address. But, to be com-
pletely functional on the network, you have to specify some routes as well. These routes allow
you to communicate with computers on other networks, and, conversely, they allow comput-
ers on other networks to communicate with your computer.

As a minimal requirement, you need a default route. This entry specifies where to send
packets that don’t have a destination on the local network. The router used for the default
route is always on the same network as your computer; just consider it to be the door that
helps you get out of the local network. Your computer typically gets the information about
the default router that it should use from the /etc/network/interfaces Ubuntu file, /etc/
sysconfig/network-scripts/ifcfg-etho on Fedora, or /etc/sysconfig/network/routes on
SUSE. To set the default route yourself, two tools can be used: the ip tool and the route utility.
In the next two sections, you'll read how to do this.

Managing the Default Route with route

The old command to set the default route is route. If no options are used, it will display a list
of all routes that are currently defined on this host. Listing 11-9 provides an example. When
using the route command without options, it will always try to resolve the name for a given IP
address, which takes some time. If you don’t want any name resolution to be performed, use
the option -n, which makes the command a lot faster.

Listing 11-9. Use the route Command to Get an Overview of All Routes That Are
Currently Configured

1T00t@ZNA:~# route
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

localnet * 255.255.255.0 U 0 0 0 etho
10.0.0.0 * 255.0.0.0 U 0 0 0 etho
default 192.168.1.254 0.0.0.0 UG 0 0 0 etho

In the output of the route command all information necessary for the routing process is
provided, as you can see in Listing 11-9. The first column provides the destination, which is
the network or host that a route is defined for. Typically, these are networks that your com-
puter is connected to with its local interfaces and the default route. Next is the gateway, which
is the router that needs to be contacted to reach the specified destination. An asterisk (*) in
this field indicates that the local computer is the gateway for that destination. If an external
router is used as the destination, you'll see the IP address (or name) of that router. Next is the

249

250

CHAPTER 11 CONFIGURING THE NETWORK

genmask, which is the subnet mask used on the specified destination. Then come the flags,
metric, ref, and use columns, all of which reveal more detailed information about this route.
Finally, the iface column reveals what network interface is used to route packets.

To specify a route, you need to provide a minimum of two pieces of information: the IP
address or name of the network you want to add, and the IP address of the default gateway.
All the other information is added automatically. For example, if you want to specify that the
router with IP address 192.168.1.254 should be used as the default gateway, use the command
route add default gw 192.168.1.254.

If you need to change the default gateway, you should be aware that you first have to
remove the old entry for this default gateway. Use the route del command to do this. For
example, to remove the current setting for the default gateway, use route del default gw.

Managing the Default Route with the ip Tool

If you know what information to enter when defining a route, it’s easy to do it with either the
ifconfig or the ip tool. Only the syntax is different. To set the default gateway to 192.168.1.254
using the ip tool, use the ip route add default via 192.168.1.254 command. This command
makes sure that all packets sent to nonlocal destinations are sent through 192.168.1.254. Like-
wise, you can delete the default route with ip route del default.

Storing Routing Information

To make sure that your computer still knows the default route after a reboot, you should
store it somewhere. In the next three sections, you'll read how to do this for the three main
distributions.

Ubuntu

When you enter information, such as the default gateway, from the command line, it will be
lost the next time you reboot your computer. To make sure that the information remains after
areboot, store it in the /etc/network/interfaces file on Ubuntu. This file is read every time the
network is activated. The entry used in this file to store the default route isn’t complex:

gateway 192.168.1.254

If you have more than one network card in your computer, it is enough to specify the
information about the default route once only.

Fedora

On Fedora also, you specify the address of the default route in the file that stores the configu-
ration of your network interface. See Listing 11-7 earlier in this chapter for an example. If you
have more than one network card in your computer, you do not need to enter this information
in the configuration file of each network card.

CHAPTER 11 CONFIGURING THE NETWORK

Resolving DNS Names to IP Addresses

If you want to manually configure a network connection as the last part, you need to specify
what DNS name server to use. The DNS Server makes sure that names that are used on your
local network and the Internet can be translated to the IP addresses your computer needs to
make a connection.

To store the DNS information, you use the so-called DNS resolver. This DNS resolver is
stored in the /etc/resolv. conf file; there is no command-line utility to configure it. Typically,
the /etc/resolv.conf file will contain the IP address of at least two DNS name servers and a
search domain. The name server specifications indicate what DNS name computer should
be contacted to translate DNS names to IP addresses and vice versa. Typically, your Internet
provider will get you this information. Specify at least two name servers so that if the first one
cannot be reached, the second one can do the job.

The search domain specifies what domain name should be appended if an incomplete
host name is used. It makes sense to use the name of your default DNS domain as the search
domain. So if you computer’s name is computer.example.com, set the search domain name to
example.com. Listing 11-10 is an example of the content of the /etc/resolv.conf file.

Listing 11-10. Example of the /etc/resolv.conf File

nameserver 192.168.1.10
nameserver 193.79.237.39
search example.com

In this example, you see that name server 192.168.1.10 is used as the default name server,
and all DNS requests will be sent to it. If this server cannot be reached, only then will the sec-
ond server in the list (193.79.237.39) be contacted. The third line of the Listing 11-10 example
specifies the search domain. For example, if a user uses the command ping ftp, which
includes an incomplete host name, the name of the domain specified with the search option
in resolv.conf is added automatically to it, so in this case the packet would be sent to ftp.
example.com.

The Role of the /etc/nsswitch.conf File

Most people take it for granted that DNS resolves host names to IP addresses, but this isn’t
necessarily so. Every Linux computer has the /etc/nsswitch.conf file that determines what
exactly should happen when translating a host name to an IP address and vice versa. This file
specifies many things (such as user configuration, which you read about in Chapter 6), but
only the following lines are important for resolving host names:

hosts: files dns
networks: files

These two lines specify that, when resolving host names as well as network names, the
(local) files should be searched first, and that the DNS subsystem should be used only if
the files have no information about the given host. Thus, an administrator can make sure
that frequently accessed host names are resolved locally, where the DNS is contacted only

251

252

CHAPTER 11 CONFIGURING THE NETWORK

when the files don’t have information about a particular host. The most important file
used for resolving names to IP addresses is the /etc/hosts file, which is the file referred to
by files on the hosts line in /etc/nsswitch.conf.

Using the /etc/hosts File

One of the oldest ways to resolve host names to IP addresses (and vice versa) is to use the
/etc/hosts file. It’s rather primitive because you have to maintain the file on every single com-
puter where you need it, and no synchronization of entries in this file is established between
computers. But it’s also a very efficient way to supply information that needs to be available
locally.

Note To resolve the problem of decentralized management, the Network Information Service (NIS, for-
merly known as Yellow Pages) was invented by Sun Microsystems. Nowadays, it’s hardly ever used anymore,
because most companies keep their hosts-related information in DNS.

Using the /etc/hosts file makes resolving names faster and reduces Internet traffic, and
you can use it to add any host names that need to be available only locally. Listing 11-11 shows
example contents of this file.

Listing 11-11. Example of the /etc/hosts File

100t@ZNA:~# cat /etc/hosts
127.0.0.1 localhost
192.168.1.33 ZNA.lan ZNA

The following lines are desirable for IPv6 capable hosts
| ip6-localhost ip6-loopback

fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts

As you can see, the contents of this file are rather simple. First, you specify the IP address
of the host, which can be an IPv4 or an IPv6 address. If you don’t use IPv6, you can keep out
the last six lines. Next, the fully qualified host name of the host is specified. This is the name of
the host itself followed by its DNS suffix. Last, the short host name is used. Alternatively, you
can just provide the IP address followed by the name of the host you want to add, such as in
the following line:

192.168.1.180 RNA

CHAPTER 11 CONFIGURING THE NETWORK

On a modern Linux computer, it’s not necessary to set up /etc/hosts except for local
name resolving. Network name resolving is typically managed in DNS. So you’ll always need
your own host name and IP address in this file. This is configured automatically when install-
ing your computer.

Tuning the Network Card with ethtool

At this point you know how to configure IP-related parameters. The network card itself also
has settings that you may need to modify, and you'll use the ethtool command to do this. With
this utility, you can change network board properties like link speed and duplex mode. Don’t
overestimate this tool though. Some Ethernet cards are not supported, and the only way to
change settings on those may be through the network board’s BIOS settings. Let’s start by dis-
playing some information: issue ethtool -i etho to see an overview of driver properties that
are currently used, as shown in Listing 11-12.

Listing 11-12. The ethtool -i Command Provides an Overview of Driver Properties

100t@ZNA:~# ethtool -i etho
driver: pcnet32

version: 1.33
firmware-version:

bus-info: 0000:00:11.0

To change duplex settings and link speed on your network board, you'll use the -s option,
followed by one of these arguments:

* speed: This option changes the speed. Valid options are 10, 100, and 1000.
* duplex: This option changes the duplex settings. Set it to half or full.

e port: This specifies what port to use. This option is used for network interfaces with
different ports available (which is not very common). Valid choices are tp, aui, bnc, mii,
and fibre.

e autoneg: This option indicates whether you want to use autonegotiation to discover the
settings that are used on the network.

So, for example, if you want to change the settings of your network card to full duplex
and a link speed of 1000 Mbps, use ethtool -s etho speed 1000 duplex full. Now there
is a problem when using ethtool like this: you need to enter these settings again the next
time you start your computer. Only SUSE offers a solution for this problem; on SUSE you
can store the ethtool configuration parameters in the configuration file for your network
card. You have seen this in Listing 11-8. On other distributions that don’t offer such a solu-
tion, you can include the ethtool command with all the parameters you need in the /etc/
init.d/boot.local script. Doing this, you’ll make sure that ethtool settings are applied after
areboot as well.

In addition to the -i option with ethtool, which gives you a brief summary about your
network board, are some other useful options. For instance, you can get some very detailed
statistics about your network board when using ethtool -S asyou can see in Listing 11-13.

253

254 CHAPTER 11 CONFIGURING THE NETWORK

Listing 11-13. ethtool -S Gives You Very Detailed Statistics About Your Network Card

root@mel:~# ethtool -S etho

NIC statistics:
rX_packets: 1691
tx_packets: 319
rX_bytes: 183662
tx_bytes: 37876
rX_broadcast: 1441
tx_broadcast: 72
rx_multicast: 0
tx_multicast: 6
IX_errors: O
tx_errors: 0
tx_dropped: 0
multicast: O
collisions: 0
rx_length_errors: 0
IX_over errors: 0
IX_CIc_errors: 0
rx_frame errors: 0
rX_no_buffer count: 0
rx_missed errors: O
tx_aborted errors: 0
tx_carrier errors: O
tx_fifo errors: 0
tx_heartbeat errors: 0
tx_window_errors: 0
tx_abort late coll: 0
tx_deferred ok: 0
tx_single coll ok: 0
tx_multi coll ok: 0
tx_timeout count: 0
tx_restart _queue: O
rx_long length errors: O
rx_short_length errors: 0
rx_align errors: 0
tx_tcp_seg good: 0
tx_tcp seg failed: 0
rx_flow_control xon: 0
rx_flow_control xoff: 0
tx_flow_control xon: 0
tx_flow_control xoff: 0
rx_long byte count: 183662
rx_csum offload_good: 1504

CHAPTER 11 CONFIGURING THE NETWORK

rx_csum_offload errors: O
rx_header split: 0
alloc_rx buff failed: 0
tx_smbus: 0

rx_smbus: O
dropped_smbus: 0

Analyzing Network Connections

Once you have finished the setup tasks I've just described, you should have a working network
connection. But, even if it's working fine right now, you may at some point need to perform
some tuning and troubleshooting, and that’s exactly what this section is about. Here, you'll
learn how to test that everything is working the way it should and how to monitor what is hap-
pening on the network itself, as well as on the network interface. The tools I'm talking about in
this section are the top-notch troubleshooting tools.

Testing Connectivity

After configuring a network card, you want to make sure it’s working correctly. For this, the
ping command is your friend, and more so because it’s easy to use: enter the command fol-
lowed by the name or address of the host you want to test connectivity to, such as ping www.
ubuntu.com. This forces ping to start continuous output, which you can interrupt by using the
Ctrl+C key sequence. You can also send a limited number of packets; for example, the com-
mand ping -c 3 192.168.1.254 sends just three packets to the specified host. If you use ping
in a clever way, you can test a lot of things with it.] recommend using it in the following order:

1. Ping the localhost. If you pass this test, you've verified that the IP stack on your local
machine is working properly.

2. Ping a machine on the local network by using its IP address: if this works, you've veri-
fied that IP is properly bound to the network board of your computer and that it can
make a connection to other nodes on the network. If it fails, you need to check the
information you've entered with the ifconfig or ip commands; you may have made
an error entering the subnet mask for your network interface.

3. Ping a machine on the Internet using its IP address. A good bet is 137.65.1.1, which is a
DNS server that hasn’t failed me in the last 15 years. Of course, you can use any other
host as long as you know its IP address. If the ping is successful, you've verified that the
routers between the localhost and the destination are all working. If it fails, there’s an
error somewhere in the routing chain. Check route -norip route showon your local-
host to see if the default route is defined.

4. Ping a machine on the Internet using its DNS name. If this succeeds, everything is
working. If this step fails (but test 3 was successful), make sure you've entered the
name of the DNS server that should be used in /etc/resolv.conf. If this is okay, check
to see whether your DNS server is working.

255

256

CHAPTER 11

CONFIGURING THE NETWORK

In many cases, you'll use the ping command without options. But some options can be
useful, and these are listed in Table 11-1.

Table 11-1. Useful ping Options

Option

Description

-c count

-1 device

-i seconds

-
-1

-t ttl

Specifies the number of packets to be sent. The ping command terminates auto-
matically after reaching this number.

Specifies the name of the network device that should be used. Useful on a com-
puter with several network devices.

Specifies the number of seconds to wait between individual ping packets. The
default setting is 1 second.

Sends packets as fast as possible, but only after a reply comes in.

Sends packets without waiting for a reply. If used with the -f option, this may
cause a denial-of-service attack on the target host, and the host may stop func-
tioning properly or even crash. Apart from the unknown harm that this may do
to the target computer, you may find yourself blacklisted or even charged with a
criminal offense. Because this is such a very dangerous option, only the user root
is allowed to use it.

Sets the time to live (TTL) for packets that are sent. This indicates the maximum
number of routers that each packet may pass through on its way to a destination.
The TTL is decremented by one by each router it passes until the TTL becomes 0,
which means that the packet won’t be routed any more.

Sends packets to the broadcast address of the network. This prompts a reply from
every host that’s up and allowed to answer to ping packets. Don’t use this unless
you have a very good reason to use it, as this command generates large numbers
of packets on your network.

Note To protect against a denial-of-service attack, many hosts are configured not to answer a ping
request. Therefore, when testing connectivity, make sure that you use a host that’s allowed to answer.

The ping command is not just used to test that a connection can be established; you
can also use it to check the round-trip delay between your computer and a given host. The
elapsed time is an important indication of the quality of the network connection. To check
the round-trip delay, have a look at the time parameter that’s listed in the result of the ping
command. Listing 11-14 provides an example in which ping is used to send four packets to

Www . ubuntu. com.

CHAPTER 11 CONFIGURING THE NETWORK

Listing 11-14. Testing Connectivity to www. ubuntu. com

100t@ZNA:~# ping -c 4 www.ubuntu.com

PING www.ubuntu.com (82.211.81.158) 56(84) bytes of data.

64 bytes from arctowski.ubuntu.com (82.211.81.158): icmp seq=1 ttl=51 time=22.0 ms
64 bytes from arctowski.ubuntu.com (82.211.81.158): icmp seq=2 ttl=51 time=10.7 ms
64 bytes from arctowski.ubuntu.com (82.211.81.158): icmp seq=3 ttl=51 time=18.6 ms
64 bytes from arctowski.ubuntu.com (82.211.81.158): icmp seq=4 ttl=51 time=20.8 ms

--- www.ubuntu.com ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3015ms
rtt min/avg/max/mdev = 10.741/18.092/22.057/4.417 ms

Testing Routing

If you can ping your default router but you can’t ping a given host on the Internet, it's probably
obvious that something is wrong with one of the routers between your network and the desti-
nation host. You can use the traceroute command to find out exactly where things are going
wrong. The traceroute command uses the TTL value of the UDP datagrams it sends out.

Note A datagram is a packet sent over the 0S| model network layer.

The idea is that, when the TTL value reaches 0, the packet is discarded by the router, and
amessage is sent back to the sender. When starting, traceroute uses a TTL value of 0, which
causes the packet to be discarded by the very first router. This is how traceroute identifies the
first router. Next, it sends the packet to the target destination again, but with a TTL of 1, which,
as you can see, causes the packet to be discarded by the second router. Things continue in this
manner until the packet reaches its final destination.

To use traceroute, you normally put the host name as the argument, such as traceroute
www. ubuntu. com. It’s possible as well to use the IP address of a host, which will produce a result
as shown in Listing 11-15.

Listing 11-15. Testing a Network’s Route with traceroute

T00t@ZNA:~# traceroute www.ubuntu.com

traceroute to www.ubuntu.com (82.211.81.158), 30 hops max, 40 byte packets

1 192.168.1.254 (192.168.1.254) 72.668 ms 10.361